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On Feit’s definition of the Schur index
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Abstract. We show that the definition of the Schur index which was given by W. Feit
in the book {F1]: Characters of finite Groups, Benjamin, 1967, is well-defined.
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Introduction

In his arithmetic study of complex representations of finite groups
([Sch]), I. Schur introduced the notion of the index:

Definition 1 (see Curtis and Reiner [CR1], (70.4), p. 406; also see the
books of Dornhoff, Huppert, Isaacs, etc, on the representation theory of
finite groups) Let G be a finite group. Let K be a field of characteristic
0 and let K* be an algebraically closed field-extension of K. Let U: G —
" GL(d, K*) be an absolutely irreducible matrix representation of G over K*
with character x. Let K(x) = K(x(g) | g € G). Then the positive integer

mg(U) = mg(x) = min[L : K(x)]

where the minimum is taken over all the subfields L of K* such that U is
realizable in L will be called the Schur index of U (or of x) with respect to
K.

On the other hand, the definition of the Schur indices given by W. Feit
in his book [F1] is slightly different:

Definition 2 Let G be a finite group. Let x be an absolutely irreducible
character of G over some field K of characteristic 0. Let F' be any field of
characteristic 0. Then F(x) is the field generated over F' by the values of x
and mp(x) is defined to be the smallest positive integer such that mg(x)x
is afforded by a matrix representation of G over F'(x). (See [F1], p. 10, lines
16-9; p. 13 lines 22-5; p. 61, lines 20-2.)
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In this paper, we shall prove the following theorem:

Theorem 1 Let G be a finite group. Let x be an absolutely irreducible
character of G over some field K of characteristic 0. Let F be any field
of characteristic 0. Let F*(l), F*? pe any two (sufficiently large) field-
extensions of K and let 01: K — F*(l), oo K — e any embeddings.
Then F(o10x) and F(og0Xx) are isomorphic over F and we have mp (o1 o
X) = mpg(o2 0x) (in the sense of Definition 1).

Clearly, Theorem 1 justifies Feit’s definition of F'(x) and mg(x).
Historically, Benard [B| proved the following theorem:

Theorem 2 (Benard [B], Theorem 1) Let k be a subfield of a cyclotomic
extension of Q. Let A be a finite-dimensional central simple algebra over
k which is similar to a simple direct summand of the group algebra k[G]
of a finite group G over k. Let p be any rational prime (possibly p = c0).
. Let Py, P» be any two primes of k lying above p. Let kp, (resp. kp,) be the
completion of k at P1 (resp. Pp). Then kp, ®, A and kp, ®; A have the
same index.

We shall show that the second assertion of Theorem 1 for F' = Q, is
equivalent to Theorem 2. Thus, in particular, for any complex irreducible
character x of a finite group G and for any rational prime p, we can consider
the p-local Schur index mgq, (X) of x with respect to Q.

Such a recongnition can be clearly seen in Feit’s paper [F2] (see [F2],
p. 278, lines 1-7). It seems that it can be also seen in the book of Curtis
and Reiner [CR2] (see [CR2], p. 750, lines 13-5). But there seems to exist
some confusions in the argument of [CR2], p. 750, lines21-. In fact, in this
book, they are considering, for any complex irreducible character y of G,
K(x) and mg/(x) for any field K of characteristic 0. This would make the
arguments about Theorem (74.26) of [CR2] meaningless.

The direct motivation for writing this paper arose in the study of the
rationality-properties of the unipotent representations of finite gropus G
of Lie type (as to G¥, see Theorem 3 below) ([L1], [O1, O2]; also cf. [L3],
[Gel, Ge2, Ge3]).

Let G be a finite group of Lie type where p is the defining characteristic
of GF'. Then, by the definition (see Deligne and Lusztig [DL]), a unipotent
representation p of GF is an absolutely irreducible submodule of a certain
Q¢[G¥]-module H: (X (w), Qg) where £ is any fixed prime number different
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from p, and, via a fixed ispmorphism Q; - C (where Qy is an algebraic
closure of Qy), we consider p as a complex irreducible representation of
GF. Furthermore, by using a property of the Schur index, we conclude that
mq,(p) divides the multiplicity (p, HA(X (w), Qg))GF.
One of the purpose of this paper is to make such an argument clear.
In this connection, we can state the following theorem:

Theorem 3 (cf. Lusztig [L3]) Let p be a prime number and let k be an
algebraic closure of the prime field of characteristic p. Let G be a connected,
reductive linear algebraic group over k, let F': G — G be a surjective endo-
morphism of G such that some power of F' is the Frobenius endomorphism
of G corresponding to a rational structure on G over o finite subfield of
k and let GF be the (finite) group of F-fized points of G. Then, for any
(complex) unipotent representation p of G, we have mg,(p) = 1 for any
prime number £ # p.

I wish to thank the referee and editor for their kind comments about
the original version of the paper. Several years ago, I learned something
about “motives” from Professor Ken Sugawara. I also wish to thank him.
Professor J.-P. Serre kindly gave me an advice about the organization of
the paper. I wish to express my gratitude to Professor P. Deligne for his
deep understanding of the motivation and contents of this paper and for
kindly informing me an alternating proof of Theorem 1 and a final form
of Proposition 1 of the paper. I wish to thank Dr. Kaori Ishida for her
friendship during the preperation of the paper. Finally, I wish to dedicate
this paper to my wife Keiko.

1. Benard’s theorem

Let G be a finite group. For an absolutely irreducible character ¢ of
G over a field L of characteristic 0 and for a subfield k& of L, we denote
by A((, k) the simple direct summand of k[G] associated with ¢: if ¢ is
extended linearly to a character of k[G], then A({, k) can be characterized
as the unique simple direct summand of k[G] such that ((A((, k)) # {0}.
In this case, for each o € Gal(k(¢)/k), if we let

oy ¢7(1)

Y ¢ (g Y (e LIGY),

geG
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and, if we let

aQ)= Y e,

oeGal(k(¢)/k)

then we have A((, k) = k[G]a(¢) (see Yamada [Y], Proposition 1.1).

Let K* be an algebraically closed field of characteristic 0, let x be an
absolutely irreducible character of G over K* and let k& = Q(x). In this
section we show that the second assertion of Theorem 1 for k£ = Q, is
equivalent to Theorem 2.

We first show that Theorem 2 implies the second assertion of Theorem
1. In fact, let p be any rational prime (possibly p = c0), and let @, be the
completion of Q at p. Thus, if p = oo, then Q, = R, and if p is finite, then
Qy is the quotient field of proj-lim Z/p"Z. Let Q,, (QTPI be any two algebraic
closure of Q,, and let o: k — Qp, o' k — @p/ be any embeddings of k. Let
F=Qp-0(k)=Qplocox) and F/ =Qp-0'(k) = Qp(c’ 0 x). Then F and
F' are finite algebraic extensions of @y, so that they are local fields in the
sense of Weil [W], p. 20, lines 31-2. We see that o(k) (resp. o/(k)) is dense
in F' (resp. F’). In fact, let Fy be the topological closure of o(k) if F. Then,
since (k) contains Q, the topological closure Q, of Q in F is containd in
Fy. Thus, since Fy contains both of o (k) and Qp, we must have Fy = F. So
the embedding o: kK — F (resp. ¢’: k — F") defines a place v (resp. v') of k
(see [W], Definition 2, pp. 43-4). The place v (resp. v') determines a prime
P (resp. P') of k. Here a prime of k means an equivalent class of valuations
on k. (See [W], p. 44, lines 6-14.) The completion kp (resp. kpr) of k at
P (resp. P’) is nothing but the completion &, (resp. k) of k at v (resp.
v'). Therefore o (resp. ¢’) can be extended uniquely to a topological-field
isomorphism o, (resp. o,) from k, = kp (resp. ky = kp:) onto F (resp.
F'). Let ky, (resp. ky) be an algebraic closure of k, (resp. k). Then o,
(resp. ;) can be extended to an isomorphism @, (resp. 0—1’),) from k, (resp.
%) onto Q, (resp. @p/)

Let Q be the algebraic closure of Q in K* (see Theorem 1). Then, since
k C Q, there is an embedding 7 (resp. 7’) over k of Q into k, (resp. k). Let
U: G — GL(d, Q) be a matrix representation of G over Q with character
x. Let UT: G — GL(d, k,) (resp. U™ : G — GL(d, ky/)) be the matrix
representation of G over k, (resp. k,/) defined by U7 (g) = [7(ri;(g))] (vesp.
U™ () = [ (ri;(9))]) if Ulg) = [rij(g)] for g € G. Then U™ and U™ have
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the character x. Thus one can consider my, (x) and my ,(x) (see Definition
1).

Let A = A(x, k). Let ¢: ky ®k k[G] — ky[G] be the canonical isomor-
phism over k,. We have A = k[Gle(x) and A contains 1 - e(x) = e(x). Let
Ay = ky ®; A, which we consider as a subalgebra of k, ®j k[G]. Then gb(l ®
e(x)) = 1-e(x) € ko[Gle(x) = Alx, kv), 50 $(Ay) = A(x, ky). Thus 4,
and A(x, ky) are isomorphic over ky, so that mg, (x) is equal to the index
of Ay. Similarly, my,, (x) is equal to the index of A, = ky @i A. Therefore,
by Theorem 2, we have mg, (x) = mg,, (x)-

Now, if V: G — GL(d, k,) is a matrix representation of G over k, with
character x, then V7 : G — GL(d, Q,) is a matrix representation of G over
k, with character o ox. And 7y (ky(X)) = 55 (kv) = 0u(ky) = F = F(ooX).
If L is any subfield of &, such that V is realizable in L, then M = (L) is
a subfield of Q, such that V° is realizable in M, and [L : k,] = [M : F).
Conversely, if M is any subfield of (QTP such that V7 is realizable in M, then
"L = &, Y(M) is a subfield of k, such that V is realizable in L, and [M :
F| = [L: ky]. Therefore, by Definition 1, we see that mg, (x) = mp(o o x).
Similarly, we have my, , (x) = mp (o’ 0 x). Thus we have:

mq, (0 0 x) = mq, (0 0 x) = mr(o o x) =m,(x) = Mk, (x)
= mp/(0’ 0 X) = Mo, (orox) (¢’ © X) = Mg, (0" 0 X).
This proves the second assertion of Theorem 1. O

Remark By the above result, we see that the value mg, (o o x) is inde-
pendent of the choice of @; and an embedding o: k — @ (cf. Curtis and
Reiner [CR2], p. 750, lines 13-5).

We next show that the second assertion of Theorem 1 implies Theorem
2. Let p be any rational prime, and let P, ¢ be any two primes of k =
Q(x) lying above p. Let Q](QP) (resp. Qé,Q) ) be the topological closure of Q
in kp (resp. kg). Let vp (resp. vg) be a valuation of kp (resp. kg) whose
restriction to k belongs to P (resp. @). Then the restriction of vp (resp.
vg) to Q is equivalent to a p-adic valuation v, of Q. For z € Qp, taking
a Cauchy sequence (a,) in Q such that z = v,-lima,, we set, by noting
that (an) is also a Cauchy sequence in k with respect to vp (resp. vg),
op(x) = vp-limay in kp (resp. og(r) = vg-lima, in kg), which, as one
can easily check, is independent of the choice of (an). Then op (resp. og)
is a topological-field isomorphism from @), onto QQ(QP) (resp. QI(QQ)). Thus
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there is an embedding 7p (resp. 7g) of kp = Qép)(x) (resp. kg = Qj(gQ) (x)
into @p such that TPIQ;(QP) = a;l (resp. TQ|Q§,Q) = aél). We have 7p(kp) =
Qp(tPoX) and 7q(kq) = Qp(Tqox). By Theorem 1, we have mq, (1,0x) =
mg,(T@ox). Let A= A(x, k). Then mg,(x) (resp. my, (X)) is equal to the
index mp (resp. mq) of A(x, kp) = kp ® A (resp. A(x, kg) = kg @k A).
Tp (resp. Tg) can be extended to an isomorphism 77 (resp. 7g) from an
algebraic closure kp of kp (resp. kg of kg) onto @p, and Tp(kp) = Qp(rp o
x) (resp. Tg(kq) = Qp(rg 0 x)). Therefore we have

Miep (X) = MQ, (rpox) (TP © X) = M, (TP © X)

and

Mg (X) = T, (rgox) (TQ © X) = Mma, (1@ © X)-
Thus:

mp = Mip(X) = M, (TP © X) = Mm@, (1q © X) = My (X) = me-
This proves Theorem 2. O

2. The Brauer-Witt Theorem

Let k be a field of characteristic 0 and k an algebraic closure of k. Let
¢ be a primitive n-th root of unity in k where n is some positive integer,
and let I' be the Galois group Gal(k(¢)/k) of k(¢) over k. Let W(k(¢)) be
the group of roots of unity in k(¢). Let 8: T' x I' — W (k(()) be a factor
set 2-cocycle of I with values in W (k(¢)). Let (8, K(¢)/k) be the crossed
product algebra over k associated with §:

(8, k(¢)/k) = > k(¢us  (direct sum),

oel
Uglr = (0, T)Ugr (0,7 €T) usz=2u, (€T, z€k(()

Such an algebra over k is called a cyclotomic algebra over & (see Yamada
1¥]).

Let Br(L) denote the Brauer group of a field L. If A is a finite-
dimensional, central simple algebra over a field L, then [A] denotes the
class of A in the Brauer group Br(L).

Let L be a field of characteristic 0. Then we say that a finite group H
is L-elementary with respect to a prime p if the folloWing two conditions
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are satisfied:

(i) H can be expressed as a semidirect product CP where C is a cyclic
normal subgroup of H whose order is relatively prime to p and P is a
p-group.

(ii) Let c be a generator of the cyclic group C, of order m, and let {,, be
a primitive m-th root of unity in some algebraic closure of L. If ¢!
and ¢/ are conjugate in H, then there exists an automorphism o in
Gal(L({m)/L) such that o(¢%,) = Gn.

We quote from [Y], p. 31, the following:

The Brauer-Witt Theorem. Let k be a field of characteristic 0 and k
an algebraic closure of k. Let G be a finite group of exponent n and let x
be an absolutely irreducible character of G over k such that k(x) = k. Let
(n be a primitive n-th root of unity in k. Let p be a prime number.

(I) Let L be the subfield of k() over k such that [k((,) : L] is a power
of p and [L : k] # 0 (modp). Then there is subgroup H of G which is
L-elementary with respect to p and an absolutely irreducible character 8 of
H over k such that L(8) = L and that (x|H, 8)g # 0 and the following
statement (II) holds.

(IT)  There is a normal subgroup N of H and a linear character ¥ of N
over k such that (i) 8 = ¥, the character of H induced by v, (i) for each
h € H, there exists T(h) € Gal(L(y)/L) such that " = ™™ (Yh(z) =
Y(hzh™!), z € N), and, by the mapping h — 7(h), H/N = Gal(L(¢)/L),
(iii) A(#, L) is isomorphic over L to the cyclotomic algebra (8, L(y)/L)
over L, where, if T is a set of complete system of representatives of N in
H (1 € T) with hh' = z(h, W)W for h, W', K" € T, z(h, ') € N, then
B(r(h), 7(h)) = ¥ (z(h, B')).

(IIT)  If the notation is as in (II), then we have [A(x, L)] = [A(6, L)] =
(B, L{¢)/L)] in Br(L) and the p-part of mg(x) is equal to mr(9).

Now let K be a field of characteristic 0 and K an algebraic closure of K.
Let G be a finite group of exponent n and let x be an absolutely irreducible
character of G over K. Let a be any automorphism of Q(x) (C K).

Proposition 1 We have mg(x) = mx(x®).

Remark Since x and x® are algebraically conjugate over QQ, we have
mg(x) = mo(x®). But, over K, x and x® are not necessarily algebraically
conjugate, so it is not clear whether mg(x) = mx(x®) or not.
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The following proof of Proposition 1, which we shall use the Brauer-
Witt theorem, was inspired by the argument in the proof of Theorem 1 of
[B].

Set k = K(x) and let k = K. Let ¢, be primitive n-th root of unity in
k. Let the notation be as in the Brauer-Witt theorem. Let p be any prime
number. Then, by that theorem, we see that the p-part of mg(x) = mx(x)
is equal to the index of (8, L(¢)/L).

Let & be an extension of « to an automorphism of Q((,). Then, in the
statement (I) of the Brauer-Witt theorem, we have L(6%) = L(#) = L (since
Q(6%) = Q(B)), and (x¥|H, 6%)1 = (x|H, 0)% = (x|H, 6)i # 0 (modp). n
the statement (II) of that theorem, we clearly have §% = ()& = (%)%,
Let h € H, and suppose that 9" = ™™, 7(h) € Gal(L(s)/L). Let 7
be an extension to Q(¢,) of the restriction of 7(h) to Q(v). Then, since
Gal((@((n) /Q) is an abelian group, we have 7@ = &7. From this we eas-
ily see that (®)* = (®)"™. Hence, by Proposition 3.5 of [Y], we have

"A(6%, L) = (8%, L(y®)/L) = (8%, L(¥)/L). Thus, by the statement (III)
of the Brauer-Witt theorem, we see that the p-part of myg(x®) = mi(x%)
is equal to the index of (8%, L(¢*)/L) = (8%, L(¥)/L).

Let ¢’ be a root of unity in Q({,) such that whose order n’ is maximum.
Then we have Q(¢,) = Q(¢’) and Gal(Q(¢)/Q) = (Z/n'Z)*. So there exist
positive integers a, b, which are relatively prime to n/, such that ((')® =
(¢")* and (¢')&" = (¢')°. Therefore, since the values of ¢ are roots of unity
in Q(¢’), we have 9 = ¢® and ¥ = (%)°, so that we have 8% = 3% and
8 = (8%)?. Thus

[(8%, L(w)/L)] = [(8%, L(v)/L)] = [(8, L(v)/L)]"

and

(8, L()/L)] = [((6%®, Lp)/L)] = [(8%, L()/L)]".

Put B = (B, L(y)/L) and B’ = (8%, L(¢)/L), and call m (resp. m/)
the index of B (resp. B’). Let E (D L) be any splitting field of B of minimal
degree over L; we have [E : L] = m. Then F is also a splitting field of B®,
B®p - ®p B (a times) ~ B’ (similar). Hence m/ divides m. Conversely,
if E' is any splitting field of B, then it is also a splitting field of B, so m
divides m’. Thus we must have m = m/. This shows that the p-part of
mg(x) is equal to the p-part of mg(x®). Since p is any prime number, we
conclude that mg(x) = me(x®).
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This completes the proof of Proposition 1. O

Remark Deligne informed me (personal communication) another way for
looking at Benard’s theorem and the second assertion of Theorem 1. In our
point of view, he gives an alternating proof of Proposition 1. Furthermore
(in our point of view) he proves the following (cf. [BS]):

Theorem (Deligne) Let x be an absolutely irreducible character of a fi-
nite group of exponent n. For an integer a coprime to n, let o be the
automorphism of Q(¢n) corresponding to a via the natural isomorphism
Gal(Q(¢r)/Q) = (Z/nZ)*, where {y is a primitive n-th root of unity in an
algebraically closed extention K of k = Q(x). Then we have [A(x%, F)] =
alA(x, F)] in Br(F') for any subfield F' of K containing k.

3. Proof of Theorem 1

. Let G be a finite group. Let K be a field of characteristic 0. Let
U: G — GL(d, K) be an absolutely irreducible matrix representation of G
over K with character x. Let F be any field of characteristic 0, and, for
i=1,2,let 0y: K = F 9 be any embedding of K into an algebraically
closed extension F** of F (we assume that, for i =1, 2, 9 s sufficiently
large so that such an embedding exists). For ¢ = 1, 2, let U; = U% and
xi = 0; 0x. Then it is clear that, for ¢ = 1, 2, U;: G — GL(d, F*(i)) is an
absolutely irreducible matrix representation of G over F* with character
xi- Fori=1,2,set F; = F(x;) = F(oi(x(9)) | g € G).

Proposition 2 There is an isomorphism p over F from Fi onto Fy such
that po x1 = x§ for some automorphism a of Q(x2).

For ¢ = 1, 2, we consider ¢; as an isomorphism from K onto o;(K).
Then 09007 ! is an isomorphism from o1 (K) onto ga(K) so that, by enlarg-
ing @ it necessary, we can extend o3 0 oy ! %o an embedding 7 of i
into F*¥. We then have 7 o 01 = gq. Let @(2) be the algebraic closure of
Q in F*®. Then Q(x2) C Q@®. Since r(Q(x1)) = @(XQ) 7(Q(x1) N F)
can be considered as an embedding of Q(x1) N F into Q@ @ Since Qlx1) N
FcFcFP®and Q(x1) N F is algebraic over Q, Q(x1) N F is contained in
@(2). Therefore, since Q(x1) N F' is a normal extension of QQ, we must have

Q1) NF) = (T|(Qx1) N F)) (Qx1) N F) = Q(x1) N F, hence 7(Q(x1) N
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F) C Q(x2) N F. Similarly, we have (T|Q(X1>)_l (QOx2)NF) CcQ(x1)NF.
Therefore we see easily that T(Q(Xl) N F) = Q(x2) N F, hence we have
QOu)NF = Q(x2) NF. Put o = 7|(Q(x1) N F), which we consider as
an automorphism of Q(x2) N F. Let a be an extension of 75 to Q(x2)

into @(2). Then, since Q(x2) is a normal extension of Q in @(2) , we must
have oz(@(xg)) = Q(x2), so that o can be considered as an automorphism of
Q(x2). Put 71 = 7|Q(x1), which we consider as an isomorphism from Q(x1)
onto Q(x2), and put v = ao7y. Then v is an isomorphism from Q(x3) onto
Q(x2) over Q(x1) N F = Q(x2) N F. Let Qx1) = (Qx1) N F)(61), and put
02 = v(61). Then we have Q(x2) = (Q(x2) N F)(f2), and, for i =1, 2, we
have F; = F - Q(x;) = F - ((Q(x:) N F)(6;)) = F(6;) Moreover, we have

Call s this common value. Then, fori =1, 2, {1, 6;, 67, ..., 657!} is a basis
of the vector space F(6;) over F. We note that, for 0 < u, v < s —1, if
0% - 07 = 551 b0 with by € Q(x1) N F = Q(x2) N F, then 6% - 6§ =
v(6}-6Y) = qu—:lo buvwdy. Now for an element = = ag + a10; + a2 +- -+
as_lﬁf_l of F(0y) with ag, a1, ..., as—1 € F, we set p(z) = ao + a102 +
af? + .-+ as_10§_1, an element of F'(f3). Then it is easy to see that p is
a field-isomorphism from F(6;) = F(x1) onto F(f2) = F(x2) over F. We
note that pox; = vox1 = ao (7|Q(x1)) ca10x = ao (02|Q(x)) ox = aoxa,
and o is an automorphism of Q(x2).

This completes the proof of Proposition 2. O

Proof of Theorem 1. Let the notation be as above. For ¢ = 1, 2, let 7O
be the algebraic closure of F' in 9 Let p and o be as in Proposition 2.
Then p can be extended to an isomorphism p from F(l) onto F@). There
is matrix representation Vi: G — GL(d, F(l)) with character x1. Then
Vo=V G — GL(d, 7(2)) is a matrix representation of G with character
x$. The mapping W; — Wy = W/ define a bijection from the set of all

W with character x; onto the set of

(2)

matrix representations Wy of G over F

all matrix representations Wa of G over F*’ with character x5. Therefore,
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in view of Definition 1, by Propositions 1, 2, we have

mp(o1 0 x)=mr(x1) = mg(x1)
=mp,(x3) = mr(x3) = mr(x2) = mr(oz 0 x).

This completes the proof of Theorem 1. a

Let the notation be as above: x is an abosolutely irreducible character
of a finite group G over a field K of characteristic 0 and F' is any field
of characteristic 0. Then we define F(x) (resp. mg(x)) to be F(o o x)
(resp. mp(o o x)) where o is some embedding of K into some algebraically
closed extension F* of F. These notations can be justified by Theorem 1.
Therefore the definition of the Schur index which was given by Feit in [F1]
(Definition 2) is well-defined.

Proposition 3 Let G be a finite group and let x be an absolutely irre-
ducible character of G over some field K of characteristic 0. Let F' be
.any field of characteristic 0 and let ¢ be any embedding of K into an alge-
braically closed extension F* of F. Then mgp(x) = mp(o o x) divides the
inner product (€, o o x)g for any actual character £ of G that is realizable
mn F.

In fact, let 41, ..., ¥ be all the irreducible characters of G over F
(the F-irreducible characters). Then we have & = mqythy + -+ + mpy
where mi, ..., mg are some non-negative integers. For each ¢, 1 < i < k,

there is an absolutely irreducible character 7; of G over F* such that ; =
me(n:) (M1 + M2 + -+ + Mis;) where 71, Mi2, ..., T4, are the algebraically
conjugate characters of 7; over F' (see Schur [Sch|, Theorem 3, pp. 170-1).
We have o o x = n;; for some %, j. Therefore (§, o 0o x)g = mimp(n;). We
have mp(n;) = mp(ni;) = mp(o o x) = mp(x). Therefore mp(x) divides
(57 0o X)G-

4. Applications of Benard’s theorem

Let p be a fixed prime number and let k be an algebraic closure of the
prime field of characteristic p. If ¢ is a power of p, then F,; denotes the
subfield of & with ¢ elements.

Let G, F and G¥ be as in Theorem 3 (cf. Lusztig [L1], (1.4), and Carter
[C], 1.17). Let X be the (projective) variety of all Borel subgroups of G.
Then F' acts on X naturally. G acts on X by the conjugation: g- B =
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gBg™}, g€ G, Be€ X. Welet G act on X x X diagonally. Then W = G'\
(X x X) has a natural group structure, which we call the Weyl group of G
(see Deligne and Lusztig [DL], 1.2, and Lustig [L1], (1.2)). For w € W, let
Xw)={B e X | (B, F(B)) € w}. Then, for we W, X(w) is a locally
closed smooth subvariety of X, purely of dimension #(w), where £( ): W —
Z is the length function ([DL], 1.3). For w € W, let X (w) be the closure
of X(w) in X.

Let £ be any fixed prime number # p. Let w € W. Let R'(w) be the
virtual GF-module over Qp

20(w)
Z (_1)7;H§ (X(’LU), Qﬁ)
=0
(an element of the Grothendieck group of the category of the finitely gen-
erated Qy[G¥]-modules). The character R,, of R'(w) has rational integral
- values and is independent of ¢ ([DL], Proposition 3.3). Thus there is a vir-
tual representation of GF' over C, uniquely determined up to isomorphisms,
with character R,,. We say that a complex irreducible representation p of
GF, with character x,, is unipotent if (R, X,)gr # 0 for some w € W
([DL], Definition 7.8). Recall that ¢ is any fixed prime number # p. Let
o: C — Qq be an isomorphism as abstract fields, where Qg is an algebraic
closure of (Qp. Assume that G is an almost simple algebraic group, defined
over F, for some power ¢ of p, and that F' is the corresponding Frobenius
endomorphism of G. For w € W, let H/ (X (w), Q;) be the j-th f-adic
intersection cohomology group of X (w). This is a GF-module over Q,.

Proposition 4 (Lusztig [L4], Lemma 1.2, 1.13) Assume that G is of ad-
joint type. Then for any (complex) unipotent representation p of G¥, there
1s some element © of W such that (IHIj (X(z), Qp), p")GF =1 for some j.

Corollary (Lusztig [L4]) For any (complex) unipotent representation p
of GF, we have mg,(p) = 1 for any prime number £ # p.

~ Infact, when G is of adjoint type the corollary follows from Propositions
4, 3. Suppose that G is not necessarily of adjoint type, and let G2 be the
adjoint group of G. Let m: G — G2 be the natural morphism. Let £ be
any unipotent representation of (G24)¥. Then p = p®do7 is also a unipotent
representation of G (see [DL], Proposition 7.10). Then, by the argument

of Geck in [Ge2], Remark 2.6, we have mq,(p) = mg,(0®4) = 1 for any
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prime number £ # p.

Remark Assume that G is an almost simple algebraic group, defined and
split over I, for some power ¢ of p, and that F' is the corresponding Frobe-
nius endomorphism of G. Let p be a (complex) unipotent representation of
GF. Then, according to [Gel, Ge2, Ge3], we have mg(p) = 1 except if G
is of type F7 and p is a cuspidal unipotent representation of G¥, or G is of
type Fg and p is a component of the representation induced by a cuspidal
unipotent representation of a parabolic of type Fr. Assume that we are in
this exceptional case. Then, if ¢ is non-square, or if ¢ is an even power of

= 3 (mod4), we still have mg(p) = 1. Assume that ¢ is an even power of
p =1 (mod4) and that p is sufficiently large so that the results of Lusztig
in [L3] can be applicable. Then we have mgq,(p) = 2 and mg,(0) = 1
(note that Q(x,) = Q(ig"/?)). I wish to propose here a motivic explanation
for this fact (under the assumption that Tate conjecture holds). The basic
_reference is Milne’s lecture [Mi].

Assume that G is of type Er and p is a cuspidal unipotent representation
of G¥. Let ¢ be a Coxeter element in . Then we see from [L1] that p°
contained in HY (X (c), Q¢) with multiplicity one (see [L1], p. 146). Facts on
the space @2, H(X (c), Q¢) semisimply (X (c) is affine); for any eigenvalue
A of F on this space, let M be the corresponding eigen-subspace of it. Then
p® = M), where \ = iq"/? or —ig"/? (see [loc. cit.]).

Let s1, ..., s7 be the simple reflections in W. We may assume that
c = 51528354855¢57 (for a suitable numbering of sy, ..., s7). Let f =
(51, ..., 87), and let Xy = X(c) (cf. [L1], (1.7), (4.2)). As in [L1], (4.2),
let XJ} be the set of all sequences (Bg, Bi, ..., Br) of Borel subgroups of
G such that (B;_1, Bi) € s; or Bi_1=B; (1 <5 < 7) and F(Bo) = By.
Then XJ} is a smooth projective subvariety of X® and we can regard X [
as a open dense subvariety of Xf By the arguments in [L1], pp. 119-120,
and the information in [L1], p. 146, we can observe that p° appears with
multiplicity one in the space H 7(XJ}, Q). In fact, the eigenvalues of F' on
it are +ig"/? and the two eigen-subspaces afford the two non-isomorphic
cuspidal unipotent representations of G¥.

Let X, be the Fg-structure of X determined by F, and let ¥ =
h(X} o) be the motive of X o in the category Mot(F,) (see [Mi]). Let Z
be the simple component of ¥ such that [rz] = [ig7/?] (cf. [Mi], Proposition
2.6). Let £ = End(Z). Then FE is a division algebra whose centre is K =



312 J. Ohmori

Q(ig"?) = Q(x,) ([Mi], Proposition 2.4). By using Theorem 2.16 of [Mil,
we can calculate the Hasse invariants of E:

(i) If ¢ is non-square, or ¢ is an even power of p = 3 (mod4), then E ~ K.
(ii) Assume that ¢ is an even power of p = 1 (mod4). Then, if v is a
finite place of K lying above p, we have inv,(E) = 1/2, and inv,(E) = 0
otherwise.

This seems to correspond to the result of Geck in [Ge3].

The rationality of the other cuspidal unipotent representations associ-
ated with Coxeter elements have similar motivic explanations.

At any rate, this observation suggest that we can expect that crystalline
cohomology groups might play some roles in the study of the rationality-
properties of (cuspidal) unipotent representations. In this connection, when
GF = E7(F,) where ¢ is an even power of p = 1 (mod4) we can prove that
F acts on ngys(Xj,o /W (Fq)) ®w,) K(Fq) semisimply and the two eigen-
subspaces of it (with eigenvalues +iq"/ %) afford two non-isomorphic cuspidal

“unipotent representations of G (where W (F,) is the Witt ring of F, and
K (F,) is its quotient field).

Assumt that G is a simple algebraic group of adjoint type, of type
By (resp. Gs), and that F' is an exceptional isogeny such that F? is the
Frobenius endomorphism of G coresponding to a rational structure on G
over the finite subfield of k with ¢ = 22"*1 (resp. ¢> = 3?"*!) elements.
Then G¥ is the Suzuki group 2Bs(q) (resp. the Ree group 2Gz(gq) of type
G2). We see from the table in Lusztig [L2], pp. 373-4, that, for any unipotent
representation p of G, there is some w € W such that (R'(w), p%)gr =
+1. Therefore, by Proposition 3, we see that, for any (complex) unipotent
representation p of G, we have mgq,(p) = 1 for any prime number £ #
p. (We note that R. Gow [Go] has proved that any complex irreducible
representation of 2Ba(q) or 2Ga(q) has the Schur index 1 over Q.)

Assume that G is a simple adjoint algebraic group of type Fy and that
F is an exceptional isogeney such that F? is the Frobenius endomorphism
of G corresponding to a rational structure on & over the finite subfield of
k with ¢ = 227*! elements. Then G¥ is the Ree group 2Fy(q) of type
F4. The isomorphism classes of the unipotent representations of G¥ were
classified by Lusztig (in [L2]) and their character values were calculated by
Malle in [Ma]. According to the notation of [Ma], the unipotent characters
are X1, X2, - - -, x21- We find from [L2] that, for each ¢, 1 <14 < 20, there
is some w € W such that (Ry, xi)gr = *£1, so that, for such 4, we have
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mq,(x;) = 1 for any prime number £ # p = 2. (We have mg(x;) =1 for 1 <
1 < 20 (see Geck [Gel]).) For ¢ = 21, we find from [L2] that (R, Xx21)grF is
even for each w € W. But we still have mg,(x21) = 1 for any prime number
£ #p.

In fact, let H be a finite group and let £ be a prime number which divides
the order of H. Then we say that an element = of H is ¢-singular if ¢ divides
the order of z. For a field L, let Ry (H) denote the Grothendieck group of the
category of finitely generated L[H]-modules, and, for a commutative ring R
with 1, Pr(H) denotes the Grothendieck group of the category of finitely
generated projective R[H|-modules. Let K be a finite extension of Q, and
let A be the integer ring of K. Let e: P4(H) — Rg(H) be the additive
homomorphism which is induced by the corerspondence M — K ® 4 M.

Lemma 1 (Swan and Serre; see Serre [Se], Theorem 37) Let K’ be a finite
extension of K. Then, for an element z of Rg:(h), = belongs to the image
of e: PA(H) — Ry (H) if and only if the character of  has the values in
K and vanishes at all £-singular elements of H.

Let H = GF = 2Fy(g), and let £ be any prime number. Let x = x21.
Then, if ¢ deoes not divide the order of H, then it is well known that
mg,(x) = 1. Suppose that £ divides the order of H and that £ { 2(¢? +
1)(¢g* + 1) (cf. 3|¢g*> +1). Let K = Qp. Let o: C — Qg be an isomorphism
where Q; is an algebraic closure of Q,. Let p be a (complex) unipotent
representation of H with character x. Then p? is an absolutely irreducible
representation of H over Q, with character x (cf. Q(x) = Q). Let n be the
expoent of H. Then it is well known that p? is realizable in K’ = Q((,)
where ¢, is a primitive n-th root of unity in Q, (Brauer; see, e.g., [Se],
Theorem 24). Thus p° defines an element z of Rg/(H). The character x,
of z is x. Xz takes the values in Q (C K) and we see from [Ma] that it
vanishes at all £-singular elements of H. Therefore, by Lemma 1, we see
that x belongs to Rg,(H). By Proposition 33 of [Se], we see that p is
realizable in Q. Therefore, by Proposition 3, we have mg,(p) = 1.

Next, suppose that £|g% + 1 and £ # 3. Set x’ = 2x13 + x. Let p13 be
a (complex) unipotent representation of H with character xi3. Let o: C —
Qy be an isomorphism where Q is an algebraic closure of Q;. Then P33 +
095 + p? is realizable in K’ = Qg((,), where ¢, is a primitive n-th root of
unity in Q, and defines an element z’ of Ry/(H) with character x'. We
see from [Ma] that x’ has the values in Q and vanishes at all /-singular



314 J. Ohmori

elements of H. Therefore, by Lemma 1, we see that 2’ lies in Rg,(H),
hence, by Proposition 33 of [Se|, we see that p%y + pf3 + p7 is realizable
in Q¢. Thus, since (pfs + pJ3 + p7, p°)a = 1, by Proposition 3, we have
mg,(p) = 1.

Thirdly, let x¥” = x — x15 — X16 and suppose that £|¢> — v/2q + 1. Let
p15 (resp. p1g) be a (complex) unipotent representation of H with character
x15 (resp. x16). Let o: C — Qg be an isomorphism where Q; is an algebraic
closure of Q. Let K/ = Qu(¢,) where ¢, is a primitive n-th root of unity in
Q¢ Let [p°] (resp. [095], [09s]) be the element of Ry (H) which is determined
by p7 (resp. p{5, p%6). Let 2" = [p7] — [p5] — [0%6] (€ Rx/(H)). Then z”
has the character x”. We see from [Ma] that x” has the values in Q and
vanishes at all £-singular elements of H.

Thus, by Lemma 1, we see that z” belongs to the image of the homomor-
phism e: Pz,(H) — Rg,(H). So there exist finitely many finitely generated
projective Zy,[H]-modules Py, ..., P; and signatures €1, ..., & = +1 such

“that e(e1[P1] + « - - + €¢[P:]) = 2", where, for 1 <4 < t, [B] is the element
of Pg,(H) determined by P;. For 1 < i < t, let V; = Q¢ ®z, B, which is
ralizable in Q. By Proposition 3, we see that mq,(p) divides (p?, V;)g for
each 1. Hence mg,(p) divides S>%_ &:(p%, Vi)mw = (x, X")g = 1.

Similarly, by considering x"” = x — x17 — x18 and X" = x + Xx20 + X190 +
2x14 + X13 + x12 (there characters are rational integral valued), we see that,
for any prime number £ such that £|¢® + v/2q + 1 (resp. £ = 3), we have

mq,(p) = 1.
Thus we get

Proposition 5 For any unipotent representation p of > Ba(q) (resp. 2Ga(q),
2Fy(q)), we have mq,(p) = 1 for each prime number £ # 2 (resp. # 3, # 2)

Let us give a sketch of the proof of Theorem 3.

Let p, k, G and F be as in Theorem 3. Let G2 be the adjoint group
of G, let 7: G — G be the natural morphism and let 7: G — G be
the simply-connected covering of the derived group of G. Let U(G) (resp.
U(G2d), U(G)) be the set of isomorphism classes of the unipotent repre-
sentations of GF (resp. (G®4)F, GF). Then the mapping p?d — p*d o7
(resp. p — po 7) defines a bijection from U(G*?) onto U(G) (resp. U(G)
onto U(G)) ([DL], Proposition 7.10). Then, for p*d € U(G?d), we have
Q(xpea) = QX pador) = QX pdoror) (cf. Geck [Ge2], Remark 2.6). Thus it
clearly suffices to prove the theorem for G®. Then, by a standard reduc-
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tion argument, we are reduced to the case where G is a simple algebraic
group of adjoint type. In this case the assertion is clear from the corollary
of Proposition 4 and Proposition 5.

Remark Assume that H = 2Fy(q) and x = x21. Then, in [Gel], Geck
has proved that mg(x) = 2 by showing that

V) = 7 3 xa?) = -1
x€H
(cf. [Se], Proposition 39). His calculation is very interesting. It will be
convenient to note that the same result also follows from the following datum
(cf. Shinoda [Shi]):
Classof z 1 U1 U U3 U4 Uy Us  UT U8 Ug
Class of z° 1 1 1w ur w w Uz Uy U

ulp U1l U12 U13 U4 U5 U6 U1y w1 b1 fiun
us U5 U5 U Uy U1l Uiz u1e  ul b t1

tiug tiuga 19 tous 3 tg  tauo taur taug t4u§
tiuy tiur ta tp t3 tg 4 Taug laua T4un

t5  tsug tg tr  frur tyug trua g fg fous
i5 ts  te tr tr tyur tyur fg tg tg

tous Tousa ti10 t11 tiz tiz  tie  tis  tig  ti7
tour tour tio t11 tiz tiz ftie  tis  tie ti7

Let R be a set of the class representatives of H. For x € R, let Zy(x)
be the centralizer of z in H. Then we have v(x) = > ,cr X(2?)/|Zx(z)|.
The left hand side of this equation is a rational integer and the right hand
side is a rational function on ¢ (see [Ma]). Thus, by letting ¢ — oo, we get
vix) =-1

By the same method, we can show that v(n) = 1 for any other rational-
valued unipotent character n of H.
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