Translator Disclaimer
2010 Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix
Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites
Homology Homotopy Appl. 12(1): 237-278 (2010).

Abstract

For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we explicitly give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indecomposable Cartan matrix in characteristic 2 (and - in the arXiv version of the paper - in other characteristics for completeness of the picture). In the modular and super cases, we define notions of Chevalley generators and Cartan matrix, and an auxiliary notion of the Dynkin diagram. The relations of simple Lie algebras of the A, D, E types are not only Serre ones. These non-Serre relations are same for Lie superalgebras with the same Cartan matrix and any distribution of parities of the generators. Presentations of simple orthogonal Lie algebras having no Cartan matrix (indigenous for characteristic 2) are also given.

Citation

Download Citation

Sofiane Bouarroudj. Pavel Grozman. Alexei Lebedev. Dimitry Leites. "Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix." Homology Homotopy Appl. 12 (1) 237 - 278, 2010.

Information

Published: 2010
First available in Project Euclid: 28 January 2011

zbMATH: 1200.17009
MathSciNet: MR2638873

Subjects:
Primary: 17B50, 70F25

Rights: Copyright © 2010 International Press of Boston

JOURNAL ARTICLE
42 PAGES


SHARE
Vol.12 • No. 1 • 2010
Back to Top