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On modules which are flat over their
endomorphism rings

By Takeshi ONODERA
(Received September 14, 1977; Revised October 29, 1977)

Let RM be a left R-module over a ring R^{1)} , and S be the endomor-
phism ring of RM. Let RA be a left R-module. We say that M-codominant
dimension of A is \geqq n , if there is an exact sequence:

X_{n}arrow X_{n-1}arrow\cdotsarrow X_{2}arrow X_{1}arrow Aarrow 0 ,

where each X_{i} is isomorphic to a (finite or infinite) direct sum of copies of
RM. We denote by \mathscr{C}_{n} the category of left R-modules whose M-codominant
dimensions are \geqq n .

Recently T. W\"urfel has shown that, for a left R-module RM, the fol-
lowing statements are equivalent :2)

(a) The right S-module M_{S} is flat.
(b) RM generates the kernel of every homomorphism RM^{m}arrow_{R}M^{n} ,

where m, n are natural numbers. (Here one can also set n=1).
Further, R. W. Miller has proved that, in case where RM is finitely gener-
ated and projective, the above statements are equivalent to

(c) \mathscr{C}_{2}=\mathscr{C}_{3^{3)}}

Here, regarding to the above results, we shall prove the following
THEOREM. Let RM be left R-module with the endomorphism ring S,

and Q an injective cogenerator in the category R\mathfrak{M} of all left R-modules.
Then the following statements are equivalent:

(1) M_{S} is flat.
(2) The left S-module {}_{S}Hom_{R}(M, Q) is injective.
(3) {}_{S}Hom_{R}(M, Q) is absolutely pure, that is, every homomorphism of

a finitely generated submodule of sS^{m} to {}_{S}Hom_{R}(M, Q) is extended
to that of SS^{m} .

(4) {}_{S}Hom_{R}(M, Q) is semi S-injective, that is, every homomorphism of
a finitely generated left ideal of S to {}_{S}Hom_{R}(M, Q) is extended

1) In what follows, we assume that every ring has an identity element and every
module is unital.

2) Cf. [5], 1. 14 Satz.
3) Cf. [2], Theorem 2. 1*.
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to that of S.
In case where RM satisfies the condition TM=M, where T is the trace

ideal of RM:T= \sum_{f\epsilon Hom_{R^{(M,R}}}f(,M) , the above statements are equivalent to

(5) Ker\alpha\in \mathscr{C}_{2} for every homomorphism \alpha:Xarrow Y, where X, Y\in \mathscr{C}_{2} .
(6) Ker\alpha\in \mathscr{C}_{1} for every homorphism \alpha:Xarrow Y, where X, Y\in \mathscr{C}_{2} .
(7) Ker\alpha\in \mathscr{C}_{1} for every homorphism \alpha:Xarrow Y, where X, Y are direct

sums of copies of RM.
Further, in case where RM is projective, the above statements are equiva-

lent to
(8) If X\supseteqq Y. and X\in \mathscr{C}_{2} , Y\in \mathscr{C}_{1} , then Y\in \mathscr{C}_{2} .
(9) \mathscr{C}_{2}^{\cdot}=\mathscr{C}_{3}

(10) The class \mathscr{C}_{2} forms an exact Grothendieck subcategory of R\mathfrak{M} .
(11) The class \mathscr{C}_{2} forms an exact abelian subcategory of R\mathfrak{M} .
PROOF. The implications (2)\Rightarrow(3)\Rightarrow(4) are clear. (4)\Rightarrow(1) . It suffices to

show (b) under the condition (4). Let (s_{1}, S_{2}^{ },\cdots, s_{m})\in S^{m} be a homomorphism
of RM^{m} to RM, and K be its kernel. Let H be the trace of RM in K:H=
f \in Hom_{R^{(M,K)}}\sum f(M) . Suppose H_{\overline{\overline{*-}}}K. Let (x_{1}, x_{2}, \cdots, x_{m}) be an element of K which

is not contained in H. Then there is a homomorphism \varphi of M^{m} to Q such
that \varphi(H)=0 , \varphi\{(x_{1}, x_{2}, \cdots, x_{m})\}\neq 0 . Then, as is easily seen, the mapping

\delta : \sum_{i=1}^{m}Ss_{i}\ni\sum_{i}a_{i}s_{i}arrow(M\exists xarrow\varphi\{(xa_{1}, xa_{2^{ }},\cdots, xa_{m})\}\in Q)\circ,

is a well defined homorphism of \sum_{i}Ss_{i} to {}_{S}Hom_{R}(M, Q) . It follows, by as-

sumption, that there is an element g\in Hom_{R}(M, Q) such that g( \sum_{i}xa_{i}s_{i})=

\varphi\{(xa_{1}, xa_{2^{ }},\cdots, xa_{m})\} for x\in M. But this implies 0=g( \sum_{i}x_{i}s_{i})=\varphi\{(x_{1}, x_{2}, \cdots ,

x_{n})\}\neq 0 , a contradiction. Thus H=K, as asserted. The implications (5)\Rightarrow

(6)\Rightarrow(7) are clear, because direct sums of copies of M have A/-codominant
dimensions \geqq 2 .

Assume that RM satisfies the condition TM=M. Let X be a left R-
module. It is shown in [3] that X\in \mathscr{C}_{2} iff M \bigotimes_{s}Hom_{R}(M, X) and X are

naturally isomorphic under the mapping \epsilon_{M,X} : M \bigotimes_{S}Hom_{R}(M, X)\ni\sum_{i}m_{i}\otimes f_{i}arrow

\sum_{i}f_{i}(m_{i})\in X^{4)}.
(1)\Rightarrow(5) . Let M_{S} be flat and \alpha be a homomorphism Xarrow Y, where X,

Y\in \mathscr{C}_{2} . Applying the functor M \bigotimes_{S}Hom_{R}(M, X) to the exact sequence: 0arrow

Ker
\alphaarrow Xarrow Y\iota\alpha

, we have the following commutative diagram with exact rows:

4) Cf. [3], Theorem 2.
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0–-Ker \alpha -X -Y
\epsilon_{M,Kera}|_{1} \epsilon_{M,X}| \epsilon_{M,Y}|

0 arrow M\bigotimes_{S}Hom_{R} (M, Ker \alpha) arrow M\bigotimes_{s}Hom_{R}(M, X)arrow M\bigotimes_{S}Hom_{R}(M, Y)

Since \epsilon_{M,X} , \epsilon_{M,Y} are isomorphisms, so is also \epsilon_{M,Kera} . (7) implies (1), because
(7) implies (b).

Assume that RM is projective. Then RM satisfies the condition TM=
M. (5)\Rightarrow(8) . Let X\supseteq Y be such that X\in \mathscr{C}_{2}, Y\in \mathscr{C}_{1} . Then there is an

exact sequence: \oplus Marrow Xarrow X/Yarrow 0\nu . Applying to this the functor M \bigotimes_{S}Hom_{R}

(M, ) , we see that X/Y\in \mathscr{C}_{2} . It follows by (5) that Y\in \mathscr{C}_{2} , because Y is
the kernel of \nu . (8)\Rightarrow(9) . Let X\in \mathscr{C}_{2} . Then there is an exact sequence:

\oplus Marrow\oplus Marrow Xarrow 0\alpha . Since \oplus M\in \mathscr{C}_{2} and Im \alpha\in \mathscr{C}_{1} , we have Im \alpha\in \mathscr{C}_{2} by
(8). It follows that Ker \alpha\in\Psi_{1}^{i}\llcorner’ by [3], Therorem 4. This implies that X\in

\mathscr{C}_{3} . Thus we have \mathscr{C}_{2}=\mathscr{C}_{3} . (9)\Rightarrow(7) . Consider a homomorphism \alpha:\oplus Marrow

\oplus M. Then we have the following exact sequence: 0- Ker\alphaarrow\oplus Marrow\oplus Marrow\iota\alpha\nu

\oplus M/{\rm Im}\alphaarrow 0 . On the other hand, since \oplus M/{\rm Im}\alpha\in \mathscr{C}_{2} , whence \in \mathscr{C}_{3} ,
there is a following exact sequence: Oarrow Larrow\oplus Marrow\oplus Marrow\oplus M/{\rm Im}\alphaarrow 0 , where
L\in \mathscr{C}_{1} . Applying Schanuel’s 1emma^{5)} to the above sequences, we see that
Ker \alpha\in \mathscr{C}_{1} . (1)\Rightarrow(10) . Let M_{S} be flat and \alpha be a homomorphism Xarrow Y, X,
Y\in \mathscr{C}_{2} . Then by (5) Ker \alpha\in \mathscr{C}_{2} . Applying M \bigotimes_{s}Hom_{R}(M, ) to the exact

\alpha \nu

sequence: Xarrow Yarrow Y/{\rm Im}\alphaarrow 0 , we see that Y/{\rm Im}\alpha\in \mathscr{C}_{2} . Further, from the
exact sequence: Ker \alphaarrow Xarrow{\rm Im}\alphaarrow 0 , where X, Ker \alpha\in \mathscr{C}_{2} , we see as above
that Im \alpha\in \mathscr{C}_{2} . Since \mathscr{C}_{2} is closed under direct sums, and has M as a
generator, it follows that \zeta \mathscr{C}_{2} is an exact Grothendieck subcategory of R\mathfrak{M} .
The assertions (10)\Rightarrow (11)\Rightarrow (5) are clear.

5) Cf. [4], Theorem 3.41.
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