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Notes on homogeneous almost Hermitian manifolds
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1. Introduction

The object of this paper is to characterize homogeneous almost Her-
mitian manifolds (i. e. , almost Hermitian manifolds with transitive automor-
phism groups) in terms of the behavior of their curvature tensors and struc-
ture tensors under parallel translations. In [1], W. Ambrose and I. M. Singer
have characterized homogeneous Riemannian manifolds in terms of the be-
havior of their curvature tensors under the parallel translations. They have
proved the following

THEOREM A. Let (M, \langle, \rangle) be a homogeneous Riemannian manifold.
Then, there exists a skew-symmetric tensor field T of type (1, 2) on M sat-
isfying

(A) \nabla_{X}R=T(X)\cdot R ,

(B) \nabla_{X}T=T(X)\cdot T , for any tangent vector X\in T_{x}(M) , x\in M.
Conversely, if a connected, simply connected complete Riemannian manifold
(M, \langle , \rangle) admits a skew-symmetric tensor field T of type (1, 2) on M sat-
isfying (A) and (C), then (M, \langle, \rangle) is a homogeneous Riemannian manifold.
In this note, we shall prove the following

THEOREM B. Let (M, J, \langle, \rangle) be a homogeneous almost Hermitian
manifold. Then, there exists a skew-symmetric tensor field T of type (1, 2)

satisfying (A), (B) in Theorem A, and furthermore
(C) \nabla_{X}J=T(X)\cdot J , for any tangent vector X.

Conversely, if a connected, simply conne\Pi ed, complete almost Hermitian
manifold (M, J, \langle , \rangle) admits a skew-symmetric tensor field T of type (2, 1)

satisfying (A), (B) and (C), then (M, J, \langle’. \rangle) is a homogeneous almost Her-
mitian manifold.

By slight modification of the proof of Theorem A, we may prove TheO-
rem B (cf. \S 3, \S 4). As a result of Theorem B, we have the following well-
known result. If (M, J, \langle, \rangle) is a connected, simply connected Hermitian
symmetric space, then it is homogeneous almost Hermitian manifold.
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REMAR.K. Let (M, \langle , \rangle) ( (M, J, \langle i\rangle), resp.) be a homogeneous Rieman-
nian manifold (a homogeneous almost Hermitian manifold, resp.). Then, by
Theorem A (Theorem B, resp.), there exists a skew-symmetric tensor field
T of type (1, 2) on M satisfying (A) and (B) (and furthermore, (C), resp.).
However, such a tensor field T does not necessarily exist uniquely on M.

This corresponds to the fact that the expression of M as left coset
space is not necessarily determined uniquely. So, in this case, we shall call
that (M, \langle, \rangle) ( (M, J, \langle , \rangle), resp.) has homogeneous structure for T In \S 5,

we shall state some related results of Theorem B.

2. Preliminaries

Let L(M) be the linear frame bundle over a connected m-dimensional
C^{\infty} manifold M with the projection \pi . And let (M, \langle, \rangle) ( (M, J, \langle , \rangle), resp.)

be a connected m-dimensional Riemannian manifold (m(=2n) -dimensional
almost Hermitian manifold, resp.), and O(M)=O(M, \langle, \rangle)(U(M)=U(M, J,
\langle , \rangle) , resp.) be the orthonormal frame bundle (the unitary frame bundle,
resp.) over M with respect to the Riemannian structure \langle , \rangle (almost Her-
mitian structure (J, \langle _{j}\rangle) , resp.) with the projection \pi=\pi|_{o(w} ( \pi=\pi|_{U(M)} , resp.).

i
Let R^{m} be an m-dimensional real number space and (v_{i});v_{i}=(0, \cdots , 1, 0, \cdots ,
0)\in R^{m} , i=1,2, \cdots , m, be the canonical basis for R^{m} . Then, each b=(x ;
e_{1} , \cdots , e_{m})\in O(M) can be regarded as a linear isomorphism from R^{m} onto
T_{x}(M) such that b(v_{i})=e_{i} , i=1,2, \cdots , m. Let O(m) ((RU(n), m=2n, resp.)

be the orthogonal group of degree m (the real representation of the unitary
group of degree n, resp.), and o(m) (Ru(n) or u(n) simply, resp.) be the
Lie algebra. Now, we define linear mappings f_{ij}(i<j) on R^{m} by fij(vj)=-v_{j} ,
f_{ij}(v_{j})=v_{i} , and f_{ij}(v_{k})=0 , for k\neq i, j . Then, (f_{ij})(i<j) is a basis for o(m) .
Furthermore, we put f_{ji}=-f_{ij}(i<j) . Let F_{ij} be the fundamental vector

fields on O(M) corresponding to f_{ij}\in o(m) , i, j=1,2, \cdots , m, and \mathscr{F} be the
Lie algebra consisting of all vector fields on O(M) of the form, \sum b_{jk}F_{jk},

j<k
b_{jk}\in R . Now, let \nabla be the Riemannian connection on M with respect to

the Riemannian metric \langle , \rangle , and \omega be the corresponding connection l-form
on O(M). Then, we may associate with each v\in R^{m} the standard horizontal
vector field (or the basic vector field) E(v) on O(M) with respect to \omega . We
put E_{i}=E(v_{i}) , i=1,2, \cdots , m. Then, (E_{i}) makes a basis for horizontal sub-
space at each b\in O(M) . Let \mathcal{E} be the m-dimensional vector space consisting
of all vector fields on O(M) of the form, \sum_{i}a_{i}E_{i}, a_{i}\in R . Then, \mathscr{F} acts on
\mathcal{E} by

(2. 1) [F_{if}, E(v)]=E(f_{ij}v),\cdot i,j=1,2, \cdots , m .
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Next, consider an m(=2n) -dimensional almost Hermitian manifold (M,
J, \langle . \rangle) . We put

B_{ij}=(1/\sqrt{2})(F_{ij}+F_{n+in+j}) , (i<j) :

C_{ij}=(1/\sqrt{2})(F_{in+j}+F_{jn+i}),\cdot (i\neq j) ,

C_{i}=F_{in+i} .
Then, (B_{ij}(i<j), C_{ij}(i\neq j) , C_{i}) is a basis of the vertical subspace at each point
b\in U(M)=U(M, J, \langle, \rangle) . Of course, U(M) can be regarded as a principal
subbundle of O(M) which is the orthonormal frame bundle over M with
respect to the Riemannian structure.

Next, if S is a linear transformation on T_{x}(M), x\in M, then it gives
rise to a gl(m, R) -valued function \sigma(S) on \pi^{-1}(x) by

Se_{j}= \sum_{i=1}^{m}(\sigma_{ij}(S))(b)e_{i} , for b=(x;e_{1}, \cdots, e_{m})\in L(M)

Then, we may see that \sigma(S) is equivariant (or of ad(O(m)) -type). Conversely,
any equivariant gl(m, R) -valued function \sigma on \pi^{-1}(x) is such a \sigma(S) for a
unique linear transformation S on T_{x}(M) .

Now, let T be a skew-symmetric tensor field of type (1, 2) which assigns
to each point a skew-symmetric linear transformation T(X) on T_{x}(M) for
each X\in T_{x}(M) . Then, we can point out that such a T gives rise to a
unique equivariant horizontal o(m) -valued 1-form \tau on O(M), and there is
a 1-1 correspondence between the set of all such T” s and the set of all
such r’s (cf. [1]). If T and \tau correspond, then T is of class C^{\infty} if and only
if \tau is of class C^{\infty} . Next, we shall consider the covariant derivatives, \nabla_{X}K,
(\nabla_{X}T)(Y) ans (\nabla_{X}R) ( Y, Z) , etc., where K is any tensor field of type (1, 1) ,
T a skew-symmetric tensor field, of type (1, 2) , and R the curvature tensor.
We first consider \nabla_{X}K, for X\in T_{x}(M) , X\neq 0 . Let \gamma be the geodesic in M
tangent to X at x, and parametrized so that \gamma(0)=x . Let P_{t} denote the
linear transformation of parallel translation along \gamma from x to \gamma(t) . We get
a 1-parameter family of linear transformations S_{t} on T_{x}(M) by defining
S_{t}=P_{t}^{-l}K_{r^{(t)}}P_{t} . Then, \nabla_{X}K is given by the derivative of S_{t} at t=0, by the
definition. That is to say, if (e_{i})=(e_{1^{ }},\cdots, e_{m}) is an orthonormal frame at x
and (a_{if}(t)) is the matrix of S_{t} with respect to this (e_{i}) , then \nabla_{X}K is the
linear transformation on T_{x}(M) whose matrix with respect to (e_{i}) is (a_{ij}(0)) .
To interpret this in terms of \tau , let b be the point of O(M), b=(x;e_{1}, \cdots ,
e_{m}) , and (e_{i}(t))=(e_{1}(t), \cdots, e_{m}(t)) be the parallel translates of the (e_{i}) along \gamma and
\overline{\gamma} be the curve in O(M) defined by \overline{\mathcal{T}}(t)=(\gamma(t);e_{1}(t), \cdots, e_{n},(t)) . Then, a_{ij}(t)=

\langle S_{t}e_{i}, e_{f}\rangle=\langle P_{t}^{-l}K_{r^{(t)}}P_{t}e_{i}, e_{j}\rangle=\langle K_{r^{(t)}}P_{t}e_{i}, P_{t}e_{j}\rangle=\langle K_{r^{(l)}}e_{i}(t), e_{f}(t)\rangle=\sigma_{if}(K_{\gamma(t)})(\overline{\gamma}(t)) .
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Let E\in \mathcal{E} with d\pi(E(b))=X. Then, by the above equation, we have

(2. 2) \sigma(\nabla_{X}K)(b)=E(b)\sigma(K) .

Similarly, (\nabla_{X}T)(Y) and (\nabla_{X}R)(Y, Z) , for X, Y, Z\in T_{x}(M) , X\neq 0 , are given
respectively as follows (cf. [1]) :

(2. 3) \sigma((\nabla_{X}T) ( Y))(b)=E(b)\tau(E) ,

(2. 4) \sigma((\nabla_{X}R)(Y, Z))(b)=E(b)\Omega(E’, E’)
,\cdot

where E, E’ , E’\in \mathcal{E} such that d\pi(E(b))=X, d\pi(E’(b))=Y, d\pi(E’(b))=Z,

and f2 denotes the curvature form with respect to the Riemannian connection
\omega on O(M) .

In general, the following is well known (cf. [1], [3]).

Lemma 2. 1. If \theta is an equivariant horizontal C^{\infty}p(\geqq 0) form on
O(M) with the values in o(m) , then

(2. 5) d\theta=(-1)^{p}[\theta, \omega]+D\theta ,
where D\theta=d\theta\circ H, H denoting the projection onto the horizontal subspace.
In particular, if \theta=\Omega, since D12=0 by the second Bianchi identity, we have

(2. 6) d\Omega=[\Omega, \omega]

3. The first half of Theorem B.

In this section, we assume that (M, J, \langle, \rangle) is connected, homogeneous
almost Hermitian manifold. We define here a certain equivariant horizontal
C^{\infty}1 form \tau, then show that the associated T satisfies the three conditions
(A), (B) and (C) in Theorem B by showing that \tau has corresponding pr0-

perties. Let G be a transitive Lie group of automorphisms of (M, J, \langle, \rangle) .
Then G acts on U(M) if we define

g(x;e_{1}, \cdots, e_{n}, Je_{1^{ }},\cdots, Je_{n})

=(gx ; (dg) e_{1} , \cdots , (dg) e_{n} , (dg) Je_{1} , \cdots , (dg) Je_{n})

=(gx;(dg)e_{1} , \cdots , (dg) e_{n} , J(dg)e_{1} , \cdots , J(dg)e_{n}) r

for any g\in G

We put on O(M) (which is the orthonormal frame bundle with respect to

the Riemannian structure of (M, J, \langle , \rangle)) the Riemannian structure in which
at each b\in O(M) the E_{i}(b) and F_{jk}(b)(j<k) are an orthonormal basis of
T_{b}(O(M)) . Furthermore, we put on U(M) the Riemannian structure which
is induced from the above Riemannian structure on O(M). Then, B_{jk}(b)
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(j<k) , C_{jk}(b)(j\neq k) , C_{i}(b) , and E_{i}(b) are an orthonormal basis of T_{b}(U(M)) ,
b\in U(M) . Under the above action, G is also group of isometries of U(M) .
This is trivial from the fact that any g\in G preserves everything naturally
attached to the almost Hermitian structure of (M, J, \langle _{j}\rangle) . Since M is con-
nected, it is well known that an automorphism of (M, J, \langle , \rangle) is determined
by it and its differential at a single point. Hence, for any b\in U(M) , the
mapping L_{b} of G into U(M) defined by Lb(G)=gb, is a 1: 1 mapping of G
into U(M) . It is also well known that L_{b} is of class C^{\infty} and that dL_{b} is
nonsingular everywhere and hence, L_{b}(G) is a submanifold of U(M). Let
T_{e}(G) be the tangent space at the identity e. and P_{b}=dL_{b}(T_{e}(G)) . We
then define a subspace Q_{b} by

Q_{b}=P_{b}\cap(P_{b}\cap V_{b})^{\perp} ,

where V_{b} is the vertical subspace at b and ”\perp ” denotes the orthogonal
complement with respect to the Riemannian metric defined above on U(M) .
Then, we can show that the distribution Q defines a connection on U(M)
(cf. [1]). Next, we can extend this connection on U(M) to the one of o(M)
by the natural fashion. Let \psi be the connection 1-form corresponding to
the connection Q on O(M). And we define \tau by \tau=\omega-\psi . Then, we can
easily see that \tau is equivariant and horizontal. In terms of the connection
Q every \xi\in T_{b}(O(M)) can be decomposed into a Q-horizontal and a vertical
vector, and we denote these components by Q\xi and W\xi, so \tau=Q\xi+W\xi,
where W\xi is vertical and Q\xi\in Q_{b} , \xi\in T_{b}(O(M)) , b\in O(M) . We note the
following (cf. [1])

(3. 1) \tau(E)=\omega(QE)=-\omega(WEIj if E\in \mathcal{E}.
Now, we can show the following (cf. [1])

Lemma 3. 1. If b\in U(M) and E, E’\in \mathcal{E} , then the functions, \sigma(J) , \Omega(E,E’)

and \tau(E) are constant on L_{b}(G) .
We now consider the meaning of (2. 5) and (2. 6) in terms of vector fields
in \mathcal{E} and \mathscr{F} Then, by Lemma 3. 1, we have the followings.
(3. 2) F\sigma(J)=d(\sigma(J))(F)=[\sigma(J), \omega(F)] ,

and furthermore (cf. [1])

(3. 3) F\tau(E)=\tau([F, e])+[\omega(F), \tau(E)] ,

(3. 4) F\Omega(E, E’)=-\Omega([E, F], E’)+\Omega([E’, F] , E)+[\Omega(E, E’) , \omega(F)] ,

for all E, E’\in \mathcal{E} , F\in \mathscr{F} .
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Since (M, J, \langle’. \rangle) is a homogeneous Riemannian manifold with respect to
the Riemannian structure, by (2. 3), (2. 4), (3. 3), (3. 4), Lemma 3. 1, and the
arguments in [1], we see that (A) and (B) in Theorem A hold for the tensor
field T corresponding to \tau .
Furthermore, by Lemma 3. 1, we have

(3. 5) E(b)\sigma(J)=(WE)(b)\sigma(J)=F(b)\sigma(J)2

where F(b\rangle=(WE)(b)\in V_{b} .
Thus, by (3. 2) and (3. 5), we have

(3. 6) E(b)\sigma(J)=[\sigma(J)(b), \omega(F(b))]

=-[\sigma(J)(b), \omega((QE)(b))]

=[\omega((QE)(b)), \sigma(J)(b)]

=[\tau(E)(b), \sigma(J)(b)]

=[\sigma(T(X))(b), \sigma(J)(b)]

=\sigma ( [T(X), (J)] ) (b)j

where d\pi(E(b))=X.
Thus, from (2. 2) with K=J, and (3. 5), we have

(3. 7) \nabla_{X}J=[T(X), J] .

(3. 7) is nothing but (C) in Theorem B. This completes the proof of the
first haH of Theorem B.

4. The latter half of Theorem B.

In this section, we assume that (M, J, \langle" \rangle) is a connected, simply con-
nected, complete almost Hermitian manifold with a skew-symmetric tensor
field T of type (1, 2) satisfying the conditions, (A), (B) and (C) in the intr0-
duction. For this T, we can construct \tau which is the associated horizontal,
equivariant C^{\infty}1 -form on O(M) . Furthermore, using this \tau , we can define
a connection 1-form, \psi by \psi=\omega-\tau . Let Q_{b} be the horizontal subspace of
T_{b}(O(M)) with with respect to \psi , i . e. , Q_{b}=\{\xi\in T_{b}(O(\mathbb{J}l)) ; \psi(\xi)=0\} . We
now fix a point b_{0}=(x_{0} ; e_{1}^{0}, \cdots, e_{n}^{0}, Je_{1}^{0_{ }},\cdots, Je_{n}^{0})\in U(M) and a subset G of O(M)
to be the set of all points in O(M) that can be joined to b_{0} by broken C^{\infty}

Q-horizontal curves in O(M). Then, G is a principal subbundle of O(M) .
Furthermore, we can show the following by reversing the arguments in
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\S 3 (cf. [1]).

LEMMA 4. 1. Under our assumptions, the functions, \sigma(J) , \tau(E) and
\Omega(E, E’) are constant on G, for all E, E’\in \mathcal{E} .
Furthermore, according to [1], we can show that G has a Lie group struc-
ture and acts as a transitive group of isometries of (M, J, \langle , \rangle) by b’(x)=
\pi(b’b) , b, b’\in G, \pi(b)=x . When we regard b’\in G as an isometry of (M,
J, \langle , \rangle) , we denote it by g’=g(b’) .
Since

\sigma(J)(b_{0})=(\begin{array}{ll}0 I_{n}-I_{n} 0\end{array}) ,

by Lemma 4. 1, we see that every b\in G takes of the form, b=(x;e_{1}, \cdots , e_{n} ,
Je_{1} , \cdots , Je_{n}) , where I_{n} denotes the unit matrix of degree n .
Thus, for any b, b\in G, we have

g’(b)=((dg’)e_{1}, \cdots , (dg’)e_{n} , (dg’)Je_{1} , \cdots , (dg’)Je_{n}) ,

and hence, (dg’)J=J(dg’) , because g’(b)\in G .
Therefore, we can conclude that G acts transitively on M as a group

of automorphisms of (M, J, \langle , \rangle) . This completes the proof of the latter
half of Theorem B.

REMARK. Let G be a transitive Lie group of automorphisms of an
almost Hermitian manifold (M, J, \langle, \rangle) . Then, the corresponding skew-
symmetric tensor field T of type (1, 2) on M is G-invariant.

5. The automorphism group of the maximum dimension.

Let (M, J, \langle’. \rangle) be an 2n-dimensional almost Hermitian manifold of the
automorphism group, say, A(M)=A(M, J, \langle , \rangle) , of the maximum dimension,
n(n+2) . Then, it follows that A(M) acts transitively on M (cf. [3], [4]).
The linear isotropy group at a point x of A(M) may be considered as the
unitary group U(n) , since dim A(M)=n(n+2) and dim M=2n. So it con-
tains a 1-parameter group exp (\sqrt{-1}t)I, and in particular, the element, - I,
where I is the identity operator. If a tensor field K of type (r, s) is invariant
by A(M) , then K=0 if r+s is odd, since -I maps K into (-1)^{r+s}K. Since
(M, J, \langle, \rangle) is homogeneous, by Theorem B, there exists a skew-symmetric
tensor field T of type (1, 2) which corresponds to A(M). Thus, by the
above arguments, T must vanish, since T is invariant by A(M). Therefore,
in this case, (M, J, \langle’. \rangle) is a locally symmetric Kaehlerian manifold by (A),
(B) and (C) in Theorem B. Furthermore, S. Tanno (cf. [4]) has proved that
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(M, J, \langle, \rangle) is simply connected and is one of complex space forms of dimen-
sion n .

REMARK. Let (S^{6}, \langle, \rangle_{0}) be a standard 6-dimensional sphere in a 7-
dimension Euclidean space E^{7} . Then, as is well known, (S^{6}, \langle, \rangle_{0}) is a space
of positive constant curvature and I(S^{6}, \langle, \rangle_{0}) (the group of isometries of
(S^{6}, \langle, \rangle_{0}))=O(7) . In this case, S^{6}=O(7)/O(6) as corresponding left coset
space.

On the other hand, T_{f} Fukami and S. ishihara (cf. [2]) showed that
there exists a non-Kaehlerian, almost Tachibana (or nearly Kaehlerian) struc-
ture, say, (J_{0}, \langle , \rangle_{0}) , on S^{6} . With respect to this structure (J_{0}, \langle , \rangle_{0}) , the
group of automorphisms A (S^{6}, J_{0}, \langle, \rangle_{0}) coincides with G_{2} (cf. [2], [4]), and
S^{6}=G_{2}/SU(3) as corresponding left coset space. In this case, we can easily
see that the expression S^{6}=G_{2}/SU(3) corresponds to the tensor field T(X)
Y=(1/2)(J_{0}\nabla_{X}^{0}J_{0})Y, where \nabla 0 denotes the Riemannian connection on S^{6} with
respect to \langle , \rangle_{0} .
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