Translator Disclaimer
November 2008 Nonlinear scattering for a system of one dimensional nonlinear Klein-Gordon equations
Nakao HAYASHI, Naumkin I. PAVEL
Hokkaido Math. J. 37(4): 647-667 (November 2008). DOI: 10.14492/hokmj/1249046362

Abstract

We consider a system of nonlinear Klein-Gordon equations in one space dimension with quadratic nonlinearities

(∂t2+∂x2+ mj2)uj = Nj(∂u),

j = 1, . . . , l. We show the existence of solutions in an analytic function space. When the nonlinearity satisfies a strong null condition introduced by Georgiev we prove the global existence and obtain the large time asymptotic behavior of small solutions.

Citation

Download Citation

Nakao HAYASHI. Naumkin I. PAVEL. "Nonlinear scattering for a system of one dimensional nonlinear Klein-Gordon equations." Hokkaido Math. J. 37 (4) 647 - 667, November 2008. https://doi.org/10.14492/hokmj/1249046362

Information

Published: November 2008
First available in Project Euclid: 31 July 2009

zbMATH: 1172.35454
MathSciNet: MR2474169
Digital Object Identifier: 10.14492/hokmj/1249046362

Subjects:
Primary: 35L70
Secondary: 35L15

Rights: Copyright © 2008 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.37 • No. 4 • November 2008
Back to Top