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Polysuperharmonic functions on a harmonic space
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Abstract. In the context of the axiomatic potential theory, we introduce the notions of

polyharmonic functions and polypotentials on a Brelot harmonic space Ω. For these func-

tions, we prove some results analogous to the Riesz decomposition, balayage, domination

principle, etc., which are usually associated with harmonic and superharmonic functions

on Ω. We also consider the polyharmonic classifications of the harmonic spaces.
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1. Introduction

The potential theoretic study of polyharmonic functions u defined by
∆mu = 0 on Rn covers different aspects of polysuperharmonic functions
v defined by (−∆)iv ≥ 0 for 1 ≤ i ≤ m, the existence of polypotentials,
the generalized Liouville-Picard theorem, the analogue of the Laurent de-
velopment for polyharmonic functions defined on an annulus, etc. This
analysis is facilitated by the fact that the functions satisfying (−∆)iv ≥ 0
are δ-subharmonic almost everywhere and that the continuous functions u

satisfying the condition (−∆)mu = 0 have an Almansi representation.
We initiate in this note a similar study in the framework of the ax-

iomatic potential theory. After defining polyharmonic functions on a Brelot
harmonic space Ω, we introduce the notions of polysuperharmonic functions
and polypotentials on the domains in Ω. Then, for these functions, we ob-
tain certain results analogous to the Laurent decomposition, the Liouville-
Picard theorem, the Riesz decomposition, balayage, domination principle
which are usually associated with harmonic and superharmonic functions
on Ω. Also we remark on the classification of the harmonic spaces Ω based
on the existence of polypotentials on Ω.

2000 Mathematics Subject Classification : 31D05, 31B30.
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2. Preliminaries

Smyrnélis [12] has developed an axiomatic theory for biharmonic func-
tions on a locally compact space X. A pair of continuous functions (h1, h2)
defined on a domain ω in X is called biharmonic if h1 and h2 satisfy locally
some mean value property related to the solution of the Riquier problem
in Rn. The space X along with this sheaf of biharmonic functions is called
a biharmonic space if an axiom of regularity, an axiom of convergence and
an axiom of separability are satisfied. Along with these hypotheses, it is
assumed that there exists a special pair (p1, p2) of potentials on X. Con-
sequently, such a biharmonic space resembles Rn, n ≥ 5, and the functions
studied in this frame work on X are generlizations of the smooth functions u

in Rn satisfying the condition (−∆)ju > 0 for j = 0, 1 and 2 rather than the
larger class of functions v satisfying the only condition (−∆)2v > 0. In such
a space he obtained many results related to Riezs decomposition, balayage,
and domination principle in the axiomatic case of a harmonic space with
potentials > 0. However, this axiomatic set-up, specially devised to extend
the study of biharmonic functions in Rn, n ≥ 5, to a locally compact space
X, does not easily yield to the investigation of polyharmonic functions of
order m > 2 and the associated polyharmonic classification theory in X.

For this purpose, we work here on a locally compact space Ω which is
a harmonic space where the converse to the local Riesz representation of
positive superharmonic functions is valid. In Ω, a polyharmonic function is
a δ-superharmonic function by definition and hence may not necessarily be
continuous. This allows a certain generality to the study of polyharmonic
functions on Ω. (It is not rather easy to verify whether a Riemann surface
R is a biharmonic space in the sense of Smyrnélis since the Laplacian ∆ is
not an invariant operator under a parametric change on R; see the remark
on Sario et al. [11, p. 6]. However adding some assumptions occasionally, we
can see that a polyharmonic space Ω of order 2 is also a biharmonic space
in the sense of [12]).

Let Ω be a locally compact space with a countable base provided with
a sheaf H of harmonic functions satisfying the axioms 1, 2 and 3 of Brelot
[6, pp. 13–14]. Fix a Radon measure λ on Ω such that each superharmonic
function on a domain ω in Ω is locally λ-integrable. Such measures can be
constructed by using the harmonic measures on Ω (see [3]). Let us assume
also that the axiom of local proportionality (see [6, p. 40]) and the axiom
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A∗ of quasi-analyticity (see De La Paradelle [8, p. 391]) are verified on Ω,
and the constants are harmonic on Ω. With these restrictions we call Ω =
(Ω, H, λ) a harmonic space.

Examples of harmonic spaces

1) A Riemannian manifold R, where the harmonic functions are defined
by means of the Laplace-Beltrami operator ∆, is a harmonic space;
here we take dλ as the volume measure.

2) A Riemann surface with the usual definition of harmonic functions.
3) The Euclidean space Rn, n ≥ 1, with dλ as the Lebesgue measure.
4) A domain Ω in Rn, n ≥ 2, with harmonic functions defined by means

of C2-solutions of a second order elliptic differential operator

Lu =
∑

aij
∂2u

∂xi∂xj
+

∑
bi

∂u

∂xi

with locally Lipschitz coefficients, as given in Mme.R.M.Herv é [7, pp.
560–563] and dλ as the Lebesgue measure.

We start with the following lemma (originally proved in the classical
case Rn by Brelot [5]; see also Arsov [4]), proved by using an approximation
lemma given in De La Pradelle [8, Théorème 10].

Lemma 2.1 ([1, Theorem 4.2]) Let µ be a positive Radon measure on
an open set ω in a harmonic space Ω = (Ω, H, λ). Then there exists a
superharmonic function s on ω such that µ is the measure associated with
s in a local Riesz representation. (We represent this correspondence by the
equation (−L)s = µ on ω.)

As a consequence, if f is a locally dλ-integrable function on an open set
ω in Ω, there exists a δ-superharmonic function u on ω with the associated
signed measure fdλ. We represent this as (−L)u = f on ω. Since we
are assuming that each superharmonic function is locally dλ-integrable, if
u is a δ-superharmonic function on ω, then there exists a δ-superharmonic
function v on ω such that (−L)v = u on ω.

3. Polysuperharmonic functions

In this section, we define polyharmonic and polysuperharmonic func-
tions on a domain ω in a harmonic space Ω = (Ω, H, λ); the Laurent de-
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composition theorem and the Liouville-Picard theorem are proved for poly-
harmonic functions; and the notion of the greatest polyharmonic minorant
of a polysuperharmonic function is made precise.

Definitions 3.1 1) Let (ui)m≥i≥1 be m functions defined on an open set
ω in a harmonic space Ω = (Ω, H, λ) such that (−L)uj+1 = uj , 1 6 j 6
m−1. We say that u = (ui)m≥i≥1 is a polysuperharmonic function of order
m or shortly m-superharmonic (resp. m-subharmonic, resp. m-harmonic) if
u1 is superharmonic (resp. subharmonic, resp. harmonic).
2) Given a superharmonic function s on ω, by using Lemma 2.1, we can
construct an m-superharmonic function u = (ui)m≥i≥1 on ω such that u1 =
s. We say that u is generated by s.
3) If u = (ui)m≥i≥1 is m-superharmonic on ω, the harmonic support of u1

is called the m-harmonic support of u. Let v = (vi)m≥i≥1 be another such
function. We say that u ≥ v if and only if ui ≥ vi for every i. In particular,
u ≥ 0 if and only if ui > 0 for every i.

Theorem 3.2 In a harmonic space Ω, let ω be an open set and K a
compact set ⊂ ω. Let h = (hi)m≥i≥1 be an m-harmonic function on ω\K.
Then there exists an m-harmonic function s on Ω\K and an m-harmonic
function t on ω such that h = s− t on ω\K.

Proof. Since h1 is harmonic on ω\K, by [2, Lemma 5] there exist a har-
monic function s1 on Ω\K and a harmonic function t1 on ω such that
h1 = s1 − t1 on ω\K. Let (−L)f = s1 on Ω\K and (−L)g = t1 on ω,
so that (−L)h2 = h1 = (−L)f − (−L)g on ω\K. Hence h2 = f − g +
(a harmonic function H2) on ω\K. Then as above, we write H2 = u2 − v2

on ω\K where u2 is harmonic on Ω\K and v2 is harmonic on ω. Write s2 =
f + u2 and t2 = g + v2 so that s2 is defined on Ω\K such that (−L)s2 = s1

and t2 is defined on ω such that (−L)t2 = t1 on ω. Note h2 = s2 − t2 on
ω\K.

Proceeding in the same way, we construct s = (si)m≥i≥1 on Ω\K and
t = (ti)m≥i≥1 on ω such that h = s − t on ω\K. Since s1 and t1 are
harmonic, s is m-harmonic on Ω\K and t is m-harmonic on ω. ¤

Corollary 3.3 Let u = (ui)m≥i≥1 be an m-superharmonic function de-
fined outside a compact set in Ω. Then there exist an m-superharmonic
function s = (si)m≥i≥1 on Ω and an m-harmonic function h = (hi)m≥i≥1

outside a compact set, such that u = s + h outside a compact set in Ω.



Polysuperharmonic functions on a harmonic space 319

Proof. Given the superharmonic function u1outside a compact set in Ω,
by using the Dirichlet solution, we can assume that u1is harmonic on ω\K,
where K is a compact set in a relatively compact open set ω. Then, by
using the above Laurent decoposition we can see that there exist a harmonic
function h1 on Ω\K and a harmonic function t on ω such that u1 = h1−t on
ω\K. Define s1 = u1−h1 on Ω\K and = −t on ω. Then s1 is superharmonic
on Ω and u1 = s1 + h1 on Ω\K.

Let (−L)s′2 = s1 and (−L)h′2 = h1. Then (−L)u2 = u1 = (−L)s′2 +
(−L)h′2 on Ω\K, so that u2 = s′2 + h′2 + v on Ω\K where v is harmonic.
Write v = f + g outside a compact set, where f is harmonic on Ω and g

is harmonic outside a compact set. Write s2 = s′2 + f and h2 = h′2 + g.
Then (−L)s2 = s1 on Ω and (−L)h2 = h1 outside a compact set; moreover,
u2 = s2 + h2 on Ω\K.

Proceeding similarly, construct s3 and h3 such that (−L)s3 = s2 on Ω
and (−L)h3 = h2 outside a compact set; moreover, u3 = s3 + h3 on Ω\K.
This method leads to the construction of an m-superharmonic function s =
(si)m≥i≥1 on Ω and an m−harmonic function h = (hi)m≥i≥1 outside a
compact set such that u = s + h outside a compact set in Ω. ¤

Remark If we place some restrictions on the harmonic space Ω, the de-
compositions in the above theorem and corollary can be expressed in a
unique fashion (by using Theorem 4.14).

The classical Liouville-Picard theorem states that every positive har-
monic function on Rn, n ≥ 2, is a constant. As a consequence, there does
not exist any positive locally integrable function u on Rn such that (−∆)u =
1 in the sense of distributions. For, since ∆(|x|2) = 2n, if (−∆)u = 1, then
we should have u(x) = −(|x|2)/(2n) + h(x) a.e., where h(x) is harmonic on
Rn; if u ≥ 0 also, then h(x) ≥ (|x|2)/(2n) and hence h is a constant, not
possible.

Theorem 3.4 The following are equivalent in Ω:
1) For any m ≥ 1, a positive m-harmonic function u = (ui)m≥i≥1 is a

constant u = (α, 0, . . . , 0).
2) Every positive harmonic function on Ω is a constant and there is no

function v ≥ 0 such that (−L)v = 1 on Ω.
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Proof. 1) =⇒ 2) Let h ≥ 0 be harmonic on Ω. Since h is 1-harmonic, by
(1), h is a constant. Now, suppose that there is a function v > 0 on Ω such
that (−L)v = 1. Then (v, 1) is a 2-harmonic function > 0. Hence by (1),
(v, 1) must be a constant of the form (α, 0), a contradiction.

2) =⇒ 1) Let u = (ui)m≥i≥1 be a positive m-harmonic function on Ω.
Then, u1 is harmonic ≥ 0, so that u1 is a constant c ≥ 0. Suppose c > 0;
then (−L)u2 = u1 = c so that (−L)v = 1 if v = (1/c)u2, a contradiction.
Hence c = 0, that is u1 = 0 so that u2 is harmonic. Since u2 ≥ 0, it should
be a constant. Proceeding as above, we should have u2 ≡ 0, then u3 ≡
0, . . ., and um−1 ≡ 0. Consequently, since (−L)um = 0, um is harmonic;
also since um ≥ 0, it is a constant α ≥ 0. Thus, u = (α, 0, . . . , 0). ¤

Corollary 3.5 (Liouville-Picard theorem for polyharmonic functions on
Rn) In Rn, n ≥ 2, if u is a locally integrable function such that (−∆)iu ≥
0 for 0 ≤ i ≤ m− 1 and (−∆)mu = 0, then u is a constant in the sense of
distributions.

Remark The above corollary in Rn can be deduced also from the results
of Nicolescu [10, pp. 16–17].

Theorem 3.6 Let s be an m-superharmonic function on a domain ω in
Ω, and let t be an m-subharmonic function on ω such that t ≤ s on ω. Then
there exists an m-harmonic function h on ω such that t ≤ h ≤ s on ω.

Proof. Let s = (si)m≥i≥1 be an m-superharmonic function on ω and t =
(ti)m≥i≥1 be an m-subharmonic function on ω such that t ≤ s on ω. Let
h1 be the greatest harmonic minorant of s1 on ω so that s1 ≥ h1 ≥ t1. Let
(−L)H2 = h1; choose f2 and g2 such that (−L)f2 = s1 − h1 and (−L)g2 =
t1−h1. Then f2 is superharmonic and g2 is subharmonic such that (−L)s2 =
s1 = (−L)f2+(−L)H2 and (−L)t2 = t1 = (−L)g2+(−L)H2. Consequently,
s2 = f2 + H2 + (a harmonic function); write s2 = f ′2 + H2, where f ′2 is a
superharmonic function on Ω. Similarly, write t2 = g′2 + H2, where g′2 is
a subharmonic function on Ω. Since s2 ≥ t2 by hypothesis, f ′2 ≥ g′2. Let
u be the greatest harmonic minorant of f ′2 so that f ′2 ≥ u ≥ g′2. Define
h2 = H2 + u. Then (−L)h2 = h1 and s2 ≥ h2 ≥ t2.

Remark that if h′2 is such that (−L)h′2 = h′1 ≤ h1 and s2 ≥ h′2 ≥ t2,
then h2 ≥ h′2. For, in this case (−L)h′2 = h′1 ≤ (−L)H2 so that h′2 = H2 +
(a subharmonic function v). This implies f ′2 + H2 = s2 ≥ h′2 = H2 + v so
that v is a subharmonic minorant of f ′2. Since u is the greatest harmonic
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minorant of f ′2, u ≥ v. Consequently, h′2 = H2 + v ≤ H2 + u = h2.
Proceeding in the same way, we construct h = (hi)m≥i≥1 which is an

m-harmonic function such that t ≤ h ≤ s on ω. This function h has the
additional property that if h′ is any m-harmonic function on ω such that
t ≤ h′ ≤ s, then h′ ≤ h. ¤

Remark The m-harmonic function h on ω constructed as above such that
t ≤ h ≤ s is called the greatest m-harmonic minorant of s on ω.

4. Polypotentials

In this section, we define polypotentials on domains ω in a harmonic
space; they are needed while considering the Riesz decomposition, the bal-
ayage and the domination principle associated with positive m-harmonic
functions on ω. We use the expression “near infinity in ω” to mean “out-
side a compact set in ω”.

Definition 4.1 An m-superharmonic function defined on a domain ω in
Ω is said to be a polypotential of order m or simply an m-potential if its
greatest m-harmonic minorant on ω is 0. If there exists an m-potential > 0
on ω, we say that ω is an m-potential domain.

Theorem 4.2 An m-superharmonic function u = (ui)m≥i≥1 on a domain
ω is an m-potential if and only if each ui is a potential on ω.

Proof. First note that since u ≥ 0, each ui is a positive superharmonic
function.

1) Let the m-superharmonic function u be an m-potential, that is the
greatest m-harmonic minorant of u is 0. Then, ui is a potential for all i,
1 ≤ i ≤ m. For otherwise, let i be the smallest index such that ui is not
a potential. If i = m, let hm > 0 be the greatest harmonic minorant of
um on ω. Then h = (hm, 0, . . . , 0) is m-harmonic on ω and 0 ≤ h ≤ u, a
contradiction.

Suppose i < m. Let hi > 0 be the greatest harmonic minorant of ui on
ω. Let (−L)si+1 = hi and (−L)ti+1 = ui − hi on ω. Since (−L)ui+1 = ui,
ui+1 = si+1 + ti+1 + (a harmonic function H) on ω. Note that si+1 and
ti+1 are superharmonic functions on ω and ui+1 ≥ 0, so that si+1 and ti+1

have subharmonic minorants. Let hi+1 and t′i+1 be the potential parts of
si+1 and ti+1 in the Riesz decomposition. We can then write ui+1 = hi+1 +
t′i+1 + (a harmonic function H ′) on ω. Since −H ′ ≤ hi+1 + t′i+1, −H ′ ≤ 0,
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so that hi+1 ≤ ui+1 on ω and (−L)hi+1 = (−L)si+1 = hi.
Proceeding in the same way, we obtain h = (hm, . . . , hi, 0, . . . , 0) on

ω which is m-harmonic, nonnegative and h ≤ u, a contradiction. Conse-
quently, for each i, ui is a potential on ω.

2) Conversely, suppose that each term in the m-superharmonic func-
tion u = (ui)m≥i≥1 is a potential on ω. Clearly 0 is an m-harmonic minorant
of u on ω. Suppose h = (hi)m≥i≥1 is its greatest m-harmonic minorant.
Then, since 0 ≤ h1 ≤ u1 and u1 is a potential, h1 ≡ 0. This implies that h2

is harmonic on ω, since (−L)h2 = h1. Again 0 ≤ h2 ≤ u2, so that h2 ≡ 0.
Proceeding similarly, we show that each hi ≡ 0, so that 0 is the greatest
m-harmonic minorant of u; that is, u is an m-potential on ω. ¤

Corollary 4.3 If n ≥ 2m + 1, Rn is an m-potential domain.

Proof. Let p = (pi)m≥i≥1 where (−∆)pj+1 = pj for 1 ≤ j ≤ m − 1 and
pm(x) = |x|2m−n. Then p is an m-superharmonic function and each pi is a
potential. Hence p is an m-potential on Rn, n ≥ 2m + 1. ¤

Remarks 1) If n ≤ 2m, Rn is not an m-potential domain (see Corollary
4.15).

2) A 2-potential (called a bipotential) corresponds to an H-potential
defined by Smyrnélis [12, Definition 5.9, p. 77].

Proposition 4.4 Let p = (pi)m≥i≥1 be an m-potential on a domain ω and
v = (vi)m≥i≥1 be an m-subharmonic function such that v ≤ p on ω, then
v ≤ 0.

Proof. By the above Theorem 4.2, each pi is a potential on ω. Since v1 is
subharmonic and v1 ≤ p1, we should have v1 ≤ 0. Since (−L)v2 = v1 ≤ 0, v2

is a subharmonic function and v2 ≤ p2; hence, we have v2 ≤ 0. Proceeding
similarly, we show that each vi ≤ 0. ¤

Theorem 4.5 An m-superharmonic function s ≥ 0 on a domain ω in Ω
is the unique sum of an m-potential p and an m-harmonic function h on ω.

Proof. Since s ≥ 0, we can find its greatest m-harmonic minorant h on ω

(Theorem 3.6). Write s−h = p = (pi)m≥i≥1. Since p1 = s1−h1 is a poten-
tial, and (−∆)pj+1 = pj for 1 ≤ j ≤ m−1, p is an m-superharmonic function
whose greatest m-harmonic minorant is 0. Hence p is an m-potential on ω

and s = p+h. The uniqueness of the decomposition is a consequence of the
above Proposition 4.4. ¤
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Lemma 4.6 Let u be a subharmonic function defined outside a compact
set in a harmonic space Ω having a potential > 0. Then there exist a
finite continuous potential p on Ω with compact harmonic support and a
subharmonic function v on Ω, such that u = v + p outside a compact set.

Proof. Let u be defined outside a compact set A in Ω. Let ω be a relatively
compact domain such that A ⊂ ω ⊂ Ω. By taking the Dirichlet solution on
ω\A with boundary value u, we can assume that u is harmonic on ω\A. By
[2, Lemma 5], u = s− t on ω\A, where t is harmonic on ω and s is harmonic
on Ω\A such that s = Bs on Ω\K for a suitable compact set K ⊃ K̊ ⊃ A;
here Bs stands for the Dirichlet solution on Ω\K with boundary value s on
∂K and 0 at infinity.

If u1 = u − s on Ω\A and = −t on ω, then u1 is subharmonic on Ω
such that u = u1 + s on Ω\K. Since s = Bs is harmonic on Ω\K, by [2,
Lemma 6], s = p1−p2 near infinity, where p1 and p2 are bounded continuous
potentials on Ω with compact harmonic support. Consequently, u = u1 +
p1 − p2 near infinity. Now write v = u1 − p2 and p = p1 to obtain the
decomposition stated in the Lemma. ¤

Theorem 4.7 Let Q = (Qi)m≥i≥1 be an m-potential on a domain ω in
Ω. Let p1 be a potential on ω such that p1 ≤ α1Q1 outside a compact set in
ω. Then p1 generates a unique m-potential p = (pi)m≥i≥1 on ω; moreover,
pi ≤ βQi outside a compact set in ω, for some constant β and all i.

Proof. Let (−L)u = p1 and (−L)v = α1Q1 − p1 on ω. Then u is a su-
perharmonic function on ω and v is a superharmonic function outside a
compact set in ω. Hence, u + v = α1Q2 + (a harmonic function) outside
a compact set, since (−L)Q2 = Q1 on ω. This implies that u has a sub-
harmonic minorant outside a compact set. Write u = p2 + h where p2 is a
potential on ω and h is (not necessarily positive) harmonic on ω.

Thus, (−L)p2 = p1 and p2 = α1Q2 + (a subharmonic function) outside
a compact set in ω. Then by the above Lemma 4.6, p2 = α1Q2 + s + q

outside a compact set in ω, where s is subharmonic on ω and q is a finite
continuous potential with compact harmonic support. Since s ≤ p2 outside
a compact set, s ≤ 0 on ω; and since q is a finite continuous potential with
compact harmonic support, q ≤ c1Q2 for some c1 > 0. Thus, if α2 = α1+c1,
then p2 ≤ α2Q2 outside a compact set in ω.

We repeat the above procedure to obtain a potential p3 on ω such that
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(−L)p3 = p2 and p3 ≤ α3Q3 outside a compact set in ω. Continuing in the
same way, we arrive at p = (pi)m≥i≥1 which is an m-potential on ω such
that pi ≤ βQi outside a compact set for every i, if β = max1≤i≤m αi.

To show the uniqueness, assume that q = (qi)m≥i≥1 is another m-
potential on ω such that p1 = q1. Then, (−L)p2 = (−L)q2 on ω, so that
p2 = q2 + (a harmonic function h) on ω. But as p2 and q2 are potentials on
ω, h ≡ 0. Proceeding similarly, we see that pi = qi for every i. ¤

Corollary 4.8 Let p1 be a potential with compact harmonic support on
an m-potential domain ω in Ω. Then, p1 generates an m-potential p =
(pi)m≥i≥1 on ω.

Proof. Let Q = (Qi)m≥i≥1 be an m-potential on ω. Since p1 has compact
harmonic support, p1 ≤ α1Q1 outside a compact set in ω. Hence we can
apply the above Theorem 4.7. ¤

Corollary 4.9 If ω is an m-potential domain, then for any z in ω, there
exists an m-potential p = (pi)m≥i≥1 on ω with point m-harmonic support at
z.

Proof. Choose a potential p1 on ω with point m-harmonic support at z.
Let p = (pi)m≥i≥1 be the m-potential generated by p1 on ω. Then the m-
harmonic support of p is {z}. ¤

Suitably modifying the proof of Theorem 4.7, we prove the following
theorem:

Theorem 4.10 Let s = (si)m≥i≥1 be a positive m-superharmonic function
on a domain ω in Ω. Let v1 be a positive superharmonic function (resp.
a potential) on ω such that v1 ≤ s1. Then, v1 generates a positive m-
superharmonic function (resp. an m-potential) v = (vi)m≥i≥1 on ω such
that v ≤ s.

Proof. Let (−L)u2 = s1 − v1 and (−L)v2 = v1. Then (−L)s2 = s1 =
(−L)u2 + (−L)v2, so that s2 = u2 + v2 + (a harmonic function h2) on ω.
Since s2 ≥ 0, v2 has a subharmonic minorant on ω and hence is a potential
up to an additive harmonic function; u2 also has a similar property, so that
without loss of generality we can assume that u2 and v2 are potentials in
the equation s2 = u2 + v2 + h2. Note −h2 ≤ u2 + v2, which implies that
−h2 ≤ 0, so that v2 ≤ s2 and (−L)v2 = v1.

Proceeding similarly, we can construct potentials vj , 2 ≤ j ≤ m, such
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that vj ≤ sj and (−L)vj = vj−1. Consequently, v = (vi)m≥i≥1 is an m-
superharmonic function ≥ 0 on ω such that v ≤ s. Note that if v1 is a
potential on ω, v is an m-potential. ¤

Corollary 4.11 (Balayage) Let s = (si)m≥i≥1 be a positive m-superhar-
monic function on a domain ω in Ω. Let e be a set in ω. Then there exists a
positive m-superharmonic function v on ω such that v ≤ s on ω, v = s+ (an
(m− 1)-harmonic function) on e̊ and v is m-harmonic on ω\ē. Moreover,
v is an m-potential if s is an m-potential or if e is relatively compact in ω.

Proof. Take v1 = R̂e
s1

on ω and construct v = (vi)m≥i≥1 as in the above
theorem. Since v1 = s1 on e̊, u2 in the above construction is harmonic
on e̊ so that v2 equals s2 up to an additive harmonic function on e̊. This
means that v = (vi)m≥i≥1 equals s up to an additive (m − 1)-harmonic
function on e̊. Also since v1 is harmonic on ω\ē, v is m-harmonic on ω\ē.
(Here we are identifying any (m− 1)-harmonic function (hm−1, . . . , h1) as
an m-harmonic function (hm−1, . . . , h1, 0).)

Moreover, if s is an m-potential (or more generally if only s1 is a po-
tential) or if e is relatively compact in ω, then v1 is a potential on ω, and
hence v = (vi)m≥i≥1 is an m-potential on ω. ¤

Note For Smyrnélis’ definition of H-balayage of a positive H-superharmo-
nic function (s1, s2), see [12, p. 73].

Theorem 4.12 Let s = (si)m≥i≥1 be a positive m-superharmonic function
and p = (pi)m≥i≥1 be an m-potential on a domain ω in Ω. If s1 ≥ p1, then
s ≥ p.

Proof. Let (−L)u2 = s1−p1. Then (−L)s2 = s1 = (−L)u2+(−L)p2 which
implies that s2 = u2 + p2 + (a harmonic function h2) on ω. Since s2 ≥ 0,
u2 has a subharmonic minorant on ω and hence is the sum of a potential
and a harmonic function. Without loss of generality, we assume that u2 is a
potential in the expression s2 = u2 + p2 + h2. Then, −h2 ≤ u2 + p2 implies
that −h2 ≤ 0 so that s2 ≥ p2. Proceeding similarly, we find that si ≥ pi for
all i, that is s ≥ p. ¤

Corollary 4.13 (Domination Principle) Suppose that the axiom D (see
Brelot [6, p. 65]) is satisfied in the harmonic space Ω. Let s = (si)m≥i≥1

be a positive m-superharmonic function on ω and p = (pi)m≥i≥1 be an m-
potential on ω. Suppose p1 is locally bounded and s1 ≥ p1 on the harmonic
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support of p1. Then, s ≥ p.

Theorem 4.14 Let Ω be an m-potential domain. Then, given any m-
harmonic function h = (hi)m≥i≥1 outside a compact set, there exist a unique
m-harmonic function H = (Hi)m≥i≥1 on Ω and a potential q > 0 on Ω such
that |hi −Hi| ≤ q outside a compact set for every i.

Proof. Since h1 is harmonic outside a compact set, there exist a harmonic
function H1 on Ω and a potential p1 with compact harmonic support such
that |h1 −H1| ≤ p1 near infinity. Let (−L)H ′

2 = H1 on Ω. Let p =
(pi)m≥i≥1 be the m-potential on Ω generated by p1.

Since −(−L)p2 ≤ (−L)h2− (−L)H ′
2 ≤ (−L)p2 near infinity, there exist

a superharmonic function s2 and a subharmonic function t2 outside a com-
pact set such that h2 −H ′

2 = p2 + t2 and h2 −H ′
2 = −p2 + s2 near infinity.

Consequently, t2 ≤ s2, and hence there exists a harmonic function u2 near
infinity such that t2 ≤ u2 ≤ s2; also, there exists a harmonic function v2

on Ω such that |u2 − v2| ≤ p′2 near infinity, where p′2 is a potential with
compact harmonic support on Ω. Consequently, −p2− p′2 ≤ h2−H ′

2− v2 ≤
p2 + p′2 near infinity.

Write H2 = H ′
2 + v2, so that (−L)H2 = H1 on Ω. Let (−L)H ′

3 =
H2. Since p′2 is a potential with compact harmonic support, there exists a
potential p′3 (as a consequence of Corollary 4.8) such that (−L)p′3 = p′2 on
Ω. Since (−L)p3 = p2, (−L)(p3 + p′3) = p2 + p′2. Consequently, if we write
q2 = p2 + p′2, we have |h2 −H2| ≤ q2 near infinity, where q2 is a potential
such that q2 generates a potential (since q2 = (−L)(p3 + p′3)).

Then, proceeding as above, we find H3 on Ω such that (−L)H3 =
H2 and |h3 −H3| ≤ q3 near infinity where q3 generates a potential on Ω.
Continuing thus, we obtain an m-harmonic function H = (Hi)m≥i≥1 on Ω
such that for every i, |hi −Hi| ≤ q near infinity, where q = p1 +q2 + · · ·+qm

is a potential on Ω.
To prove the uniqueness of H, suppose H ′ = (H ′

i)m≥i≥1 is an m-
harmonic function on Ω such that |hi −H ′

i| ≤ q′ near infinity for some po-
tential q′ on Ω. Then, since H1 and H ′

1 are harmonic on Ω and |H1 −H ′
1| ≤

q+q′ near infinity, we have H1−H ′
1 ≡ 0. Consequently, H2−H ′

2 is harmonic
on Ω and since |H2 −H ′

2| ≤ q + q′ near infinity, H2 − H ′
2 ≡ 0 and so on.

Thus H = H ′ on Ω. ¤

Corollary 4.15 For n ≤ 2m, Rn is not an m-potential domain.
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Proof. Let h(x) = |x|2m−n if n is odd and = |x|2m−n log |x| if n is even.
Then (h, (−∆)h, . . . , (−∆)m−1h) is an m-harmonic function on Rn\{0}.

Suppose Rn is an m-potential domain. Then by the above Theorem
4.14, there exist an m-harmonic function (H, (−∆)H, . . . , (−∆)m−1H) on
Rn and a potential q on Rn such that |H − h| ≤ q near infinity.

Fix a in Rn and let dρr
a(x) be the harmonic measure on |x| = r > |a|.

Then
∫

q(x)dρr
a(x) −→ 0 as r −→ ∞. But

∫
(H − h)dρr

a(x) does not tend
to zero when r −→ ∞. For, H(x) is of the form H(x) =

∑m−1
i=0 |x|2ihi(x),

where hi is harmonic on Rn so that
∫

(H − h)dρr
a(x) =

∑m−1
i=0 r2ihi(a) +

r2m−n if n is odd, and =
∑m−1

i=0 r2ihi(a) + r2m−n log r if n is even. Thus in
any case

∫
(H − h)dρr

a(x) cannot tend to 0 when r −→∞, a contradiction.
¤

Corollary 4.16 Let u be a locally integrable function on Rn, n ≤ 2m,
such that (−∆)iu ≥ 0 for 0 ≤ i ≤ m. Then u is a constant (in the sense of
distributions).

Proof. Let ui = (−∆)m−iu. Then s = (ui)m≥i≥1 is a positive m-superhar-
monic function on Rn. Since Rn, n ≤ 2m, is not an m-potential domain
by the above corollary, s should be an m-harmonic function (Theorem 4.5).
This implies that (−∆)mu = 0. Then by the Liouville-Picard theorem
for polyharmonic functions on Rn (Corollary 3.5), u is a constant. (This
corollary generalizes the important result that a positive superharmonic
function on R2 is a constant.) ¤

Remark The referee remarks that Corollary 4.16 can also be obtained
from the integral representation of polysuperharmonic functions in Rn as
given in Mizuta [9].

Corollary 4.17 Let n ≥ 2m + 1. Then given any continuous function
u outside a compact set in Rn such that ∆mu = 0, there exists a unique
m-harmonic function v on Rn (that is ∆mv = 0) such that u− v tends to 0
at infinity.

Proof. When n ≥ 2m+1, there is a special m-potential Q = (Qi)m≥i≥1 on
Rn where Qm = |x|2m−n so that each Qi tends to 0 at infinity. Since p1 in
the proof of the above Theorem 4.14 is a potential with compact support,
p1 −→ 0 at infinity. Consequently, using Theorem 4.7, we can see that in
the above proof qi −→ 0 at infinity for each i, 2 ≤ i ≤ m. Consequently,
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taking u = hm and v = Hm in the above Theorem 4.14, we conclude that
u− v tends to 0. ¤

Theorem 4.18 In the harmonic space Ω, let ω be a domain on which
there exists a positive potential. Then ω is an m-potential domain if and
only if there exist an m-superharmonic function s = (si)m≥i≥1, s1 6= 0, and
a potential p on ω such that |si| ≤ p near infinity in ω for every i.

Proof. 1) If ω is an m-potential domain, there exists an m-potential s =
(pi)m≥i≥1, p1 6= 0. Take p =

∑m
i=1 pi.

2) Conversely, let s = (si), s1 6= 0, be an m-superharmonic function
on ω such that |si| ≤ p near infinity in ω for every i and for a potential
p on ω. Since s1 > −p outside a compact set in ω, s1 has a subharmonic
minorant on ω. Hence s1 = p1 + h1, where p1 is a potential on ω and h1 is
harmonic, so that |h1| ≤ p + p1 near infinity in ω. This implies that h1 = 0
and hence s1 is a potential on ω.

Since (−L)s2 = s1 > 0, s2 is superharmonic on ω. Since |s2| ≤ p

near infinity in ω, we conclude as above that s2 is a potential. Proceeding
similarly, we see that each si is a potential on ω, for every i. Hence s =
(si)m≥i≥1 is actually an m-potential on ω. ¤

We conclude with some characterizations of an m-potential domain ω

in Ω.

Theorem 4.19 In the harmonic space Ω, let ω be a domain on which
there exists a positive potential. Then, ω is an m-potential domain if and
only if given any m-harmonic function h = (hi)m≥i≥1 outside a compact
set, there exist an m-harmonic function H = (Hi)m≥i≥1 and a potential q

on ω such that |hi −Hi| ≤ q near infinity in ω for every i.

Proof. In view of Theorem 4.14, only one direction remains to be proved,
namely: If the stated approximation property holds, then ω is an m-
potential domain.

Let p be a finite continuous potential > 0 with compact harmonic sup-
port in ω. Let u = (ui)m≥i≥1 be an m-superharmonic function on ω gener-
ated by p = u1. Then by hypothesis, there exists an m-harmonic function
H = (Hi)m≥i≥1 such that |ui−Hi| ≤ q near infinity in ω, for some potential
q on ω. Let si = ui−Hi, so that s = (si)m≥i≥1 is an m-superharmonic func-
tion on ω such that |si| ≤ q near infinity in ω. Hence, s is an m-potential
on ω (Theorem 4.18). ¤



Polysuperharmonic functions on a harmonic space 329

Definition 4.20 An m-potential domain ω is said to be tapered if there
exists an m-potential Q = (Qi)m≥i≥1, Q1 > 0, on ω such that each Qi is
bounded outside a compact set in ω.

Remark 1) Rn, n > 2m + 1, is a tapered m-potential domain.
2) Let ω be a tapered m-potential domain. Then every potential p1

with compact harmonic support generates an m-potential p = (pi)m≥i≥1

such that, for all i, pi ≤ α outside a compact set in ω. (To prove this, use
Theorem 4.7).

The following is a characterization of a tapered m-potential domain in
Ω.

Theorem 4.21 In the harmonic space Ω, ω is a tapered m-potential do-
main if and only if given any m-harmonic function h = (hi)m≥i≥1 outside
a compact set in ω, there exist an m-harmonic function H = (Hi)m≥i≥1

on ω and a positive potential q bounded near infinity such that for each i,
|hi −Hi| ≤ q near infinity in ω.

Proof. 1) Let ω be a tapered m-potential domain. Suppose h is m-
harmonic near infinity in ω. Then, we follow the proof of Theorem 4.14
for the construction of the potential q and the m-harmonic function H =
(Hi)m≥i≥1 on ω such that, |hi −Hi| ≤ q outside a compact set. We notice
that q has been defined there as q = p1+q2+· · ·+qm. Now ω being tapered,
we can see that each one of the terms in this sum is bounded near infinity.
Hence q is a potential bounded near infinity in ω.

2) Conversely, suppose that ω has the approximation property stated
in the theorem. Then by Theorem 4.19, ω is an m-potential domain. More-
over, since q is bounded near infinity, ω is tapered. ¤

Corollary 4.22 Given any m-harmonic function h = (hi)m≥i≥1 outside a
compact set in a tapered m-potential domain ω, there exists an m-harmonic
function H = (Hi)m≥i≥1 on ω, such that |hi −Hi| is bounded near infinity
in ω for each i.
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