Translator Disclaimer
February 2018 Large-time behavior of solutions to a tumor invasion model of Chaplain–Anderson type with quasi-variational structure
Akio ITO
Hokkaido Math. J. 47(1): 33-67 (February 2018). DOI: 10.14492/hokmj/1520928060

Abstract

We treat 2D and 3D tumor invasion models with quasi-variational structures, which are composed of two PDEs, one ODE and certain constraint conditions. Although the original model was proposed by M. R. A. Chaplain and A. R. A. Anderson in 2003, the difference between their original model and ours is that the constraint conditions for the distributions of tumor cells and the extracellular matrix are imposed in our model, which give a quasi-variational structure. For 2D and 3D tumor invasion models with quasi-variational structures, we show the existence of global-in-time solutions and consider their large-time behaviors. Especially, for the large-time behaviors, we show that there exists at least one global-in-time solution such that it converges to a constant steady state in an appropriate function space as time goes to $\infty$.

Citation

Download Citation

Akio ITO. "Large-time behavior of solutions to a tumor invasion model of Chaplain–Anderson type with quasi-variational structure." Hokkaido Math. J. 47 (1) 33 - 67, February 2018. https://doi.org/10.14492/hokmj/1520928060

Information

Published: February 2018
First available in Project Euclid: 13 March 2018

zbMATH: 06853591
MathSciNet: MR3773725
Digital Object Identifier: 10.14492/hokmj/1520928060

Subjects:
Primary: 35A01, 35B40, 35Q92

Rights: Copyright © 2018 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
35 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.47 • No. 1 • February 2018
Back to Top