Translator Disclaimer
February 2007 On the Lefschetz module
Ryousuke FUJITA
Hokkaido Math. J. 36(1): 111-120 (February 2007). DOI: 10.14492/hokmj/1285766653

Abstract

Let $G$ be a finite group. We define a Lefschets module $L(G, \Pi)$ which consists of equivalent classes of all $\Pi$-maps and prove that it is isomorphic to the Burnside module $\Omega(G, \Pi)$.

Citation

Download Citation

Ryousuke FUJITA. "On the Lefschetz module." Hokkaido Math. J. 36 (1) 111 - 120, February 2007. https://doi.org/10.14492/hokmj/1285766653

Information

Published: February 2007
First available in Project Euclid: 29 September 2010

zbMATH: 1145.57027
MathSciNet: MR2309824
Digital Object Identifier: 10.14492/hokmj/1285766653

Subjects:
Primary: 57S17
Secondary: 57S25

Rights: Copyright © 2007 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
10 PAGES


SHARE
Vol.36 • No. 1 • February 2007
Back to Top