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Introduction

For a global treatment of quasi-classical approximation of the Schr\"o-
dinger equation, V. P. Maslov [16] introduced and discussed quite systemati-
cally the notions of Lagrangean manifolds and associated canonical operators
on them. The underlying ideas are known since long and their applications
to the study of partial differential equations are not quite new. (e.g. , Lax
[11], Lewis [13], Ludwig [14] ). Even very close considerations to Maslov’s
are not so rare, as are found in works of Keller [9], [10], Ludwig [15] and
others, and H\"ormander’s recent notion of Fourier integral operators [7] is
in a sense one of them, though apparently different. Maslov’s original
exposition [16], however interesting and stimulating its content be, seems
to be not necessarily well arranged and even to contain certain unclearness,
thus letting the reader sometimes difficult to grasp its validity. As to this
J. Leray [12] gave a review but without any remark on the connections of
Maslov’s canonical operator and H\"ormander’s Fourier integral operator.
However, we believe that these two notions are deeply concerned and in
a sense variants of the same thing, and thus are not quite satisfied with
this situation. So we describe below what Maslov’s canonical operators
should be. Our exposition will be thus quite close to H\"ormander’s Fourier
integral operator. In fact, when I had completed my first draft I was then
informed about Duistermaat [3]. The interpretation of Maslov’s canonical
operator by him and me are essentially the same. However, I choose a
different symbol class (cf. Definition 2. 1. 1) to define canonical operators,
and I personally believe that this choice of symbol class is an essential
simplification from Maslov’s original and with this I can smoothly apply
H\"ormander’s method. On the other hand, Duistermaat [3] starts from a
smaller symbol class and thus his discussion runs in a sense in the reversed
order with respect to mine. Any way, I publish here only the definitions
and elementary properties of the s0-called canonical operators and omit
their calculi, since their applications are done just in the same way as
Fourier integral operators, that is, one needs only to construct canonical
relations as an analogy to homogeneous canonical relations, and then to
establish their calculi. Here, however, the degree of product symbols is
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not obtained as an simple addition of degrees of factors. In this way one
can construct an approximate parametrix for the quasi-classical approxima-
tion of the Schr\"odinger equation by an integration of the Hamilton field
with given \frac{1}{2} density data on the diagonal set in the cotangent bundle of
the product of the initial manifold. The quantization condition is thus
interpreted as the condition which ensures the solution density to fall in
the symbol class under consideration.

I note furthermore that detailed studies about the canonical operators
near the caustics are executed in Guillemin-Schaeffer [6]. I also express
my thanks to D. Fujiwara and K. Saito who showed me a copy of Duis-
termaat [3].

Chapter 1. Lagrangean manifolds and their properties.

1. 1. Phase functions and related local properties

Let X be a paracompact manifold of class C^{\infty} , n=\dim X<\infty , TX and
T^{*}X denote the tangent and cotangent bundle over X, respectively. We
introduce the Hamilton structure in T^{*}X in the following way. First con-
sider the following diagram:

(1. 1. 1) T(T^{*}X)

d\pi_{2}\swarrow
\searrow\pi_{2}

TX T^{*}X

\searrow \swarrow

\pi_{1} \pi_{2}

X
Here \pi_{f} , j=1,2,3, are the canonical projections. We defifine a 1-form \theta_{X}

over T^{*}X by

(1. 1. 2) \langle v, \theta_{X}\rangle=\langle(d\pi_{2})(v), \pi_{3}(v)\rangle , v\in T(T^{*}X) .
Here the left hand side of (1. 1. 2) is the coupling of T(T^{*}X) and T^{*}(T^{*}X)

and the right hand side that of TX and T^{*}X. We shall simply write \theta

instead of \theta_{X} if there is no fear of confusion.
Now the Hamilton structure in T^{*}X is given by the2-form dd. The

2-form d\theta is of rank 2n and induces a complex structure in each fiber of
T(T^{*}X) . If (x_{1}, \cdots, x_{n}) is a local coordinate system in X such that x_{1} , \cdots ,
x_{n} , \xi_{1} , \cdots , \xi_{n} are the coresponding local coordinates in T^{*}X by the coupl-
ing \langle\xi, dx\rangle , then \theta=\sum_{j=1}^{n}\xi_{j}dx_{j} and d \theta=\sum_{j=1}^{n}d\xi_{j}\wedge dx_{f} in this coordinate system
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(cf. Sternberg [17], Gucnenheimer [5]).
An n-dimensional closed submanifold \Lambda of T^{*}X is called Lagrangean

if d\theta vanishes on \Lambda . On the other hand, T^{*}X\backslash 0 is a cone bundle by the
action of the multiplicative group R_{+} in each fiber (cf. H\"ormander [7], p.
86). A closed submanifold \Lambda of dimension n in T^{*}X\backslash 0 is called conic
Lagrangean if d\theta vanishes on \Lambda and if \Lambda is invariant under the action of
R_{+} in the fibers of T^{*}X\backslash 0 . These two classes of Lagrangean manifolds
will be seen to be closely related. Lagrangean manifolds are defined locally
by phase functions in the following way. Let U be a coordinate neigh-
borhood in X with local coordinates x_{1},\cdots , x_{n} in U and V be an open
subset of R^{N} with the coordinates \sigma_{1} , \cdots , \sigma_{N} . A C^{\infty} function \phi:U\cross Varrow R

is called a non-degenerate phase function if

(1. 1. 3) d\phi_{\sigma_{1}}’\Lambda\cdots\Lambda d\phi_{\sigma_{N}}’\neq 0

on the set

(1. 1. 4) C_{\phi}=\{(x, \sigma)\in U\cross V;\phi_{\sigma_{f}}’(x, \sigma)=0, j=1, \cdots , N\} .

In particular, if V is a cone in R^{N}\backslash 0 and \phi(x, \sigma) is positively homogeneous
of degree 1 in V and furthermore if \phi has no critical points in U\cross V,
then \phi is called a non-degenerate conic phase function. Note that except
when we consider conic phase functions we may not assume that a phase
function does not have critical points. Let

(1. 1. 5) \Lambda_{\phi}=\{(x, \phi_{x}’(x, \sigma));(x, \sigma)\in C_{\phi}\} .

If \lambda_{0}\in\Lambda_{t} , \lambda_{0}=(x_{0},\phi_{x}’(x_{0}, \sigma_{0})), (x_{0}, \sigma_{0})\in C_{\phi} , we call the value \phi(x_{0}, \sigma_{0}) the level
of \phi at \lambda_{0} and sometimes denote it by [\phi](\lambda_{0}) .

PROPOSITION 1. 1. 1. The differential of the map
1. 1. 6) C_{\phi}\ni(\prime x, \sigma)->(x, \phi_{x}’)\in\Lambda_{\phi}

is bijective and d\theta=0 on \Lambda_{\phi} . That is, \phi &fifines a Lagrangean germ in
T^{*}X. In particular, if \phi is conic, then \Lambda_{\phi} is conic.

PROOF. These facts are well-known (cf. H\"ormander [7], Guckenheimer
[5] ) . In fact, from dx=0, d\phi_{x}’=0 it follows d\sigma=0 by (1. 1. 3). The differ-
ential of the map (1. 1. 6) is thus bijective. Next, \sum_{f}d\phi_{x_{f}}’\Lambda dx_{f}=dd\phi=0 since
d \phi=\sum\phi_{x_{f}}’dx_{f} on C_{\phi} . It is clear that \Lambda_{\phi} is conic if \phi is conic. We note
that \sum_{f}\phi_{\acute{x}_{f}}dx_{f}=0 on C_{\phi} if \phi is conic, since \phi=\sum\phi_{\sigma_{f}}’\sigma_{f}=0 on C_{\delta} and thus
d \phi=\sum_{f}\phi_{x_{f}}’dx_{f}=0 .

We now consider how to relate general Lagrangean germs and conic
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Lagrangean germs. For that purpose we introduce a map

\mu : T^{*}X\ni(x, \xi)arrow(x, \tau\xi)\in T^{*}X , \tau\in R .
Let \phi be a non-degenerate phase function in U\cross V\subset X\cross R^{N} and \Lambda, the
set defined by (1. 1. 5). Let \tilde{X}=X\cross R and set

\hat{\dot{\mu}}^{*}\Lambda_{\phi}=\{(\mu_{\tau}\lambda, -[\phi](\lambda), \tau);\tau>0 , \lambda\in\Lambda_{\phi}\}

=\{(x, -\phi(x, \sigma), \tau\phi_{x}’(x, \sigma), \tau);(x, \sigma)\in C_{\phi} , \tau>0\} .

We denote by p and q the projections from T^{*}\tilde{X} onto T^{*}X and onto the
fibers of T^{*}R , respectively, by the decomposition T^{*}\tilde{X}=T^{*}X\cross T^{*}R.

PROPOSITION 1. 1. 2.
(i) \tilde{\mu}^{*}\Lambda_{\phi} is a conic Lagrangean germ in T^{*}\tilde{X}\backslash 0 and its phase func-

tion is givm by

\tilde{\phi}(x, t,\tilde{\sigma}, \tau)=\tau\phi(x,\tilde{\sigma}/\tau)+\tau t

for (x, t,\tilde{\sigma}, \tau)\in U\cross I\cross\Gamma_{7}, . Here I\supset Range\phi and

\Gamma_{V}=\{(\tilde{\sigma}, \tau);\tau>0,\tilde{\sigma}/\tau\in V\}\subset R^{N+1}.\backslash 0 .
(ii) For each \tau_{0}>0,\tilde{\mu}^{*}\Lambda_{\phi} and q^{-1}(\tau_{0}) intersect transversally and

\Lambda_{\phi}=p\{\tilde{\mu}^{*}\Lambda_{\phi}\cap q^{-1}(1)\} .

PROOF. It is clear that \tilde{\mu}^{*}\Lambda_{\phi} is conic and that dim \tilde{\mu}^{*}\Lambda_{\phi}=n+1 . Fur-
thermore, on C_{\delta}

\tau dt+\sum_{f}\xi_{f}dx_{f}=-\tau d\phi+\tau\Sigma\phi_{x_{f}}’dx_{f}=0 ,

so \tilde{\mu}^{*}\Lambda, is a conic Lagrangean germ. It is also clear that \overline{\emptyset} is a conic
phase function for \tilde{\mu}^{*}\Lambda_{\phi} since \overline{\phi} has no critical points, is homogeneous of
degree 1 in (\tilde{\sigma}, \tau) and since

\phi_{\tilde{\sigma}_{f}}’.(x, t,\tilde{\sigma}, \tau)=\phi_{\sigma_{f}}’(x,\tilde{\sigma}/\tau) ,

\phi_{\sigma}’.(x, t,\tilde{\sigma}, \tau)=t+\phi(x,\tilde{\sigma}/\tau)-\tau^{-1}\sum_{f}\phi_{\sigma_{f}}’(x,\tilde{\sigma}/\tau)\tilde{\sigma}_{f} ,

\phi_{x_{f}}’(x, t,\tilde{\sigma}, \tau)=\phi_{x_{f}}’(x,\tilde{\sigma}/\tau) , \phi_{t}’=\tau 1

To prove (ii) we need only to show that \tilde{\mu}^{*}\Lambda_{\phi}\cap q^{-1}(\tau_{0}) is of dimension
(2n+1)+(n+1)-(2n+2)=n, but this is clear.

Let U\cross I be a coordinate neighborhood of \tilde{X}=X\cross R and \Gamma a cone in
R^{N}\backslash 0 . A non-degenerate conic phase function \phi(x, t, \sigma) is called locally
non-stationary if \phi_{t}’>0 on U\cross I\cross\Gamma The phase function \phi(x, t,\tilde{\sigma}, \tau) in
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Proposition 1. 1. 2 is thus locally non-stationary. We have the following
converse to Proposition 1. 1. 2.

PROPOSITION 1.1.3. Let \phi(x, t, \sigma) be a conic non-degenerate phase func-
tion in U\cross I\cross\Gamma\subset X\cross R\cross R^{N}\backslash 0 . Assume that \phi be locally non-stationary.
Then for each \tau_{0}>0 , \Lambda_{\phi} and q^{-1}(\tau_{0}) intersect transversally and p(\Lambda_{\phi}\cap q^{-1}(\tau_{0}))

is a Lagrangean germ in T^{*}X.
PROOF. It is immediately seen that \phi(x, t, \sigma)-\tau_{0}t is a non-degenerate

phase function for p(\Lambda_{\phi\cap q(\tau_{0}))}-1 if and only if \Lambda_{\phi} and q^{-1}(\tau_{0}) intersect trans-
versally. Thus what we must show is that on \phi_{\sigma}’=0, \phi_{t}’=\tau_{0}

(1. 1. 7) d\phi_{\sigma_{1}}’\Lambda\cdots\Lambda d\phi_{\sigma_{N}}’\Lambda d\phi_{t}’\neq 0

or equivalently the rank of the matrix

(1. 1. 8)
(\begin{array}{lll}\phi_{\sigma\acute{x}}’ \phi_{\sigma t}’’ \phi_{\sigma\sigma}’’\phi_{tx},, \phi_{tt}’, \phi_{t\sigma}’\end{array})

is equal to N+1 when \phi_{v}’=0, \phi_{t}’=\tau_{0} . First assume \phi_{\sigma\sigma}’=0 when \phi_{\sigma}’=0 . Since
\phi is non-degenerate, the matrix (\phi_{\sigma x}’, \phi_{\sigma\acute{t}}’) is then of rank N when \phi_{\sigma}’=0 .
On the other hand, \phi_{t\sigma_{f}}’\neq 0 for some j by the Euler’s identity and \phi_{t}’\neq 0 .
Hence, in such a case the rank of the matrix (1. 1. 8) is N+1. Next we
increase \sigma-variables by H\"ormander’s device. If A is a non-degenerate quad-
ratic form in R^{M}, then

\tilde{\emptyset.}(x, t,\tilde{\sigma})=\phi(x, t, \sigma)+A(\rho, \rho)/|\sigma| ,
\tilde{\sigma}=(\sigma, \rho)\in\Gamma\cross R^{M}

is a non-degenerate conic phase function and \phi_{\sigma}’=0, \phi_{t}’=\tau, \rho=0 if and only
if \overline{\phi}_{\tilde{\sigma}}’=0, \phi_{t}’=\tau_{0} . Furthermore, on T_{\overline{\sigma}}’.=0, \overline{q_{t}.}=\tau_{0} ,

|d\overline{\phi}_{\sigma_{1}}’\Lambda\cdots\Lambda d\overline{\psi_{\sigma_{N}}’.}\Lambda d\overline{\phi}_{\rho_{1}}’\Lambda\cdots\Lambda d\tilde{\phi}_{p_{M}}’\Lambda d\delta_{\acute{t}}|

=|\det A||d\phi_{\sigma_{1}}’\Lambda\cdots\Lambda d\phi_{\sigma_{N}}’\Lambda d\phi_{t}’|\neq 0

by the first step. Finally, let \phi_{1}(x, t, \sigma) and \phi_{2}(x, t,\tilde{\sigma}) be equivalent conic
phase functions and assume that \phi_{2} satisfy (1. 1. 7). By the equivalence,
there is a fiber preserving diffeomorphism (x, t, \sigma)- (x, t,\tilde{\sigma}(x, t, \sigma)) such that
\phi_{1}(x, t, \sigma)=\phi_{2}(x, t,\tilde{\sigma}(x, t, \sigma)) . In particular, \phi_{1\sigma}’=0 , \phi_{1t}’=\tau_{0} if and only if \phi_{2\tilde{\sigma}}’

=0, \phi_{2t}’=\tau_{0} . Furthermore, on \phi_{1\sigma}’=0,\phi_{1t}’=\tau_{0} ,

|d\phi_{1\sigma_{1}}’\Lambda\cdot\cdot\backslash \wedge d\phi_{1\sigma_{N}}’\Lambda d\phi_{1t}’|

=| \det(\frac{\partial\tilde{\sigma}}{\partial\sigma})||d\phi_{2\tilde{\sigma}_{1}}’\Lambda\cdots\Lambda d\phi_{2\tilde{\sigma}_{N}}’\Lambda d\phi_{2t}’|\neq 0

by the assumption. Hence, for any locally non-stationary phase function
we have (1. 1. 7).
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REMARK. For a conic phase function \phi(x, t, \sigma) such that \phi_{t}’ may vanish,
\Lambda_{\phi}\cap q^{-1}(0)\neq\emptyset and even \Lambda_{\phi}\subset q^{-1}(0) may occur.

COROLLARY 1. 1. 4. Let \phi(x, t. \sigma) be a locally non-stationary phase func-
tion and set \tilde{\phi}(x, t, \sigma)=\phi(x, t, \sigma)-\tau_{0}t. Then

C_{\tilde{\phi}}=\{(x, t, \sigma);\tilde{\phi}_{\sigma}’(x, t, \sigma)=0 , \tilde{\phi}_{t}’(x, t, \sigma)=0\}

is of dimension n and
\Lambda_{\tilde{\phi}}=\{(x,\tilde{\phi}_{x}’( x, t, \sigma));(x, t, \sigma)\in C_{\tilde{\phi}}\}

is a Lagrangean germ in T^{*}X.

COROLLARY 1. 1. 5. Under the hypotheses of Proposition 1. 1. 3, the dif-
ferential of the map

p : \Lambda_{\phi\cap}q^{-1}(\tau_{0})arrow p(\Lambda_{\phi\cap}q^{-1}(\tau_{0}))

is injective.
We call a conic Lagrangean germ \tilde{\Lambda}_{0} in T^{*}\tilde{X}\backslash 0 locally non-stationary

if it is defined by a locally non-stationary conic phase function. Let \tilde{\pi} and
\pi be respectively the canonical projections from T^{*}\tilde{X} onto \tilde{X} and from
T^{*}X onto X. We denote by \tilde{\pi}^{1_{0}} the restriction of \tilde{\pi} on \tilde{\Lambda}_{0} . \pi^{A_{0}} is defined
similarly if \Lambda_{0} is a Larangean germ in T^{*}X.

PROPOSITION 1. 1. 6. Let \tilde{\Lambda}_{0} be a locally non-stationary Lagrangean
germ in T^{*}X\backslash 0 at \tilde{\lambda}_{0}\in q^{-1}(1),\tilde{\lambda}_{0}\in\tilde{\Lambda}_{0\cap}q^{-1}(1) so that \Lambda_{0}=p(\tilde{\Lambda}_{0\cap}q^{-1}(1)) is a
Lagrangean germ in T^{*}X at \lambda_{0}=p(\tilde{\lambda}_{0}) . Then we have

rank (d^{1_{0}}\tilde{\pi})_{\tilde{\lambda}_{0}}=rank(d\pi)_{\lambda_{0}}4_{0} .

PROOF. Let \phi(x, t, \sigma) be a non-stationary phase function defining \tilde{\Lambda}_{0}

and \tilde{\lambda}_{0}=(x_{0}, t_{0}, \phi_{x}’(x_{0}, t_{0},\sigma_{0}), 1) , \phi_{\sigma}’(x_{0}, t_{0}, \sigma_{0})=0, \phi_{t}’(x_{0}, t_{0}, \sigma_{0})=1 . Assume that
the matrix (\phi_{\sigma\sigma}’(x_{0}, t_{0}, \sigma_{0}))=0 . Then by H\"ormander [7, Th. 3. 1. 4],

N=n+1- rank (d^{1_{0}}\tilde{\pi})_{X_{0}} .

On the other hand, rank (d\pi)_{\lambda_{J}}\Lambda_{0}=n- dim ker (d\pi)_{\lambda_{0}}\Lambda_{0} . Set \psi(x, t, \sigma)=\phi(x, t, \sigma\rangle

-t . Then by the (local) diffeomorphism
C_{\psi}\ni(x, t, \sigma)arrow(x, \psi_{x}’)\in\Lambda_{\psi}--\Lambda,

’

we have
dim ker(d\pi)_{\lambda_{0}}-A_{0}

=\dim\{d\tilde{\sigma};\psi_{\tilde{\sigma}\tilde{\sigma}}’(x_{0}, t_{0}, \sigma_{0})d\tilde{\sigma}=0,\tilde{\sigma}=(\sigma, t)\}

=N+1- rank (\psi_{\tilde{\sigma}\tilde{\sigma}}’(x_{0}, t_{0}, \sigma_{0}))1
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We claim rank (\psi_{\overline{\sigma}\tilde{\sigma}}’(x_{0}, t_{0}, \sigma_{0}))=2 . In fact, this holds good since there is a
j such that \phi_{t\sigma_{j}}’(x_{0}, t_{0}, \sigma_{0})\neq 0 and since

(\phi_{\tilde{\sigma}\tilde{\sigma}}’(x_{0}, t_{0}, \sigma_{0}))=\{

\phi_{\sigma_{1}t}’(x_{0}, t_{0}, \sigma_{0})\phi_{tt}’(x_{0}.\cdot.’ t_{0}, \sigma_{0}) \phi_{t\sigma_{1}}’(x_{0}, t_{0’ 0} \sigma_{0})

,

\cdots\phi_{t\sigma_{N}}’(x_{0}, t_{0}, \sigma_{0}))

\phi_{\sigma_{\acute{A}}\cdot t}’(x_{0}, t_{0}, \sigma_{0})

Hence,

rank (d\tilde{\pi})_{k}1_{0}=n-N+1=rank(d\pi)_{\lambda_{0}}A_{0}

COROLLARY 1. 1. 7. Let \Lambda_{0} be a Lagrangean germ at \lambda_{0} in T^{*}X. If
\phi(x, \sigma) is a phase function of \Lambda_{0} at \lambda_{0} , \lambda_{0}=(x_{0}, \phi_{x}’(x_{0}, \sigma_{0})), \phi_{\sigma}’(x_{0}, \sigma_{0})=0, (x_{0}, \sigma_{0})

\in U\cross V\subset X\cross R^{N}, then

n- rank (d\pi^{A_{0}})_{\lambda_{0}}=N- rank (\phi_{\tilde{\sigma}\tilde{\sigma}}’(x_{0}, \sigma_{0})) .

PROOF. Let \overline{\phi}(x, t, \sigma, \tau)=\tau\phi(x, \sigma/\tau)+\tau t, (x, t, \sigma, \tau)\in U\cross\Gamma_{V} . Then \tilde{\mu}^{*}\Lambda,
=\Lambda_{\tilde{l}}=\tilde{\Delta}_{0} and there is a \tilde{\lambda}_{0}\in\tilde{\Lambda}_{0\cap}q^{-1}(1) such that p(\tilde{\lambda}_{0})=\lambda_{0} . More explicitly,

\tilde{\lambda}_{0}=(x_{0}, t_{0}, \phi_{\acute{x}}(x_{0}, \sigma_{0}), 1), t_{0}=-\phi(x_{0}, \sigma_{0}) . Then rank (d^{f_{0}}\tilde{\pi})_{2_{0}}=rank(d\pi)_{\lambda_{0}}A_{0} . On
the other hand, by H\"ormander [7,Th. 3.1.4]

n+1- rank (d^{\chi_{0}}\tilde{\pi})_{\chi_{0}}=N+1- rank (\phi_{\rho\rho}(x_{0} , t_{0}, \sigma_{0}, 1)) , \rho=(\sigma, \tau) .
However, since

(1. 1. 9) ( \overline{\phi}_{\rho\rho})=\frac{1}{\tau} (\begin{array}{ll}\phi_{\sigma\sigma}’’ -\sigma_{\sigma\sigma}’’\sigma-^{t}\sigma\phi_{\sigma\sigma}’’ {}^{t}\sigma\phi_{\sigma\sigma}’’\sigma\end{array}) ,

rank (\phi_{\rho\rho}(x_{0}, t_{0}, \sigma_{0}))=rank(\phi_{\sigma\sigma}’(x_{0}, \sigma_{0})) .
Hence,

n- rank (d\pi)_{\lambda_{0}}A_{0}=N- rank (\phi_{\sigma\sigma}’ (x_{A}, _{\sigma_{0}})) .

REMARK. Of course, a direct proof of Corollary 1. 1. 7 is possible and
is done just in the same way as H\"ormander [7, Th. 3. 1. 4].

We have used equivalence of conic phase functions in the proof of
Proposition 1. 1. 3. We now discuss the equivalence of general phase func-
tions. Let \phi(x, \sigma) and \overline{\emptyset}(\tilde{x},\tilde{\sigma}) be non-degenerate phase functions in U\cross V

\subset X\cross R^{N} and in U\cross\overline{V}\subset X\cross R^{\tilde{N}}, respectively. We say that \phi(x, \sigma) and
\overline{\psi}(x,\tilde{\sigma}) are equivalent if there is a diffeomorphism U\cross V onto U\cross\overline{V} :

U\cross V\ni(x, \sigma)arrow(x,\tilde{\sigma}(x, \sigma))\in U\cross\tilde{V}
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such that \phi(x, \sigma)=\overline{\phi}(x, \sigma)) on U\cross V.
PROPOSITION 1. 1. 8. Let \phi and \tilde{\emptyset} be non-degenerate phase functions

in U\cross V\subset X\cross R^{N} and in U\cross\tilde{V}\subset X\cross R^{\tilde{N}},\cdot respectively. Let (x_{0}, \sigma_{0})\in C, and
(x_{0},\tilde{\sigma}_{0})\in C_{\tilde{\phi}} such that

\lambda_{0}=(x_{0}, \xi_{0})=(x_{0}, \phi_{x}’(x_{0}, \sigma_{0}))=(x_{0},\tilde{\phi}_{x}’(x_{0},\tilde{\sigma}_{0}))\in\Lambda_{t\cap}\Lambda_{\partial} .

Then \phi and \tilde{\phi} are equivalent near (x_{0}, \sigma_{0}) and (x_{0},\tilde{\sigma}_{0}) if and only if the
following three conditions are satisfified.

(i) The Lagrangean germs \Lambda_{\phi} and \Lambda_{\tilde{\phi}} at \lambda_{0} are the same as well as
the levels of \phi and \tilde{\phi} near \lambda_{0} coincide.

(ii) N=\tilde{N} .
(iii) sgn (\phi_{\sigma\sigma}’(x_{0}, \sigma_{0}))=sgn(\phi_{\tilde{\sigma}\tilde{\sigma}}’(x_{0},\tilde{\sigma}_{0})) .
PROOF. The only if part is clear. We prove the sufficiency of the

conditions (i)\sim(iii) by reducing the problem to conic phase functions. Take
I, \Gamma_{V} , \Gamma_{\overline{Y}} as in Proposition 1. 1. 2 and set

\phi_{1}(x, t, \sigma, \tau)=\tau\phi(x, \sigma/\tau)+\tau t ,
(x, t, \sigma, \tau)\in U\cross I\cross\Gamma_{\gamma}

\phi_{1}(x, t,\tilde{\sigma},\tilde{\tau})=\tilde{\tau}\phi(x,\tilde{\sigma}/\tilde{\tau})+\tilde{\tau}t ,
(x, t,\tilde{\sigma},\tilde{\tau})\in U\cross I\cross\Gamma_{\tilde{1^{\Gamma}}} .

By our assumptions, conic Lagrangean germs \Lambda_{\phi_{1}} and \Lambda_{\tilde{\phi}1} at (x_{0}, t_{0}, \tau\xi_{0}, \tau) ,
t_{0}=-\phi(x_{0}, \sigma_{0})=-\phi(\eta,\tilde{\sigma}_{0}), coincide and N+1=\tilde{N}+1 . We then verify that

(1. 1. 10) sgn (\phi_{1\rho\rho}’(x_{0}, t_{0}, \sigma_{0},1))=sgn(\tilde{\phi}_{1}’\acute{\rho}p(x_{0}, t_{0},\tilde{\sigma}_{0},1)) ,

\rho=(\sigma, \tau),\tilde{\rho}_{=}(\tilde{\sigma},\tilde{\tau}) . By (1. 1. 9), we have for the left hand side,

sgn (\phi_{1\rho\rho}’(x_{0}, t_{0}, \sigma_{0},1))=sgn

(\begin{array}{ll}\phi_{\sigma\sigma}’’(x_{0}, \sigma_{0})00 0\end{array})

=sgn(\phi_{\sigma\sigma}’(x_{0}, \sigma_{0}))

and similarly for the right hand side of (1. 1. 10). Hence, (1. 1. 10) is true.
Thus by H\"ormander [7, Th. 3. 1. 6], there is a homogeneous diffeomorphims
near (x_{0}, t_{0}, \sigma_{0},1)

(1. 1. 11) U\cross I\cross\Gamma_{r}\ni(x, t, \sigma, \tau)arrow

(x, t,\tilde{\sigma},\tilde{\tau})\in U\cross I\cross\Gamma_{\overline{V}} ,
\tilde{\sigma}=\tilde{\sigma}(x, t, \sigma, \tau) , \tilde{\tau}=\tilde{\tau}(x, t, \sigma, \tau)

mapping (x_{0}, t_{0}, \sigma_{0},1) to (x_{0}, t_{0},\tilde{\sigma}_{0},1) and such that
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\tilde{\tau}(x, t, \sigma, \tau)\not\in.(x, t , \sigma , \tau)/\tilde{\tau}(x, t, \sigma, \tau))+\tilde{\tau}(x, t, \sigma, \tau)t

=\tau\phi(x, \sigma/\tau)+\tau t .
By this last equation, we have, in a neighborhood of (x_{\delta}, \sigma_{0}) ,

\phi (x,\tilde{\sigma}(x, -\phi(x, \sigma), \sigma, 1)/\tilde{\tau}(x, -\phi(x, \sigma), \sigma, 1))=\phi(x, \sigma)

if we take t=-\phi(x, \sigma),\tau=1 and note that \tilde{\tau}(x, -\phi(x, \sigma), \sigma, 1)\neq 0 near (x_{0}, \sigma_{0})

since \tilde{\tau}(x_{0}, t_{0}, \sigma_{0},1)=1 . Therefore, what we have to verify is that the
mapping

(1. 1. 12) U\cross V\ni(x, \sigma)arrow

(x,\tilde{\sigma}(x, -\phi(x, \sigma), \sigma, 1)/\tilde{\tau}(x, -\phi(x, \sigma), \sigma, 1))\in U\cross\tilde{\dot{V}}

is diffeomorphic near (x_{0}, \sigma_{0}) . Since \phi_{\sigma}’(x_{0}, \sigma_{0})=0, we have

\frac{D(\tilde{\sigma}(x,-\phi(x,\sigma),\sigma,1)/\tilde{\tau}(x,-\phi(x,\sigma),\sigma,1))}{D(\sigma)}|_{(x_{0},\sigma_{0})}

=\det\{\tilde{\tau}^{-2}(\tilde{\tau}\tilde{\sigma}_{\sigma}’-\tilde{\sigma}\tilde{\tau}_{\sigma}’)\}|_{(x_{0},-\phi(x_{0},\sigma_{0},1)^{\backslash }} .

The last determinant does not vanish and thus the mapping (1. 1. 12) is
diffeomorphic near (x_{0}, \sigma_{0}) . In fact, this follows from

\frac{D(\tilde{\sigma}(x,t,\sigma,\tau),\tilde{\tau}(x,t,\sigma,\tau))}{D(\sigma,\tau)}|_{(x_{0},t_{0},\sigma_{0},1)}\neq 0

and

(\begin{array}{ll}\tilde{\tau}E -\tilde{\sigma}0 1\end{array})(\begin{array}{ll}\tilde{\sigma}_{\sigma}’ \tilde{\sigma}_{\tau}’\tilde{\tau}_{\sigma}’ \tilde{\tau}_{\sigma}’\end{array})(\begin{array}{ll}E \sigma 0 \tau\end{array})=(\begin{array}{ll}\tilde{\tau}\tilde{\sigma}_{\sigma}’-\tilde{\sigma}\tilde{\tau}_{\sigma}’ 0\tilde{\tau}_{\sigma}’ \tilde{\tau}\end{array})

Here E is the (n, n) unit matrix and we have used Euler’s identities
\tilde{\sigma}_{o}’\sigma+\tilde{\sigma}_{\tau}’\tau=\tilde{\sigma} , \tilde{\tau}_{\sigma}’\sigma+\tilde{\tau}_{\tau}’\tau=\tilde{\tau} .

which are consequences of the homogeneity assumptions of the mapping
(1. 1. 11).

REMARK. Following the discussions of H\"ormander [7] we can give
a direct proof. Note that this proposition contains the Morse lemma (cf.
our discussions below).

COROLLARY 1. 1. 9. Let \phi(x, \sigma) and \tau.(x,\tilde{\sigma}) be non-degenerate phase
functions such that \phi_{\sigma\sigma}’=0 on C_{\phi} and \overline{\phi}_{\tilde{\sigma}\tilde{\sigma}}’=0 on C_{\tilde{\phi}} . Then \phi and \overline{\phi} are
equivdmt at (x_{0}, \sigma_{0}) and (x_{0},\tilde{\sigma}_{0}) if and only if the corresponding Lagrangean
gems are the same and the levels there of \phi and \phi coincide.
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PROOF. By Corollary 1. 1. 7 we have N=\tilde{N} and thus we can apply
Proposition 1. 1. 8.

We can increase and decrease \sigma-variables of phase functions just in
the same way as the case of conic phase functions. Let \phi(x, \sigma) be a non-
degenerate phase function in U\cross V. Let W be an open set in R^{M} con-
taining the origin. If A is a symmetric matrix in QJL(M, R), then

\phi(x, \sigma, \rho)=\phi(x, \sigma)+\langle A\rho, \rho\rangle.,
(\sigma, \rho)\in V\cross W

is a non-degenerate phase function in Ux Vx W. Furthermore, \Lambda_{\phi}=\Lambda_{\tilde{\phi}} and
the levels of \phi and \overline{\phi} are the same. To decrease the \sigma-variables of \phi(x, \sigma),

we assume that V=V’\cross V’ , \sigma=(\sigma’, \sigma’) and the matrix (\phi_{\sigma}’,;_{\sigma}\prime\prime) is non-singular
when \phi_{\sigma}’=0 . Then we can solve \sigma’=\psi(x, \sigma’) from \phi_{\sigma}’,’=0 . If we set \phi_{1}(x,
\sigma’)=\phi(x, \sigma’, \psi(x, \sigma’)) , it is immediately seen that \phi_{1} is a non-degenerate phase
function in U\cross V’ , \Lambda_{\phi_{1}}=\Lambda_{\phi} and that the levels of \phi and \phi_{1} are the same.
As a related matter to this observation, we show the existence of the s0-

called focal coordinate system of a Lagrangean germ.

PROPOSITION 1. 1. 10. Let \Lambda_{0} be a Lagrangean germ at \lambda_{0} in T^{*}X.
Assume that rank (d\pi)_{\lambda_{0}}A_{0}=m . Then we can choose local coordinates x_{1} , \cdots , x_{n}

in X at \pi(\lambda_{0}) such that (x_{1}, \cdots, x_{m}, \xi_{m+1}, \cdots, \xi_{n}) gives a local coordinate systm
in \Lambda_{0} at \lambda_{0} if x_{1} , \cdots , x_{n} , \xi_{1} , \cdots , \xi_{n} are the local coordinates in T^{*}X induced
by x_{1} , \cdots , x_{n} by the coupling \langle\xi, dx\rangle .

PROOF. We can choose a local coordinate system (x_{1}, \cdots, x_{n}) in X at
\pi(\lambda_{0}) such that

\Lambda_{0}\ni(x, \xi)arrow\xi\in T_{x}(X)

is regular at \lambda_{0} (cf. H\"ormander [7, p. 136]). Thus a Lagrangean neighbor-
hood of \lambda_{0} in \Lambda_{t,\vee}

, is given by a phase function
\phi(x, \xi)=\langle x, \xi\rangle-H(\xi) , \xi\in V\subset R^{n}

(cf. H\"ormander [7, Ramark 2 after Th. 3. 1. 3]). Then \lambda_{0}=(0, \xi_{0}),H_{\dot{\sigma}}’(\xi_{0})=0 .
By the assumptions on rank (d\pi)_{\lambda_{0}}\Lambda_{0} , we have rank (H_{\xi\xi}(\xi_{0}))=m . Thus we
may assume that the matrix (H_{\xi\xi}’,,(\xi_{0})) is non-singular if \xi=(\xi’, \xi’)\in V’\cross V’ ,
\xi’=(\xi_{1}, \cdots, \xi_{m}) , \xi’=(\xi_{m+1}, \cdots, \xi_{n}) . Solving \xi’=\psi(x’, \xi’) from x’-H_{\xi},(\xi’, \xi’)=0,
x’=(x_{1}, \cdots, x_{m})\in U’ , we see that

\phi_{1}(x, \xi’)=\langle x’, \psi(x’, \xi’)\rangle+\langle x’, \xi’\rangle-H(\psi(x’, \xi’), \xi’) ,

x’=(x_{m=1}, \cdots, x_{n}), is a non-degenerate phase function defining \Lambda_{0} near \lambda_{0} .
More explicitly, a neighborhood of \lambda_{0} in \Lambda_{0} is given by

\{(x’, H_{\xi}’,, (\psi(x’, \xi’), \xi’), \psi(x’, \xi’), \xi’);x’\in U’ , \xi’\in V’\} .
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That is, (x’, \xi’) is a local coordinate system in \Lambda_{9} at \lambda_{0} .
COROLLARY 1. 1. 11. Let \Lambda_{0} be a Lagrangean germ at \lambda_{0} in T^{*}X.

Then we can choose local coordinates x_{1} , \cdots , x_{n} in X at \pi(\lambda_{0}) such that \Lambda_{0}

is defifined near \lambda_{0} by a phase function of the form
\phi(x, \sigma)=\langle x, \sigma\rangle-H(\sigma) , \sigma\in V\subset R^{n}

REMARK. We use Corollary 1. 1. 11 rather than focal coordinate sys-
tems in Lagrangean germs contrary to Maslov [16], or Leray [12]. It should
be noted that out discussions are not valid generally when \Lambda_{0} intersects with
the zero section of T^{*}X. For, then, we cannot generally change local
coordinates in X at \pi(\lambda_{0}) . Therefore, in the sequel, we assume all the
Lagrangean germs never intersect with the zero section of T^{*}X. Under
these assumptions we see that given a non-degenerate phase function \tilde{eb} we
can construct a phase function \phi for \Lambda_{\tilde{\phi}} with the same level as \tilde{\phi} and of
the form given in Corollary 1. 1. 11. In fact, if we consider a conic Lag-
rangean germ \tilde{\mu}^{*}\Lambda_{\tilde{\phi}} and if (x_{0}, t_{0}, \xi_{0}, \tau_{0})\in\tilde{\mu}^{*}\Lambda_{\tilde{\phi}} , then, since \tilde{\mu}^{*}\Lambda_{\tilde{\phi}} is locally
non-stationary so that \tilde{\mu}^{*}\Lambda_{\tilde{\phi}} and q^{-1}(\tau_{1}) intersect transversally for any \tau_{1}>0,
we can choose local coordinates x_{1} , \cdots , x_{n} in X at x_{0} such that the mapping
\tilde{\mu}^{*}\Lambda_{\tilde{\phi}}\ni(x, t, \xi, \tau)- (\xi, \tau) is regular at (x_{0}, t_{0}, \xi_{0}, \tau_{0}) . Here we have used the
assumptons \Lambda_{\tilde{\phi}}\subset T^{*}X\backslash 0 . Note that (x_{1}, \cdots, x_{n}, t-t_{0}) is the local coordinate
system in consideration. This means that \tilde{\mu}^{*}\Lambda_{\tilde{\phi}} is given by a phase func-
tion of the form \langle x, \xi\rangle+(t-t_{0})\tau-H(\xi, \tau) near (x_{0}, t_{0}, \xi_{0}, \tau_{0}) . Then \phi(x, \xi)

=\langle x, \xi\rangle-H(\xi, 1)-t_{0} has the required property.

1. 2. Some global considerations.

Let 11 be a Lagrangean submanifold of T^{*}X. Every point \lambda\in\Lambda has a
neighborhood in \Lambda defined by a non-degenerate phase function. We con-
sider a class \Phi(\Lambda) of non-degenerate phase functions defining germs of the
Lagrangean manifold \Lambda . Let U be a coordinate neighborhood in X, V an
open subset in R^{N} and \phi:U\cross Varrow R a non-degenerate phase function such
that \Lambda_{\phi}\subset\Lambda . We write U_{\phi}=U, V_{\phi}=V, N_{\phi}=N so that by \phi\in\Phi(\Lambda) we can
at the same time understand its defining quantities U_{\phi} , V_{\phi} , N_{\phi} .

Now we require the class \Phi(\Lambda) of phase functions to satisfy the follow-
ing three conditions.

(i) Let \phi\in\Phi(\Lambda) and \psi be any non-degenerate phase function such that
\Lambda_{l}p\subset\Lambda and \Lambda_{\psi}\cap\Lambda_{\phi}\neq\emptyset . If the levels of \phi and \psi coincide on \Lambda_{\phi\cap}\Lambda, then
\psi\in\Phi(\Lambda) .

(ii) Let \phi, \psi\in\Phi(\Lambda) . Then there is a sequence ofphase function \phi_{0} , \phi_{1} , \cdots ,
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\phi_{l}\in\Phi(\Lambda) with \phi_{0}=\phi, \phi_{l}=\psi such that for j=0, \cdots , l-1, \Lambda_{\phi_{j}\cap}\Lambda_{\phi_{j+1}}\neq\emptyset and the
levels of \phi_{j} and \phi_{f+1} coincide on \Lambda_{\phi_{j}\cap}\Lambda_{\phi_{j+1}} .

(iii) \Phi(\Lambda) contains a subfamily consisting ofphase functions \phi for which
\Lambda_{\phi} form a locally fifinite covering of \Lambda .

We note furthermore that we may assume \Lambda_{\phi} connected if \phi\in\Phi(\Lambda) .
We can form a subfamily in (iii) by phase functions of the form (x, \xi\rangle

-H(\xi) from Corollary 1. 1. 11. From (i) and (ii) it follows that if \phi\in\Phi(\Lambda)

and \psi a non-degenerate phase function defining a germ of \Lambda, then \psi\in\Phi(\Lambda)

if and only if there is a sequence \phi_{0}=\phi, \phi_{1} , \cdots , \phi_{l}\in\Phi(\Lambda) such that \Lambda_{\phi_{f}\cap}\Lambda_{\phi_{f+1}}

\neq\emptyset, the levels of \phi_{f} and \phi_{j+1} coincide there, j=0, \cdots , l-1, and that \Lambda_{t_{l}\cap}\Lambda_{\psi}

\neq\emptyset and the levels of \phi_{l} and \psi coincide there. In particular, if \Lambda is conic,
then conditions on levels are automatically satisfied if we take conic phase
functions.

The difference of levels of phase functions has the following meaning.

PROPOSITION 1. 2. 1. Let \phi and \tilde{\phi}\in\Phi(\Lambda) . If (x_{0}, \xi_{0})\in\Lambda_{\phi\cap}\Lambda_{\tilde{\phi}} , \xi_{0}=\phi_{x}’(x_{0}, \sigma_{0})

=\tilde{\phi}_{x}’(x_{0},\tilde{\sigma}_{0}), \phi_{\sigma}’(x_{0}, \sigma_{0})=0, \tilde{\phi}_{\sigma}’(x_{0},\hat{\sigma}_{0})=0, then there is a closed path in \Lambda passing
(x_{0}, \xi_{0}) such that

\phi(x_{0}, \sigma_{0})-\overline{\phi}(x_{0},\tilde{\sigma}_{0})=\int_{\gamma}\theta 1

PROOF. This follows immediately from the following lemma.

Lemma 1. 2. 2. Let \phi_{1} , \phi_{2}\in\Phi(\Lambda) such that \Lambda_{\psi_{1}\cap}\Lambda_{\phi_{2}}\neq\emptyset and the levels of
\phi_{1} and \phi_{2} coincide on \Lambda_{\phi_{1}\cap}\Lambda_{\phi_{2}} . Let (x_{1}, \xi_{1})\in\Lambda_{\phi_{1}} , (x_{2}, \xi_{2})\in\Lambda_{\psi_{2}} , \xi_{1}=\phi_{1x}’(x_{1}, \sigma_{1}) ,
\phi_{\acute{1}\sigma}(x_{1}, \sigma_{1})=0, \xi_{2}=\phi_{2x}’(x_{2},\tilde{\sigma}_{2}), \phi_{2\tilde{\sigma}}’(x_{2},\tilde{\sigma}_{2})=0 . Then there is a path \gamma_{12} in \Lambda_{\delta_{1}}\cup

\Lambda_{\phi_{2}} connecting (x_{1}, \xi_{1}) and (x_{2}, \xi_{2}) such that

\phi_{2}(x_{2},\tilde{\sigma}_{2})-\phi_{1}(x_{1}, \sigma_{1})=\int_{\gamma_{12}}\theta\iota

PROOF. Let (x_{3}, \xi_{3})\in\Lambda_{\emptyset_{1}\cap}\Lambda_{\phi_{2}} . Then \xi_{3}=\phi_{1x}’(x_{3}, \sigma_{3})=\phi_{2x}’(x_{3},\tilde{\sigma}_{3}), \phi_{1\sigma}’(x_{3}, \sigma_{3})

=0, \phi_{2\tilde{\sigma}}’(x_{3},\tilde{\sigma}_{3})=0 , \phi_{1}(.x_{3},\tilde{\sigma}_{3})=\phi_{2}(x_{3},\tilde{\sigma}_{3}) . Since we consider the differences of
levels, we may choose \phi_{1} and \phi_{2} as given by Corollary 1. 1. 11. That is,
we take

\phi_{1}(x, \sigma)=\langle x, \sigma\rangle-H_{1}(\sigma) , x\in U_{1} . \sigma\in V_{1}\subset R^{n} ,

\phi_{2}(y,\tilde{\sigma})=\langle y,\tilde{\sigma}\rangle-H_{2}(\tilde{\sigma}) , y\in U_{2} , \tilde{o}\in V_{2}\subset R^{n}

We may further assume that V_{1} and V_{2} be simply connected. Let \sigma=\sigma(s)

be a C^{1}-curve in V_{1} connecting \sigma_{1} , and \sigma_{3} , \sigma(0)=\sigma_{1} , \sigma(1)=\sigma_{3} . Let x(s)=
H_{\sigma}’(\sigma(s)) . Then \gamma_{1} : sarrow(x(s), \sigma(s)) is a C^{1}-curve in \Lambda_{\phi_{1}} connecting (x_{1}, \xi_{1}) and
(x_{3}, \xi_{3}) . Thus
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\phi_{1}(x_{3}, \sigma_{3})-\phi(x_{1}, \sigma_{1})=\int_{0}^{1}\frac{d}{ds}\phi_{1}(x(s), \sigma(s))ds

= \int_{0}^{1}\sum_{j}\phi_{x_{f}}’\dot{x}_{f}(s)ds=\int_{\gamma_{1}}\theta .
Similarly, there is a C^{1} curve \gamma_{2} in \Lambda_{\phi_{2}} connecting (x_{3}, \xi_{3}) and (x_{2}, \xi_{2}) such
that

\phi_{2}(x_{2},\tilde{\sigma}_{2})-\phi_{2}(x_{3},\tilde{\sigma}_{3})=\int_{\gamma_{2}}\theta

Hence, \gamma_{12^{=}}\gamma_{1}+\gamma^{2} has the required prperty.

REMARK. The path \gamma in Proposition 1. 2. 1 is determined modulo the
homotopy class in \Lambda since d\theta=0 on \Lambda .

COROLLARY 1. 2. 3. Let \phi, \tilde{\phi}\in\Phi(\Lambda) and \Lambda_{\phi\cap}\Lambda_{\tilde{\phi}}\neq\emptyset . Thm the difference
of levels of \phi and \tilde{\emptyset} is locally constant in \Lambda_{\psi\cap}\Lambda_{\tilde{\phi}} .

PROOF. Let \lambda\in\Lambda_{\phi\cap}\Lambda_{\tilde{\phi}} , and U_{\lambda} a simply connected neighborhood of \lambda

in \Lambda_{t\cap}\Lambda_{\tilde{\phi}} . Then for any closed curve \mathcal{T}’ in U_{\lambda} , \int_{\gamma},\theta=0 since d\theta=0 on
\wedge 4_{\phi\cap}\Lambda_{\tilde{\phi}} .

We further note the following
PROPOSITION 1. 2. 4. Let \lambda\in\Lambda and \gamma a closed path in \Lambda passing \lambda .

Then there are \phi, \tilde{\phi}\in\Phi(\Lambda) defifining Lagrangean germs in \Lambda at \lambda such that

(1. 2. 1) [ \phi](\lambda)-[\overline{\phi}](\lambda)=\int_{\gamma}\theta .

PROOF. We can cover the path \gamma by Lagrangean neighborhoods defined
by \phi_{f}\in\Phi(\Lambda), j=1, \cdots , l such that \Lambda_{\phi_{f}\cap}\Lambda_{\phi_{f+1}}\neq\emptyset on which \phi_{f} and \phi_{f+l} have
the same levels. Then \gamma\subset\bigcup_{f=1}l\Lambda_{\phi_{f}} and \lambda\in\Lambda_{\phi_{1}\cap}\Lambda_{\phi_{l}} . Let \phi_{l}=\phi and \phi_{1}=\overline{\emptyset}.
Then we see that (1. 2. 1) is true as in the proof of Proposition 1. 2. 1.

The following proposition will be very useful in the next chapter (cf.
Remark after Corollary 1. 1. 11).

PROPOSITION 1. 2. 5. Let \lambda\in\Lambda and choose a local coordinate system
(x_{1}, \cdots, x_{n}) in X at \pi(\lambda) so that \Lambda is defifined near \lambda by a phase function
\phi(x, \xi)=\langle x, \xi\rangle-H(\xi) in U\cross V\subset X\cross R^{n} . If we have another phase function
\phi_{1}(x, \xi)=\langle x, \xi\rangle-H_{1}(\xi) in U\cross V defifining \Lambda near \lambda , then H_{1}(\xi)-H(\xi)=

constant.

PROOF. By our assumptions we have
H_{1\xi_{j}}(\xi)=H_{\xi_{f}}(\xi) , j=1, \cdots , n ,

for \xi\in V\tau Let \xi_{0}\in V be arbitrarily fixed. Then for \xi in a star like neigh-
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borhood of \xi_{0} in V, we have

H_{1}( \xi)-H_{1}(\xi_{0})=\sum_{j}\xi_{f}\int_{0}^{1}H_{1\xi_{f}}((1-t)\xi+t\xi_{0})dt

= \sum_{f}\xi_{f}\int_{0}^{1}H_{\xi_{f}}((1-t)\xi+t\xi_{0}))dt

=H(\xi)-H(\xi_{0}) ,

from which follows the proposition.
We end this section by a consideration of a particular class of Lagran-

gean submanifold in T^{*}X. Let \tilde{X}=X\cross R and the projections p, q as be-
fore. That is, by T^{*}\tilde{X}=T^{*}X\cross T^{*}R, p is the projection from T^{*}\tilde{X} onto
T^{*}X and q from T^{*}\tilde{X} onto the fibers of T^{*}R . A conic Lagrangean sub-
manifold \tilde{\Lambda} in T^{*}\tilde{X}\backslash 0 is called non-stationary if \tilde{\Lambda}\subset q^{-1}(R\backslash 0) . We assume
\tilde{\Lambda}\subset q^{-1}(R_{+}) in the sequel.

PROPOSITION 1. 2. 6. For every \tau_{0}>0,\tilde{\Lambda}\cap q^{-1}(\tau_{0}) is a closed submanifold
of dimension n in T^{*}\tilde{X}\backslash 0 . \Lambda=p(\tilde{\Lambda}\cap q^{-1}(\tau_{0})) is a Lagrangean submanifold
in T^{*}X and the map p:\tilde{\Lambda}\cap q^{-1}(\tau_{0})arrow\Lambda is locally homeomorphic.

PROOF. By Proposition 1. 1. 3, \tilde{\Lambda} and q^{-1}(\tau_{0}) intersect transversally.
Hence, \tilde{\Lambda}\cap q^{-1}(\tau_{0}) is a closed submanifold of dimension (n+1)+(2n+1)-
(2n+2)=n in T^{*}\tilde{X}\backslash 0 . By Corollary 1. 1.5, p:\tilde{\Lambda}r1q^{-1}(\tau_{0})-\Lambda is locally
homeomorphic and \Lambda is locally Lagrangean. Since \tilde{\Lambda}\cap q^{-1}(\tau_{0}) is a trans-
versal intersection, we can choose for every \tilde{\lambda}_{0}=(x_{0}, t_{0b}\xi_{0}, \tau_{0})\in\tilde{\Lambda} a local coor-
dinate system (x_{1}, \cdots, x_{n}) in U\subset X at x_{0} such that \tilde{\Lambda} is defined near \tilde{\lambda}_{0} by
a phase function \phi(x, t, \xi, \tau)=\langle x, \xi\rangle+(t-t_{0})\tau-H(\xi, \tau), x\in U , t\in I\subset R, (\xi, \tau)

\in\Gamma\subset R^{n+1}\backslash 0, \Gamma being an open cone and H(\xi, \tau) positively homogeneous of
degree 1 in (\xi, \tau) . In other words, a Lagrangean neighborhood of \tilde{\lambda}_{0} in \tilde{\Lambda}

is given by x-H_{\xi}(\xi, \tau)=0, t-t_{0}-H_{\tau}(\xi, \tau)=0 , (\xi, \tau)\in\Gamma Since \tilde{\Lambda} is closed,
\tilde{\Lambda} is covered by such coordinate neighborhood U_{a}\cross I_{\alpha}\cross\Gamma_{a} of T^{*}\overline{X}\backslash 0 . On
the other hand, if \tilde{\lambda}_{0}\in\tilde{\Lambda}\cap q^{-1}(\tau_{0}) , then a Lagrangean neighborhood of \lambda_{0}=p(\tilde{\lambda}_{0})

in \Lambda is given by x-H_{\xi}’(\xi, \tau)=0 . Thus if we set V_{\alpha}=\{\xi\in R^{n} ; (\xi, \tau_{0})\in\Gamma_{\alpha}\} ,
we see that 11 is covered by coordinates neighborhoods U_{\alpha}\cross V_{\alpha} in T^{*}X

and thus \Lambda is a closed submanifold of T^{*}X.
We call a Lagrangean submanifold \Lambda of T^{*}X stationary if there is

a non-stationary conic Lagrangean submanifold 41 in T^{*}\tilde{X}\backslash 0 such that \Lambda

=p(\tilde{\Lambda}nq^{-1}(\tau_{0})) for some \tau_{0}>0 .
PROPOSITION 1. 2. 7. Let \Lambda be a Lagrangean submanifold in T^{*}X. If

\pi_{1}(\Lambda)=\{0\} or Z, then \Lambda is stationary.
PROOF. We construct a non-stationary Lagrangean submanifold in
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T^{*}\tilde{X}\backslash 0 . First consider the case \pi_{1}(\Lambda)=\{0\} . Let \lambda_{0}\in\Lambda be arbitrarily fixed,

and set t( \lambda)=-\int_{\lambda_{0}}^{\lambda}\theta, \lambda\in\Lambda . Since d\theta=0 on \Lambda, t(\lambda) does not depend on the
choice of paths connecting \lambda_{0} and \lambda . Then \tilde{\Lambda}=\{\mu_{\tau}\lambda, -t(\lambda), \tau), \lambda\in\Lambda, \tau>0\} is
the corresponding non-stationary Lagrangean submanifold of T^{*}\tilde{X}\backslash 0, and
\Lambda=p(\tilde{\Lambda}\cap q^{-1}(1)) . The case when \pi_{1}(\Lambda)=Z is similar. Let \lambda_{0}\in\Lambda be fixed, and
for \lambda\in\Lambda take a path \gamma in \Lambda connecting \lambda, and \lambda . Then set t( \lambda;\gamma)=-\int_{f}\theta .
If \tilde{\gamma} is another path in \Lambda connecting \lambda_{0} and \lambda , then t(\lambda;\mathcal{T})-t(\lambda;\tilde{7})=const .
N(\gamma-\tilde{\mathcal{T}}), where N(\gamma-\tilde{7}) is the rotation number of the closed path \mathcal{T}-\tilde{7}. If
\lambda’ is in a simply connected neighborhood of \lambda in \Lambda and if \gamma’ is any path
in this neighborhood connecting \lambda and \lambda’ , then t(\lambda’ ; \gamma+\mathcal{T}’) does not depend
on the choice of \gamma’ . Hence, \lambda- t(\lambda;\gamma) is smooth. Therefore, if we set
\tilde{\Lambda}= { (\mu_{\tau}\lambda, - t(\lambda;\mathcal{T}) , \tau) ;\tau,>0, \lambda\in\Lambda, \mathcal{T} : a path in \Lambda from \lambda_{0} to \lambda}, then \tilde{\Lambda} is the
corresponding non-stationary Lagrangean submanifold in T^{*}\tilde{X}\backslash 0 and \Lambda=

p(\tilde{\Lambda}\cap q^{-1}(1)) . We note that this Lagrangean manifold \tilde{\Lambda} is periodic in the
t-direction.

Chapter 2. Canonical operators on Lagrangean manifolds

2. 1. Symbols on Lagrangean germs.

Let \Lambda be a Lagrangean submanifold in T^{*}X. We want to define the
canonical operator \Gamma=\Gamma_{A} on \Lambda . For that purpose, we must consider an
asymptotic class on \Lambda . When \Lambda is a conic Lagrangean submanifold in
T^{*}X\backslash 0, then the action of R_{+} in the fibers of T^{*}X\backslash 0 permits us to
define an asymptotic classes in \Lambda . Hewever, for general Lagrangean sub-
manifolds, we must introduce a parameter set K which determines our
asymptotic class. Let K\subset R_{+} . We assume that K contains a sequence
k_{j}arrow\infty and that the distance of K and 0 is positive, thus, \kappa\subset[\delta, \infty), \delta>0 .
We fix such a set K in the sequel.

In order to define the asymptotic class, we begin by a general consi-
deration. Let W be an open set in R^{M} and consider an element a(w, k)
in C_{0}^{\infty}(W) (resp. C^{\infty}(W) depending on k\in K.

DEFINITION 2. 1. 1. Let m be a real number. We write a(w, k)\in

S_{0}^{m}(W, K) (resp. S^{m} ( W, K)) if the set

k^{-m}a(w, k) , k\in K .
forms a bounded set in C_{0}^{\infty}(W) (resp. C^{\infty}(W)).

The following proposition is clear from Definition 2. 1. 1.
PROPOSITION 2. 1. 2. Let m and m’ be real. Then we have
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(a) S_{0}^{m}(W, K) is a linear space over C.
(b) If m>m’, then S_{0}^{m’}(W, K)\subset S_{0}^{m}(W, K) .
(c) C_{0}^{\infty}(W)\subset S_{0}^{0}(W, K) .
(d) If a\in S_{0}^{m}(W, K), then e^{ikc}a\in S_{0}^{m}(W, K) for c\in R and k^{m^{r}}a\in

S_{0}^{m+m’}(W, K) .
(e) If a\in S_{0}^{m}(W, K) and b\in S_{0}^{m’}(W, K), then ab\in S_{0}^{m+m’}(W, K).
(f) The assertions (a) to (e) hold good without the subscript 0.
We shall in particular write S_{0}^{-\infty}(W, K)=\cap S_{0}^{n}(W, K) and S_{0}^{-\infty}(W, K)

m\in R

= \bigcap_{m\epsilon R}S^{m}(W, K) . Note that if a(w, k)=0 for k>k_{1} then a(w, k)\in S_{0}^{-\infty}(W, K)

or S^{-\infty}(W, K) .
We then have the following completeness property of the space

S^{m}(W, K) (cf. H\"ormander [8], Th. 2. 7).

PROPOSITION 2. 1. 3. Let m_{f},j=0,1,2 , \cdots , be a strictly decreasing se-
quence tending to -\infty . If a_{f}(w, k)\in S^{m}f(W, K) , then there is a(w, k)\in
S^{m_{0}}(W, K) such that
(2. 1. 1) a(w, k)- \sum_{f<l}a_{f}(w, k)\in S^{m_{l}}(W, K) .
The function a(w, k) is uniquely determined modulo S^{-\infty}(W, K) .

PROOF. Let B_{i} be an increasing sequence of compact subsets of W
such that every compact subset of W is contained in one of them. Let
\psi(t) be a (continuous) function defined for t\in R such that \psi(t)=1 for
t\geq 1/2 and \psi(t)=0 for t\leq 0, say. Then choose an increasing sequence
t_{j}arrow+\infty such that

|\psi(k-t_{f})D_{w}^{\alpha}a_{f}(w, k)|\leq k^{m_{j-1}}2^{-j}

for w\in B_{i} and |\alpha|+i\leqq j . Here \alpha is a multi-index (\alpha_{1}, \cdots, \alpha_{M}) and |\alpha|=

\alpha_{1}+\cdots+\alpha_{M} . Since |k^{-m_{f}}D_{v}^{a}a_{f}(w, k)|\leqq L_{a,i} on B_{i} , and m_{j-1}>m_{f} , we only
need to choose t_{f} such that k^{m_{f^{-m}f-1}}L_{\alpha,i}\leqq 2^{-f} for k\geqq t_{j} . Then a(w, k)
= \sum_{f}\psi(k-t_{j})a_{f}(w, k) satisfies the requirement.

By a similar proof, a similar result holds for S_{0}^{m}(W, K) . We write
(2. 1. 1) briefly a(w, k) \sim\sum_{j}a_{j}(w, k) .

The following is an analogue of H\"ormander [7, Prop. 1. 1. 8] and the
proof is essentially the same.

PROPOSITION 2. 1. 4. Let a_{1} , \cdots , a_{l} be real valued functions in S^{0}(W, K) .
Let f be a C^{\infty} function in a neighborhood in R^{l} of all limit points of
(a_{1}(w, k), \cdots , a_{l}(w, k)) when karrow\infty while w may vary in W. Then (w, k)arrow

f(a_{1}(w, k), \cdots , a_{l}(w, k)) is in S^{0}(W, K) for large values of k.
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Let \phi\in\Phi(\Lambda) . The space S_{J}^{m}(U_{\phi}\cross V_{\phi}, K) will be the space of symbols
we are to consider. We shall sometimes call the elements of S^{m}(U_{\phi}\cross V,, K)

K symbols in U_{\phi}\cross V_{\phi} . For later convenience, we study the effects on K-
symbols by the applications of phase integral. Let \tilde{V} be a neighborhood
of the origin in R^{\tilde{N}} and A a non-singular symmetric \tilde{N}\cross\tilde{N} matrix.

Then \overline{\phi}(x, \sigma, \rho)=\phi(x, \sigma)+\frac{1}{2}\langle A\rho, \rho\rangle , (x, \sigma, \rho)\in U_{\phi}\cross V_{\phi}\cross\overline{V} is a non-degen-

erate phase function in U_{\phi}\grave{\prime}<V_{\phi}\cross\overline{V} .
PROPOSITION 2. 1. 5. Let a(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\delta}, K) and \chi(\rho)\in C_{\delta}^{\infty}(\overline{V}) .

Assume that \chi(\rho)=1 in a neighborhood of the origin. Then
\tilde{a}(x, \sigma, \rho, k)=\chi(\rho)a(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\phi}\cross\overline{V}, K).

,

(2. 1. 2) ( \frac{k}{2\pi})^{\tilde{N}/2}\int e^{lk<A\rho,\rho>/2}\tilde{a}(x, \sigma, \rho, k)d\rho\in S_{u}^{m}(U_{\phi}\cross V_{\phi}, K)

and

(2. 1. 3) ( \frac{k}{2\pi})^{\tilde{N}/2}\int e^{ik<A\rho,\rho>}\tilde{a}(x, \sigma, \rho, k)d\rho-\frac{e^{\frac{\pi}{4}isgnA}}{|\det A|\not\in}a(x, \sigma, k)

\in S_{J}^{m-1}(U_{\phi}\cross V_{\phi}, K)\tau

PROOF. That \tilde{a}(x, \sigma, \rho, k)\in S^{m_{0}}(U_{\phi}\cross V_{\phi}\cross\overline{V}, K) is trivial. (2. 1. 2) is true
if we show (2. 1. 3). However, if \zeta(x, \sigma)\in C_{0}^{\infty}(U_{\phi}\cross V_{\phi}) such that \zeta=1 on
supp a(x, \sigma, k) , then

( \frac{k}{2\pi})^{\tilde{N}/2}\int e^{ik<A\rho,\rho>}\chi(\rho)d\rho\zeta(x, \sigma)\in S_{0}^{0}(U_{\phi}\cross V_{\phi}, K)

and

( \frac{k}{2\pi})^{\tilde{N}/2}\int e^{\dot{f}k<A\rho,\rho>}\chi(\rho)d\rho\zeta(x, \sigma)=.\frac{e^{\frac{\tilde{4}}{4}isgnA}}{|\det A|\#}\zeta(x, \sigma)

modulo S_{0}^{-1}(U_{\phi}\cross V_{\phi}, K) by the stationary phase method. Hence, (2. 1. 3)
follows from Proposition 2. 1. 2.

Now we consider the case corresponding to decreasing the \sigma-variables
in the phase function. Let V_{\phi}=V’\cross V’ , V\subset R^{N’} , V’\subset R^{N’} and \sigma=(\sigma’, \sigma’)

\in V’\cross V’ . Assume that the matrix (\phi_{\sigma’\sigma’}’.,) is non-singular on C_{\phi} . Then
from \phi_{\sigma}’,,=0 we can solve \sigma’=\psi(x, \sigma’) . If we set \phi_{1}(x, \sigma’)=\phi(x, \sigma’, \psi(x, \sigma’)),
\phi_{1}(x, \sigma’) is a non-degenerate phase function in U_{\phi}\cross V’ . We note that when
\sigma’=\psi(x, \sigma’), \phi_{\sigma}’,=\phi_{\sigma}’, +\langle\phi_{\sigma}’,’, \psi_{\sigma}’,\rangle=\phi_{\sigma}’, , and \phi_{1x}’=\phi_{x}’+\langle\phi_{\sigma}’,,, \psi_{x}’\rangle=\phi_{x}’ .

PROPOSITION 2. 1. 6. Let a(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) . Let
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(2. 1. 4) a_{1}(x, \sigma’, k)

=e^{-ik\phi_{1}(x,\sigma’)(\frac{k}{2\pi})^{N’/2}\int\sigma}e^{njk\delta(x,\sigma’,\sigma’)}a(x, \sigma’, \sigma’, k)d’

Then a_{1}(x, \sigma’, k)\in S_{\theta}^{m}(U_{\phi}\cross V’, K) and

(2. 1. 5)

a_{1}(x, \sigma’, k)-,,\frac{e^{\frac{\pi}{4}isgn(\phi_{\sigma\sigma}’’}(x,\sigma’,\phi(x,\sigma’)))}{|\det(\phi_{\sigma\sigma}’\prime\prime(x,\sigma’,\psi(x,\sigma’)))|\frac{1}{2}},’ a(x, \sigma’, \psi(x, \sigma’), k)\in S_{0}^{m-1}(U_{\phi}\cross V’, K) .

PROOF. Let A be a non-singular symmetric N’\cross N’ matrix such that
sgn A=sgn(\phi_{\sigma\sigma}’,\prime\prime) and consider a non-degenerate phase function \phi(x, \sigma^{\prime,\rho)}

=\phi_{1}(x, \sigma’)+\langle A\rho, \rho\rangle/2 , \rho\in\overline{V}"\subset R^{N’},\overline{V}"\ni 0 . Then since \overline{\phi}_{x}’=\phi_{x}’ , \overline{\phi}_{\sigma}’, =\phi_{\sigma}’ , and
\tilde{\phi}=\phi when \tilde{\phi}_{\sigma}’,’=0, \phi_{\rho}’=0, we can apply Proposition 1. 1. 8. Thus there is
a diffeomorphism U_{\phi}\cross V’\cross\tilde{V}’\ni(x, \sigma^{\prime,\rho)arrow(x,\sigma’,\sigma’)}\in U_{\phi}\cross V’\cross V

\prime\prime such that
\overline{\acute{\varphi}.}(x, \sigma^{\prime,\rho)=\phi(x,\sigma’,\sigma’}(x,\sigma^{\prime,\rho))} . In particular,

\langle A\rho, \rho\rangle/2=\phi (x, \sigma’ , \sigma’(x, \sigma’, \rho))-\phi_{1}(x, \sigma’) .

Differentiation in \rho then gives on \phi_{\sigma}’,,=0

(2. 1. 6) A=(t \frac{\partial\sigma’}{\partial\rho})(\phi_{\sigma’\sigma^{lJ}}’,)(\frac{\partial\sigma’}{\partial\rho}) .

If we take \sigma’=\sigma’(x, \sigma^{\prime,\rho)} in the integral on the right hand side of (2. 1. 4),
then we have
(2. 1. 7) a_{1}(x, \sigma’, k)

=( \frac{k}{2\pi})^{N^{J}/2}\int e^{ik<A\rho,\rho>.J2}a(x,
\sigma’, \sigma’(x, \sigma’, \rho), k)| \frac{D_{\sigma}’}{D\rho}|d\rho t

Therefore, if we keep (2. 1. 6) in mind and apply the stationary phase
method to (2. 1. 4), then we have a_{1}(x, \sigma’, k)\in S_{0}^{m}(U_{\phi}\cross V’, K) and (2. 1. 5)

2. 2. Canonical operators on Lagrangean manifolds.
Let \Lambda be a Lagrangean submanifold of T^{*}X and \Phi(\Lambda) the class of

phase functions of \Lambda defined in \S 1. 2. Let \phi\in\Phi(\Lambda) and a(x, \sigma, k)\in

S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) . For u\in C_{0}^{\infty}(U_{\phi}), we consider

(2. 2. 1) \Gamma_{\phi}(a, u)=(\frac{k}{2\pi})^{N/2}\int\int e^{ik\phi(x,\sigma)}a(x, \sigma, k)u(x)dxd\sigma

where N=N_{\phi} . Note that the integral
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(2. 2. 2) ( \Gamma_{\phi}a)(x, k)=(\frac{k}{2\pi})^{N/2}\int e^{ik\phi(x,\sigma)}a(x, \sigma, k)d\sigma

is absolutely convergent for each k\in K so that
\Gamma_{\phi}(a, u)=\langle\Gamma_{\phi}a, u\rangle .

However, we shall take u as a density of order 1/2 on X and we shall
interpret (2. 2. 1) as a definitition of a distribution density of order 1/2 on
X. Our purpose will be to determine the conditions for a(x, \sigma, k) that
\Gamma,(a, u) is “independent” of the choice of phase function \phi .

We begin by supplementing Definition 2. 1. 1. Let \alpha(k) be a map from
K to C. For m\in R, we say \alpha(k)\in S^{m}(K) if \sup_{K}|k^{-m}\alpha(k)|<\infty . Then anal0-
gous properties to Propositions 2. 1. 2 and 2. 1. 3 are true, and we also write
S^{-\infty}(K)= \bigcap_{m\epsilon R}S^{m}(K) .

PROPOSITION 2. 2. 1. If \phi(x, \sigma) has no critical points on supp \{a(x, \sigma,
k)u(x)\} , thm\Gamma_{\phi}(a, u)\in S^{-\infty}(K) . In particular, if \phi_{\sigma}’(x, \sigma)\neq 0 on supp a(x, \sigma,

k), thm\Gamma_{\phi}a\in S_{0}^{-\infty}(U_{\phi}, K) .
PROOF. We prove the latter part since the former part can be proved

in a similar way. Let \zeta(x, \sigma)\in C_{0}^{\infty}(U_{\phi}\cross V_{\phi}) such that \zeta=1 on supp a(x, \sigma, k)

and \phi_{\sigma}’(x, \sigma)\neq 0 on supp \zeta . Let L= \sum_{f=1}^{N}c_{f}(x, \sigma)\partial/\partial\sigma_{f} , c_{f}(x, \sigma)=\zeta(x, \sigma)\phi_{\sigma_{f}}’(x,

\sigma)/\sum_{l=1}^{N}|\phi_{\sigma_{l}}’(x, \sigma)|^{2}, N=N_{\phi} . The differential operator L is well-defined by the
choice \Theta f\zeta . Furthermore, we have

Le^{ik\phi(x,\sigma)}=ike^{ik\phi(x,\sigma)}

on supp a(x, \sigma, k) on which \zeta=1 . Therefore, integrating by parts, we have

( \Gamma_{\phi}a)(x, k)=(\frac{k}{2\pi})^{N/2}(ik)^{-M}\int e^{ik\phi(x,\sigma)}(^{t}L)^{M}a(x, \sigma, k)d\sigma

for M=1,2, \cdots . Any derivative of \Gamma_{\phi}a is treated similarly, thus we have
\Gamma_{\phi}a\in S_{0}^{-\infty}(U_{\phi}, K) .

REMARK. The first part of the above proposition seems to be annoying.
However, we use 2. 2. 1 only to define \Gamma_{\phi}a as a distribution density of
order 1/2 on X for each fixed K.

The next proposition shows \Gamma_{\phi}a is essentially determined by the values
of a on C_{\phi} (cf. H\"ormander [7], Prop. 1. 2. 5).

PROPOSITION 2. 2. 2. Let a(x,\sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) vanishes on C_{\phi}=

\{(x, \sigma);\phi_{\sigma}’(x, \sigma)=0\} . Then there is a b(x, \sigma, k)\in S_{0}^{m-1}(U_{\phi}\cross V_{\phi}, K) such that
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\Gamma_{\phi}a=\Gamma_{\phi}b . In particular, if a(x, \sigma, k) vanishes of infifinite order on C, ,
then \Gamma_{\phi}a\in S_{0}^{-\infty}(U_{\iota}, K) .

PROOF. We may assume U_{\phi} and V_{\phi} sufficiently small so that if \lambda_{1}, \cdots , lare local coordinates on C_{\phi} extended in a neighborhood of C_{\phi} , then \lambda_{1} , \cdots , \lambda_{n} ,
\phi_{\sigma_{1}}’ , \cdots , \phi_{\sigma_{N}}’ , N=N_{\phi} , give local coorninates in U_{\phi}\cross V_{\phi} . Since the class
S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) is defined independently of the choice of local coordinates,
we apply the Taylor formula to a(x, \sigma, k) regarded as a function in \lambda_{1} , \cdots , \lambda_{n} ,
\phi_{\sigma_{1}}’ , \cdots , \phi_{\sigma_{N}}’ and so we have

a(x, \sigma, k)=\sum_{f=1}^{N}a_{f}(x, \sigma, k)\phi_{\sigma_{f}}’(x, \sigma)

since a(x,\sigma, k)=0 when \phi_{\sigma}’(x, \sigma)=0 . Here a_{f}(x, \sigma, k)\in S^{m}(U_{\phi}\cross V_{\phi}, K) . Thus
if \zeta\in C_{0}^{\infty}(U_{\phi}\cross V_{\phi}) is such that \zeta=1 on supp a(x, \sigma, k) , then \tilde{a}_{j}(x, \sigma, k)=

\zeta(x, \sigma)a_{j}(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) . Therefore, integration by parts gives

( \Gamma_{\phi}a)(x, k)=(\frac{k}{2\pi})^{N/2}\int e^{ik\phi(x,\sigma)}\sum_{j=1}^{N}\tilde{a}_{j}(x, \sigma, k)\phi_{\sigma_{f}}’(x^{ g},)d\sigma

=( \frac{k}{2\pi})^{N/z}\int e^{ik\phi(x,\sigma)}\{\frac{i}{k}\sum_{j=1}^{N}\frac{\partial}{\partial\sigma_{j}}\tilde{a}_{f}(x, \sigma, k)\}d\sigma

but b(x, \sigma, k)=ik^{-1}\sum\tilde{a}_{f}N\underline{\partial}(x, \sigma, k)\in S_{0}^{m-1}(U_{\phi}\cross V_{\phi}, K) then. The second
f=1\partial\sigma_{f}

part follows immediately from the first part since \Gamma_{\phi}a=I_{\phi}’b with b\in

S_{0}^{-\infty}(U_{\phi}\cross V_{\phi}, K) .
Now let us make a change of variables

(2. 2. 3) x=x(\tilde{x}) , \sigma=\sigma(\tilde{x},\tilde{\sigma})

in (2. 2. 1). Then if we set \overline{\psi}(\tilde{x},\tilde{\sigma})=\phi(x(\tilde{x}), \sigma(\tilde{x},\tilde{\sigma})) , we have
\Gamma_{\phi}(a, u)

=( \frac{k}{2\pi})^{N./2}\int\int e^{ik\tilde{\emptyset}(\tilde{x},\tilde{\sigma})}a(x(\tilde{x}),
\sigma(\tilde{x},\tilde{\sigma}) , k)u(x( \tilde{x}))|\frac{Dx}{D\tilde{x}}||\frac{D\sigma}{D\tilde{\sigma}}|d\tilde{x}d\tilde{\sigma} .

Hence, if we transform u as densities of order 1/2 and set \tilde{u}(\tilde{x})=u(x(\tilde{x}))

\cross|Dx(\tilde{x})/D\tilde{x}|^{1/2}, then we have \Gamma_{\phi}(a, u)=\Gamma_{\tilde{\psi}}(\tilde{a},\tilde{u}) if we define

(2. 2. 4) \tilde{a}(\tilde{x},\tilde{\sigma}, k)=a(x(\tilde{x}), \sigma(\tilde{x},\tilde{\sigma}) , k)| \frac{Dx(\tilde{x})}{D\tilde{x}}|^{1/2}|\frac{D\sigma(\tilde{x},\tilde{\sigma})}{D\tilde{\sigma}}|

Note that \tilde{a}\in S_{0}^{m}(U_{\tilde{\phi}}\cross_{\backslash }V_{\overline{\phi}}, K) if a\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) .
The interpretation of (2. 2. 4) is done just in the same way as H\"or-

mander [7]. Namely, we introduce a density dC_{\phi} on C_{\phi} as a pull back of
the Dirac measure in R^{N} under the map C_{\phi}\ni(x, \sigma) - \phi_{\sigma}’(x, \sigma) . Thus if
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\lambda_{1} , \cdots , \lambda_{n} are local coordinates on C_{\phi} extended in a neighborhood of C_{\phi} ,
then we have

(2. 2. 5) dC_{\phi}=| \frac{D(\lambda_{1},\cdots,\lambda_{n},\phi_{\sigma_{2}}’,\cdots,\phi_{\sigma_{N}}’)}{D(x_{1},\cdots,x_{n},\sigma_{1},\cdots,\sigma_{N})}|^{-1}d\lambda_{1} , \cdots,d\lambda_{n} .

Let \tilde{\lambda}_{j}(x, \sigma)=\lambda_{f}(x(\tilde{x}), \sigma(\tilde{x},\tilde{\sigma})) under the diffeomorphism (2. 2. 3). Then since
\overline{\emptyset.}(\tilde{x},\tilde{\sigma})=\phi(x, \sigma) and \tilde{\phi_{\tilde{\sigma}}’.}=\phi_{\sigma}’\partial\sigma/\partial\tilde{\sigma}, we have

(2. 2. 6) | \frac{D(\tilde{\lambda},\phi_{\tilde{\sigma}}’)}{D(\tilde{x},\tilde{\sigma})}|=|\frac{D\sigma}{D\tilde{\sigma}}||\frac{D(\lambda,\phi_{\sigma}’)}{D(x,\sigma)}||\frac{D(x,\sigma)}{D(\tilde{x},\tilde{\sigma})}|

=| \frac{D\sigma}{D\tilde{\sigma}}|^{2}|\frac{D(\lambda,\phi_{\sigma}’)}{D(x,\sigma)}||\frac{Dx}{D\tilde{x}}|

on C_{\tilde{\phi}} . From (2. 2. 4) and (2. 2. 6), the diffeomorphism (2. 2. 3) thus implies

(2. 2. 7) \tilde{a}(\tilde{x},\tilde{\sigma}, k)|\frac{D(\tilde{\lambda},\phi_{\tilde{\sigma}}’)}{D(\tilde{x},\tilde{\sigma})}|^{-1/2}=a(x, \sigma, k)|\frac{D(\lambda,\phi_{\sigma}’)}{D(x,\sigma)}|^{-1/2}

on C_{\tilde{\phi}} . This shows that the image of a\sqrt\overline{dC_{\phi}} under the map C_{\phi}\ni(x, \sigma)arrow

(x, \phi_{x}’)\in\Lambda_{\phi} and that of \tilde{a}\overline{\sqrt dC}_{\tilde{\phi}} under the map C_{\tilde{\phi}}\ni(x,\tilde{\sigma})arrow(\tilde{x},\overline{\phi}_{\tilde{x}}’)\in\Lambda_{i} are the
same if (x, \sigma) and (\tilde{x},\tilde{\sigma}) are connected by (2. 2. 3).

Now we consider the effect on (2. 2. 1) under the change of phase
functions preserving their levels. Thus assume that V_{\phi}=V’\cross V’,\cdot V’\subset R^{N’} ,
V’\subset R^{N’} and the matrix (\phi_{\sigma\sigma’}’,,,(x, \sigma’, \sigma’)) is non-singular when \phi_{\sigma}’(x, \sigma’, \sigma’)

=0, \sigma=(\sigma’, \sigma’)\in V’\cross V’ . Solving \sigma’=\psi(x, \sigma’) from \phi_{\sigma}’,,(x, \sigma’, \sigma’)=0 and set
\phi_{1}(x, \sigma’)=\phi(x, \sigma’, \psi(x, \sigma’)) . Then \phi_{1}\in\Phi(\Lambda) if \phi\in\Phi(\Lambda) and V_{\phi 1}=V’ , U_{\phi_{1}}=U_{\phi} .
(2. 2. 1) now becomes

\Gamma_{\phi}(a, u)=(\frac{k}{2\pi})^{N’/2}\int\int e^{ik\phi_{1}(x,\sigma’)}a_{1}(x, \sigma’, k)u(x)d\sigma’dx=\Gamma_{\psi_{1}}(a_{1}, u)

where a_{1}(x, \sigma’, k) is given by (2. 1. 4). Let \lambda_{1} , \cdots , \lambda_{n} be local coordinates on
C_{\phi} extended in a neighborhood of C_{\phi} so that \lambda_{1} , \cdots , \lambda_{n} , \phi_{\sigma_{1}}’ , \cdots , \phi_{\sigma_{N}}’ give local
coordinates in U_{\phi}\cross V_{\phi} . Then since C_{\phi}=C_{\phi_{1}} , U_{\phi_{1}}\cross V_{\phi_{1}} is a submanifold
corresponding to \phi_{\sigma}’,,=0 for which \lambda_{1} , \cdots , \lambda_{n} , \phi_{1\sigma_{1}}’ , \cdots , \phi_{1\sigma_{N’}}’ , form a local coor-
dinate system. Therefore, on C_{\phi_{1}} we have

(2. 2. 8) | \frac{D(\lambda,\phi_{1\sigma’}’)}{D(x,\sigma’)}|^{-1}=|\det(\phi_{\sigma\sigma}’,\prime\prime)|^{-1}|\frac{D(\lambda,\phi_{\sigma}’)}{D(x,\sigma)}|^{-1}

Let \Omega_{1/2} be the half-volume bundle over \Lambda (cf. H\"ormander [7]) and if we
denote by S^{m}(\Lambda, \Omega_{1’2},) the space of those sections of \Omega_{1/2} over \Lambda_{\phi} which are
in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) in each trivialization of \Omega_{1/2} over \Lambda_{\phi} , \phi\in\Phi(\Lambda) . Then we
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have by Propositions 2. 1. 6 and 2. 2. 8
a_{1}\sqrt\overline{dC_{\phi_{1}}}-e^{\frac{\pi i}{4}sgn(\phi_{\sigma\sigma}’,,)}”

a\sqrt\overline{dC_{\phi}}\in S^{m-1}(\Lambda, \Omega_{1/2}) .
Summarizing, we have shown

PROPOSITION 2. 2. 3. Let \phi and \phi_{1}\in\Phi(\Lambda) defifine the same Lagrangean
germs at \lambda_{0}\in\Lambda and assume that the levels of \phi and \phi_{1} near \lambda, coinci&.
Let u\in C_{0}^{\infty}(U_{\phi}) and u_{1}\in C_{0}^{\infty}(U_{\phi_{1}}) . If u and u_{1} are connected as dmsities of
order 1/2 on X, then for a\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) we can fifind a_{1}\in S_{0}^{m}(U_{\delta_{1}}\cross V_{\phi_{1}}, K)

such that
\Gamma_{\phi}(a, u)=\Gamma_{\phi_{1}}(a_{1}, u_{1})

and

(2. 2. 9) a_{1}\sqrt\overline{dC_{\phi_{1}}}-e^{\frac{ni}{4}\{sgn(\phi_{\sigma\sigma}^{l})-sgn(\phi_{1\sigma_{1}\sigma_{1}}’)\}}a\sqrt\overline{dC_{\phi}}\in S^{m-1}(\Lambda, \Omega_{1/2})

at (x, \sigma_{1})\in C_{\phi_{1}} and (x, \sigma)\in C_{\phi} where (x, \sigma_{1}) and (x, \sigma) are mapped to the same
point in the Lagrangean germs at \lambda_{0} .

COROLLARY 2. 2. 4. Let \phi\in\Phi(\Lambda) defifine \Lambda near \lambda_{0}\in\Lambda . Choose local coor-
dinates x_{1} , \cdots , x_{n} at \pi(\lambda_{0}) in X so that \Lambda is given near \lambda_{0} by a phase function
\phi(x, \xi)=\langle x, \xi\rangle-H(\xi) with the same level as \phi, (x, \xi)\in U_{\tilde{\phi}}\cross V_{\tilde{\phi}}\subset X\cross R^{n}.
Thm for any a\in S_{0}^{m}(U_{\phi}\cross V_{\delta}, K) , there is a\in S_{0}^{m}(U_{\tilde{\phi}}\cross V_{\tilde{\phi}}, K) such that
\Gamma_{\phi}(a, u)=\Gamma_{\tilde{d}}(\tilde{a}, u) , u\in C_{0}^{\infty}(U_{\phi}) and at the cooresponding points of C_{\phi} and C_{\tilde{\phi}}

(2.2.10) \tilde{a}\sqrt\overline{d\xi_{1}\cdots d\xi_{n}}-e^{\frac{\pi_{l}^{i}}{4}fsgn(\phi_{\sigma\sigma}’)+sgnH_{\acute{\xi}\xi}’\}}a\sqrt\overline{dC_{\phi}}\in S^{m-1}(\Lambda, \Omega_{1/2}) .
PROOF. Since we can take \xi_{1} , \cdots , \xi_{n} as local coordinates on C_{\tilde{\phi}} and since

|D(\xi,\overline{\phi}_{\xi}’) /D(x, \xi)|=1 , (2. 2. 10) follows from (2. 2. 9).
Finally we consider the effect under general change of phase functions.

Let \phi and \phi_{1}\in\Phi(\Lambda) define the same Lagrangean germs at \lambda_{0}\in\Lambda . If we
choose local coordinates in X at \pi(\lambda_{9}) so that \phi and \phi_{1} are of the form
\phi(x, \xi)=\langle x, \xi\rangle-H(\xi) and \phi_{1}(x, \xi)=\langle x, \xi\rangle-H_{1}(\xi) , then we have by Proposi-
tion 1. 2. 5 H(\xi)-H_{1}(\xi)=L , thus \phi(x, \xi)-\phi_{1}(x, \xi)=-L . It is then clear that
\Gamma_{\phi}(a, u)=\Gamma_{\phi_{1}}(a_{1}, u) , a\in S_{0}^{m}(U_{\phi}\cross V_{\phi}K) , u\in C_{0}^{\infty}(U_{\phi}) if we take a_{1}=e^{-lkL}a\in

S_{0}^{m}(U_{\phi_{1}}\cross V_{\phi_{i}}, K) . Therefore, with Corollary 2. 2. 4, we have shown the
following

PROPOSITION 2. 2. 5. Let \phi and \overline{\phi.}\in\Phi(\Lambda) defifine the same Lagrangean
germs at \lambda_{0}\in\Lambda . Let u\in C_{0}^{\infty}(U_{\phi}) and \tilde{7l}\in C_{0}^{\infty}(U- ) . If u and \tilde{?l} are connected
as dmsities of order 1/2 on X and if a\in S_{0}^{m}(U_{\phi}\cross V_{\phi}, K) we can fifind \tilde{a}\in

S_{0}^{m}(U_{\tilde{\phi}}\cross V_{\tilde{\phi}}, K) such that \Gamma_{\phi}(a, u)=\Gamma_{\tilde{\phi}}(\tilde{a},\tilde{?l}) and

\langle2. 2. 11) \tilde{a}\overline{\sqrt dC_{\tilde{\phi}}}-e^{i\sigma(\phi,\tilde{\phi},k)}a\overline{\sqrt dC_{\phi}}\in S^{m-1}(\Lambda, f2_{1/z})



30 A. Yoshikawa

at (x, \sigma)\in C_{\phi} and (x,\tilde{\sigma})\in C_{\tilde{\phi}} which are mapped to the same point on \Lambda . Here

(2. 2. 12) \sigma(\phi,\overline{\phi}, k)=k\{\phi(x, \sigma)-\tilde{\phi}(x,\tilde{\sigma})\}+\frac{\pi}{4}\{sgn\phi_{\sigma\sigma}’(x, \sigma)- sgn \phi_{\tilde{\sigma}\tilde{\sigma}}’(x,\tilde{\sigma})\}

REMARK. By Proposition 1. 2. 1, there is a closed path \gamma in \Lambda passing
(x, \phi_{x}’(x, \sigma))=(x, \phi_{x}’(x,\tilde{\sigma})) , (x, \sigma)\in C_{\phi} , (x,\tilde{\sigma})\in C_{\tilde{\phi}} such that

\phi(x, \sigma)-\overline{\phi}(x,\tilde{\sigma})=\int_{\gamma}\theta .

By the map \gamma\ni\lambdaarrow T_{\lambda}(\Lambda)\in\Lambda(n)=U(n)/0(n) we obtain a closed curve \gamma* in
the Lagrangean Grassmann (cf. Arnol’d [1], H\"ormander [7]). Then as
ArIiol’ d showed, H^{1}(\Lambda(n), Z) is generated by the pull back \alpha^{*} by the map
det2 : \Lambda(n)arrow S^{1} of the generator \alpha of H^{1}(S^{1}, Z) and

(2. 2. 13) \langle^{\gamma*}, \alpha^{*}\rangle=\frac{1}{2}\{sgn\phi_{\sigma\sigma}’(x, \sigma)-sgn\overline{\phi}_{\tilde{\phi}\tilde{\phi}}’(x,\tilde{\sigma})\}\in Z

Maslov denoted \langle\gamma*, \alpha^{*}\rangle by ind \gamma . ind \gamma is thus a homotopy invariant
of \Lambda .

Now we interprete (2. 2. 11) Let \tau_{0}(\phi,\tilde{\phi}) =\frac{1}{2}\{sgn(\phi_{\sigma\sigma}’)- sgn (\tilde{\phi}_{\tilde{\phi}\tilde{\phi}})\} and

\tau_{1}=\phi-\overline{\phi} , where the evaluation is done at (x, \sigma)\in C_{\phi} and (x,\tilde{\sigma})\in C_{\tilde{\phi}} giving
the same point in \Lambda . Let G be a subgroup of R consisting of elements

of the form \int_{\gamma}\theta where \gamma\in\pi_{1}(\Lambda) . It is clear that \tau_{0}(\phi,\tilde{\psi}) and \tau_{1}(\phi,\overline{\phi}) respect,

tively determine cochain \tau_{0}\in H^{1}(\Lambda, Z) and \tau_{1}\in H^{1}(\Lambda, G) . Then we may
consider \tau_{0}\in H^{1}(\Lambda\cross K, Z) and \tau_{1}\in H^{1}(\Lambda\cross K, G) . Let L_{0} be the complex
line bundle on \Lambda\cross K defined by \tau_{0} by letting 1\in Z act on C by multiplica-
iton with the imaginary unit i. Thus L_{0} is determined by the image of
\tau_{0} in H^{1}(\Lambda\cross K, Z_{4}) . Let L_{1} be the /S^{1} bundle on \Lambda\cross K defined by \tau_{1} by
letting G act on R by multiplication followed by raising to the power of
e^{i} . However, we only consider a particular section \epsilon_{1} of L_{1} given by
e^{k\tau_{1}(\phi,\tilde{\phi})}‘ . If we regard the densities \Omega_{1\acute,2} of order 1/2 on \Lambda as a bundle over
\Lambda\cross K, then (2. 2. 11) gives a section of \Omega_{1/2}\otimes L_{0}\otimes L_{1} over \Lambda\cross K. We denote
by L_{Q}=L_{0}\otimes L_{1} and sometimes call it the bundle of quantization. Then
S_{0}^{m}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}) denotes the spaces of sections of \Omega_{1/2}\otimes L_{0}\otimes L_{1} over \Lambda\cross K

defined by a_{\phi}\in S^{m}(U_{\delta}\cross V_{\phi}, K) and a_{\tilde{\phi}}\in S^{m}(U_{\tilde{\phi}}\cross V_{\tilde{\phi}}, K) with

(2. 2. 14) a_{\tilde{\phi}} \sqrt\overline{dC_{\tilde{\phi}}}=e^{ik\tau_{1}(\phi,\tilde{\phi})}i^{\tau_{0}(\phi,\tilde{\phi})}a_{\phi}\frac{dC}{\phi}

on \Lambda_{\phi}\cap\Lambda_{\tilde{\phi}} . Note that, for a fixed k\in K, e^{ik\tau_{1}(\phi,\tilde{\phi})}e^{\tau_{0}(\phi,\tilde{\phi})} can be taken as a
transition function in a certain subgroup G_{k} of S^{1} . In this respect, we
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note the following

PROPOSITION 2. 2. 6. Assume \Lambda be connected. Let \lambda_{0}\in\Lambda and \Phi_{\lambda_{0}}(\Lambda) the

totality ofphase functions in \Phi(\Lambda) defifining \Lambda near \lambda_{0} . Then - e^{ik\tau_{1}(\phi,\tilde{\phi})+\frac{i\pi}{2}\tau_{O}(\phi,\tilde{\phi})}

for any \phi,\overline{\psi}\in\Phi_{\lambda_{0}}(\Lambda) is independent of k\in K if and only if either
(i) all the levels of phase functions in \Phi_{\lambda_{0}}(\Lambda) are the same; or

(ii) K \subset\{k_{0}+\frac{2\pi m}{T_{0}} ; m=0,1,2, \cdots\} for some k_{0}>0, T_{0}>0 and we have

a homomorphism from \pi_{1}(\Lambda) onto Z mapping \gamma to \frac{1}{T_{0}}\int_{\gamma}\thetaarrow

PROOF. Let k_{0}\in K and k=l+k_{0}\in K . Then we must determine the
conditions that e^{il\tau_{1}(\phi,\tilde{\phi})}=1 , \phi, \overline{\psi}\in\Phi_{\lambda_{0}}(\Lambda) . These are equivalent to

(2. 2. 15) l\{\phi\{x, \sigma)-\overline{\psi}(x,\tilde{\sigma})\}\equiv 0 mod 2\pi

if \phi_{\sigma}’(x, \sigma)=0, \overline{\psi}_{\tilde{\sigma}}’(x,\tilde{\sigma})=0, \phi_{x}’(x, \sigma)=\overline{\phi}_{\overline{x}}’(x,\tilde{\sigma})=\xi . In particular, if l\neq 0, G_{\lambda_{0}}

=\{[\phi](\lambda_{0})-[\phi](\lambda_{0});\phi^{ },\overline{\psi}\in\Phi_{\lambda_{0}}(\Lambda)\} is a discrete subgroup of R . Therefore,
either G_{\lambda_{0}}=\{0\} or isomorphic to Z. In the latter case, G_{\lambda_{0}}=T_{0}Z for some
T_{0}>0 . T_{0} is independent of \lambda_{0}\in\Lambda since it is locally constant and \Lambda is
connected. On the other hand, G_{\lambda_{0}}= \{\int_{\gamma}\theta;\gamma\in\pi_{1}(\Lambda)\} and so we have a
homomorphsms

\pi_{1}(\Lambda)\ni\gammaarrow\frac{1}{T_{0}}\int_{\gamma}\theta\in Z

On the other hand, if k_{0} is the minimal element of K we then have
(k-k_{0})T_{0}\equiv 0 mod 2\pi for any k\in K. Since k>0, we thus have k\in\{k_{J}.+

2\pi m/T_{0} ; m=0,1,2, \cdots }. That either (i) or (ii) implies (2. 2. 15) is clear.
REMARK 1. The condition (i) is valid when \Lambda is simply connected or

when \Lambda is conic. Then we can take L_{Q}=L_{0} .

REMARK 2. In case of (ii), G_{R}=G_{R_{0}}= \{m_{1}\frac{hT_{0}}{2\pi}+\frac{m_{2}}{2};m_{1},m_{2}\in Z\}/Z

Thus k_{0}T_{0}/2\pi determines the group. In particular, if and only if k_{0}T_{0}/\pi\equiv 0

mod, Z, G_{k}=Z_{4} . In this case K \subset\{\frac{2\pi}{T_{0}}(m+\frac{1}{2});m=0,1,2, \cdots\} and L_{Q}=L_{0} .

Now we are going to define the canonical operator on \Lambda . We begin by
DEFINITION 2. 2. 7. We denote by I^{m}(X, \Lambda, K) the set of all distribu-

tions densities of order 1/2 A\in \mathscr{D}’(X, \Omega_{1/2}) such that A= \sum_{\phi}A_{\phi} with supp A_{\phi}

locally fifinite and
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\langle A_{\phi}, u\rangle=\Gamma_{\phi}(a_{\phi}, u) , u\in C_{0}^{\infty}(X, \Omega_{1/2} ,

supp u\subset U_{\phi}

for some a_{\phi}\in S^{m}(U_{\phi}\cross V_{\phi}, K) . Here we let run \phi in a subfamily of \Phi(\Lambda)

giving a locally fifinite covering of \Lambda by \Lambda_{\phi} .
PROPOSITION 2. 2. 8. Let A\in I^{m}(X, \Lambda, K) . Then A\in C^{\infty}(X, \Omega_{1’2},) for

every k\in K. Furthermore, let \lambda_{0}\in\Lambda be such that \pi^{A} is regular at \lambda_{J} . Thm
in a neighborhood U of \lambda_{0} in X. A=e^{\dot{\iota}ks(x)}a(x, k) . Here ds defifines \Lambda near
\lambda_{0} and a\in S_{0}^{m}(U, K) interpreted as a density of order 1/2 on U.

PROOF. We only need to discuss locally. Since \langle A_{\phi}, u\rangle=\langle\Gamma_{\phi}a_{\phi}, u\rangle

and \Gamma_{\phi}a_{\phi}\in C_{0}^{\infty}(U_{\phi}) for each k\in K, the first assertion follows. Let \phi\in\Phi(\Lambda)

defining \Lambda near \lambda_{0} . Then by Corollary 1. 1. 7, (\phi_{\sigma\sigma}’) is non-singular at (x_{0}, \sigma_{0})

\in C_{\phi} , \lambda_{0}=(x_{\iota^{1}}, \phi_{\phi}’(x_{0}, \sigma_{0})) . The second assertion now follows from Proposi-
tions 2. 1. 6 and 2. 2. 3.

If a_{\phi} is a trivialization of \chi_{\phi}a, where a\in S^{m}(\Lambda\cross K, \Omega_{1/},.\otimes L_{Q}) and \{\chi_{\phi}\} a
partition of unity relative to the covering \{\Lambda_{\phi}\} of \Lambda, then we denote the
mapping a arrow A=\sum A_{\phi}\in I^{m}(X, \Lambda, K) by \Gamma_{A} . \Gamma_{\Lambda} may depend on the choice
of coverings of \Lambda but is well-defined modulo S^{m-1}(\Lambda\cross K, \Omega_{12}\otimes L_{Q}) as will
be seen in the next proposition. If \Lambda is understood, then we omit the
subscript and write \Gamma

PROPOSITION 2. 2. 9. The map \Gamma induces the isomorphism
\overline{\Gamma} : S^{m}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q})/S^{m-1}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q})

arrow I^{m}(X, \Lambda, K)/I^{m-1}(X, \Lambda, K)

We call \overline{\Gamma} the canonical operator on 11 following Maslov.

PROOF. That \tilde{\Gamma} is a well-defined onto map follows from Proposition
2. 2. 5 and maps S^{m-1}(\Lambda\cross K, \Omega_{1./2}\otimes L_{Q}) to 0. To prove that \overline{\Gamma} is injective,
we need the following analogue of H\"ormander [7, Th. 3. 2. 4].

LEMMA2.2.10. Let \phi\in\Phi(\Lambda) and a(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\delta}, K) . Let u\in

C_{0}^{\infty}(U_{\phi}) , \rho\in C_{0}^{\infty}(U_{\phi}) . Assume that \rho is real valued. Thm (i) if there is no
point (x, \sigma)\in suppa(x, \sigma, k) with x\in suppu such that \phi_{\sigma}’=0, \phi_{x}’=\rho_{x}’ , then
\Gamma_{\phi}(a, e^{-ik\rho}u)\in S^{-\infty}(K) .

(ii) If there is precisely one point (x_{0}, \sigma_{0})\in suppa(x, \sigma, k) with x_{0}\in suppu

such that \phi_{\sigma}’(x_{0}, \sigma_{0})=0, \phi_{x}’(x_{0}, \sigma_{0})=\rho_{x}’(x_{0}) and if det S(\phi, \rho)\neq 0 at (x_{0}, \sigma_{0}) where

(2. 2. 16)
S(\phi, \rho)=(\begin{array}{ll}\phi_{\sigma\sigma}’’ \phi_{\sigma x}’’\phi_{x\sigma}’’ \phi_{xx}’’-\rho_{xx}’’\end{array})

’

then e^{-\acute{v}^{}k\phi(x_{0},\sigma_{0})+ik\rho(x_{0})}\Gamma_{\phi}(a, e^{-ik\rho}u)\in S^{m+n/2}(K) and
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(2. 2. 17)

e^{-ik\phi(x_{0},\sigma_{0})+ik\rho(x_{0})} \Gamma_{\phi}(a, e^{-ik\rho}u)-(\frac{k}{2\pi})^{n/2}\frac{e^{\frac{\pi}{4}isgnQ}}{|\det Q|\frac{1}{2}}a(x_{v}, \sigma_{0}, k)u(x_{J})\in S^{m+\frac{n}{2}}-1(K)

where Q=S(\phi, \rho) at (x_{0}, \sigma_{0}) .
PROOF. The proof is done in the same way as that of H\"ormander

[7, Th. 3. 2. 4]. In fact, (ii) follows from the stationary phase method and
(i) is true since the phase function \phi(x, \sigma)-\rho(x) has no critical points on
supp \{a(x, \sigma, k)u(x)\} and so the proof of Proposition 2. 2. 1 is applicable.

REMARK. If we choose the phase function \phi(x, \sigma) in the form \phi(x, \sigma)

=\langle x, \sigma\rangle-H(\sigma), (x, \sigma)\in U_{\phi}\cross V_{\phi}\subset X\cross R^{n}, and \rho(x)=\langle x, \eta\rangle , \eta\in V_{\phi} , then the
stationary point for \phi(x, \sigma)-\rho(x) is given by x=H_{\sigma}’(\eta), \sigma=\eta . Thus if u=1
in a neighborhood of the projection to U_{\phi} of supp a(x, \sigma, k) , then

e^{ikH(\eta)}( \frac{k}{2\pi})^{-n/2}\Gamma_{\phi}(a, e^{-ik\rho}u)\in S_{0}^{m}(V_{\phi}, K)

modulo S^{-\infty}(V_{\phi}, K) as a function of \eta\in V_{\phi} . Furthermore

a(H_{\eta}( \eta), \eta, k)-e^{ikH(\eta)}(\frac{k}{2\pi})^{-n/2}\Gamma_{\phi}(a, e^{-ik\rho}u)\in S_{0}^{m-1}( ^{V_{\phi}}

modulo S^{-\infty}(V_{\phi}, K) . These follow from the stationary phase method, namely
the part (ii) of Lemma 2. 2. 10, combined with the part (i) . Therefore, we
see from Proposition 2. 2. 2 that e^{ikH(\eta)}( \frac{k}{2\pi})^{-n’2}\Gamma_{\phi}(a, e^{-ik\rho}u) determines a(x, \sigma,

k) modulo S^{m-1}(U_{\phi}\cross V_{\phi}, K) in the above case.
To complete the proof of Proposition 2. 2. 9, let A= \sum A_{\phi_{f}} and for a

\lambda_{0}\in\Lambda_{\phi_{0}} , \lambda_{0}=(x_{0}, \xi_{0})\neq(x, \phi_{fx}’(x, \sigma_{f})),\phi_{j\sigma_{f}}’(x, \sigma_{f}))=0 , (x, \sigma_{j})\in suppa_{j} , j\neq 0, a_{j}=a_{\phi_{f}} .
We claim that if A\in I^{m-1}(X, \Lambda, K), then a_{0}(x, \sigma, k)\in S^{m-1}(U_{\phi_{0}}\cross V_{\phi_{0}}, K) . Let
\phi_{0} and \rho be as in the above Remark with U_{\phi_{0}} a small neighborhood of x_{t},
in X and V_{\phi_{0}} a small neighborhood of \xi_{0} in R^{n} so that \Lambda_{\phi_{0}}\cap\Lambda_{\phi_{f}}=\emptyset, j\neq 0 .
Then we have as a function of \eta\in V_{\delta_{0}} , e^{ikH(\eta)}(A_{0}, e^{-ek\rho}.u)\in S^{m-1+n/2}(V_{\phi}, K)

since \langle A_{f}, 9^{i\rho k}u\rangle\in S^{-\infty}(V_{\phi}, K) if j\neq 0 and A_{0}=B- \sum A_{j} , B\in I^{m-1}(X, \Lambda, K) .
Therefore, as a function of \eta\in V_{\phi_{0}} , a_{\theta}(H_{\eta}’(\eta), \eta, k)\in S^{m-1}(V_{\phi_{0}}, K) , whence
a_{0}(x, \eta, k)\in S^{m-1}(U_{\phi_{0}}\cross V_{\phi_{0}}, K) .

COROLLARY 2. 2. 11. Let \lambda_{0}=(x_{0}, \xi_{0})\in\Lambda and \phi,\overline{\psi}\in\Phi(\Lambda) phase functions
defifining \Lambda near \lambda_{0} , \xi_{0}=\phi_{x}’(x_{0}, \sigma_{0})=\overline{\psi}_{x}’(x_{0},\tilde{\sigma}_{0}) , \phi_{\sigma}’(x_{0}, \sigma_{0})=0, \phi_{\tilde{\sigma}}’(x_{0},\tilde{\sigma}_{0})=0 . Let
\rho\in C^{\infty}(U_{\phi}\cap U_{\tilde{\sigma}}) such that \rho is real and d\rho intersects with \Lambda transversally
at \lambda_{0} . Let a(x, \sigma, k)\in S_{0}^{m}(U_{\phi}\cross V_{\phi} , K) and \tilde{a}(x,\tilde{\sigma}, k)\in S_{0}^{m}(U_{\tilde{\phi}}\cross V_{\overline{\phi}}, K) . Then
for any u\in C_{0}^{\infty}(U_{\phi}\cap U_{\tilde{\phi}})
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(2. 2. 18) \Gamma_{\phi}(a, e^{-ik\rho}u)=\Gamma_{\overline{\phi}}(\tilde{a}, e^{-ik\prime}u)

mod S^{m+\frac{n}{2}1}(K)

if and only if (2. 2. 11) holds.

PROOF. Since \Lambda and d\rho intersect transversally at \lambda_{0}, it follows that
matrices S(\phi, \rho) and S(\overline{\psi}, \rho) as given by (2.2.16) are non-singular at (x_{0}, \sigma_{0})

and (x_{0},\tilde{\sigma}_{0}) respectively. By (2. 2. 17), (2. 2. 18) is then equivalent to

(2. 2. 19) e^{ik\phi(x_{0},\sigma_{0})+\frac{ni}{4}sgnQ}|\det Q|^{-1/2}a(x_{0}, \sigma_{0}, k)

=e^{ik\tilde{\phi}(x_{0},\tilde{\sigma}_{0})+\frac{\pi i}{4}8gn\tilde{Q}}|\det\overline{Q}|^{-1/2}\tilde{a}(x_{0},\tilde{\sigma}_{0}, k)

mod S^{m-1}(K) . Here Q and \overline{Q} are the matrices S(\phi, \rho) and S(\overline{\psi}, \rho) evaluated
at (x_{0}, \sigma_{0}) and (x_{0},\tilde{\sigma}_{0}) respectively. Thus what we have to verify is

(2. 2. 20) sgn Q- sgn \overline{O_{\vee}}=sgn\phi_{\sigma\sigma}’(x_{0}, \sigma_{0})- sgn \overline{\psi}_{\sigma\sigma}’(x_{0},\tilde{\sigma}_{0})

and

(2. 2. 21) \sqrt{dC_{\tilde{\phi}}}=\frac{|\det S(\phi,\rho)|^{1/2}}{|\det S(\hat{\phi}^{-},\rho)|^{12}},\sqrt{dC_{\phi}}

However, (2. 2. 20) and (2. 2. 21) are clearly true when \phi and \overline{\psi} have the
form \phi(x, \xi)=\langle x, \xi\rangle-H(\xi) and \tilde{\psi}(x, \xi)=\langle x, \xi\rangle-\overline{H}(\xi) since then H(\xi)-\overline{H}(\xi)

const, near \xi=\xi_{0} . By increasing or decreasing \sigma-variables and by equiva-
lence, we can reduce all phase functions \phi and \overline{\psi} to the above case.

Let A\in I^{m}(X, \Lambda, K) and B\in I^{m^{l}}(X, \Lambda, K), A=\Gamma a, B=\Gamma b, a\in S^{m}(\Lambda\cross K,
\Omega_{1/2}\otimes L_{Q}) and b\in S^{m^{l}}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}) . Since for each fixed k\in K, A and
B are C^{\infty} densities of order 1/2 on X, we can then form

(A, B)= \int_{X}AB

if supp A\cap supp B is compact. In particular, if we note that the complex
conjugate of a section of L_{Q} gives a section of L_{Q}^{-1}, we can then form a
coupling [a, b] for a\in S^{m}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}) and b\in S^{m^{l}}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}) thus
giving a density on \Lambda . In fact, if in local trivializations of \Lambda, a is given
by (2. 2. 14) and b by

b_{\tilde{\phi}}\sqrt{dC_{\tilde{\phi}}}=e^{ik\tau_{1}(\phi,\tilde{\phi})}i^{\tau_{0}(\phi},f)b_{\phi}\sqrt{dC_{\phi}}

:

then [a, b] is given by
a_{i}\overline{b}_{\tilde{\phi}}dC_{\tilde{\phi}}=a_{\phi}\overline{b}_{\phi}dC_{\phi}\iota

then we have
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PROPOSITION 2. 2. 12. Let a\in S^{\eta\iota}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}) and b\in S^{m^{r}}(\Lambda\cross K,
\Omega_{1/2}\otimes L_{Q}) such that supp a\cap suppb compact, then

(2.2. 22) ( 1^{\gamma}a, \Gamma b)=\int_{\Lambda}[a, b] modulo S^{m+m^{l}-1}(K) .

Since (2.2.22) is an identity modulo S^{m+m^{r}-1}(K) this does not depend on the
defifinition of \Gamma

PROOF. Let a be given by a_{\phi} and b by b_{\phi} . We only need to prove

\int(\Gamma_{\phi}a_{\phi})(x, k)\overline{(\Gamma_{\phi}b_{\phi})(x,k)}dx=\int a_{\phi}\overline{b}_{\phi}dC_{\phi}

modulo S^{m+m’-1}(K) . Let us choose \phi in the form \langle x, \xi\rangle-H(\xi) . Then
(2. 2. 23)

\int(\Gamma_{\phi}a_{\phi})(x, k)\overline{(\Gamma_{\phi}b_{\phi})(x,k)}dx

=( \frac{k}{2\pi})^{n}\int\int\int e^{ik\langle x,\xi-r\rangle-ikH(\xi)+ikH(\eta)}’ a_{\phi}(x, \xi, k)\overline{b_{\phi}(x,\eta,k)}dxd\xi d\eta .

If we apply the stationary phase method in x and \eta, then (2.2.23) becomes

\int a_{\phi}(H_{\xi}’(\xi), \xi, k)\overline{b_{\phi}(H_{\xi}’(\xi),\xi,k)}d\xi

modulo S^{m+m’-1}(K) as should be proved.

2. 3. Some supplementary comments on the canonical operator \tilde{\Gamma}.
When \Lambda is a conic Lagrangean manifold in T^{*}X\backslash 0, then H\"ormander [7]

proved the following isomorphism

\tilde{\Phi} : S_{\rho}^{m+\frac{n}{4}}(\Lambda, \Omega_{1/2}\otimes L)/S_{\rho}^{m+\frac{n}{4}+1-2\rho}(\Lambda, \Omega_{1/2}\otimes L)

arrow I_{\rho}^{m}(X, \Lambda)/I_{\rho}^{m+1-2\rho}(X, \Lambda) .
Here the elements of I_{\rho}^{m}(X, \Lambda) is locally defined by the oscillatory integral

\langle A, u\rangle=(2\pi)^{-(n+2N)/4}\int\int e^{i\phi(x,\theta)}a(x, \theta)u(x)dxd\theta

for a \in s_{\rho}^{m+_{\frac{n}{4}}-}\frac{N}{2}(U\cross\Gamma) , U\cross\Gamma\subset X\cross R^{N}\backslash 0 . Therefore if we compare to
our discussions we see that the ideas of Maslov’s canonical operator and
Fourier integral operators are very close. This is of the formal nature.
However we have a more precise correspondence when we consider a sta-
tionary Lagrangean manifold. Namely, we have the following

PROPOSITION 2. 3. 1. Let \tilde{\Lambda} be a non-stationary Lagrangean submanifold
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of T^{*}\tilde{X}\backslash 0,\tilde{X}=X\cross R, and \Lambda a stationary Lagrangean manifold in T^{*}X

corresponding to \tilde{\Lambda} . Let a\in S_{1}^{m+(n+1)14}(\tilde{\Lambda}, \Omega_{1/2}\otimes L) such that the projection of
supp a to the fifibers of T^{*}R by T^{*}\tilde{X}=T^{*}X\cross T^{*}R is compact. Then

there is \tilde{a}\in S^{\overline{m}}(\Lambda\cross K, \Omega_{1/2}\otimes L_{Q}),\tilde{m}=m+^{\frac{n}{4}-}\frac{1}{4}, such that

\int e^{-itk}\Phi adt\equiv\Gamma\tilde{a}

mod \Gamma^{m-1}(X, \Lambda, K) . Here \Phi a and \Gamma\tilde{a} denote respectively represmtatives in
I_{1}^{m}(X, \Lambda) and in I^{\overline{m}}(X, \Lambda, K) determined by a and \tilde{a} .

PROOF. Let \lambda_{0}\in\Lambda and U a neighborhood of \pi(\lambda_{0}) in X. By the choice
of \tilde{\Lambda} and \Lambda, we have p:\tilde{\Lambda}\cap q^{-1}(1)-\Lambda . Then supp a np^{-1}(\lambda) is finite when
\lambda is in a neighborhood of \lambda_{0} in \Lambda . Let \phi_{j}(x, t, \theta_{f}) be conic non-degenerate
phase functions in \Gamma_{j}\subset X\cross R^{N_{f}}\backslash 0 defining \tilde{\Lambda} near \tilde{\lambda}_{f}\in suppa\cap q^{-1}(\lambda_{0}) . Then
we have

\langle\Phi a, u\rangle=\sum_{f=1}^{l}(2\pi)^{-(n+1+2N_{f})/4}\int\int\int_{r_{f}}e^{i\phi(x,t,\theta)}ffa_{f}(x, t, \theta_{j})u(x, t)dxdtd\theta_{f},

where a_{f}\in S_{1}^{m+(n+1-2N_{j})/4}(R^{n+1}\cross R^{N_{f}}) with cone supp a_{f}\subset\Gamma_{f} . We may take
\phi_{j}(x_{1}, t, \theta_{f}) in the form \phi_{f}(x, t, \theta_{f})=\langle x, \xi\rangle+(t-L_{f})\xi_{0}-H(\xi, \xi_{0}) , H(\xi, \xi_{0}) posi-
tively homogeneous of degree 1 in (\xi, \xi_{0})\in\Gamma\subset R^{n+1}\backslash 0 . Then a_{f}(x, t, \xi, \xi_{0})\in

S_{1}^{m-(n+1)/4}(R^{n+1}\cross R^{n+1}) , cone supp a_{f}\subset\Gamma

1 Furthermore we may assume that
the projection of supp a_{f} to the t-axis lies in a small neighborhood of L_{f} .
Thus if we take u(x, t)=u(x)e^{-ikt} , then by H\"ormander [7, Th. 3. 2. 4]

\langle\Phi a, ue^{-kt}\rangle=(2\pi)^{-3(n+1)/4}\int\cdots\int e^{nj\{\langle x,\xi\rangle+t\xi_{0}-H(\xi,\xi_{0})\}}

\cross\sum_{f=1}^{l}e^{-ikL_{f}}a_{f}(x, t+L_{f}, \xi, \xi_{0})u\{x)e^{-ikt}dxdtd\xi d\xi_{0r}

Let \chi\in C_{0}^{\infty}(R) with \chi=1 near t=0 so that \chi(t)a_{f}(x, t+L_{f}, \xi, \xi_{0})=a_{f}(x, t+L_{f},
\xi, \xi_{0}) . Choose, U\cross I\cross V\cross R so that (x, t, \xi, \xi_{0})\in U\cross I\cross V\cross R_{+} if and only
if (x, t, \xi\xi_{0}, \xi)\in\Gamma We may assume that V is a bounded open set in R^{n} .
Then

\langle\Phi a, ue^{-ikt}\rangle=(2\pi)^{-3(n+1)/4}\int\cdots\int_{U\cross I\cross V\cross R_{+}}e^{i\xi_{0}t\langle x\xi,\rangle+t-H(\xi,1)\}}

\cross\xi_{0}^{n}\sum_{f=1}^{l}e^{-ikL_{f}}a_{f}(x, t+L_{f}, \xi_{0}\xi, \xi_{0})u\{x)e^{-ikt} dxdtd\xi d\xi_{0\tau}

Let

\tilde{a}_{f}(x, \xi, k)=(2\pi)-3/4eik\{H(\xi,1)-\langle x,\xi\rangle I\int\int_{I\cross R^{n}}e^{J\xi_{0}\{\langle x,\xi\rangle+t-H(\xi,1)\}}’

\cross\xi_{0}^{n}a_{j}(x, t+L_{f}, \xi_{0}\xi, \xi_{0})e^{-ikt}\chi(t) dtd \xi_{0} .
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for (x, \xi)\in U\cross V. This is an oscillatory integral and for fixed x, \xi, a_{f}(x,
t+L_{j}, \xi_{0}\xi, \xi_{0})\in S_{1}^{m-(n+1)/4}(R\cross R) . Furthermore we may assume that a_{f}=0 if
(x, \xi) lies outside a compact set in U\cross V. Then

\langle\Phi a, ue^{-ikt}\rangle=

=(2 \pi)^{-3n/4}\int\cdots\int_{U\cross V}e^{ik\{\langle x,\xi\grave,-H(\xi,1)l}\sum_{f=1}^{l}e^{-ikL_{f}}\tilde{a}_{f}(x, \xi, k.)u(x)dxd\xi.

However, by H\"ormander [7, Th. 3. 2. 4],

\tilde{a}_{f}(x, \xi, k)\in S_{0}^{m+3n/4-1/4}(U\cross V, K)

and if we set \tilde{a}(x, \xi, k)=(\frac{k}{2\pi})^{-n/2}(2\pi)^{-3n/4}\sum_{j=1}^{l}e^{-ikL_{j}}\tilde{a}_{j}(x, \xi, k) , then \tilde{a}(x, \xi, k)\in

S_{0}^{m+n/4-1/4}(U\cross V, K) and
\langle\Phi a, ue^{-ikt}\rangle=\langle\Gamma\tilde{a}, u\rangle
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