Generalized Lucas Numbers of the form $w x^{2}$ and $w V_{m} x^{2}$

Merve Güney Duman, Ümmügülsüm Öğüt and Refik Keskin

(Received December 21, 2015; Revised June 8, 2016)

Abstract

Let $P \geq 3$ be an integer. Let $\left(V_{n}\right)$ denote generalized Lucas sequence defined by $V_{0}=2, V_{1}=P$, and $V_{n+1}=P V_{n}-V_{n-1}$ for $n \geq 1$. In this study, when P is odd, we solve the equation $V_{n}=w x^{2}$ for some values of w. Moreover, when P is odd, we solve the equation $V_{n}=w k x^{2}$ with $k \mid P$ and $k>1$ for $w=3,11,13$. Lastly, we solve the equation $V_{n}=w V_{m} x^{2}$ for $w=7,11,13$.

Key words: Generalized Lucas sequence, Generalized Fibonacci sequence, congruence, square terms in Lucas sequences.

1. Introduction

Let P and Q be nonzero integers such that $P^{2}+4 Q>0$. Generalized Fibonacci sequence $\left(U_{n}(P, Q)\right)$ and Lucas sequence $\left(V_{n}(P, Q)\right)$ are defined by $U_{0}(P, Q)=0, U_{1}(P, Q)=1 ; V_{0}(P, Q)=2, V_{1}(P, Q)=P$, and $U_{n+1}(P, Q)=$ $P U_{n}(P, Q)+Q U_{n-1}(P, Q), V_{n+1}(P, Q)=P V_{n}(P, Q)+Q V_{n-1}(P, Q)$ for $n \geq 1$. The numbers $U_{n}(P, Q)$ and $V_{n}(P, Q)$ are called n-th generalized Fibonacci and Lucas numbers, respectively. Generalized Fibonacci and Lucas sequences for negative subscripts are defined as $U_{-n}(P, Q)=$ $-U_{n}(P, Q) /(-Q)^{n}$ and $V_{-n}(P, Q)=V_{n}(P, Q) /(-Q)^{n}$ for $n \geq 1$. Since $U_{n}(-P, Q)=(-1)^{n-1} U_{n}(P, Q)$ and $V_{n}(-P, Q)=(-1)^{n} V_{n}(P, Q)$, it will be assumed that $P \geq 1$. For $P=Q=1$, we have classical Fibonacci and Lucas sequences $\left(F_{n}\right)$ and $\left(L_{n}\right)$. For $P=2$ and $Q=1$, we have Pell and PellLucas sequences $\left(P_{n}\right)$ and $\left(Q_{n}\right)$. For more information about generalized Fibonacci and Lucas sequences one can consult [7].

The terms in Lucas sequences of the form $k x^{2}$ have been investigated since 1962. When P is odd and $Q= \pm 1$, by using elementary argument many authors solved the equation $U_{n}=k x^{2}$ or $V_{n}=k x^{2}$ for specific integer values of k. The reader can consult [13] or [9] for a brief discussion of the subject. In [5], the authors solved $U_{n}=x^{2}, V_{n}=x^{2}, U_{n}=2 x^{2}$, and $V_{n}=2 x^{2}$ for odd relatively prime integers P and Q. In [8], the same authors solved $U_{n}=3 x^{2}$ for relatively prime odd integers P and Q. In [14],
the authors solved $V_{n}=3 x^{2}$ and $V_{n}=6 x^{2}$ for relatively prime odd integers P and Q. Moreover, in [11], the authors solved $U_{n}=6 x^{2}$ for relatively prime odd integers P and Q. In [2], the authors solved $V_{n}(P,-1)=5 x^{2}$ and $U_{n}(P,-1)=5 x^{2}$ for odd integer $P \geq 3$. In [3], the authors solved $U_{n}=7 x^{2}$ and $V_{n}=7 x^{2}$ for odd integer $P \geq 1$ with $Q=1$. In [1], the author solved $V_{n}=V_{m} x^{2}$ and $V_{n}=2 V_{m} x^{2}$ for odd value of P with $Q= \pm 1$. In [11], the author solved $V_{n}=V_{m} x^{2}, V_{n}=2 V_{m} x^{2}$, and $V_{n}=6 V_{m} x^{2}$ for relatively prime odd values of P and Q. In [2], the authors solved $V_{n}=5 V_{m} x^{2}$ for odd value of P with $Q=-1$.

In this study, we assume that $Q=-1$. We solve the equation $V_{n}=w x^{2}$ for some values of w. Moreover, we solve the equation $V_{n}=w k x^{2}$ with $k \mid P$ and $k>1$ for $w=3,11,13$. Lastly, we solve the equation $V_{n}=w V_{m} x^{2}$ for $w=7,11,13$.

Throughout this study, $(* / *)$ will denote the Jacobi symbol. Our method is elementary and used by Cohn, Ribenboim, and McDaniel in [1] and [8], respectively.

2. Preliminaries

From now on, instead of $U_{n}(P,-1)$ and $V_{n}(P,-1)$, we sometimes write U_{n} and V_{n}, respectively. The following theorem is given in [12].

Theorem 2.1 Let $n \in \mathbb{N} \cup\{0\}$ and $m, r \in \mathbb{Z}$. Then

$$
\begin{equation*}
V_{2 m n+r} \equiv(-1)^{n} V_{r}\left(\bmod V_{m}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 m n+r} \equiv V_{r}\left(\bmod U_{m}\right) \tag{2.2}
\end{equation*}
$$

if $m \neq 0$.
From (2.1), it follows that if a is odd, then

$$
\begin{equation*}
V_{2 \cdot 2^{r} a+m} \equiv-V_{m}\left(\bmod V_{2^{r}}\right) . \tag{2.3}
\end{equation*}
$$

Since $8 \mid U_{3}$ when P is odd, we get

$$
\begin{equation*}
V_{6 q+r} \equiv V_{r}(\bmod 8) \tag{2.4}
\end{equation*}
$$

When P is odd, we have $V_{2^{r}} \equiv 7(\bmod 8)$ and thus,

$$
\begin{equation*}
\left(\frac{2}{V_{2^{r}}}\right)=1 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{-1}{V_{2^{r}}}\right)=-1 \tag{2.6}
\end{equation*}
$$

for $r \geq 1$. Moreover, we have

$$
\left(\frac{3}{V_{2^{r}}}\right)=\left\{\begin{array}{cl}
1 & \text { if } r \geq 1 \text { and } 3 \nmid P \tag{2.7}\\
-1 & \text { if } r=1 \text { and } 3 \mid P \\
1 & \text { if } r \geq 2 \text { and } 3 \mid P
\end{array}\right.
$$

Then it follows from (2.7) that

$$
\begin{equation*}
\left(\frac{3}{V_{2^{r}}}\right)=1 \tag{2.8}
\end{equation*}
$$

for $r \geq 2$.
When P is odd, we have

$$
\begin{equation*}
\left(\frac{P-1}{V_{2^{r}}}\right)=\left(\frac{P+1}{V_{2^{r}}}\right)=\left(\frac{P^{2}-1}{V_{2^{r}}}\right)=1 \tag{2.9}
\end{equation*}
$$

for $r \geq 1$ and

$$
\begin{equation*}
2\left|V_{n} \Leftrightarrow 2\right| U_{n} \Leftrightarrow 3 \mid n \tag{2.10}
\end{equation*}
$$

Moreover, it can be seen that if n is odd, then

$$
\begin{equation*}
V_{2 n} \equiv 2,7(\bmod 8) \tag{2.11}
\end{equation*}
$$

and if n is odd and $3 \nmid n$, then

$$
\begin{equation*}
V_{n} \equiv P(\bmod 8) \tag{2.12}
\end{equation*}
$$

The following identities are well known (see [7]).

$$
\begin{gather*}
V_{-n}=V_{n} . \tag{2.13}\\
V_{3 n}=V_{n}\left(V_{n}^{2}-3\right)=V_{n}\left(V_{2 n}-1\right) . \tag{2.14}\\
U_{m}\left|U_{n} \Leftrightarrow m\right| n . \tag{2.15}\\
V_{m}\left|V_{n} \Leftrightarrow m\right| n \text { and } n / m \text { is odd. } \tag{2.16}\\
U_{2 n}=U_{n} V_{n} . \tag{2.17}\\
V_{2 n}=V_{n}^{2}-2 . \tag{2.18}
\end{gather*}
$$

If $d=(m, n)$, then

$$
\left(V_{m}, V_{n}\right)= \begin{cases}V_{d} & \text { if } m / n \text { and } n / m \text { odd } \tag{2.19}\\ 1 \text { or } 2 & \text { otherwise }\end{cases}
$$

Now we give the following theorems from [10].
Theorem 2.2 Let P be odd. If $V_{n}=k x^{2}$ for some $k \mid P$ with $k>1$, then $n=1$.

Theorem 2.3 Let P be odd. If $V_{n}=2 k x^{2}$ for some $k \mid P$ with $k>1$, then $n=3$.

Lemma 1

$$
V_{n} \equiv \begin{cases}2(-1)^{n}(\bmod P) & \text { if } n \text { is even }, \\ 0(\bmod P) & \text { if } n \text { is odd. }\end{cases}
$$

3. Divisibility of V_{n} by Small Values of k

From now on, we will assume that n and m are positive integers.
Lemma $23 \mid V_{n}$ if and only if $3 \mid P$ and n is odd.
Proof. If $3 \mid P$ and n is odd, then $3 \mid V_{n}$ by Lemma 1. Assume that $3 \mid V_{n}$. Let $3 \nmid P$. Then $3 \mid P^{2}-1$ and therefore $3 \mid U_{3}$. Let $n=6 q \pm r$ with $0 \leq r \leq 3$. Then by $(2.2), V_{n} \equiv V_{ \pm r}\left(\bmod U_{3}\right)$, which implies that $V_{n} \equiv V_{r}(\bmod 3)$. It can be seen that $3 \nmid V_{r}$ for $0 \leq r \leq 3$. Thus, $3 \nmid V_{n}$. Therefore $3 \mid P$ and it is seen that n is odd by Lemma 1 .

Lemma $3 \quad 7 \mid V_{n}$ if and only if $7 \mid P$ and n is odd or $P^{2} \equiv 2(\bmod 7)$ and $n=2 t$ for some odd integer t.

Proof. Let $7 \mid P$ and n be odd. Then by Lemma 1, we get $7 \mid V_{n}$. Let $P^{2} \equiv 2(\bmod 7)$ and $n=2 t$ for some odd integer t. Then $7 \mid V_{2}$. Since $n=4 q+2$, it follows that $V_{n} \equiv \pm V_{2}\left(\bmod V_{2}\right)$ by (2.1). Thus, we have $7 \mid V_{n}$. Now assume that $7 \mid V_{n}$. If $7 \mid P$, then n must be odd by Lemma 1. Let $7 \nmid P$. Then $P^{2} \equiv 1,2,4(\bmod 7)$. Let $P^{2} \equiv 1(\bmod 7)$. Then $7 \mid U_{3}$. We may write $n=6 q \pm r$ with $0 \leq r \leq 3$. Thus, $V_{n}=V_{6 q+r} \equiv V_{r}\left(\bmod U_{3}\right)$ by (2.2), which implies that $V_{n} \equiv V_{r}(\bmod 7)$. Then we must have $7 \mid V_{r}$ for $0 \leq r \leq 3$, which is impossible. Let $P^{2} \equiv 4(\bmod 7)$ and $n=14 q \pm r$, $0 \leq r \leq 7$. Then $7 \mid U_{7}$ and thus, $V_{n}=V_{14 q \pm r} \equiv V_{ \pm r}\left(\bmod U_{7}\right)$, which implies that $V_{n} \equiv V_{r}(\bmod 7)$. This is impossible since $7 \nmid V_{r}$ for $0 \leq r \leq 7$. Let $P^{2} \equiv 2(\bmod 7)$. Then $7 \mid V_{2}$. Let $n=2 q+r, 0 \leq r \leq 1$. If q is even, then $V_{n}=V_{2 q+r} \equiv \pm V_{r}\left(\bmod V_{2}\right)$ by (2.1). This is impossible since $7 \nmid V_{r}$ for $0 \leq r \leq 1$. Let q be odd. Then $q=2 t+1$ and thus, by (2.1), we get

$$
V_{n}=V_{2 q+r}=V_{2(2 t+1)+r}= \pm V_{r+2}\left(\bmod V_{2}\right)
$$

which implies that $V_{n} \equiv \pm V_{r+2}(\bmod 7)$ since $7 \mid V_{2}$. But this is possible only if $r=0$. Thus, $n=2 q$ with q odd.

The ideas behind of the proof of the following lemmas are similar to that of the lemma above and we omit the proofs here.

Lemma $4 \quad 5 \mid V_{n}$ if and only if $5 \mid P$ and n is odd.
Lemma $511 \mid V_{n}$ if and only if $11 \mid P$ and n is odd or $P^{2} \equiv 3(\bmod 11)$ and $n=3 t$ for some odd integer t.

Lemma $613 \mid V_{n}$ if and only if $13 \mid P$ and n is odd or $P^{2} \equiv 3(\bmod 13)$ and $n=3 t$ for some odd integer t.

4. Main Theorems

Theorem 4.1 If P is odd and $11 \mid P$, then $V_{n}=11 x^{2}$ has the solution $n=1$. If $P^{2} \equiv 3(\bmod 11)$, then the equation $V_{n}=11 x^{2}$ has no solutions.

Proof. Assume that $V_{n}=11 x^{2}$ for some integer x. By Lemma 5, 11| V_{n} if and only if $11 \mid P$ and n is odd or $P^{2} \equiv 3(\bmod 11)$ and $n=3 t$ for some odd integer t. Let $11 \mid P$ and n be odd. Then by Theorem 2.2 , we get $n=1$.

Now assume that $P^{2} \equiv 3(\bmod 11)$ and $n=3 t$ for some odd integer t. Let $t=4 q \pm 1$. Then $n=12 q \pm 3$ and so

$$
V_{n} \equiv V_{ \pm 3} \equiv V_{3}\left(\bmod U_{3}\right)
$$

by (2.2). Now assume that P is odd. Since $8 \mid U_{3}$, it follows that

$$
11 x^{2} \equiv V_{3} \equiv P\left(P^{2}-3\right)(\bmod 8)
$$

Thus, $11 x^{2} \equiv-2 P(\bmod 8)$, which implies that $x^{2} \equiv-6 P(\bmod 8)$. This is impossible since P is odd. Now assume that P is even. It can be seen that if n is odd, then $V_{n} \equiv P\left(\bmod P^{2}-4\right)$. Using the fact that n is odd, it follows that $11 x^{2}=V_{n} \equiv P\left(\bmod P^{2}-4\right)$. Since P is even, we get $4 \mid P^{2}-4$, which implies that $4 \mid P$. This shows that $P^{2}-1 \equiv 7(\bmod 8)$. Since $11 x^{2} \equiv P\left(P^{2}-3\right)\left(\bmod U_{3}\right)$, we get $11 x^{2} \equiv-2 P\left(\bmod P^{2}-1\right)$. Then it follows that $\left(11 /\left(P^{2}-1\right)\right)=\left(-2 P /\left(P^{2}-1\right)\right)$. Since $P^{2} \equiv 3(\bmod 11)$, we get

$$
\left(\frac{11}{P^{2}-1}\right)=-\left(\frac{P^{2}-1}{11}\right)=-\left(\frac{2}{11}\right)=1
$$

But

$$
\begin{aligned}
1 & =\left(\frac{11}{P^{2}-1}\right)=\left(\frac{-2 P}{P^{2}-1}\right)=\left(\frac{-2}{P^{2}-1}\right)\left(\frac{P}{P^{2}-1}\right)=-\left(\frac{P}{P^{2}-1}\right) \\
& =-\left(\frac{2^{r} a}{P^{2}-1}\right)=(-1)\left(\frac{a}{P^{2}-1}\right)=(-1)(-1)^{(a-1) / 2}\left(\frac{P^{2}-1}{a}\right) \\
& =(-1)(-1)^{(a-1) / 2}\left(\frac{-1}{a}\right)=-1,
\end{aligned}
$$

a contradiction.
From now on, we will assume that P is odd.
Theorem 4.2 Let $V_{n}=7 x^{2}$ for some integer x. Then $n=1$ or 2 .
Proof. Assume that $V_{n}=7 x^{2}$ for some integer x. By Lemma 3, $7 \mid V_{n}$ if and only if $7 \mid P$ and n is odd or $P^{2} \equiv 2(\bmod 7)$ and $n=2 t$ for some odd integer t. Let $7 \mid P$. Then $n=1$ by Theorem 2.2. Assume that
$P^{2} \equiv 2(\bmod 7)$ and $n=2 t$ for some odd integer t. Let $t>1$. Then $t=4 q \pm 1$ for some $q>0$ and so $n=2 t=2 \cdot 2^{r} a \pm 2$ with a odd and $r \geq 2$. Therefore we get $7 x^{2} \equiv-V_{ \pm 2} \equiv-V_{2}\left(\bmod V_{2^{r}}\right)$ by (2.3). This shows that

$$
\begin{equation*}
\left(\frac{7}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{V_{2}}{V_{2^{r}}}\right)=-\left(\frac{V_{2}}{V_{2^{r}}}\right) \tag{4.1}
\end{equation*}
$$

by (2.6). Let $r=2$. Then

$$
\left(\frac{7}{V_{4}}\right)=-\left(\frac{V_{2}}{V_{4}}\right)=\left(\frac{V_{4}}{V_{2}}\right)=\left(\frac{V_{2}^{2}-2}{V_{2}}\right)=\left(\frac{-2}{V_{2}}\right)=-1
$$

Thus, we get

$$
-1=\left(\frac{7}{V_{4}}\right)=-\left(\frac{V_{4}}{7}\right)=-\left(\frac{V_{2}^{2}-2}{7}\right)=-\left(\frac{-2}{7}\right)=1
$$

which is a contradiction. Now let $r \geq 3$. Then $V_{2^{r}} \equiv 2(\bmod 7)$ and $V_{2^{r}} \equiv$ $2\left(\bmod V_{2}\right)$. Thus,

$$
\left(\frac{7}{V_{2^{r}}}\right)=-\left(\frac{V_{2^{r}}}{7}\right)=-\left(\frac{2}{7}\right)=-1
$$

and

$$
\left(\frac{V_{2}}{V_{2^{r}}}\right)=-\left(\frac{V_{2^{r}}}{V_{2}}\right)=-\left(\frac{2}{V_{2}}\right)=-1 .
$$

But this is impossible by (4.1). Thus, $t=1$ and therefore $n=2$.
Theorem 4.3 The equation $V_{n}=13 x^{2}$ has the solution $n=1$ if $13 \mid P$ and has no solutions if $P^{2} \equiv 3(\bmod 13)$.

Proof. Let $V_{n}=13 x^{2}$ for some integer x. By Lemma $6,13 \mid V_{n}$ if and only if $13 \mid P$ and n is odd or $P^{2} \equiv 3(\bmod 13)$ and $n=3 t$ for some odd integer t. Assume that $13 \mid P$. Then by Theorem 2.2 , we get $n=1$. Now assume that $P^{2} \equiv 3(\bmod 13)$ and $n=3 t$ for some odd integer t. Then $n=3 t=6 q+3$ and so by (2.4), we get

$$
13 x^{2} \equiv V_{3}=P\left(P^{2}-3\right)(\bmod 8)
$$

Since $P^{2} \equiv 1(\bmod 8)$, it follows that $x^{2} \equiv-2 P(\bmod 8)$. However, this is impossible since P is odd.
Theorem 4.4 If $V_{n}=3 k x^{2}$ for some $k \mid P$ with $k>1$, then $n=1$.
Proof. Let $V_{n}=3 k x^{2}$ for some $k \mid P$ with $k>1$. Since $3 \mid V_{n}$, we get $3 \mid P$ and n is odd by Lemma 2. Let $n=6 q+r$ with $r \in\{1,3,5\}$. Then $V_{n} \equiv V_{1}, V_{3}, V_{5}(\bmod 8)$ by (2.4). Thus we get $3 k x^{2} \equiv P,-2 P(\bmod 8)$. Let $P=k M$. Then $3 k M x^{2} \equiv P M,-2 P M(\bmod 8)$. That is, $3 P x^{2} \equiv$ $P M,-2 P M(\bmod 8)$. This implies that $3 x^{2} \equiv M,-2 M(\bmod 8)$ since P is odd. Thus, we get $x^{2} \equiv 3 M, 2 M(\bmod 8)$. This shows that $M \equiv 3(\bmod 8)$ since M is odd. Let $n>1$. Then $n=4 q \pm 1$ for some $q>0$. Thus, we can write $n=2 \cdot 2^{r} a \pm 1$ with a odd and $r \geq 1$. Then by (2.3), we get $3 k x^{2}=V_{n} \equiv-V_{ \pm 1}\left(\bmod V_{2^{r}}\right)$, which implies that $3 k x^{2} \equiv-P\left(\bmod V_{2^{r}}\right)$. Since $\left(k, V_{2^{r}}\right)=1$, we get $3 x^{2} \equiv-M\left(\bmod V_{2^{r}}\right)$. This shows that

$$
\begin{equation*}
\left(\frac{3}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=-\left(\frac{M}{V_{2^{r}}}\right) \tag{4.2}
\end{equation*}
$$

Let $r=1$. Then

$$
\left(\frac{3}{V_{2}}\right)=-\left(\frac{M}{V_{2}}\right)=\left(\frac{V_{2}}{M}\right)=\left(\frac{P^{2}-2}{M}\right)=\left(\frac{-2}{M}\right)=1
$$

Since $3 \mid P$, we get $\left(3 / V_{2}\right)=-1$ by (2.7). But this is impossible since $\left(3 / V_{2}\right)=1$. Let $r \geq 2$. Then $\left(3 / V_{2^{r}}\right)=1$ by (2.8) and $V_{2^{r}} \equiv 2(\bmod M)$. Thus,

$$
1=\left(\frac{3}{V_{2^{r}}}\right)=-\left(\frac{M}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{M}\right)=\left(\frac{2}{M}\right)=-1,
$$

which is impossible.
Theorem 4.5 If $V_{n}=11 k x^{2}$ for some $k \mid P$ with $k>1$, then $n=1$.
Proof. Let $V_{n}=11 k x^{2}$ for some $k \mid P$ with $k>1$. Since $11 \mid V_{n}, n$ is odd by Lemma 5 . Let $P=k M$. Similarly, it can be seen that $M \equiv 3(\bmod 8)$. Since $11 \mid V_{n}$, it follows that $11 \mid P$ and n is odd or $P^{2} \equiv 3(\bmod 11)$ and $n=3 t$ with t odd. Let $n>1$. Then $n=4 q \pm 1$ for some $q>0$ and so $n=2 \cdot 2^{r} a \pm 1$ with a odd and $r \geq 1$. Thus, $11 k x^{2}=V_{n} \equiv-V_{1}\left(\bmod V_{2^{r}}\right)$
by (2.3). This shows that $11 x^{2} \equiv-M\left(\bmod V_{2^{r}}\right)$, which implies that

$$
\begin{equation*}
\left(\frac{11}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=-\left(\frac{M}{V_{2^{r}}}\right) . \tag{4.3}
\end{equation*}
$$

Now let $r=1$. If $11 \mid P$ or $P^{2} \equiv 3(\bmod 11)$, then it can be seen that $\left(11 / V_{2}\right)=\left(M / V_{2}\right)$. This is impossible by (4.3). Let $r \geq 2$. If $P^{2} \equiv$ $3(\bmod 11)$, then it can be seen that $V_{2^{r}} \equiv-1(\bmod 11)$ and $V_{2^{r}} \equiv 2(\bmod M)$. If $11 \mid P$, then $V_{2^{r}} \equiv 2(\bmod 11)$ and $V_{2^{r}} \equiv 2(\bmod M)$. In both cases, it is seen that $\left(11 / V_{2^{r}}\right)=\left(M / V_{2^{r}}\right)$, which is impossible by (4.3). Therefore $n=1$.

Since the proof of the following theorem is similar to those of the above theorems, we omit it.

Theorem 4.6 If $V_{n}=13 k x^{2}$ for some $k \mid P$ with $k>1$, then $n=1$.
Theorem 4.7 Let $P^{2} \equiv 3(\bmod 13)$. Let $m=2^{a_{1}} 3^{a_{2}} 5^{a_{3}} 7^{a_{4}} 11^{a_{5}}>1$ with $a_{j}=0$ or 1 for $1 \leq j \leq 5$. If $V_{n}=13 m x^{2}$ for some integer x, then $n=3$.

Proof. Assume that $V_{n}=13 m x^{2}$ for some integer x. Since $P^{2} \equiv 3(\bmod 13)$ and $13 \mid V_{n}$, we get $n=3 t$ for some odd integer t by Lemma 6 . Thus, n is odd. If $7 \mid m$, then $7 \mid V_{n}$ and so it follows that $7 \mid P$ by Lemma 3. Therefore we get $7 \mid V_{t}$ since t is odd. It is clear that $3^{a_{2}} 5^{a_{3}} \mid V_{t}$ by Lemmas 2 and 4. Let $m_{2}=3^{a_{2}} 5^{a_{3}} 7^{a_{4}}$. Then it follows that $m_{2} \mid V_{t}$. Suppose that $P^{2} \equiv 3(\bmod 11)$. Then by (2.14), we get

$$
2^{a_{1}} \cdot 11 \cdot 13 \cdot m_{2} \cdot x^{2}=V_{n}=V_{3 t}=V_{t}\left(V_{t}^{2}-3\right)=V_{t}\left(V_{2 t}-1\right)
$$

which implies that $2^{a_{1}} \cdot 11 \cdot 13 \cdot x^{2}=\left(V_{t} / m_{2}\right)\left(V_{t}^{2}-3\right)$. Since $\left(V_{t}, V_{t}^{2}-3\right)$ $=1$ or 3 , it follows that $V_{2 t}-1=w a^{2}$ for some integers a and w where $w=2^{a} 3^{b} 11^{c} 13^{d}$ with $a, b, c, d \in\{0,1\}$. Assume now that $t>1$ and therefore $2 t=2(4 q \pm 1)=2 \cdot 2^{r} a \pm 2$ with a odd and $r \geq 2$. Thus, it follows that $w a^{2}+1=V_{2 t} \equiv-V_{2}\left(\bmod V_{2^{r}}\right)$ by (2.1). This implies that $w a^{2} \equiv$ $-\left(P^{2}-1\right)\left(\bmod V_{2^{r}}\right)$. Therefore

$$
\left(\frac{w}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{P^{2}-1}{V_{2^{r}}}\right) .
$$

Then

$$
\begin{equation*}
\left(\frac{w}{V_{2^{r}}}\right)=-1 \tag{4.4}
\end{equation*}
$$

by (2.6) and (2.9). Since $V_{2}=P^{2}-2 \equiv 1(\bmod 11)$, we get $V_{2^{r}} \equiv-1(\bmod 11)$ for $r \geq 2$. Thus,

$$
\left(\frac{11}{V_{2^{r}}}\right)=-\left(\frac{V_{2^{r}}}{11}\right)=-\left(\frac{-1}{11}\right)=1
$$

Moreover, since $V_{2}=P^{2}-2 \equiv 1(\bmod 13)$, we get $V_{2^{r}} \equiv-1(\bmod 13)$ for $r \geq 2$. Thus,

$$
\left(\frac{13}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{13}\right)=\left(\frac{-1}{13}\right)=1
$$

Moreover, we get $\left(2 / V_{2^{r}}\right)=\left(3 / V_{2^{r}}\right)=1$ by (2.5) and (2.8), respectively. Then it follows that $\left(w / V_{2^{r}}\right)=1$, which is impossible by (4.4). Now suppose that $11 \mid P$. Then $11 \mid V_{t}$ by Lemma 5. Let $m_{1}=3^{a_{2}} 5^{a_{3}} 7^{a_{4}} 11^{a_{5}}$. Then it follows that $m_{1} \mid V_{t}$ and so

$$
2^{a_{1}} \cdot 13 \cdot m_{1} \cdot x^{2}=V_{n}=V_{3 t}=V_{t}\left(V_{t}^{2}-3\right)=V_{t}\left(V_{2 t}-1\right)
$$

which implies that $2^{a_{1}} \cdot 13 \cdot x^{2}=\left(V_{t} / m_{1}\right)\left(V_{t}^{2}-3\right)$. Since $\left(V_{t}, V_{t}^{2}-3\right)=1$ or 3 , it follows that $V_{2 t}-1=w a^{2}$ for some integers a and w where $w=2^{a} 3^{b} 13^{c}$ with $a, b, c \in\{0,1\}$. In a similar way, if $t>1$, then a contradiction follows. So we get $t=1$ and therefore $n=3$.

Since the proof of the following theorem is similar to that of the above theorem, we omit it.
Theorem 4.8 Let $P^{2} \equiv 3(\bmod 11)$. Let $m=2^{a_{1}} 3^{a_{2}} 5^{a_{3}} 7^{a_{4}} 13^{a_{5}}>1$ with $a_{j}=0$ or 1 for $1 \leq j \leq 5$. If $V_{n}=11 m x^{2}$ for some integer x, then $n=3$.
Corollary 1 Let $m=3^{a_{1}} 5^{a_{2}} 7^{a_{3}} 11^{a_{4}} 13^{a_{5}}>1$ with $a_{j}=0$ or 1 for $1 \leq$ $j \leq 5$. If $V_{n}=2 m x^{2}$, then $n=3$.

Proof. Assume that $V_{n}=2 m x^{2}$ for some integer x. If $m \mid P$, then we get $n=3$ by Theorem 2.3. If $a_{4}=1$ and $P^{2} \equiv 3(\bmod 11)$ or $a_{5}=1$ and $P^{2} \equiv 3(\bmod 13)$, then by Theorems 4.8 and 4.7 , we get $n=3$.

By using Theorems 4.7, 4.8, and 2.2, we can give the following corollaries.

Corollary 2 Let $m=3^{a_{1}} 5^{a_{2}} 7^{a_{3}} 11^{a_{4}} 13^{a_{5}}>1$ with $a_{j}=0$ or 1 for $1 \leq$ $j \leq 5$. Suppose that $a_{4} \neq 0$ or $a_{5} \neq 0$. If $V_{n}=m x^{2}$ for some integer x, then $n=1$ or 3 .

Corollary 3 If $V_{n}=14 x^{2}$ for some integer x, then $n=3$.
Proof. Let $V_{n}=14 x^{2}$ for some integer x. If $7 \mid P$, then $n=3$ by Theorem 2.3. Now assume that $P^{2} \equiv 2(\bmod 7)$ and $n=2 t$ for some odd t. Moreover, since $2 \mid V_{n}$, it follows that $3 \mid n$ by (2.10). Thus, $n=6 k$ for some odd integer k. Then by (2.4), we get

$$
14 x^{2}=V_{n} \equiv V_{0}=2(\bmod 8)
$$

which is impossible.
Theorem 4.9 Let $A \mid P$ with $A>1$ odd. Then $V_{n}=A V_{m} x^{2}$ has no solutions.

Proof. Assume that $V_{n}=A V_{m} x^{2}$ for some $A \mid P$ with $A>1$ odd. Since $A \mid V_{n}$ and $A \mid P, n$ is odd by Lemma 1. Moreover, we get $n=m t$ for some odd integers m and t by (2.16). Assume that $3 \mid t$. Then $t=3 s$ for some positive integer s. Thus,

$$
A V_{m} x^{2}=V_{n}=V_{m t}=V_{3 m s}=V_{m s}\left(V_{m s}^{2}-3\right)
$$

and it follows that

$$
\frac{V_{m s}}{V_{m}}\left(V_{m s}^{2}-3\right)=A x^{2}
$$

since $V_{m} \mid V_{m s}$ by (2.16). It can be easily seen that $\left(A, V_{m s}^{2}-3\right)=1$ or 3 . Assume that $\left(A, V_{m s}^{2}-3\right)=1$. Then it follows that

$$
\frac{V_{m s}}{A V_{m}}\left(V_{m s}^{2}-3\right)=x^{2}
$$

Clearly, $d=\left(V_{m s} / A V_{m}, V_{m s}^{2}-3\right)=1$ or 3 . Then it follows that $V_{m s}^{2}-3=$ a^{2} or $V_{m s}^{2}-3=3 a^{2}$ for some integer a. The first one is impossible. If $V_{m s}^{2}-3=3 a^{2}$, then $3\left(V_{m s} / 3\right)^{2}=1+a^{2}$, which is impossible. Assume that $\left(A, V_{m s}^{2}-3\right)=3$. Then there exist relatively prime integers A_{1}, B_{1} such
that $A=3 A_{1}$ and $V_{m s}^{2}-3=3 B_{1}$. And so,

$$
3 A_{1} x^{2}=A x^{2}=\frac{V_{m s}}{V_{m}}\left(V_{m s}^{2}-3\right)=\frac{V_{m s}}{V_{m}} 3 B_{1}
$$

i.e.,

$$
\frac{V_{m s}}{A_{1} V_{m}} B_{1}=x^{2}
$$

since $\left(A_{1}, B_{1}\right)=1$. Clearly, $d=\left(V_{m s} / A_{1} V_{m}, B_{1}\right)=1$ or 3 . Then it follows that $B_{1}=a^{2}$ or $3 a^{2}$ for some integer a. Since $V_{m s}^{2}-3=3 B_{1}$, we get $V_{m s}^{2}-3=3 a^{2}$ or $V_{m s}^{2}-3=9 a^{2}$. In a similar way, it is seen that both cases are impossible. Therefore $3 \nmid t$. Now assume that $3 \mid m$. Since t is odd, we can write $t=4 q \pm 1$ for some $q \geq 0$. Thus, $V_{n}=V_{4 q m \pm m} \equiv V_{ \pm m}\left(\bmod U_{2 m}\right)$ by (2.2), which implies that $A V_{m} x^{2} \equiv V_{m}\left(\bmod U_{m} V_{m}\right)$ by (2.17). This shows that $A x^{2} \equiv 1\left(\bmod U_{m}\right)$. Since $3 \mid m$, we get $U_{3} \mid U_{m}$ and therefore $8 \mid U_{m}$ by (2.15). Then it follows that $A x^{2} \equiv 1(\bmod 8)$. Assume that $3 \nmid m$. Then $3 \nmid n$ since $3 \nmid t$. Therefore $V_{n} \equiv P(\bmod 8)$ and $V_{m} \equiv P(\bmod 8)$ by (2.12). Thus, we see that $A P x^{2} \equiv P(\bmod 8)$, which implies that $A x^{2} \equiv$ $1(\bmod 8)$. Consequently, we get $A x^{2} \equiv 1(\bmod 8)$ in both cases. This shows that $A \equiv 1(\bmod 8)$. Assume that $t>1$. Then $t=4 q \pm 1$ for some $q>0$. Thus, $n=m t=4 q m \pm m=2 \cdot 2^{r} a \pm m$ with a odd and $r \geq 1$. Then by (2.3), we get

$$
A V_{m} x^{2} \equiv-V_{ \pm m}\left(\bmod V_{2^{r}}\right)
$$

which implies that $A V_{m} x^{2} \equiv-V_{m}\left(\bmod V_{2^{r}}\right)$. Then it follows that $A x^{2} \equiv$ $-1\left(\bmod V_{2^{r}}\right)$ since $\left(V_{m}, V_{2^{r}}\right)=1$ by (2.19). Thus, $\left(A / V_{2^{r}}\right)=\left(-1 / V_{2^{r}}\right)=$ -1 . Since $V_{2^{r}} \equiv \pm 2(\bmod A)$ for $r \geq 1$, we get

$$
-1=\left(\frac{A}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{A}\right)=\left(\frac{ \pm 2}{A}\right)=1
$$

a contradiction. Thus, $t=1$ and therefore $n=m$. But this is impossible since $A>1$.

Theorem 4.10 Let $A>3$ be odd and $P^{2} \equiv 3(\bmod A)$. Then the equation $V_{n}=A V_{m} x^{2}$ has a solution only when $m=1$ and $n=3$.

Proof. Assume that $V_{n}=A V_{m} x^{2}$ and $P^{2} \equiv 3(\bmod A)$ with $A>3$ odd. Since $V_{m} \mid V_{n}$, we get $n=m t$ for some odd integer t by (2.16). Since $A \mid V_{3}$, by using (2.1), it can be shown that $n=3 k_{1}$ for some odd positive integer k_{1}. This shows that m is odd. Let $3 \mid m$. Then $U_{3} \mid U_{m}$ and therefore $8 \mid U_{m}$ by (2.15). Since t is odd, $n=m t=m(4 q \pm 1)=4 q m \pm m$ for some integer q. Therefore by using (2.2), we get

$$
V_{n}=V_{4 q m \pm m}=V_{ \pm m}\left(\bmod U_{2 m}\right)
$$

which implies that

$$
A V_{m} x^{2} \equiv V_{m}\left(\bmod U_{m} V_{m}\right)
$$

by (2.17). It follows that $A x^{2} \equiv 1\left(\bmod U_{m}\right)$ and so $A x^{2} \equiv 1(\bmod 8)$ since $8 \mid U_{m}$. Therefore $A \equiv 1(\bmod 8)$. Let $t>1$. Then $n=m(4 q \pm 1)=2 \cdot 2^{r} a \pm m$ with a odd and $r \geq 1$. Therefore by using (2.3), we get

$$
A V_{m} x^{2}=V_{n} \equiv-V_{ \pm m}\left(\bmod V_{2^{r}}\right)
$$

which shows that

$$
A x^{2} \equiv-1\left(\bmod V_{2^{r}}\right)
$$

since $\left(V_{m}, V_{2^{r}}\right)=1$ by (2.19). Thus,

$$
\left(\frac{A}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)=-1
$$

by (2.6). Then by using the fact that $V_{2^{r}} \equiv \pm 1(\bmod A)$, when $P^{2} \equiv$ $3(\bmod A)$, we get

$$
-1=\left(\frac{A}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{A}\right)=\left(\frac{ \pm 1}{A}\right)=1
$$

a contradiction. Therefore $t=1$ and so $n=m$, which is impossible since $A>3$. Now let $3 \nmid m$. Then $3 \mid t$ and so $t=3 s$ for some odd integer s. Thus, $n=m t=3 m s$. Therefore by using (2.14), we get

$$
A V_{m} x^{2}=V_{n}=V_{3 m s}=V_{m s}\left(V_{m s}^{2}-3\right)
$$

i.e.,

$$
\frac{V_{m s}}{V_{m}}\left(V_{m s}^{2}-3\right)=A x^{2}
$$

Clearly, $\left(V_{m s} / V_{m}, V_{m s}^{2}-3\right)=1$ or 3 . Then by using (2.14), it is seen that

$$
V_{m s}^{2}-3=V_{2 m s}-1=k x^{2} \text { or } 3 k x^{2} \text { with } k \mid A
$$

Let $m s>1$. Since $m s$ is odd, we get $2 m s=2(4 q \pm 1)=2 \cdot 2^{r} a \pm 2$ with a odd and $r \geq 2$. Therefore

$$
w x^{2}=V_{2 m s}-1 \equiv-V_{ \pm 2}-1\left(\bmod V_{2^{r}}\right)
$$

by (2.3), which implies that

$$
w x^{2} \equiv-\left(P^{2}-1\right)\left(\bmod V_{2^{r}}\right)
$$

where $w=k$ or $3 k$ with $k \mid A$. This shows that

$$
\left(\frac{w}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{P^{2}-1}{V_{2^{r}}}\right),
$$

which implies that

$$
\begin{equation*}
\left(\frac{w}{V_{2^{r}}}\right)=-1 \tag{4.5}
\end{equation*}
$$

by (2.6) and (2.9), respectively. Since $r \geq 2$, we get $\left(3 / V_{2^{r}}\right)=1$ by (2.8). Now we show that $\left(k / V_{2^{r}}\right)=1$. Clearly, $\left(k / V_{2^{r}}\right)=1$ if $k=1$. Let $k>1$. Then $V_{2^{r}} \equiv-1(\bmod k)$ and thus, we get

$$
\left(\frac{k}{V_{2^{r}}}\right)=(-1)^{(k-1) / 2}\left(\frac{V_{2^{r}}}{k}\right)=(-1)^{(k-1) / 2}\left(\frac{-1}{k}\right)=1 .
$$

As a consequence, we have $\left(k / V_{2^{r}}\right)=1$ for $k \mid A$. This shows that $\left(w / V_{2^{r}}\right)=$ 1 , which is impossible by (4.5). Thus, $m s=1$ and so $m=1$ and $n=3$.
Corollary 4 The equation $V_{n}=11 V_{m} x^{2}$ has no solutions.

Proof. Assume that $V_{n}=11 V_{m} x^{2}$ for some integer x. Then by Theorems 4.9 and 4.10 , we get $n=3$ and $m=1$. Thus, it follows that $V_{3}=11 P x^{2}$, which implies that $P^{2}-3=11 x^{2}$. This is impossible since $11 x^{2} \equiv-2(\bmod 8)$ in this case.

By using Theorems 4.9 and 4.10, we can give the following corollaries.
Corollary 5 The equation $V_{n}=13 V_{m} x^{2}$ has no solutions.
Corollary 6 The equation $V_{n}=7 V_{m} x^{2}$ has no solutions.
Proof. Assume that $V_{n}=7 V_{m} x^{2}$ for some integer x. If $7 \mid P$, then $V_{n}=$ $7 V_{m} x^{2}$ has no solutions by Theorem 4.9. Assume that $P^{2} \equiv 2(\bmod 7)$. Then $n=2 t$ for some odd integer t by Lemma 3. Since $V_{m} \mid V_{n}, n=m s$ for some odd integer s by (2.16). Then it follows that $m=2 q$ for some odd integer q. Thus, we get $V_{m} \equiv 2,7(\bmod 8)$ and $V_{n} \equiv 2,7(\bmod 8)$ by (2.11). This is impossible since $V_{n}=7 V_{m} x^{2}$.

References

[1] Cohn J. H. E., Squares in some recurrent sequences. Pacific Journal of Mathematics 41 (1972), 631-646.
[2] Karaatl O. and Keskin R., On the Equations $U_{n}=5 \square$ and $V_{n}=5 \square$. Miskolc Mathematical Notes 16 (2015), 925-938.
[3] Karaatll O. and Keskin R., On the Lucas sequence equations $V_{n}=7 \square$ and $V_{n}=7 V_{m} \square$. Bulletin of the Malaysian Mathematical Sciences Society 41 (2018), 335-353.
[4] Karaatlı O. and Keskin R., Generalized Lucas Number of the form $5 k x^{2}$ and $7 k x^{2}$. Bulletin of the Korean Mathematical Society 52 (2015), 1467-1480.
[5] Ribenboim P. and McDaniel W. L., The square terms in Lucas sequences. Journal of Number Theory 58 (1996), 104-123.
[6] Ribenboim P. and McDaniel W. L., Squares in Lucas sequences having an even first parameter. Colloquium Mathematicum 78 (1998), 29-34.
[7] Ribenboim P., My Numbers, My Friends, Springer-Verlag New York, Inc., (2000).
[8] Ribenboim P. and McDaniel W. L., On Lucas sequence terms of the form $k x^{2}$, Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293-303.
[9] Keskin R. and Karaatlı O., Generalized Fibonacci and Lucas numbers of the form $5 x^{2}$. International Journal of Number theory 11 (2015), 931-944.
[10] Keskin R., Generalized Fibonacci and Lucas Numbers of the form $w x^{2}$ and $w x^{2} \pm 1$. Bulletin of the Korean Mathematical Society 51 (2014), 1041-1054.
[11] Siar Z., On square classes in generalized Lucas sequences. International Journal of Number Theory 11 (2015), 661-672.
[12] Şiar Z. and Keskin R., Some new identities concerning generalized Fibonacci and Lucas numbers. Hacettepe Journal of Mathematics and Statistics 42 (2013), 211-222.
[13] Şiar Z. and Keskin R., The square terms in Generalized Fibonacci Sequence. Mathematika 60 (2014), 85-100.
[14] Şiar Z. and Keskin R., The Square Terms in Generalized Lucas Sequence with Parameters P and Q, Mathematica Scandinavica 118 (2016), 13-26.

Merve GÜney Duman
Sakarya University
Mathematics Department
Sakarya, Turkey
E-mail: merveguneyduman@gmail.com
Ümmügülsüm ÖĞÜT
Sakarya, Turkey
E-mail: gulsumogutt@gmail.com
Refik Keskin
Sakarya University
Mathematics Department
Sakarya, Turkey
E-mail: rkeskin@sakarya.edu.tr

