February 2021 Colocalization of formal local cohomology modules
Shahram REZAEI
Author Affiliations +
Hokkaido Math. J. 50(1): 77-89 (February 2021). DOI: 10.14492/hokmj/2018-906

Abstract

Let $(R,\frak{m})$ be a Noetherian local ring, $\frak{a}$ an ideal of $R$ and $M$ a finitely generated $R$-module. In this paper, we study Colocalization of formal local cohomology modules. Here, similar to the local global Principle in local cohomology theory, we investigate artinianness and minimaxness of formal local cohomology modules in terms of their colocalizations. Among other things, we will prove that, for any integer $n$, $\mathfrak{F}_{\frak{a}}^i(M)$ is artinian $R$-module for all $i \lt n$, if and only if $_{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)$. Also, $ \mathfrak{F}_{\frak{a}}^i(M) $ is minimax $R$-module for all $i \lt n$, if and only if $ _{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)\setminus\lbrace \frak{m}\rbrace$.

Acknowledgment

The author would like to thanks the referee for his/her useful suggestions.

Citation

Download Citation

Shahram REZAEI. "Colocalization of formal local cohomology modules." Hokkaido Math. J. 50 (1) 77 - 89, February 2021. https://doi.org/10.14492/hokmj/2018-906

Information

Received: 1 October 2018; Revised: 6 March 2019; Published: February 2021
First available in Project Euclid: 30 July 2021

Digital Object Identifier: 10.14492/hokmj/2018-906

Subjects:
Primary: 13D45 , 13E99

Keywords: Artinianness , colocalization , formal local cohomology

Rights: Copyright c 2021 Hokkaido University, Department of Mathematics

Vol.50 • No. 1 • February 2021
Back to Top