Open Access
Translator Disclaimer
February 2006 Bounds in time for the Klein-Gordon-Schr\"odinger and the Zakharov system
Axel GR\"UNROCK, Hartmut PECHER
Hokkaido Math. J. 35(1): 139-153 (February 2006). DOI: 10.14492/hokmj/1285766303

Abstract

It is shown that the spatial Sobolev norms of regular global solutions of the (2 + 1), (3 + 1) and (4 + 1)-dimensional Klein-Gordon-Schr\"odinger system and the (2+1) and (3+1)-dimensional Zakharov system grow at most polynomially with a bound depending on the regularity class of the data. The proof uses the Fourier restriction norm method.

Citation

Download Citation

Axel GR\"UNROCK. Hartmut PECHER. "Bounds in time for the Klein-Gordon-Schr\"odinger and the Zakharov system." Hokkaido Math. J. 35 (1) 139 - 153, February 2006. https://doi.org/10.14492/hokmj/1285766303

Information

Published: February 2006
First available in Project Euclid: 29 September 2010

zbMATH: 1105.35115
MathSciNet: MR2225086
Digital Object Identifier: 10.14492/hokmj/1285766303

Subjects:
Primary: 35L05
Secondary: 35Q55

Keywords: global solutions , growth bounds , Klein-Gordon-Schr\"odinger

Rights: Copyright © 2006 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.35 • No. 1 • February 2006
Back to Top