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The DPW method for constant mean curvature surfaces

in 3-dimensional Lorentzian spaceforms,

with applications to Smyth type surfaces
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Abstract. We give criteria for singularities of spacelike constant mean curvature

surfaces in 3-dimensional de Sitter and anti-de Sitter spaces constructed by the DPW

method, which is a generalized Weierstrass representation. We also construct some

examples of spacelike CMC surfaces, including analogs of Smyth surfaces with singu-

larities, using appropriate models to visualize them.
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1. Introduction

We can construct CMC H = 0 (minimal) surfaces in the 3-dimensional
Euclidean space R3 by using a famous integral formula involving a pair of
holomorphic functions satisfying certain conditions ([32]), called the Weier-
strass representation, and many examples of minimal surfaces have been
constructed with it. Dorfmeister, Pedit and Wu provided a generalization
of the Weierstrass representation formula ([12]), called the DPW method,
for constructing CMC H 6= 0 surfaces in R3, using holomorphic data satis-
fying certain conditions and a matrix loop splitting called the Iwasawa split-
ting. As an application, they constructed generalized Smyth surfaces. In
other works ([9], [10], [15], [16], [26], etc), Brander, Dorfmeister, Inoguchi,
Kobayashi, Kilian, Rossman and Schmitt also constructed new examples
of CMC surfaces in the 3-dimensional sphere S3 and hyperbolic space H3

(non-Euclidean positive definite spaceforms) via the DPW method. In [9],
Brander, Rossman and Schmitt constructed spacelike CMC surfaces in the
3-dimensional Lorentzian space R2,1, and they classified the spacelike rota-
tionally symmetric surfaces. (Also see [13] and [14].) In the appendix of [10]
(arXiv version), spacelike CMC |H| < 1 surfaces in the de Sitter space S2,1

are considered.
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Here we apply this method to spacelike CMC surfaces in R2,1, S2,1 and
anti de-Sitter space H2,1, and we give some examples of spacelike CMC sur-
faces in those Lorentzian spaceforms. We can see this theory as the special
case of [13], however here we also study the singularities of the resulting
CMC surfaces, and look at some examples in detail (totally umbilical sur-
faces, round cylinders, and more interestingly, analogs of Smyth surfaces).

This paper has eight sections. Section 2 explains the DPW method for
spacelike CMC surfaces in R2,1, as in [9] and [13], using Lax pairs and loop
groups. In Sections 3 and 4, we describe the DPW method for spacelike
CMC surfaces in S2,1 and H2,1, as in [13]. Section 5 introduces some models
of S2,1 and H2,1 for visualization. We use the hollow ball model for S2,1,
and we use the cylindrical models for H2,1. In Section 6, as applications,
we describe the most basic examples of spacelike CMC surfaces in S2,1 and
H2,1. In Section 7, we explore singularities on CMC surfaces in Lorentzian
spaceforms, and give criteria for determining certain types of singularities
(cuspidal edges, swallowtails and cuspidal cross caps) in the context of Lax
representations. Finally, in Section 8, we apply the methods and results
in this paper to the analogs of Smyth surfaces in Lorentzian spaceforms,
including results about their symmetries, singularities, and relations with
the Painleve III equation.

2. The loop group method in R2,1

We consider the DPW method for constructing spacelike CMC surfaces
in R2,1 as in [9], [13].

Let R2,1 be the 3-dimensional Lorentz space with Lorentz metric

〈x, y〉R2,1 := x1y1+x2y2−x0y0 for x = (x1, x2, x0), y = (y1, y2, y0) ∈ R2,1.

We simplify the notation 〈·, ·〉 to 〈·, ·〉R2,1 , and use its bilinear extension
to C3. Let Σ be a simply-connected domain in C with the usual complex
coordinate z = x + iy, and let f : Σ −→ R2,1 be a conformally immersed
spacelike surface. Since f is conformal,

〈fz, fz〉 = 〈fz̄, fz̄〉 = 0, 〈fz, fz̄〉 := 2e2u (2.1)

for some function u : Σ −→ R. We choose the unit timelike normal vector
field N : Σ −→ H2 (H2 is the hyperbolic 2-space in R2,1) of f , and then the
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mean curvature and Hopf differential are

H =
1

2e2u
〈fzz̄, N〉, Q := 〈fzz, N〉. (2.2)

The Gauss-Codazzi equations are the following form in the CMC cases:

4uzz̄ + QQ̄e−2u − 4H2e2u = 0, Qz̄ = 0. (2.3)

The Codazzi equation in (2.3) is equivalent to the Hopf differential Q being
holomorphic, and (2.3) is invariant with respect to the transformation Q →
λ−2Q for λ ∈ S1. When f(x, y) is a spacelike CMC in R2,1, the spectral
parameter λ ∈ S1 allows us to create a 1-parameter family of CMC surfaces
fλ = f(x, y, λ) associated to f(x, y).

To describe the 2×2 matrix representation of R2,1 as in [9], [13], writing
su1,1 for the Lie algebra of the Lie group

SU1,1 :=
{(

α β
β̄ ᾱ

) ∣∣∣∣ α, β ∈ C, αᾱ− ββ̄ = 1
}

, (2.4)

we identify R2,1 with su1,1 via

R2,1 3 x = (x1, x2, x0) 7−→
(

ix0 x1 − ix2

x1 + ix2 −ix0

)
∈ su1,1.

The metric becomes, under this identification, 〈X, Y 〉 = (1/2)trace(XY ) for
X, Y ∈ su1,1.

Let f be a conformal immersed spacelike surface in R2,1 with associated
family fλ, and let the identity matrix and Pauli matrices be as follows:

I :=
(

1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (2.5)

Then {σ1, σ2, iσ3} is an orthogonal basis for su1,1 ≈ R2,1. We can define

e1 :=
fλ

x

|fλ
x |

=
fλ

x

2eu
= F̂ σ1F̂

−1, e2 :=
fλ

y

|fλ
y |

=
fλ

y

2eu
= F̂ σ2F̂

−1,

N := F̂ iσ3F̂
−1 (2.6)
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for F̂ = F̂ (z, z̄, λ) ∈ SU1,1. For this F̂ , we get the untwisted 2× 2 Lax pair
in R2,1 as follows:

F̂z = F̂ Û , F̂z̄ = F̂ V̂ , where

Û =
1
2

( −uz −iλ−2Qe−u

2iHeu uz

)
, V̂ =

1
2

(
uz̄ −2iHeu

iλ2Q̄e−u −uz̄

)
. (2.7)

We change the “untwisted” setting to the “twisted” setting by the following
transformation (2.8). Let F be defined by

F̂ = −σ3(F−1)t

(√
λ 0

0 1√
λ

)
σ3, (2.8)

producing the twisted 2× 2 Lax pair of f in R2,1,

Fz = FU, Fz̄ = FV, where

U =
1
2

(
uz 2iλ−1Heu

−iλ−1Qe−u −uz

)
, V =

1
2

( −uz̄ iλQ̄e−u

−2iλHeu uz̄

)
. (2.9)

The following Proposition 2.1 gives us a method for determining space-
like CMC H 6= 0 surfaces in R2,1 from given data u and Q, by choosing
a solution F of (2.9) and inserting F into the Sym-Bobenko type formula
(2.10).

Proposition 2.1 (Sym-Bobenko type formula for spacelike CMC surfaces
in R2,1 [9] [13]) Let Σ be a simply-connected domain in C. Let u and Q

solve (2.3), and let F = F (z, z̄, λ) be a solution of the system (2.9). Suppose
F ∈ SU1,1 for all λ ∈ S1 and one value of z. Then F ∈ SU1,1 for all z.
Defining the following Sym-Bobenko type formulas

f =
[

1
2H

Fiσ3F
−1 +

i

H
λ(∂λF )F−1

]∣∣∣∣
λ=1

, N = −[Fiσ3F
−1]

∣∣
λ=1

, (2.10)

f is a conformally parametrized spacelike CMC H 6= 0 surface in R2,1 with
normal N .
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3. The loop group method in S2,1 and H2,1

We apply the DPW method to construct spacelike CMC surfaces in S2,1

and H2,1, as in [13].
Let R3,1, resp. R2,2, be the 4-dimensional space with metric

〈(x1, x2, x3, x4), (y1, y2, y3, y4)〉 := x1y1 + x2y2 + ε · x3y3− x4y4, where ε = 1
for R3,1, resp. ε = −1 for R2,2. We define the spaceform S := {x|〈x, x〉 = ε}.
Thus we obtain S = S2,1 (resp. S = H2,1) when ε = 1 (resp. ε = −1).

Let Σ be a simply-connected domain in C with the usual complex co-
ordinate w = x + iy. Let f : Σ −→ S be a conformally immersed spacelike
surface. Since f is conformal,

〈fw, fw〉 = 〈fw̄, fw̄〉 = 0, 〈fw, fw̄〉 = 2e2u (3.1)

for some function u : Σ −→ R. For the unit normal vector field N of
f satisfying 〈N, N〉 = −1, 〈fw, N〉 = 〈fw̄, N〉 = 0, we define the mean
curvature H and Hopf differential A as follows:

H :=
1

2e2u
〈fww̄, N〉, A := 〈fww, N〉. (3.2)

The Gauss-Codazzi equations are of the following form in the CMC (H2 > ε)
cases:

2uww̄ − 2e2u(H2 − ε) +
1
2
AĀe−2u = 0, Aw̄ = 0. (3.3)

Making the change of parameter z := 2
√

H2 − ε · w and defining Q by
A = −2

√
H2 − ε · e−iψQ for a real constant ψ, we have equation (2.3) with

H = ±1/2:

4uzz̄ + QQ̄e−2u − e2u = 0, Qz̄ = 0. (3.4)

S2,1 and H2,1 and their matrix group representations.
We identify R3,1, resp. R2,2, with the Hermitian symmetric group {X ∈

M2×2 | X = X̄t}, resp. another matrix group, as follows:

R3,1, resp. R2,2 3 x = (x1, x2, x3, x4) 7−→
(

x4 + ν · x3 x1 − ix2

x1 + ix2 x4 − ν · x3

)
, (3.5)
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with ν = 1 for R3,1 and ν = i for R2,2. The metric becomes, under this
identification, 〈X, Y 〉 = −(1/2)trace(Xσ2Y

tσ2). In particular, 〈X, X〉 =
−det(X), and we can identify S2,1, resp. H2,1, with

{
X ∈ M2×2 | X = X̄t,det(X) = −1

}
=

{
Fσ3F̄

t | F ∈ SL2(C)
}
, (3.6)

respectively, with SU1,1, as in (2.4) via

H2,1 3 x = (x1, x2, x3, x4) 7−→
(

x4 + ix3 x1 − ix2

x1 + ix2 x4 − ix3

)
. (3.7)

The Sym-Bobenko type formula in S2,1 and H2,1.
Defining F̂ and fλ in the same way as in (2.6), once again we change

the “untwisted” setting to the “twisted” setting by the transformation (2.8)
defining F . We define the twisted 2× 2 Lax pair of f in S as

Fz = FU, Fz̄ = FV, (3.8)

where U and V are as in (2.9) with H fixed to be 1/2.
The following Proposition 3.1 gives us a method for determining space-

like CMC H surfaces in S2,1 with |H| > 1, resp. CMC H surfaces in H2,1

for any value of H, from given data u and Q.

Proposition 3.1 (Sym-Bobenko type formula for spacelike CMC surfaces
in S2,1, H2,1 [13]) Let Σ be a simply-connected domain in C. Let u and
Q solve (3.4), and let F = F (z, z̄, λ) ∈ SL2(C) be a solution of the system
(3.8) such that F (z, z̄, λ) ∈ SU1,1 when λ ∈ S1.

• In the case of S2,1, set F0 = F |λ=eq/2eiψ for q, ψ ∈ R, q 6= 0. We
define the following Sym-Bobenko type formulas

f = F0

(
e(1/2)q 0

0 −e−(1/2)q

)
F0

t
, N = −F0

(
e(1/2)q 0

0 e−(1/2)q

)
F0

t
.

(3.9)

Then, f is a spacelike CMC H = −coth(−q) surface in S2,1 with
normal N .

• In the case of H2,1, set F1 = F |λ=eiγ1 and F2 = F |λ=eiγ2 for γ1, γ2 ∈
R and γ1 − γ2 6= nπ (n ∈ Z). We define the following Sym-Bobenko
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type formulas

f = iF1

(
e(1/2)i(γ1−γ2) 0

0 −e−(1/2)i(γ1−γ2)

)
F2

t
,

N = −F1

(
e(1/2)i(γ1−γ2) 0

0 e−(1/2)i(γ1−γ2)

)
F2

t
.

(3.10)

Then, f is a spacelike CMC H = −cot(γ1 − γ2) surface in H2,1 with
normal N .

4. Application of the DPW method to S2,1 and H2,1

In this section, we give a description of the DPW method, and apply
this method to spacelike CMC surfaces in S2,1 and H2,1 as in [9], [13]. First,
we define the potential ξ:

Definition 4.1 (holomorphic potential [9], [12], [16]) Let Σ be a simply-
connected domain, z ∈ Σ and λ ∈ C. A holomorphic potential ξ is of the
form

ξ := Adz, A = A(z, λ) =
∞∑

j=−1

Aj(z)λj , (4.1)

where each Aj(z) is a 2× 2 matrix that is independent of λ, is holomorphic
in z ∈ Σ, is traceless, is a diagonal (resp. off-diagonal) matrix when j is
even (resp. odd), and the upper-right entry of A−1(z) is never zero.

Given a holomorphic potential ξ, we then solve the equation

dφ = φξ, φ(z∗) = I for φ ∈ ΛSL2(C), (4.2)

where ΛSL2(C) =
{
φ(λ) ∈ M2×2 | φ : S1 C∞−→ SL2(C), φ(−λ) = σ3φ(λ)σ3

}
for some choice of initial point z∗ ∈ Σ.

We will use the following “SU1,1-Iwasawa splitting” defined on an open
dense subset B1,1, called the Iwasawa big cell, of this loop group ΛSL2(C).
The following proposition was proven in [9].

Proposition 4.1 (SU1,1-Iwasawa splitting [9]) For all φ ∈ B1,1, there
exist unique loops F and B such that
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φ = F ·B, (4.3)

where

F ∈ ΛSU1,1 ∪
{(

0 λi
λ−1i 0

)
· ΛSU1,1

}
, B ∈ Λ+

RSL2(C),

ΛSU1,1 =
{
φ(λ) ∈ M2×2 | φ : S1 C∞−→ SU1,1, φ(−λ) = σ3φ(λ)σ3

}
,

Λ+
RSL2(C) =



B+(λ) ∈ ΛSL2(C)

∣∣∣∣∣
B+ extends holomorphically to D,

B+(0) =
(

ρ 0
0 ρ−1

)
for some ρ > 0.



 .

After obtaining a solution φ of (4.2), we restrict to B1,1 and split φ as
in (4.3). We then input F into the “Sym-Bobenko type formula” in (2.10)
(resp. (3.9) or (3.10)), and the following proposition tells us we have a
conformally immersed CMC surface f = f(z, z̄) in R2,1 (resp. S2,1 or H2,1).

Proposition 4.2 ([9]) Let ξ be a holomorphic potential as in (4.1) over a
simply-connected domain Σ in C, and let φ : Σ −→ ΛSL2(C) be a solution
of (4.2). Define the open set Σo := φ−1(B1,1) ⊂ Σ, and consider the unique
SU1,1-Iwasawa splitting on Σo as in (4.3).

Then, after a conformal change of parameter z and appropriate choice
of definitions for u, H and Q, we have that F satisfies the Lax pair (2.9).

The converse of this recipe, that any conformally immersed CMC H 6= 0
(resp. H = −coth(−q) or H = −cot(γ1 − γ2)) surface in R2,1 (resp. S2,1

or H2,1) has a holomorphic potential, also holds, but we will not prove that
here, see [9] [13] for details.

5. Visualization of surfaces in S2,1 and H2,1

In the next section, we introduce some examples of CMC surfaces in S2,1

and H2,1. At that point, we wish to visualize CMC surfaces in S2,1 and H2,1,
using appropriate models for S2,1 and H2,1, and we consider those models
here. These models are already known, and we describe them explicitly
here, in the context of our setting.

The hollow ball model of S2,1.
To visualize CMC surfaces in S2,1, we use the hollow ball model of S2,1,
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as in [15], [21], [23], [33]. We get the following identification (bijection):

S2,1 3 (x1, x2, x3, x4) 7−→
(

earctan(x4)

√
1 + x2

4

x1,
earctan(x4)

√
1 + x2

4

x2,
earctan(x4)

√
1 + x2

4

x3

)
∈ H.

(5.1)

In this way, S2,1 is identified with the hollow ball H. The hollow ball model
is the set {(y1, y2, y3) ∈ R3|e−π < y2

1 + y2
2 + y2

3 < eπ}.
The cylindrical model of H2,1.

To visualize CMC surfaces in H2,1, we use a model for H2,1, which
we call the cylindrical model, like in [7] and [19]. It is actually only a
model for the universal cover of H2,1, but has the advantage that certain
symmetries become more apparent. We have the following homeomorphism
and universal covering: H2,1 ≈ H2× S1 ⊂ H2×R =: C. This means that we
have the following covering:

H2,1 3 (x1, x2, x3, x4)

7−→
(

x1

1 +
√

x2
3 + x2

4

,
x2

1 +
√

x2
3 + x2

4

,Arg
(

x3 + ix4√
x2

3 + x2
4

))
∈ C. (5.2)

The cylindrical model is the set {(y1, y2, y3) ∈ R3|0 5 y2
1 + y2

2 < 1}.

6. Examples

Here we introduce some examples of CMC surfaces in S2,1 and H2,1,
using the DPW method.

Round cylinders.
Here we show how the DPW method makes round cylinders. Defining

ξ := λ−1

(
0 1
1 0

)
dz (6.1)

for z = x + iy ∈ Σ = C and λ ∈ S1, we solve dφ = φξ and determine F ,
obtaining

φ =
(

cosh(λ−1z) sinh(λ−1z)
sinh(λ−1z) cosh(λ−1z)

)
,
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F =
(

cosh(λ−1z + z̄λ) sinh(λ−1z + z̄λ)
sinh(λ−1z + z̄λ) cosh(λ−1z + z̄λ)

)
. (6.2)

Totally umbilical surfaces.
The DPW method produces totally umbilical surfaces via

ξ := λ−1

(
0 1
0 0

)
dz, (6.3)

for z ∈ Σ = C and λ ∈ S1, we solve dφ = φξ and determine F (φ ∈ B1,1

when |z| 6= 1), obtaining

φ = exp
(

zλ−1

(
0 1
0 0

))
=

(
1 zλ−1

0 1

)
,

F =
1√

1− |z|2
(

1 zλ−1

z̄λ 1

)
∈ ΛSU1,1.

Remark 6.1 These surfaces in S2,1 and H2,1 are not compact, but are
totally umbilic.

q = 1, ψ = 0

γ1 = π
3
, γ2 = π

6

q = 2, ψ = 0

γ1 = π
3
, γ2 = π

6

Figure 1. The left two images are round cylinders in S2,1 (resp. H2,1), and right
two image are totally umbilical surfaces in S2,1 (resp. H2,1).
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7. Theory for CMC surfaces with singularities

In this section, we consider the singularities of CMC surfaces in R2,1,
S2,1 and H2,1, and we show criteria for cuspidal edges, swallowtails and
cuspidal cross caps, using some geometric notions.

Relationships between Iwasawa splitting and singularities.
We first make some remarks about relationships between the DPW

method and singularities. We define small cells as follows:

Definition 7.1 ([8], [9]) Define, for a positive integer m ∈ Z,

ωm =
(

1 0
λ−m 1

)
: m odd, ωm =

(
1 λ1−m

0 1

)
: m even.

Then the group ΛSL2(C) is a disjoint union

ΛSL2(C) = B1,1

⊔

m∈Z+

Pm, where

B1,1 :=
(

ΛSU1,1 ∪
{(

0 λi
λ−1i 0

)
· ΛSU1,1

})
· Λ+
RSL2(C),

is called the Iwasawa big cell, and the m-th small cell is Pm := ΛSU1,1 ·ωm ·
Λ+
RSL2(C).

Using these small cells, we have the following proposition for the case
of R2,1, as in [8], [9].

Proposition 7.1 ([8], [9, Theorem 4.2]) Let Σ be a simply connected
domain, and let φ : Σ −→ ΛSL2(C). Define Σ0 = φ−1(B1,1), C1 = φ−1(P1)
and C2 = φ−1(P2). Then:

(1) The sets Σ0 ∪ C1 and Σ0 ∪ C2 are both open subsets of Σ. The sets
Ci are each locally given as the zero set of a non-constant real analytic
function R2 −→ R.

(2) All components of the matrix F obtained by Proposition 4.1 on Σ0, and
evaluated at λ0 ∈ S1, blow up as z approaches a point z0 in either C1 or
C2. In the limit, the unit normal vector N , to the corresponding surface
in R2.1, becomes asymptotically lightlike, i.e. its length in the Euclidean
R3 metric approaches infinity.
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(3) The CMC surface f ∈ R2,1 given by the DPW method extends to a real
analytic map Σ0 ∪ C1 −→ R2,1, but is not immersed as points z0 ∈ C1.

(4) The CMC surface f ∈ R2,1 given by the DPW method diverges to ∞ as
z → z0 ∈ C2. Moreover, the induced metric on the surface blows up as
such a point in the coordinate domain is approached.

By the above proposition, at a singular point, we cannot split φ to F ·B
for F ∈ ΛSU1,1, and the procedure of the DPW method does not work.
Thus, we consider the claims of Proposition 2.1 and 3.1 directly, without
using the Iwasawa splitting. Our recipe is as follows:

(1) First we choose a real constant H 6= 0 (resp. H = 1/2) and holomorphic
function Q, for the case of R2,1 (resp. S2,1 and H2,1).

(2) We define the metric function g = eu satisfying (2.3).
(3) We obtain F by solving the system (2.9).
(4) Finally, we get a conformal spacelike CMC surface f in R2,1 (resp. S2,1

or H2,1) by inputting F into the Sym-Bobenko type formula (2.10) (resp.
(3.9) or (3.10)).

Criteria for singularities of spacelike CMC H 6= 0 surfaces in R2,1.
Here we introduce criteria for cuspidal edges, swallowtails and cuspidal

cross caps of CMC H 6= 0 surfaces in R2,1, as in [30]. However, we use a
different approach from [30] because we start not with harmonic maps, but
with H, Q and g = eu.

Let H 6= 0 be a real constant, and let Q be a holomorphic function.
Let g = eu be a solution of (2.3). Here, in order to match [30], we use the
untwisted setting. Thus we define F̂ satisfying the system (2.7) for λ = 1.
For this F̂ , we have the following untwisted version of Proposition 2.1:

Proposition 7.2 (untwisted version of Proposition 2.1) Let Σ be a simply-
connected domain in C. Let u and Q solve (2.3), and let F̂ = F̂ (z, z̄, λ) be
a solution of the system (2.7). Suppose F̂ ∈ SU1,1 for all λ ∈ S1 and one
value of z. Then F̂ ∈ SU1,1 for all z where F̂ is bounded, and F̂ is bounded
wherever u and Q are bounded. Defining the following Sym-Bobenko type
formulas

f =
[
− 1

H
F̂iσ3F̂

−1 +
i

H
λ(∂λF̂ )F̂−1

] ∣∣∣∣
λ=1

, N =
[
F̂ iσ3F̂

−1
] ∣∣

λ=1
. (7.1)
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f is a conformally parametrized spacelike CMC H 6= 0 surface in R2,1 with
normal N .

We denote F̂ = F̂ (z, z̄) = e−u/2
(

ā b
b̄ a

) ∈ SU1,1, where |a|2 − |b|2 = eu =
g. So we define h and ω such that h := −(ia/b) and ω := −2b2, and metric
is

ds2 = 4g2dzdz̄ = (1− |h|2)2|ω|2dzdz̄. (7.2)

This implies that, wherever ds2 is finite, f has a singularity if and only if
h ∈ S1 or ω = 0. However, by (7.1) we have

fz =
ω

2
(1 + h2, i(1− h2),−2h), fz̄ =

ω̄

2
(1 + h̄2,−i(1− h̄2),−2h̄), (7.3)

and ω = 0 means that f has an isolated singular point there. Here we
consider only extended CMC surfaces defined by the following, as in [30].

Definition 7.2 ([30]) A CMC surface f restricted to the subdomain D =
{p ∈ Σ | ds2 < ∞} is called an extended CMC surface if ω, resp. h2ω, is
never zero on D when |h| < ∞, resp. |h| = ∞.

Remark 7.1 By this definition, any point p ∈ Σ is singular only when
|h(p)| = 1. (See [30].)

Remark 7.2 By [24], the normal vector N of spacelike CMC surface f

satisfies that Nzz̄ is parallel to N at each regular point p. This implies
that hzz̄ + (2h̄/1− |h|2)hzhz̄ = 0 meaning that h is a harmonic map at
each regular point p. Similarly, Nz = −Hfz − (1/2)Qe−2ufz̄ implies ω =
h̄z/(1− |h|2)2 at each regular point p. However, these Equations do not
necessarily hold at singular points.

Now we have the following criteria for singularities of spacelike extended
CMC H 6= 0 surfaces, as in [30]. However, since we use different notations
and a different approach, we give a sketch of the proof here. The notion of
A-equivarece used in this theorem is fundamental in singularity theory, and
is explained in [17], [30], [31].

Theorem 7.1 ([30]) Let Σ be a simply connected domain, and let f :
Σ −→ R2,1 be a spacelike extended CMC H 6= 0 surface. Then:

(1) f is a front at a singular point p ∈ Σ (i.e. h(p) ∈ S1) if and only if
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Re(hz/h2ω)|p 6= 0. If this is the case, p is a non-degenerate singular
point.

(2) f is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and
only if

Re
(

hz

h2ω

) ∣∣∣∣
p

6= 0 and Im
(

hz

h2ω

) ∣∣∣∣
p

6= 0.

(3) f is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only
if

Re
(

hz

h2ω

) ∣∣∣∣
p

6= 0, Im
(

hz

h2ω

) ∣∣∣∣
p

= 0 and

Re

{(
hz

h

)(
hz

h2ω

)

z

} ∣∣∣∣∣
p

6= Re
{(

hz

h

)(
hz

h2ω

)

z̄

} ∣∣∣∣
p

.

(4) f is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if
and only if

Re
(

hz

h2ω

) ∣∣∣∣
p

= 0, Im
(

hz

h2ω

) ∣∣∣∣
p

6= 0 and

Im

{(
hz

h

)(
hz

h2ω

)

z

} ∣∣∣∣∣
p

6= Im
{(

hz

h

)(
hz

h2ω

)

z̄

} ∣∣∣∣
p

.

Proof. The essential idea behind proving this is to input h, ω into the
Kenmotsu type representation as in [3] and to compute the same way as in
[30]. ¤

Here we give equivalent conditions for Theorem 7.1, as follows (in this
corollary 〈fz, fz〉C3 := (1/4)(|fx|2R3 − |fy|2R3)− (i/2)〈fx, fy〉R3 is the bilinear
extension of the R3 inner product):

Corollary 7.1 Let Σ be a simply connected domain, and let f : Σ −→ R2,1

be a spacelike extended CMC H 6= 0 surface, given by a real constant H, a
holomorphic function Q and a metric function g. Then:

(1) f is a front at a singular point p ∈ Σ if and only if Re(Q/〈fz, fz〉C3)|p 6=
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0. If this is the case, p is a non-degenerate singular point.
(2) f is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and

only if

Re
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

6= 0 and Im
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

6= 0.

(3) f is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only
if

Re
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

6= 0, Im
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

= 0 and

Re
[
Qz〈fz, fz〉C3 − 2Q〈fzz, fz〉C3

〈fz, fz〉2C3

· Q

〈fz̄, fz̄〉C3

] ∣∣∣∣
p

6= Re
[−2Q〈fzz̄, fz〉C3

〈fz, fz〉2C3

· Q

〈fz, fz〉C3

] ∣∣∣∣
p

.

(4) f is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if
and only if

Re
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

= 0, Im
(

Q

〈fz, fz〉C3

) ∣∣∣∣
p

6= 0 and

Im
[
Qz〈fz, fz〉C3 − 2Q〈fzz, fz〉C3

〈fz, fz〉2C3

· Q

〈fz̄, fz̄〉C3

] ∣∣∣∣
p

6= Im
[−2Q〈fzz̄, fz〉C3

〈fz, fz〉2C3

· Q

〈fz, fz〉C3

] ∣∣∣∣
p

.

Proof. Using the Hopf differential Q = 〈fzz, N〉R2,1 = ωhz and 〈fz, fz〉C3 =
2ω2h2, we draw the conclusions from Theorem 7.1. ¤

Criteria for singularities of spacelike CMC H2 > 1 surfaces in S2,1.
In this section, we study singularities of spacelike CMC H (H2 > 1)

surfaces f in S2,1, similarly to Theorem 7.1 for spacelike CMC H (H 6= 0)
surfaces in R2,1. However, in R2,1 we used λ ∈ S1 in the Sym-Bobenko type
formula and thus the solution F̂ in (2.7) is in SU1,1 for that λ, while in S2,1

this will not be the case. In the case of S2,1, the λ we use in the Sym-Bobenko
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type formula is not in S1, and so F̂ |λ 6∈ SU1,1, and this creates complications
for attempting to imitate Theorem 7.1. We remedy this problem by using the
s-spectral deformation to shift to a new CMC surface f̂ in S2,1 of the same
type where arguments like those proving Theorem 7.1 can be used. Noting
that, by Lemma 7.1, as we have not restricted the full class of surfaces being
considered, we are still proving a result (Theorem 7.5) that applies to all
spacelike CMC surfaces in S2,1 with constant mean curvature greater than 1
in absolute value. Here we introduce criteria for cuspidal edges, swallowtails
and cuspidal cross caps on CMC H2 > 1 surfaces in S2,1.

Let f : Σ −→ S2,1 be a spacelike CMC surface for a simply-connected
domain Σ ⊂ C, with the metric ds2 = 4g2dwdw̄ = 4e2udwdw̄ and unit
normal vector N . First, we consider the moving frame F such that

f = Fσ3F
t
,

fx

2eu
= Fσ1F

t
,

fy

2eu
= Fσ2F

t
, N = FF

t
.

Then, we have

Fw = FA, Fw̄ = FB, where

A =
1
2

( −uw −e−uA
2eu(1−H) uw

)
, B =

1
2

(
uw̄ −2eu(1 + H)

−e−uĀ −uw̄

)
. (7.4)

For this F, the compatibility condition implies the Gauss and Codazzi
equations (3.3). We define s-spectral deformations as follows:

Definition 7.3 ([29]) The s-spectral deformation of the CMC surface f in
S2,1 is the deformation defined by (1+H) → s(1+H), (1−H) → s−1(1−H)
in Equations (7.4) for the parameter s > 0.

The s-spectral deformation maps CMC surfaces to other CMC surfaces
conformally, as follows (the analogous result in the case of H3 was proven
in [29]):

Theorem 7.2 For all s ∈ R>0, the s-spectral deformation deforms a
surface f in S2,1, with mean curvature H, metric ds2 = 4e2udwdw̄ and
Hopf differential A, into a surface fs with mean curvature Hs = (s(1+H)−
s−1(1 − H))/(s(1 + H) + s−1(1 − H)), metric 4e2us

dwdw̄ = 4k2e2udwdw̄

and Hopf differential As = kA for k = (s(1 + H) + s−1(1−H))/2.
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Proof. We notice that the s-spectral deformation implies that

{
k(1 + Hs) = s(1 + H)

k(1−Hs) = s−1(1−H)
, equivalently





k =
s(1 + H) + s−1(1−H)

2

Hs =
s(1 + H)− s−1(1−H)
s(1 + H) + s−1(1−H)

.

Then (3.3) holds with ε = 1, and u, A replaced by us = u+log|k|, As = kA.
Thus the deformation family of surfaces exists. ¤

Lemma 7.1 (fs)1/s = f .

Proof. The 1/s-spectral deformation of fs is





k1/s
(
1 + (Hs)1/s

)
=

1
s
(1 + Hs)

k1/s
(
1− (Hs)1/s

)
= s(1−Hs)

,

equivalently





k1/s =
s−1(1 + Hs) + s(1−Hs)

2
=

1
k

(Hs)1/s =
s−1(1 + Hs)− s(1−Hs)
s−1(1 + Hs) + s(1−Hs)

= H.

Similarly we have (As)1/s = A, (us)1/s = u. ¤

We define the (twisted) s-spectral Lax pair.

Definition 7.4 (s-spectral Lax pair) We define Fs as a solution of the
following system:

Fs
w = FsAs, Fs

w̄ = FsBs,

where

As :=
(

0 1
1 0

)
1
2

( −uw −e−uA
2eus−1(1−H) uw

)(
0 1
1 0

)

=
1
2

(
uw 2eus−1(1−H)

−e−uA −uw

)
,
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Bs :=
(

0 1
1 0

)
1
2

(
uw̄ −2eus(1 + H)

−e−uĀ −uw̄

)(
0 1
1 0

)

=
1
2

( −uw̄ −e−uĀ
−2eus(1 + H) uw̄

)
.

Further, we define the form Ωs := (Fs)−1dFs.

Theorem 7.3 For f given by the frame F, and mean curvature H2 > 1,
there exists a member of the s-spectral deformation, for the special value
s = s0 :=

√
(H − 1)/(H + 1), that generates a frame F̃ = Fs0 ∈ SU1,1.

This frame F̃ represents the lift of a harmonic map in H2.

Proof. It is easy to see that choosing s = s0 :=
√

(H − 1)/(H + 1) gives
the only deformation that makes the Maurer-Cartan form become an su1,1-
valued form. ¤

As s approaches s0, the mean curvature goes to infinity, and f̃ := F̃σ3F̃
t

degenerates to a point, but there still exists a map F̃ from Σ to SU1,1 such
that F̃−1dF̃ = Ω̃ defined by the following (7.5). The harmonic map is the
natural projection of the adjusted frame F̃ (defined just below) to H2.

Definition 7.5 We call F̃ : Σ −→ SU1,1 the adjusted frame of F and the
form Ω̃ = F̃−1dF̃ the adjusted Maurer-Cartan form, where

Ω̃ =
1
2

(
uw −2eu

√
H2 − 1

−e−uA −uw

)
dw +

1
2

( −uw̄ −e−uĀ
−2eu

√
H2 − 1 uw̄

)
dw̄

=: Ãdw + B̃dw̄. (7.5)

Theorem 7.4 Let Σ be a simply-connected domain. Let a > 0 (a 6= 1) be
an arbitrary real constant, and let

β1(a) :=
a−1 − 1

2

(
0 −2eu

√
H2 − 1

0 0

)
dw,

β2(a) :=
a− 1

2

(
0 0

−2eu
√

H2 − 1 0

)
dw̄.

Define Ω̂ := Ω̃ + β1(a) + β2(a). Then we have the following :
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(1) dΩ̂ + 1
2 [Ω̂ ∧ Ω̂] = 0.

(2) If F̂ is a SL2(C)-valued solution of Ω̂ = F̂−1dF̂, then f̂ = F̂σ3F̂
t

is a
conformal spacelike CMC surface with Ĥ = (a2 + 1)/(a2 − 1).

Proof. For s =
√

(H − 1)/(H + 1)a ∈ R>0, we have Ωs = Ω̂, by direct
computation. Thus we have existence of f̂ , and Ĥ = Hs = (a2 +1)/(a2−1).

¤

Remark 7.3 Defining G := F̂ · F̃−1, we have Gσ3Ḡ
t = F̂σ3F̂

t

= f̂ .

As noted previously, we will consider the criteria for singularities of f̂

instead of f .
We denote F̃ = F̃(w, w̄) = e−u/2

( u1 u2
u2 u1

) ∈ SU1,1, where g = eu is
the metric function of f , and |u1|2 − |u2|2 = g. So we define h := u2/u1

and ω := u2
1. By Remark 7.3, we have f̂ = F̂σ3F̂

t

= Gσ3Ḡ
t. Setting

k̂ = ((a− a−1)
√

H2 − 1)/2, we get that f̂ has metric

ds2 := 4ĝ2dwdw̄ = 4k̂2(1− |h|2)2|ω|2dwdw̄.

Thus this implies that, wherever ds2 is finite, f̂ has a singularity if and
only if h ∈ S1 or ω = 0. However we consider only extended CMC surfaces
f̂ defined in the same way as Definition 7.2.

We have the following criteria for singularities of spacelike extended
CMC Ĥ2 > 1 surfaces in S2,1. The proof of Theorem 7.5 is parallel to the
proof of Theorem 3.1 in [17]. (Also see [30], [31].)

Theorem 7.5 Let Σ be a simply connected domain, and let f̂ : Σ −→ S2,1

be a spacelike extended CMC Ĥ2 > 1 surface, given by Theorem 7.4. Then:

(1) A point p ∈ Σ is a singular point if and only if h ∈ S1.
(2) f̂ is a front at a singular point p ∈ Σ if and only if Re(hw/h2ω)|p 6= 0.

If this is the case, p is non-degenerate singular point.
(3) f̂ is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and

only if

Re
(

hw

h2ω

) ∣∣∣∣
p

6= 0 and Im
(

hw

h2ω

) ∣∣∣∣
p

6= 0.
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(4) f̂ is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only
if

Re
(

hw

h2ω

) ∣∣∣∣
p

6= 0, Im
(

hw

h2ω

) ∣∣∣∣
p

= 0 and

Re

{(
hw

h

)(
hw

h2ω

)

w

} ∣∣∣∣∣
p

6= Re
{(

hw

h

)(
hw

h2ω

)

w̄

} ∣∣∣∣
p

.

(5) f̂ is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if
and only if

Re
(

hw

h2ω

) ∣∣∣∣
p

= 0, Im
(

hw

h2ω

) ∣∣∣∣
p

6= 0 and

Im

{(
hw

h

)(
hw

h2ω

)

w

} ∣∣∣∣∣
p

6= Im
{(

hw

h

)(
hw

h2ω

)

w̄

} ∣∣∣∣
p

.

Proof. (1) This is clear (like in Remark 7.1).
(2) First we define

ν := G

(
1 + |h|2 2h̄

2h 1 + |h|2
)

Ḡt, (7.6)

and this ν is the Lorentz normal vector field of f̂ on the regular set of f̂ .
This is not a unit vector, but extends smoothly across the singular set. By
Lemma 1.6 of [17], f̂ is a front at a singular point p if and only if ν is not
proportional to DR

3,1

η ν at p, for the null direction η of f̂ and the canonical
connection DR

3,1
. Since df̂ = G

{
2k̂

( −h −1
−h2 −h

)
ωdw − 2k̂

(
h̄ h̄2

1 h̄

)
ω̄dw̄

}
Ḡt, the

null direction is η = (i/hω)∂w − (i/h̄ω̄)∂w̄ at a singular point p. We also
have, at p,

DR
3,1

η ν = G

{
i

hω

(
hwh̄ 0
2hw hwh̄

)
− i

h̄ω̄

(
hh̄w̄ 2h̄w̄

0 hh̄w̄

)}
Ḡt.

On the other hand, we have 〈ν, ν〉 = 〈DR3,1

η ν, ν〉 = 0 at p, thus DR
3,1

η ν is
proportional to ν if and only if DR

3,1

η ν is a null vector, which is equivalent
to
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0 = det
(
DR

3,1

η ν
)

= 4
(

Re
(

hw

h2ω

))2

. (7.7)

By the identification between R3,1 and the Hermitian symmetric group
(3.5), we have

G−1f̂(Ḡt)−1 = (0, 0, 1, 0), G−1f̂w(Ḡt)−1 = −k̂ω(h2 + 1,−i(h2 − 1), 0, 2h),

G−1f̂w̄(Ḡt)−1 = −k̂ω̄(h̄2 + 1,−i(1− h̄2), 0, 2h̄),

and we define n := GIḠt. This implies that G−1n(Ḡt)−1 = (0, 0, 0, 1). By
Proposition 1.2 of [17], we can define

λ := det(f̂ , f̂x, f̂y,n) = 4k̂2|ω|2(1 + |h|2)(1− |h|2).

Then, at a singular point p, dλ = −8k̂2|ω|2(dh · h̄ + h · dh̄), and thus p is a
non-degenerate point if and only if hw 6= 0.
(3)&(4) These cases are proven analogously to the proofs of (3)&(4) in The-
orem 7.1.
(5) We define the limiting tangent bundle, as in [17], as

{
X ∈

TS2,1|f̂(Σ); 〈X, ν〉 = 0
}
. By direct computation, we notice any section X

of the limiting tangent bundle is parametrized by

X = G

(
ζ̄h̄ + ζh ζ(|h|2 + 1)

ζ̄(|h|2 + 1) ζ̄h̄ + ζh

)
Ḡt

for some ζ : Σ −→ C, and X ∦ ν exactly when Im(ζh)|p 6= 0 at a singular
point p. For such X such that Im(ζh)|p 6= 0, we define ψ := 〈DR3,1

η X, ν〉 =
−4iRe(hw/h2ω)Im(ζh). We can apply Theorem 1.4 of [17], and the condi-
tions to have a cuspidal cross cap are

det(γt, η) 6= 0, ψ = 0 and ∂tψ 6= 0

⇐⇒ Im
(

hw

h2ω

)
6= 0, Re

(
hw

h2ω

)
= 0 and

Im

{(
hw

h

)(
hw

h2ω

)

w

}
6= Im

{(
hw

h

)(
hw

h2ω

)

w̄

}
. ¤
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Criteria for singularities of spacelike CMC surfaces in H2,1.
Here we introduce criteria for cuspidal edges, swallowtails and cuspidal

cross caps of CMC surfaces in H2,1. In this case as well, like in the previous
case of S2,1, we will shift from one surface f to another surface f̂ , again
without causing any restriction on the class of surfaces involved. However,
in the case of H2,1, the reason for doing this is different, because now we
will indeed have the frames F1, F2 ∈ SU1,1. But the fact that two frames
F1, F2 are now involved again causes us to switch from f to f̂ .

Let f : Σ −→ H2,1 be a spacelike CMC surface for a simply-connected
domain Σ ⊂ C, with the metric ds2 = 4g2dwdw̄ = 4e2udwdw̄ and unit
normal vector N . First, we consider frames F1,F2 ∈ SU1,1 such that

f = F1F2
t
,

fx

2eu
= F1σ1F2

t
,

fy

2eu
= F1σ2F2

t
, N = F1iσ3F2

t
.

Then, we have

Ω1 := (F1)−1dF1

=
1
2

( −uw −ie−uA
2eu(1 + iH) uw

)
dw +

1
2

(
uw̄ 2eu(1− iH)

ie−uĀ −uw̄

)
dw̄

=: A1dw + B1dw̄, (7.8)

Ω2 := (F2)−1dF2

=
1
2

( −uw ie−uA
2eu(1− iH) uw

)
dw +

1
2

(
uw̄ 2eu(1 + iH)

−ie−uĀ −uw̄

)
dw̄

=: A2dw + B2dw̄, (7.9)

For these F1 and F2, the compatibility condition implies the Gauss and
Codazzi equations (3.3). We define s-spectral deformations as follows, now
using s ∈ S1 and the terms 1± iH (in Definition 7.3 we used s > 0 and the
terms 1±H):

Definition 7.6 The s-spectral deformation of the CMC surface f in H2,1 is
the deformation defined by (1+iH) −→ s(1+iH) and (1−iH) −→ s̄(1−iH)
in the equations (7.8) and (7.9) for the complex parameter s ∈ S1.

The s-spectral deformation maps CMC surfaces to other CMC ones



The DPW method for CMC surfaces in 3-dimensional Lorentzian spaceforms 337

conformally, as in the following Theorem 7.6. The proof is analogous to the
one of Theorem 7.2, but s−1 becomes s̄.

Theorem 7.6 For all s ∈ S1, the s-spectral deformation deforms a sur-
face f in H2,1, with mean curvature H, metric ds2 = 4e2udwdw̄ and Hopf
differential A, into a surface fs with mean curvature Hs = (s(1 + iH) −
s̄(1 − iH))/(i{s(1 + iH) + s̄(1 − iH)}), metric 4e2us

dwdw̄ = 4k2e2udwdw̄

and Hopf differential As = kA for k = (s(1 + iH) + s̄(1− iH))/2.

The next lemma is proven like for Lemma 7.1:

Lemma 7.2 (fs)s̄ = f .

We define the (twisted) s-spectral Lax pair.

Definition 7.7 (s-spectral Lax pair) We define Fs
1 and Fs

2 as solutions of
the following systems:

(Fs
j)w = Fs

jA
s
j , (Fs

j)w̄ = Fs
jB

s
j (j = 1, 2),

where

As
1 :=

(
0 1
1 0

)
1
2

( −uw −ie−uA
2eus(1 + iH) uw

)(
0 1
1 0

)

=
1
2

(
uw 2eus(1 + iH)

−ie−uA −uw

)
,

Bs
1 :=

(
0 1
1 0

)
1
2

(
uw̄ 2eus̄(1− iH)

ie−uĀ −uw̄

)(
0 1
1 0

)

=
1
2

( −uw̄ ie−uĀ
2eus̄(1− iH) uw̄

)
,

As
2 :=

(
0 1
1 0

)
1
2

( −uw ie−uA
2eus̄(1− iH) uw

)(
0 1
1 0

)

=
1
2

(
uw 2eus̄(1− iH)

ie−uA −uw

)
,
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Bs
2 :=

(
0 1
1 0

)
1
2

(
uw̄ 2eus(1 + iH)

−ie−uĀ −uw̄

)(
0 1
1 0

)

=
1
2

( −uw̄ −ie−uĀ
2eus(1 + iH) uw̄

)
.

Further, we define the forms Ωs
1 := (Fs

1)
−1dFs

1 and Ωs
2 := (Fs

2)
−1dFs

2.

Definition 7.8 For all f given by F1 and F2, and mean curvature H,
there exists a member of the s-spectral deformation, for the special value
s = s0 := i

√
(1− iH)/(1 + iH), that generates frames F̃1 = Fs0

1 , F̃2 = Fs0
2 ∈

SU1,1. We call F̃1 and F̃2 the adjusted frames of F1 and F2, and the forms
Ω̃1 = F̃−1

1 dF̃1 and Ω̃2 = F̃−1
2 dF̃2 the adjusted Maurer-Cartan forms, where

Ω̃1 =
1
2

(
uw 2eui

√
H2 + 1

−ie−uA −uw

)
dw +

1
2

( −uw̄ ie−uĀ
−2eui

√
H2 + 1 uw̄

)
dw̄

=: Ã1dw + B̃1dw̄, (7.10)

Ω̃2 =
1
2

(
uw −2eui

√
H2 + 1

ie−uA −uw

)
dw +

1
2

( −uw̄ −ie−uĀ
2eui

√
H2 + 1 uw̄

)
dw̄

=: Ã2dw + B̃2dw̄. (7.11)

These forms satisfy Ω̃1 = σ3Ω̃2σ3.

Theorem 7.7 Let F̃1, F̃2 : Σ −→ SU1,1, where Σ is a simply-connected
domain. Let a ∈ S1 (a 6= 1) be an arbitrary constant, and let

β1 :=
(

0 2eui
√

H2 + 1
0 0

)
dw, β2 :=

(
0 0

−2eui
√

H2 + 1 0

)
dw̄.

Define Ω̂1 := Ω̃1 + ((a − 1)/2)β1 + ((ā − 1)/2)β2 and Ω̂2 := Ω̃2 + ((−ā +
1)/2)β1 + ((−a + 1)/2)β2. Then we have the following :

(1) dΩ̂1 + (1/2)[Ω̂1 ∧ Ω̂1] = 0, dΩ̂2 + (1/2)[Ω̂2 ∧ Ω̂2] = 0.
(2) If F̂1 and F̂2 are SU1,1-valued solutions of Ω̂1 = F̂−1

1 dF̂1 and Ω̂2 =

F̂−1
2 dF̂2, then f̂ = F̂1F̂2

t

is a conformal spacelike CMC surface with
Ĥ = (a + ā)/(i(a− ā)).
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Proof. For s = ia
√

(1− iH)/(1 + iH) ∈ S1, we have Ωs
1 = Ω̂1 and Ωs

2 =
Ω̂2, by direct computations. Thus we have existence of f̂ , and Ĥ = Hs =
(a + ā)/(i(a− ā)). ¤

Remark 7.4 Defining G1 := F̂1 · F̃−1
1 and G2 := F̂2 · F̃−1

2 , then G1G2
t
=

F̂1F̂2

t

= f̂ .

As noted previously, again we will consider the criteria for singularities
of f̂ instead of f .

We denote F̃1 = F̃1(w, w̄) = e−u/2
( u1 u2

u2 u1

) ∈ SU1,1, where g = eu is the
metric function of f , and |u1|2 − |u2|2 = g. So we define h := u2/u1 and

ω := u2
1. By Remark 7.2, we have f̂ = F̂1F̂2

t

= G1G2
t
. By the definition of

G1 and G2, we have

G−1
1 dG1 = (a− 1)i

√
H2 + 1

(−h 1
−h2 h

)
ωdw

− (ā− 1)i
√

H2 + 1
(

h̄ −h̄2

1 −h̄

)
ω̄dw̄,

G−1
2 dG2 = (−ā + 1)i

√
H2 + 1

(
h 1
−h2 −h

)
ωdw

− (−a + 1)i
√

H2 + 1
(−h̄ −h̄2

1 h̄

)
ω̄dw̄.

Setting k̂ = ((a − ā)i
√

H2 + 1)/2, f̂ has metric ds2 := 4ĝ2dwdw̄ =
4k̂2(1 − |h|2)2|ω|2dwdw̄. Thus this implies that, wherever ds2 is finite, f̂

has a singularity if and only if h ∈ S1 or ω = 0. However we consider only
extended CMC surfaces f̂ defined in the same way as Definition 7.2.

Now we have the following criteria for singularities of spacelike extended
CMC surfaces in H2,1. The proof of Theorem 7.8 is parallel to the proof of
Theorem 7.5.

Theorem 7.8 Let Σ be a simply connected domain, and let f̂ : Σ −→ H2,1

be a spacelike extended CMC surface, given by Theorem 7.7. Then:

(1) A point p ∈ Σ is a singular point if and only if h ∈ S1.
(2) f̂ is a front at a singular point p ∈ Σ if and only if Im(hw/h2ω)|p 6= 0.
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If this is the case, p is non-degenerate singular point.
(3) f̂ is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and

only if

Im
(

hw

h2ω

) ∣∣∣∣
p

6= 0 and Re
(

hw

h2ω

) ∣∣∣∣
p

6= 0.

(4) f̂ is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only
if

Im
(

hw

h2ω

) ∣∣∣∣
p

6= 0, Re
(

hw

h2ω

) ∣∣∣∣
p

= 0 and

Im

{(
hw

h

)(
hw

h2ω

)

w

} ∣∣∣∣∣
p

6= Im
{(

hw

h

)(
hw

h2ω

)

w̄

} ∣∣∣∣
p

.

(5) f̂ is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if
and only if

Im
(

hw

h2ω

) ∣∣∣∣
p

= 0, Re
(

hw

h2ω

) ∣∣∣∣
p

6= 0 and

Re

{(
hw

h

)(
hw

h2ω

)

w

} ∣∣∣∣∣
p

6= Re
{(

hw

h

)(
hw

h2ω

)

w̄

}∣∣∣∣
p

.

Proof. We can prove this theorem by computing the same way as in the
proof of Theorem 7.5. ¤

8. Analogues of Smyth surfaces in Lorentzian spaceforms and
their singularities

B. Smyth studied a generalization of Delaunay surfaces in R3, which are
CMC surfaces with rotationally invariant metrics, in [27]. These surfaces
are called Smyth surfaces, and there are numerous studies about them. For
example, in [28], Timmreck et al. showed properness of Smyth surfaces
in R3, and A. I. Bobenko and A. Its studied relationships between Smyth
surfaces and Painleve III equations in [6]. The DPW method was applied
to Smyth surfaces in Riemannian spaceforms, in [6], [12], [16] for example.
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(See Figure 2.) Recently, in [9], D. Brander et al. constructed the analogue
of Smyth surfaces in R2,1.

Here we will construct the analogues of Smyth surfaces in S2,1 and H2,1,
in addition to R2,1, and show that there are different kinds of Smyth sur-
faces in semi-Riemannian spaceforms, some which have singularities before
reaching an end, and some which do not. We also identify the types of
singularities on Smyth surfaces, using the criteria in Section 7.

Figure 2. The left image is a 6-legged Smyth surface in R3, the middle is a
3-legged Smyth surface in S3, and the right is a 3-legged Smyth surface in H3.

Reflective symmetry of Smyth surfaces in R2,1, S2,1 and H2,1.
Define

ξ = λ−1

(
0 1

czk 0

)
dz, c ∈ C, z ∈ Σ = C, (8.1)

and take a solution φ such that dφ = φξ and φz=0 = I. If k = 0 and c ∈ S1,
then we have a round cylinder, as in Section 6. However, when k 6= 0
or c /∈ S1 ∪ {0}, Iwasawa splitting of φ is not so simple, and the surface
f has singularities in some cases where the ΛSU1,1-Iwasawa splitting of φ

approaches small cells.
Now we can assume c ∈ R>0 using a reparametrization of z and a rigid

motion of f , as in [9].

Theorem 8.1 ([9]) The surface f : Σ0 = φ−1(B1,1) −→ R2,1, produced via
the DPW method, from ξ in (8.1), with φ|z=0 = I and λ = 1, has reflective
symmetry with respect to k+2 geodesic planes that meet equiangularly along
a geodesic line.

Proof. Consider the reflections Rl(z) = e2πil/(k+2)z̄ of the domain Σ = C,
for l ∈ {0, 1, . . . , k + 1}. Note that ξ(Rl(z), λ) = Al · ξ(z̄, λ) ·A−1

l , where
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Al :=
(

eπil/(k+2) 0
0 e−πil/(k+2)

)
: constant in z, λ.

Since d (φ(Rl(z), λ) ·Al) = dφ(Rl(z), λ)·Al·ξ(z̄, λ), and since any solutions of
this equation differ by a factor that is constant in z, we have φ(Rl(z), λ)·Al =
A·φ(z̄, λ). However the initial condition φ(z, λ)|z=0 = I implies that A = Al,
so φ(Rl(z), λ) = Al ·φ(z̄, λ) ·A−1

l . It is easy to see that this relation extends
to the factors F and B in the Iwasawa splitting φ = F ·B, and so we have a
frame F which satisfies F (Rl(z), Rl(z), λ) = Al · F (z̄, z, λ) ·A−1

l . Note that
c ∈ R>0 implies ξ(z̄, λ) = ξ(z, λ̄), φ(z̄, λ) = φ(z, λ̄) and F (z̄, λ) = F (z, λ̄),
thus we have F (Rl(z), Rl(z), λ) = Al · F (z, z̄, λ̄) · A−1

l . Inserting this into
the Sym-Bobenko type formula, we have

f(Rl(z), Rl(z)) = −Al · f(z, z̄) ·A−1
l . (8.2)

The transformation f(z, z̄) −→ −f(z, z̄) represents a reflection across the
plane {x1 = 0} of R2,1, and conjugation by Al represents a rotation by angle
2πl/(k + 2) about the x0-axis, proving the result. ¤

Theorem 8.2 The surfaces f : φ−1(B1,1) −→ S2,1, produced via the DPW
method, from ξ in (8.1), with φ|z=0 = I and F0 = F |

λ=e
q
2

for q ∈ R,
q 6= 0, has reflective symmetry with respect to k + 2 geodesic planes that
meet equiangularly along a geodesic line.

Proof. As the proof of Theorem 8.1, we have F (Rl(z), Rl(z), λ) = Al ·
F (z, z̄, λ̄) ·A−1

l . Inserting this into the Sym-Bobenko type formula, we have
f(Rl(z), Rl(z)) = Al · f(z, z̄) · Al

t
. The transformation f(z, z̄) −→ f(z, z̄)

represents a reflection across the plane {x2 = 0} of R3,1, and conjugation
by Al represents a rotation by angle 2πl/(k + 2) about the x4-axis. ¤

Similarly, we can prove:

Theorem 8.3 The surfaces f : φ−1(B1,1) → H2,1, produced via the DPW
method, from ξ in (8.1), with φ|z=0 = I, F1 = F |λ=eiγ1 and F2 = F |λ=eiγ2

for γ1, γ2 ∈ R\{0} and γ1 = −γ2, has reflective symmetry with respect to
k + 2 geodesic planes that meet equiangularly along a geodesic line.

Remark 8.1 The surfaces f in Theorems 8.1, 8.2 and 8.3 extend to
φ−1(C1) at singularities (see Proposition 7.1, (3)).
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The Gauss equation of Smyth surfaces.
Here we assume the mean curvature is H = 1/2, as in [6], [9], [28],

and then we show that the metric of Smyth surfaces is rotational invariant.
Before giving the theorems, we create the notation g := eu for the metric
function, and we have the following Lax pair

Fz = FU, Fz̄ = FV, where

U =
1
2




gz

g
iλ−1g

−iλ−1Qg−1 −gz

g


 , V =

1
2



−gz̄

g
iλQ̄g−1

−iλg
gz̄

g


 , (8.3)

and Gauss equation

4(gzz̄ · g − gz · gz̄) + QQ̄− g4 = 0. (8.4)

Theorem 8.4 ([9]) The Gauss equation (8.4) for a surface in R2,1, S2,1 or
H2,1 generated by ξ in (8.1), with φ|z=0 = I, is equivalent to a special case
of the Painleve III equations, and the metric function g, which is a solution
of (8.4), is rotational invariant.

Using polar coordinates z = reiθ, (8.4) and the suitable choice of the
initial conditions are

g

(
grr +

gr

r

)
− (gr)2 + c2r2k − g4 = 0, g|r=0 = 1, gr|r=0 = 0. (8.5)

We can assume c = 1 in (8.5) by a change of coordinate:

Lemma 8.1 After an appropriate change of coordinate z, the Gauss equa-
tion (8.5) for (k + 2)-legged Smyth surfaces in R2,1, S2,1 or H2,1, becomes

g

(
grr +

gr

r

)
− (gr)2 + r2k − g4 = 0, g|r=0 = q2, gr|r=0 = 0 (8.6)

for a real constant q > 0.

Proof. Let φ be a solution of dφ = φξ for ξ =
(

0 λ−1

λ−1czk 0

)
dz and φ|z=0 = I

with ΛSU1,1-Iwasawa splitting φ = F · B. We define φ̆ = φ
( q 0

0 q−1

)
. By the

uniqueness of the Iwasawa splitting φ̆ = F̆ · B̆ of φ̆, we have F̆ = F and
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B̆ = B
( q 0

0 q−1

)
. Furthermore, we notice that B̆|λ=0,z=0 =

( q 0

0 q−1

)
, since

F̆ |z=0 = I, and this implies that ğ|r=0 = q2. On the other hand, we have

ξ̆ = φ̆−1dφ̆ =
(

0 q−2λ−1

q2λ−1c2zk 0

)
dz =

(
0 λ−1

q2k+4λ−1c2z̆k 0

)
dz̆

for z̆ := q−2z, and we can let c̆ = q2k+4c. In this way, we can change c to 1.
¤

Figure 3. Solutions of a special case of Painleve III (near the origin).

Some examples of the metric function g are seen in Figure 3. By the
previous studies [18] and [20], there are at least three kinds of solutions g of
this special case of Painleve III equations (8.6). This implies that (spacelike)
Smyth surfaces in R2,1, S2,1 and H2,1, near the origin 0 ∈ Σ, are classified
into the following three cases (See Figures 3, 4, 6 and 8.):

• The first kind does not have singularities and g diverges to ∞.
• The second kind does not have singularities and g does not diverge

to ±∞. This case is unique, and given by g with the following initial
condition:

g|r=0 = q2
0 , gr|r=0 = 0 for

q0 =
(

1 +
k

2

)k/(4+2k)

2k/(2+k)

√√√√Γ
(

1
2 + k

4+2k

)

Γ
(

1
2 − k

4+2k

) .

• The third kind has singularities before g diverges to −∞.

Smyth surfaces with singularities.
Here we only consider Smyth surfaces that have singularities before

g diverges to −∞. By numerical calculation, we know that these Smyth
surfaces have cuspidal edges, swallowtails and cuspidal cross caps, using
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Figure 4. The left image is a 3-legged Smyth surface with singularities in R2,1,
and the right image is one with no singularities in R2,1.

Figure 5. The values of The values of Re(hz/h2ω), Im(hz/h2ω),

Re{(hz/h)(hz/h2ω)z} − Re{(hz/h)(hz/h2ω)z̄} and Im
˘
(hz/h)(hz/h2ω)z

¯ −
Im{(hz/h)(hz/h2ω)z̄} for a 3-legged Smyth surface in R2,1 at (r0, θ) such that
g(r0) = 0 and 0 ≤ θ ≤ 2π. (left to right).

criteria as in Section 7, see Figures 4∼9.

Fact 8.1 There exist Smyth surfaces in R2,1, S2,1 and H2,1 which have
singularities before g diverges to −∞, and which have cuspidal edges, swal-
lowtails and cuspidal cross caps. (See Figures 5, 7 and 9.)

Here we show, for the surfaces in Fact 8.1, that there are at least 2(k+2)-
swallowtails for the case of R2,1, without relying on numerical calculation,
and using only geometric properties. Before doing that, we have some lem-
mas.

Lemma 8.2 Let F̂ = F̂ (z, z̄, λ) be the solution of the untwisted Lax pair
(2.7) with F̂ |z=0 = I for the case of a Smyth surface. Then F̂ (z) = σ3F̂ (z̄)σ3

for λ = 1.

Corollary 8.1 (1) h(z) = −h(z̄) and ω(z) = ω(z̄).
(2) At (r, θ) = (r0, 0) for r0 such that g(r0) = 0, we have h(r0, 0) = ±i (i.e.

h(r0, 0) ∈ iR ∩ S1), ω(r0, 0) ∈ R \ {0} and ωz(r0, 0) = ωz̄(r0, 0).

Proof. By direct computation, we have Û(z) = −V̂ (z̄)t and V̂ (z) =
−Û(z̄)t. By this equation and F̂ (z)|z=0 = I, we get the conclusion. ¤
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Figure 6. The left image is a 3-legged Smyth surface with singularities in S2,1,
and the right image is one with no singularities in S2,1.

Figure 7. The values of Re(hw/h2ω), Im(hw/h2ω), Re
˘
(hw/h)(hw/h2ω)w

¯ −
Re{(hw/h)(hw/h2ω)w̄} and Im

˘
(hw/h)(hw/h2ω)w

¯− Im{(hw/h)(hw/h2ω)w̄} for

a 3-legged Smyth surface in S2,1 at (r0, θ) such that g(r0) = 0 and 0 ≤ θ ≤ 2π.
(left to right).

Figure 8. The left image is a 3-legged Smyth surface with singularities in H2,1,
and the right image is one with no singularities in H2,1.

Figure 9. The values of Im(hw/h2ω), Re(hw/h2ω), Im
˘
(hw/h)(hw/h2ω)w

¯ −
Im{(hw/h)(hw/h2ω)w̄} and Re

˘
(hw/h)(hw/h2ω)w

¯− Re{(hw/h)(hw/h2ω)w̄} for

a 3-legged Smyth surface in H2,1 at (r0, θ) such that g(r0) = 0 and 0 ≤ θ ≤ 2π
(left to right).
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Theorem 8.5 Let f̂(z) = f̂(r, θ) be a (k+2)-legged Smyth surface in R2,1,
and let r0 satisfy g(r0) = 0. Then f̂ has a swallowtail at (r0, 0).

Proof. We will use the criteria of Theorem 7.1. First we check that

Re
(

hz

h2ω

)
= Re

(
Q

h2ω2

)
6= 0 (8.7)

at (r0, 0). By using Q(r, 0) = −rk ∈ R<0 and Corollary 8.1, we notice that
(8.7) holds. Similarly, we also have

Im
(

hz

h2ω

)
= Im

(
Q

h2ω2

)
= 0 (8.8)

at (r0, 0). Lastly, we check that

Re

{(
hz

h

)(
hz

h2ω

)

z

}
6= Re

{(
hz

h

)(
hz

h2ω

)

z̄

}
(8.9)

at (r0, 0). By direct computation, this is equivalent to

Re

{(
Q

hω

)(
Qzh

2ω2 −Q(2Qhω + 2h2ωωz)
h4ω4

)}

6= Re
{(

Q

hω

)(−2Qh2ωωz̄

h4ω4

)}
. (8.10)

Applying Corollary 8.1 to (8.10), we have h4ω4 ∈ R \ {0} and Q/hω =
−(Q/hω) ∈ iR \ {0}. Thus, (8.10) is equivalent to

−Im
{
Qzh

2ω − 2Q2h− 2Qh2ωz

} 6= Im
{− 2Qh2ωz̄

}
. (8.11)

Using Q(r, 0) = −rk ∈ R<0, Qz(r, 0) = −krk−1 ∈ R<0 and Corollary 8.1,
(8.11) becomes

±2r2k
0 6= 0. (8.12)

As this is clear, we concluded that (8.9) holds. ¤
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Similarly, we have the same conclusion when θ = π/(k + 2).

Theorem 8.6 Let f̂(z) = f̂(r, θ) be a (k+2)-legged Smyth surface in R2,1,
and let r0 satisfy g(r0) = 0 and gr(r0) = −rk

0 . Then f̂ has a swallowtail at
(r0, π/(k + 2)).

By above two theorems and reflective symmetry, we get the following
main result:

Theorem 8.7 If a (k + 2)-legged Smyth surface in R2,1 has singularities
before g diverges to −∞, then it has at least 2(k + 2) swallowtails.

Remark 8.2 We have checked numerically that there are cuspidal cross
caps along the cuspidal edges between each adjacent pair of swallowtails,
using item (4) of Corollary 7.1, item (5) of Theorem 7.5 and item (5) of
Theorem 7.8. Thus the surface as in Theorem 8.7 will also have at least
2(k + 2) cuspidal cross caps.
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