Translator Disclaimer
February 2007 On the universal Burnside module
Ryousuke FUJITA
Hokkaido Math. J. 36(1): 121-127 (February 2007). DOI: 10.14492/hokmj/1285766654

Abstract

Let $G$ is a group. In the case where $G$ is finite, Oliver-Petrie defined a Burnside module $\Omega(G, {\cal F})$ consisting of all equivalent classes of $\cal F$-complex. The purpose of this paper is to define the universal Burnside module $U(G, {\cal F})$. If $G$ is finite, we have $U(G, {\cal F}) \cong \Omega(G, {\cal F})$.

Citation

Download Citation

Ryousuke FUJITA. "On the universal Burnside module." Hokkaido Math. J. 36 (1) 121 - 127, February 2007. https://doi.org/10.14492/hokmj/1285766654

Information

Published: February 2007
First available in Project Euclid: 29 September 2010

zbMATH: 1151.57037
MathSciNet: MR2309825
Digital Object Identifier: 10.14492/hokmj/1285766654

Subjects:
Primary: 57S15
Secondary: 57S25

Rights: Copyright © 2007 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
7 PAGES


SHARE
Vol.36 • No. 1 • February 2007
Back to Top