Generalized Lucas Numbers of the form wx^2 and wV_mx^2

Merve GÜNEY DUMAN, Ümmügülsüm ÖĞÜT and Refik KESKİN

(Received December 21, 2015; Revised June 8, 2016)

Abstract. Let $P \geq 3$ be an integer. Let (V_n) denote generalized Lucas sequence defined by $V_0 = 2$, $V_1 = P$, and $V_{n+1} = PV_n - V_{n-1}$ for $n \geq 1$. In this study, when P is odd, we solve the equation $V_n = wx^2$ for some values of w. Moreover, when P is odd, we solve the equation $V_n = wkx^2$ with $k \mid P$ and k > 1 for w = 3, 11, 13. Lastly, we solve the equation $V_n = wV_mx^2$ for w = 7, 11, 13.

Key words: Generalized Lucas sequence, Generalized Fibonacci sequence, congruence, square terms in Lucas sequences.

1. Introduction

Let P and Q be nonzero integers such that $P^2 + 4Q > 0$. Generalized Fibonacci sequence $(U_n(P,Q))$ and Lucas sequence $(V_n(P,Q))$ are defined by $U_0(P,Q) = 0, U_1(P,Q) = 1; V_0(P,Q) = 2, V_1(P,Q) = P$, and $U_{n+1}(P,Q) = PU_n(P,Q) + QU_{n-1}(P,Q), V_{n+1}(P,Q) = PV_n(P,Q) + QV_{n-1}(P,Q)$ for $n \geq 1$. The numbers $U_n(P,Q)$ and $V_n(P,Q)$ are called *n*-th generalized Fibonacci and Lucas numbers, respectively. Generalized Fibonacci and Lucas sequences for negative subscripts are defined as $U_{-n}(P,Q) = -U_n(P,Q)/(-Q)^n$ and $V_{-n}(P,Q) = V_n(P,Q)/(-Q)^n$ for $n \geq 1$. Since $U_n(-P,Q) = (-1)^{n-1}U_n(P,Q)$ and $V_n(-P,Q) = (-1)^nV_n(P,Q)$, it will be assumed that $P \geq 1$. For P = Q = 1, we have classical Fibonacci and Lucas sequences (F_n) and (L_n) . For P = 2 and Q = 1, we have Pell and Pell-Lucas sequences (P_n) and (Q_n) . For more information about generalized Fibonacci and Lucas sequences one can consult [7].

The terms in Lucas sequences of the form kx^2 have been investigated since 1962. When P is odd and $Q = \pm 1$, by using elementary argument many authors solved the equation $U_n = kx^2$ or $V_n = kx^2$ for specific integer values of k. The reader can consult [13] or [9] for a brief discussion of the subject. In [5], the authors solved $U_n = x^2$, $V_n = x^2$, $U_n = 2x^2$, and $V_n = 2x^2$ for odd relatively prime integers P and Q. In [8], the same authors solved $U_n = 3x^2$ for relatively prime odd integers P and Q. In [14],

²⁰¹⁰ Mathematics Subject Classification: 11B37, 11B39.

the authors solved $V_n = 3x^2$ and $V_n = 6x^2$ for relatively prime odd integers P and Q. Moreover, in [11], the authors solved $U_n = 6x^2$ for relatively prime odd integers P and Q. In [2], the authors solved $V_n(P, -1) = 5x^2$ and $U_n(P, -1) = 5x^2$ for odd integer $P \ge 3$. In [3], the authors solved $U_n = 7x^2$ and $V_n = 7x^2$ for odd integer $P \ge 1$ with Q = 1. In [1], the author solved $V_n = V_m x^2$ and $V_n = 2V_m x^2$ for odd value of P with $Q = \pm 1$. In [11], the author solved $V_n = V_m x^2$, $V_n = 2V_m x^2$, and $V_n = 6V_m x^2$ for relatively prime odd values of P and Q. In [2], the authors solved $V_n = 5V_m x^2$ for odd value of P with Q = -1.

In this study, we assume that Q = -1. We solve the equation $V_n = wx^2$ for some values of w. Moreover, we solve the equation $V_n = wkx^2$ with $k \mid P$ and k > 1 for w = 3, 11, 13. Lastly, we solve the equation $V_n = wV_mx^2$ for w = 7, 11, 13.

Throughout this study, (*/*) will denote the Jacobi symbol. Our method is elementary and used by Cohn, Ribenboim, and McDaniel in [1] and [8], respectively.

2. Preliminaries

From now on, instead of $U_n(P, -1)$ and $V_n(P, -1)$, we sometimes write U_n and V_n , respectively. The following theorem is given in [12].

Theorem 2.1 Let $n \in \mathbb{N} \cup \{0\}$ and $m, r \in \mathbb{Z}$. Then

$$V_{2mn+r} \equiv (-1)^n V_r (\operatorname{mod} V_m) \tag{2.1}$$

and

$$V_{2mn+r} \equiv V_r(\operatorname{mod} U_m) \tag{2.2}$$

if $m \neq 0$.

From (2.1), it follows that if a is odd, then

$$V_{2 \cdot 2^r a + m} \equiv -V_m \pmod{V_{2^r}}.$$
(2.3)

Since $8 \mid U_3$ when P is odd, we get

$$V_{6q+r} \equiv V_r \pmod{8}.\tag{2.4}$$

When P is odd, we have $V_{2^r} \equiv 7 \pmod{8}$ and thus,

$$\left(\frac{2}{V_{2^r}}\right) = 1\tag{2.5}$$

and

$$\left(\frac{-1}{V_{2^r}}\right) = -1\tag{2.6}$$

for $r \geq 1$. Moreover, we have

$$\left(\frac{3}{V_{2^r}}\right) = \begin{cases} 1 & \text{if } r \ge 1 \text{ and } 3 \nmid P, \\ -1 & \text{if } r = 1 \text{ and } 3 \mid P, \\ 1 & \text{if } r \ge 2 \text{ and } 3 \mid P. \end{cases}$$
(2.7)

Then it follows from (2.7) that

$$\left(\frac{3}{V_{2^r}}\right) = 1\tag{2.8}$$

for $r \geq 2$.

When P is odd, we have

$$\left(\frac{P-1}{V_{2^r}}\right) = \left(\frac{P+1}{V_{2^r}}\right) = \left(\frac{P^2-1}{V_{2^r}}\right) = 1$$
(2.9)

for $r \ge 1$ and

$$2 \mid V_n \Leftrightarrow 2 \mid U_n \Leftrightarrow 3 \mid n. \tag{2.10}$$

Moreover, it can be seen that if n is odd, then

$$V_{2n} \equiv 2,7 \pmod{8}.$$
 (2.11)

and if n is odd and $3 \nmid n$, then

$$V_n \equiv P(\text{mod } 8). \tag{2.12}$$

The following identities are well known (see [7]).

$$V_{-n} = V_n. \tag{2.13}$$

$$V_{3n} = V_n(V_n^2 - 3) = V_n(V_{2n} - 1).$$
(2.14)

$$U_m \mid U_n \Leftrightarrow m \mid n. \tag{2.15}$$

$$V_m \mid V_n \Leftrightarrow m \mid n \text{ and } n/m \text{ is odd.}$$
 (2.16)

$$U_{2n} = U_n V_n. (2.17)$$

$$V_{2n} = V_n^2 - 2. (2.18)$$

If d = (m, n), then

$$(V_m, V_n) = \begin{cases} V_d & \text{if } m/n \text{ and } n/m \text{ odd,} \\ 1 \text{ or } 2 & \text{otherwise.} \end{cases}$$
(2.19)

Now we give the following theorems from [10].

Theorem 2.2 Let P be odd. If $V_n = kx^2$ for some $k \mid P$ with k > 1, then n = 1.

Theorem 2.3 Let P be odd. If $V_n = 2kx^2$ for some $k \mid P$ with k > 1, then n = 3.

Lemma 1

$$V_n \equiv \begin{cases} 2(-1)^n \pmod{P} & \text{if } n \text{ is even,} \\ 0 \pmod{P} & \text{if } n \text{ is odd.} \end{cases}$$

3. Divisibility of V_n by Small Values of k

From now on, we will assume that n and m are positive integers.

Lemma 2 $3 \mid V_n$ if and only if $3 \mid P$ and n is odd.

Proof. If $3 \mid P$ and n is odd, then $3 \mid V_n$ by Lemma 1. Assume that $3 \mid V_n$. Let $3 \nmid P$. Then $3 \mid P^2 - 1$ and therefore $3 \mid U_3$. Let $n = 6q \pm r$ with $0 \leq r \leq 3$. Then by (2.2), $V_n \equiv V_{\pm r} \pmod{U_3}$, which implies that $V_n \equiv V_r \pmod{3}$. It can be seen that $3 \nmid V_r$ for $0 \leq r \leq 3$. Thus, $3 \nmid V_n$. Therefore $3 \mid P$ and it is seen that n is odd by Lemma 1.

Lemma 3 7 | V_n if and only if 7 | P and n is odd or $P^2 \equiv 2 \pmod{7}$ and n = 2t for some odd integer t.

Proof. Let $7 \mid P$ and n be odd. Then by Lemma 1, we get $7 \mid V_n$. Let $P^2 \equiv 2 \pmod{7}$ and n = 2t for some odd integer t. Then $7 \mid V_2$. Since n = 4q + 2, it follows that $V_n \equiv \pm V_2 \pmod{2}$ by (2.1). Thus, we have $7 \mid V_n$. Now assume that $7 \mid V_n$. If $7 \mid P$, then n must be odd by Lemma 1. Let $7 \nmid P$. Then $P^2 \equiv 1, 2, 4 \pmod{7}$. Let $P^2 \equiv 1 \pmod{7}$. Then $7 \mid U_3$. We may write $n = 6q \pm r$ with $0 \le r \le 3$. Thus, $V_n = V_{6q+r} \equiv V_r \pmod{U_3}$ by (2.2), which implies that $V_n \equiv V_r \pmod{7}$. Then we must have $7 \mid V_r$ for $0 \le r \le 3$, which is impossible. Let $P^2 \equiv 4 \pmod{7}$ and $n = 14q \pm r$, $0 \le r \le 7$. Then $7 \mid U_7$ and thus, $V_n = V_{14q\pm r} \equiv V_{\pm r} \pmod{U_7}$, which implies that $V_n \equiv V_r \pmod{7}$. This is impossible since $7 \nmid V_r$ for $0 \le r \le 7$. Let $P^2 \equiv 2 \pmod{7}$. Then $7 \mid V_2$. Let n = 2q + r, $0 \le r \le 1$. If q is even, then $V_n = V_{2q+r} \equiv \pm V_r \pmod{V_2}$ by (2.1). This is impossible since $7 \nmid V_r$ for $0 \le r \le 1$. Let q be odd. Then q = 2t + 1 and thus, by (2.1), we get

$$V_n = V_{2q+r} = V_{2(2t+1)+r} = \pm V_{r+2} \pmod{V_2},$$

which implies that $V_n \equiv \pm V_{r+2} \pmod{7}$ since $7 \mid V_2$. But this is possible only if r = 0. Thus, n = 2q with q odd.

The ideas behind of the proof of the following lemmas are similar to that of the lemma above and we omit the proofs here.

Lemma 4 $5 \mid V_n$ if and only if $5 \mid P$ and n is odd.

Lemma 5 11 | V_n if and only if 11 | P and n is odd or $P^2 \equiv 3 \pmod{11}$ and n = 3t for some odd integer t.

Lemma 6 13 | V_n if and only if 13 | P and n is odd or $P^2 \equiv 3 \pmod{13}$ and n = 3t for some odd integer t.

4. Main Theorems

Theorem 4.1 If P is odd and $11 \mid P$, then $V_n = 11x^2$ has the solution n = 1. If $P^2 \equiv 3 \pmod{11}$, then the equation $V_n = 11x^2$ has no solutions.

Proof. Assume that $V_n = 11x^2$ for some integer x. By Lemma 5, 11 | V_n if and only if 11 | P and n is odd or $P^2 \equiv 3 \pmod{11}$ and n = 3t for some odd integer t. Let 11 | P and n be odd. Then by Theorem 2.2, we get n = 1.

Now assume that $P^2 \equiv 3 \pmod{11}$ and n = 3t for some odd integer t. Let $t = 4q \pm 1$. Then $n = 12q \pm 3$ and so

$$V_n \equiv V_{\pm 3} \equiv V_3 \pmod{U_3}$$

by (2.2). Now assume that P is odd. Since $8 \mid U_3$, it follows that

$$11x^2 \equiv V_3 \equiv P(P^2 - 3) \pmod{8}.$$

Thus, $11x^2 \equiv -2P \pmod{8}$, which implies that $x^2 \equiv -6P \pmod{8}$. This is impossible since P is odd. Now assume that P is even. It can be seen that if n is odd, then $V_n \equiv P \pmod{P^2 - 4}$. Using the fact that n is odd, it follows that $11x^2 = V_n \equiv P \pmod{P^2 - 4}$. Since P is even, we get $4 \mid P^2 - 4$, which implies that $4 \mid P$. This shows that $P^2 - 1 \equiv 7 \pmod{8}$. Since $11x^2 \equiv P(P^2 - 3) \pmod{U_3}$, we get $11x^2 \equiv -2P \pmod{P^2 - 1}$. Then it follows that $(11/(P^2 - 1)) = (-2P/(P^2 - 1))$. Since $P^2 \equiv 3 \pmod{11}$, we get

$$\left(\frac{11}{P^2 - 1}\right) = -\left(\frac{P^2 - 1}{11}\right) = -\left(\frac{2}{11}\right) = 1.$$

But

$$1 = \left(\frac{11}{P^2 - 1}\right) = \left(\frac{-2P}{P^2 - 1}\right) = \left(\frac{-2}{P^2 - 1}\right) \left(\frac{P}{P^2 - 1}\right) = -\left(\frac{P}{P^2 - 1}\right)$$
$$= -\left(\frac{2^r a}{P^2 - 1}\right) = (-1)\left(\frac{a}{P^2 - 1}\right) = (-1)(-1)^{(a-1)/2}\left(\frac{P^2 - 1}{a}\right)$$
$$= (-1)(-1)^{(a-1)/2}\left(\frac{-1}{a}\right) = -1,$$

a contradiction.

From now on, we will assume that P is odd.

Theorem 4.2 Let $V_n = 7x^2$ for some integer x. Then n = 1 or 2.

Proof. Assume that $V_n = 7x^2$ for some integer x. By Lemma 3, $7 | V_n$ if and only if 7 | P and n is odd or $P^2 \equiv 2 \pmod{7}$ and n = 2t for some odd integer t. Let 7 | P. Then n = 1 by Theorem 2.2. Assume that

 $P^2 \equiv 2 \pmod{7}$ and n = 2t for some odd integer t. Let t > 1. Then $t = 4q \pm 1$ for some q > 0 and so $n = 2t = 2 \cdot 2^r a \pm 2$ with a odd and $r \ge 2$. Therefore we get $7x^2 \equiv -V_{\pm 2} \equiv -V_2 \pmod{V_{2^r}}$ by (2.3). This shows that

$$\left(\frac{7}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{V_2}{V_{2^r}}\right) = -\left(\frac{V_2}{V_{2^r}}\right)$$
(4.1)

by (2.6). Let r = 2. Then

$$\left(\frac{7}{V_4}\right) = -\left(\frac{V_2}{V_4}\right) = \left(\frac{V_4}{V_2}\right) = \left(\frac{V_2^2 - 2}{V_2}\right) = \left(\frac{-2}{V_2}\right) = -1.$$

Thus, we get

$$-1 = \left(\frac{7}{V_4}\right) = -\left(\frac{V_4}{7}\right) = -\left(\frac{V_2^2 - 2}{7}\right) = -\left(\frac{-2}{7}\right) = 1,$$

which is a contradiction. Now let $r \geq 3$. Then $V_{2^r} \equiv 2 \pmod{7}$ and $V_{2^r} \equiv 2 \pmod{7}$. Thus,

$$\left(\frac{7}{V_{2^r}}\right) = -\left(\frac{V_{2^r}}{7}\right) = -\left(\frac{2}{7}\right) = -1$$

and

$$\left(\frac{V_2}{V_{2^r}}\right) = -\left(\frac{V_{2^r}}{V_2}\right) = -\left(\frac{2}{V_2}\right) = -1.$$

But this is impossible by (4.1). Thus, t = 1 and therefore n = 2.

Theorem 4.3 The equation $V_n = 13x^2$ has the solution n = 1 if 13 | P and has no solutions if $P^2 \equiv 3 \pmod{13}$.

Proof. Let $V_n = 13x^2$ for some integer x. By Lemma 6, 13 | V_n if and only if 13 | P and n is odd or $P^2 \equiv 3 \pmod{13}$ and n = 3t for some odd integer t. Assume that 13 | P. Then by Theorem 2.2, we get n = 1. Now assume that $P^2 \equiv 3 \pmod{13}$ and n = 3t for some odd integer t. Then n = 3t = 6q + 3 and so by (2.4), we get

$$13x^2 \equiv V_3 = P(P^2 - 3) \pmod{8}.$$

Since $P^2 \equiv 1 \pmod{8}$, it follows that $x^2 \equiv -2P \pmod{8}$. However, this is impossible since P is odd.

Theorem 4.4 If $V_n = 3kx^2$ for some $k \mid P$ with k > 1, then n = 1.

Proof. Let $V_n = 3kx^2$ for some $k \mid P$ with k > 1. Since $3 \mid V_n$, we get $3 \mid P$ and n is odd by Lemma 2. Let n = 6q + r with $r \in \{1,3,5\}$. Then $V_n \equiv V_1, V_3, V_5 \pmod{8}$ by (2.4). Thus we get $3kx^2 \equiv P, -2P \pmod{8}$. Let P = kM. Then $3kMx^2 \equiv PM, -2PM \pmod{8}$. That is, $3Px^2 \equiv PM, -2PM \pmod{8}$. This implies that $3x^2 \equiv M, -2M \pmod{8}$ since P is odd. Thus, we get $x^2 \equiv 3M, 2M \pmod{8}$. This shows that $M \equiv 3 \pmod{8}$ since M is odd. Let n > 1. Then $n = 4q \pm 1$ for some q > 0. Thus, we get $3kx^2 = V_n \equiv -V_{\pm 1} \pmod{V_{2r}}$, which implies that $3kx^2 \equiv -P \pmod{V_{2r}}$. Since $(k, V_{2r}) = 1$, we get $3x^2 \equiv -M \pmod{V_{2r}}$. This shows that

$$\left(\frac{3}{V_{2r}}\right) = \left(\frac{-1}{V_{2r}}\right) \left(\frac{M}{V_{2r}}\right) = -\left(\frac{M}{V_{2r}}\right). \tag{4.2}$$

Let r = 1. Then

$$\left(\frac{3}{V_2}\right) = -\left(\frac{M}{V_2}\right) = \left(\frac{V_2}{M}\right) = \left(\frac{P^2 - 2}{M}\right) = \left(\frac{-2}{M}\right) = 1.$$

Since $3 \mid P$, we get $(3/V_2) = -1$ by (2.7). But this is impossible since $(3/V_2) = 1$. Let $r \geq 2$. Then $(3/V_{2^r}) = 1$ by (2.8) and $V_{2^r} \equiv 2 \pmod{M}$. Thus,

$$1 = \left(\frac{3}{V_{2^r}}\right) = -\left(\frac{M}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{M}\right) = \left(\frac{2}{M}\right) = -1,$$

which is impossible.

Theorem 4.5 If $V_n = 11kx^2$ for some $k \mid P$ with k > 1, then n = 1.

Proof. Let $V_n = 11kx^2$ for some $k \mid P$ with k > 1. Since $11 \mid V_n$, n is odd by Lemma 5. Let P = kM. Similarly, it can be seen that $M \equiv 3 \pmod{8}$. Since $11 \mid V_n$, it follows that $11 \mid P$ and n is odd or $P^2 \equiv 3 \pmod{11}$ and n = 3t with t odd. Let n > 1. Then $n = 4q \pm 1$ for some q > 0 and so $n = 2 \cdot 2^r a \pm 1$ with a odd and $r \ge 1$. Thus, $11kx^2 = V_n \equiv -V_1 \pmod{2^r}$ by (2.3). This shows that $11x^2 \equiv -M \pmod{V_{2^r}}$, which implies that

$$\left(\frac{11}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) = -\left(\frac{M}{V_{2^r}}\right).$$
(4.3)

Now let r = 1. If $11 \mid P$ or $P^2 \equiv 3 \pmod{11}$, then it can be seen that $(11/V_2) = (M/V_2)$. This is impossible by (4.3). Let $r \geq 2$. If $P^2 \equiv 3 \pmod{11}$, then it can be seen that $V_{2^r} \equiv -1 \pmod{11}$ and $V_{2^r} \equiv 2 \pmod{M}$. If $11 \mid P$, then $V_{2^r} \equiv 2 \pmod{11}$ and $V_{2^r} \equiv 2 \pmod{M}$. In both cases, it is seen that $(11/V_{2^r}) = (M/V_{2^r})$, which is impossible by (4.3). Therefore n = 1.

Since the proof of the following theorem is similar to those of the above theorems, we omit it.

Theorem 4.6 If $V_n = 13kx^2$ for some $k \mid P$ with k > 1, then n = 1.

Theorem 4.7 Let $P^2 \equiv 3 \pmod{13}$. Let $m = 2^{a_1} 3^{a_2} 5^{a_3} 7^{a_4} 11^{a_5} > 1$ with $a_j = 0$ or 1 for $1 \le j \le 5$. If $V_n = 13mx^2$ for some integer x, then n = 3.

Proof. Assume that $V_n = 13mx^2$ for some integer x. Since $P^2 \equiv 3 \pmod{13}$ and $13 \mid V_n$, we get n = 3t for some odd integer t by Lemma 6. Thus, n is odd. If $7 \mid m$, then $7 \mid V_n$ and so it follows that $7 \mid P$ by Lemma 3. Therefore we get $7 \mid V_t$ since t is odd. It is clear that $3^{a_2}5^{a_3} \mid V_t$ by Lemmas 2 and 4. Let $m_2 = 3^{a_2}5^{a_3}7^{a_4}$. Then it follows that $m_2 \mid V_t$. Suppose that $P^2 \equiv 3 \pmod{11}$. Then by (2.14), we get

$$2^{a_1} \cdot 11 \cdot 13 \cdot m_2 \cdot x^2 = V_n = V_{3t} = V_t(V_t^2 - 3) = V_t(V_{2t} - 1),$$

which implies that $2^{a_1} \cdot 11 \cdot 13 \cdot x^2 = (V_t/m_2)(V_t^2 - 3)$. Since $(V_t, V_t^2 - 3) = 1$ or 3, it follows that $V_{2t} - 1 = wa^2$ for some integers a and w where $w = 2^a 3^b 11^c 13^d$ with $a, b, c, d \in \{0, 1\}$. Assume now that t > 1 and therefore $2t = 2(4q \pm 1) = 2 \cdot 2^r a \pm 2$ with a odd and $r \ge 2$. Thus, it follows that $wa^2 + 1 = V_{2t} \equiv -V_2 \pmod{V_{2r}}$ by (2.1). This implies that $wa^2 \equiv -(P^2 - 1) \pmod{V_{2r}}$. Therefore

$$\left(\frac{w}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{P^2 - 1}{V_{2^r}}\right).$$

Then

M. Güney Duman, Ü. Öğüt and R. Keskin

$$\left(\frac{w}{V_{2^r}}\right) = -1\tag{4.4}$$

by (2.6) and (2.9). Since $V_2 = P^2 - 2 \equiv 1 \pmod{11}$, we get $V_{2^r} \equiv -1 \pmod{11}$ for $r \geq 2$. Thus,

$$\left(\frac{11}{V_{2^r}}\right) = -\left(\frac{V_{2^r}}{11}\right) = -\left(\frac{-1}{11}\right) = 1.$$

Moreover, since $V_2 = P^2 - 2 \equiv 1 \pmod{13}$, we get $V_{2^r} \equiv -1 \pmod{13}$ for $r \geq 2$. Thus,

$$\left(\frac{13}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{13}\right) = \left(\frac{-1}{13}\right) = 1.$$

Moreover, we get $(2/V_{2^r}) = (3/V_{2^r}) = 1$ by (2.5) and (2.8), respectively. Then it follows that $(w/V_{2^r}) = 1$, which is impossible by (4.4). Now suppose that 11 | *P*. Then 11 | V_t by Lemma 5. Let $m_1 = 3^{a_2} 5^{a_3} 7^{a_4} 11^{a_5}$. Then it follows that $m_1 | V_t$ and so

$$2^{a_1} \cdot 13 \cdot m_1 \cdot x^2 = V_n = V_{3t} = V_t(V_t^2 - 3) = V_t(V_{2t} - 1),$$

which implies that $2^{a_1} \cdot 13 \cdot x^2 = (V_t/m_1)(V_t^2 - 3)$. Since $(V_t, V_t^2 - 3) = 1$ or 3, it follows that $V_{2t} - 1 = wa^2$ for some integers a and w where $w = 2^a 3^b 13^c$ with $a, b, c \in \{0, 1\}$. In a similar way, if t > 1, then a contradiction follows. So we get t = 1 and therefore n = 3.

Since the proof of the following theorem is similar to that of the above theorem, we omit it.

Theorem 4.8 Let $P^2 \equiv 3 \pmod{11}$. Let $m = 2^{a_1} 3^{a_2} 5^{a_3} 7^{a_4} 1 3^{a_5} > 1$ with $a_j = 0$ or 1 for $1 \le j \le 5$. If $V_n = 11mx^2$ for some integer x, then n = 3.

Corollary 1 Let $m = 3^{a_1} 5^{a_2} 7^{a_3} 11^{a_4} 13^{a_5} > 1$ with $a_j = 0$ or 1 for $1 \le j \le 5$. If $V_n = 2mx^2$, then n = 3.

Proof. Assume that $V_n = 2mx^2$ for some integer x. If $m \mid P$, then we get n = 3 by Theorem 2.3. If $a_4 = 1$ and $P^2 \equiv 3 \pmod{11}$ or $a_5 = 1$ and $P^2 \equiv 3 \pmod{13}$, then by Theorems 4.8 and 4.7, we get n = 3.

By using Theorems 4.7, 4.8, and 2.2, we can give the following corollaries.

Corollary 2 Let $m = 3^{a_1}5^{a_2}7^{a_3}11^{a_4}13^{a_5} > 1$ with $a_j = 0$ or 1 for $1 \le j \le 5$. Suppose that $a_4 \ne 0$ or $a_5 \ne 0$. If $V_n = mx^2$ for some integer x, then n = 1 or 3.

Corollary 3 If $V_n = 14x^2$ for some integer x, then n = 3.

Proof. Let $V_n = 14x^2$ for some integer x. If 7 | P, then n = 3 by Theorem 2.3. Now assume that $P^2 \equiv 2 \pmod{7}$ and n = 2t for some odd t. Moreover, since $2 | V_n$, it follows that 3 | n by (2.10). Thus, n = 6k for some odd integer k. Then by (2.4), we get

$$14x^2 = V_n \equiv V_0 = 2 \pmod{8},$$

which is impossible.

Theorem 4.9 Let $A \mid P$ with A > 1 odd. Then $V_n = AV_m x^2$ has no solutions.

Proof. Assume that $V_n = AV_m x^2$ for some $A \mid P$ with A > 1 odd. Since $A \mid V_n$ and $A \mid P$, n is odd by Lemma 1. Moreover, we get n = mt for some odd integers m and t by (2.16). Assume that $3 \mid t$. Then t = 3s for some positive integer s. Thus,

$$AV_m x^2 = V_n = V_{mt} = V_{3ms} = V_{ms}(V_{ms}^2 - 3)$$

and it follows that

$$\frac{V_{ms}}{V_m}(V_{ms}^2 - 3) = Ax^2$$

since $V_m \mid V_{ms}$ by (2.16). It can be easily seen that $(A, V_{ms}^2 - 3) = 1$ or 3. Assume that $(A, V_{ms}^2 - 3) = 1$. Then it follows that

$$\frac{V_{ms}}{AV_m}(V_{ms}^2 - 3) = x^2.$$

Clearly, $d = (V_{ms}/AV_m, V_{ms}^2 - 3) = 1$ or 3. Then it follows that $V_{ms}^2 - 3 = a^2$ or $V_{ms}^2 - 3 = 3a^2$ for some integer *a*. The first one is impossible. If $V_{ms}^2 - 3 = 3a^2$, then $3(V_{ms}/3)^2 = 1 + a^2$, which is impossible. Assume that $(A, V_{ms}^2 - 3) = 3$. Then there exist relatively prime integers A_1, B_1 such

that $A = 3A_1$ and $V_{ms}^2 - 3 = 3B_1$. And so,

$$3A_1x^2 = Ax^2 = \frac{V_{ms}}{V_m}(V_{ms}^2 - 3) = \frac{V_{ms}}{V_m}3B_1,$$

i.e.,

$$\frac{V_{ms}}{A_1 V_m} B_1 = x^2$$

since $(A_1, B_1) = 1$. Clearly, $d = (V_{ms}/A_1V_m, B_1) = 1$ or 3. Then it follows that $B_1 = a^2$ or $3a^2$ for some integer a. Since $V_{ms}^2 - 3 = 3B_1$, we get $V_{ms}^2 - 3 = 3a^2$ or $V_{ms}^2 - 3 = 9a^2$. In a similar way, it is seen that both cases are impossible. Therefore $3 \nmid t$. Now assume that $3 \mid m$. Since t is odd, we can write $t = 4q \pm 1$ for some $q \ge 0$. Thus, $V_n = V_{4qm\pm m} \equiv V_{\pm m} (\text{mod } U_{2m})$ by (2.2), which implies that $AV_mx^2 \equiv V_m (\text{mod } U_mV_m)$ by (2.17). This shows that $Ax^2 \equiv 1 (\text{mod } U_m)$. Since $3 \mid m$, we get $U_3 \mid U_m$ and therefore $8 \mid U_m$ by (2.15). Then it follows that $Ax^2 \equiv 1 (\text{mod } 8)$. Assume that $3 \nmid m$. Then $3 \nmid n$ since $3 \nmid t$. Therefore $V_n \equiv P(\text{mod } 8)$ and $V_m \equiv P(\text{mod } 8)$ by (2.12). Thus, we see that $APx^2 \equiv P(\text{mod } 8)$, which implies that $Ax^2 \equiv 1 (\text{mod } 8)$. Consequently, we get $Ax^2 \equiv 1 (\text{mod } 8)$ in both cases. This shows that $A \equiv 1 (\text{mod } 8)$. Assume that t > 1. Then $t = 4q \pm 1$ for some q > 0. Thus, $n = mt = 4qm \pm m = 2 \cdot 2^r a \pm m$ with a odd and $r \ge 1$. Then by (2.3), we get

$$AV_m x^2 \equiv -V_{\pm m} \pmod{V_{2^r}},$$

which implies that $AV_m x^2 \equiv -V_m \pmod{V_{2^r}}$. Then it follows that $Ax^2 \equiv -1 \pmod{V_{2^r}}$ since $(V_m, V_{2^r}) = 1$ by (2.19). Thus, $(A/V_{2^r}) = (-1/V_{2^r}) = -1$. Since $V_{2^r} \equiv \pm 2 \pmod{A}$ for $r \geq 1$, we get

$$-1 = \left(\frac{A}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{A}\right) = \left(\frac{\pm 2}{A}\right) = 1,$$

a contradiction. Thus, t = 1 and therefore n = m. But this is impossible since A > 1.

Theorem 4.10 Let A > 3 be odd and $P^2 \equiv 3 \pmod{A}$. Then the equation $V_n = AV_m x^2$ has a solution only when m = 1 and n = 3.

Proof. Assume that $V_n = AV_m x^2$ and $P^2 \equiv 3 \pmod{A}$ with A > 3 odd. Since $V_m \mid V_n$, we get n = mt for some odd integer t by (2.16). Since $A \mid V_3$, by using (2.1), it can be shown that $n = 3k_1$ for some odd positive integer k_1 . This shows that m is odd. Let $3 \mid m$. Then $U_3 \mid U_m$ and therefore $8 \mid U_m$ by (2.15). Since t is odd, $n = mt = m(4q \pm 1) = 4qm \pm m$ for some integer q. Therefore by using (2.2), we get

$$V_n = V_{4qm\pm m} = V_{\pm m} (\operatorname{mod} U_{2m}),$$

which implies that

$$AV_m x^2 \equiv V_m \pmod{U_m V_m}$$

by (2.17). It follows that $Ax^2 \equiv 1 \pmod{U_m}$ and so $Ax^2 \equiv 1 \pmod{8}$ since $8 \mid U_m$. Therefore $A \equiv 1 \pmod{8}$. Let t > 1. Then $n = m(4q \pm 1) = 2 \cdot 2^r a \pm m$ with a odd and $r \ge 1$. Therefore by using (2.3), we get

$$AV_m x^2 = V_n \equiv -V_{\pm m} \pmod{V_{2^r}},$$

which shows that

$$Ax^2 \equiv -1 \pmod{V_{2^r}}$$

since $(V_m, V_{2^r}) = 1$ by (2.19). Thus,

$$\left(\frac{A}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) = -1$$

by (2.6). Then by using the fact that $V_{2^r} \equiv \pm 1 \pmod{A}$, when $P^2 \equiv 3 \pmod{A}$, we get

$$-1 = \left(\frac{A}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{A}\right) = \left(\frac{\pm 1}{A}\right) = 1,$$

a contradiction. Therefore t = 1 and so n = m, which is impossible since A > 3. Now let $3 \nmid m$. Then $3 \mid t$ and so t = 3s for some odd integer s. Thus, n = mt = 3ms. Therefore by using (2.14), we get

$$AV_m x^2 = V_n = V_{3ms} = V_{ms}(V_{ms}^2 - 3),$$

i.e.,

$$\frac{V_{ms}}{V_m}(V_{ms}^2 - 3) = Ax^2.$$

Clearly, $(V_{ms}/V_m, V_{ms}^2 - 3) = 1$ or 3. Then by using (2.14), it is seen that

$$V_{ms}^2 - 3 = V_{2ms} - 1 = kx^2$$
 or $3kx^2$ with $k \mid A$.

Let ms > 1. Since ms is odd, we get $2ms = 2(4q \pm 1) = 2 \cdot 2^r a \pm 2$ with a odd and $r \ge 2$. Therefore

$$wx^2 = V_{2ms} - 1 \equiv -V_{\pm 2} - 1 \pmod{V_{2^r}}$$

by (2.3), which implies that

$$wx^2 \equiv -(P^2 - 1) \pmod{V_{2^r}}$$

where w = k or 3k with $k \mid A$. This shows that

$$\left(\frac{w}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{P^2 - 1}{V_{2^r}}\right),$$

which implies that

$$\left(\frac{w}{V_{2^r}}\right) = -1\tag{4.5}$$

by (2.6) and (2.9), respectively. Since $r \ge 2$, we get $(3/V_{2^r}) = 1$ by (2.8). Now we show that $(k/V_{2^r}) = 1$. Clearly, $(k/V_{2^r}) = 1$ if k = 1. Let k > 1. Then $V_{2^r} \equiv -1 \pmod{k}$ and thus, we get

$$\left(\frac{k}{V_{2^r}}\right) = (-1)^{(k-1)/2} \left(\frac{V_{2^r}}{k}\right) = (-1)^{(k-1)/2} \left(\frac{-1}{k}\right) = 1.$$

As a consequence, we have $(k/V_{2^r}) = 1$ for $k \mid A$. This shows that $(w/V_{2^r}) = 1$, which is impossible by (4.5). Thus, ms = 1 and so m = 1 and n = 3. \Box

Corollary 4 The equation $V_n = 11V_m x^2$ has no solutions.

Proof. Assume that $V_n = 11V_m x^2$ for some integer x. Then by Theorems 4.9 and 4.10, we get n = 3 and m = 1. Thus, it follows that $V_3 = 11Px^2$, which implies that $P^2 - 3 = 11x^2$. This is impossible since $11x^2 \equiv -2 \pmod{8}$ in this case.

By using Theorems 4.9 and 4.10, we can give the following corollaries.

Corollary 5 The equation $V_n = 13V_m x^2$ has no solutions.

Corollary 6 The equation $V_n = 7V_m x^2$ has no solutions.

Proof. Assume that $V_n = 7V_m x^2$ for some integer x. If $7 \mid P$, then $V_n = 7V_m x^2$ has no solutions by Theorem 4.9. Assume that $P^2 \equiv 2 \pmod{7}$. Then n = 2t for some odd integer t by Lemma 3. Since $V_m \mid V_n$, n = ms for some odd integer s by (2.16). Then it follows that m = 2q for some odd integer q. Thus, we get $V_m \equiv 2, 7 \pmod{8}$ and $V_n \equiv 2, 7 \pmod{8}$ by (2.11). This is impossible since $V_n = 7V_m x^2$.

References

- Cohn J. H. E., Squares in some recurrent sequences. Pacific Journal of Mathematics 41 (1972), 631–646.
- [2] Karaatli O. and Keskin R., On the Equations $U_n = 5\Box$ and $V_n = 5\Box$. Miskolc Mathematical Notes **16** (2015), 925–938.
- [3] Karaath O. and Keskin R., On the Lucas sequence equations $V_n = 7\Box$ and $V_n = 7V_m\Box$. Bulletin of the Malaysian Mathematical Sciences Society **41** (2018), 335–353.
- [4] Karaath O. and Keskin R., Generalized Lucas Number of the form $5kx^2$ and $7kx^2$. Bulletin of the Korean Mathematical Society **52** (2015), 1467–1480.
- [5] Ribenboim P. and McDaniel W. L., The square terms in Lucas sequences. Journal of Number Theory 58 (1996), 104–123.
- [6] Ribenboim P. and McDaniel W. L., Squares in Lucas sequences having an even first parameter. Colloquium Mathematicum 78 (1998), 29–34.
- [7] Ribenboim P., My Numbers, My Friends, Springer-Verlag New York, Inc., (2000).
- [8] Ribenboim P. and McDaniel W. L., On Lucas sequence terms of the form kx^2 , Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293–303.
- [9] Keskin R. and Karaath O., Generalized Fibonacci and Lucas numbers of the form $5x^2$. International Journal of Number theory **11** (2015), 931–944.

- [10] Keskin R., Generalized Fibonacci and Lucas Numbers of the form wx^2 and $wx^2 \pm 1$. Bulletin of the Korean Mathematical Society **51** (2014), 1041–1054.
- [11] Şiar Z., On square classes in generalized Lucas sequences. International Journal of Number Theory 11 (2015), 661–672.
- [12] Şiar Z. and Keskin R., Some new identities concerning generalized Fibonacci and Lucas numbers. Hacettepe Journal of Mathematics and Statistics 42 (2013), 211–222.
- [13] Şiar Z. and Keskin R., The square terms in Generalized Fibonacci Sequence. Mathematika 60 (2014), 85–100.
- [14] Şiar Z. and Keskin R., The Square Terms in Generalized Lucas Sequence with Parameters P and Q, Mathematica Scandinavica 118 (2016), 13–26.

Merve GÜNEY DUMAN Sakarya University Mathematics Department Sakarya, Turkey E-mail: merveguneyduman@gmail.com

Ümmügülsüm ÖğüT Sakarya, Turkey E-mail: gulsumogutt@gmail.com

Refik KESKİN Sakarya University Mathematics Department Sakarya, Turkey E-mail: rkeskin@sakarya.edu.tr