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The joint approximate point spectrum of an operator
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Abstract. A new proof of a result, due to Xia, concerning the joint approximate point
spectrum of an operator is given. This result is then applied to obtain certain spectral
properties for operators, such as p-hyponormal and \log-hyponormal operators, which have
the identical approximate and joint approximate point spectra.
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1. Introduction

Let T be a bounded linear operator on a Hilbert space H . A complex
number \lambda\in \mathbb{C} is said to be in the approximate point spectrum \sigma_{a}(T) of
the operator T if there is a sequence \{x_{n}\} of unit vectors satisfying (T-
\lambda)x_{n} -0. If in addition, (T^{*}-\overline{\lambda})x_{n} -arrow 0 , then \lambda is said to be in the
joint approximate point spectrum \sigma_{ja}(T) of T The boundary \partial\sigma(T) of
the spectrum \sigma(T) of the operator T is known to be a subset of \sigma_{a}(T) .
Although, in general, one has \sigma_{ja}(T)\subset\sigma_{a}(T) , there are many classes of
operators T for which

\sigma_{ja}(T)=\sigma_{a}(T) . (1)

For example, if T is either normal or hyponormal, then T satisfies (1). More
generally, (1) holds if T is semi-hyponormal [15], p-hyponormal [7] or log-
hyponormal [14], [4, Corollary 4.5]. In [10], Duggal introduced a class K(p)
of operators which contains the p-hyponormal operators and showed [10,
Theorem 4] that operators T in the class K(p) satisfy (1).

In this paper we give a new proof of a result, due to Xia [15], concerning
the joint approximate point spectrum of an operator. The result is then
applied to obtain certain spectral properties for operators T for which (1) is
satisfied. All operators considered in this paper are assumed to be bounded
linear operators on the Hilbert space H . This paper may be considered, for
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the cases of p-hyponormal and \log-hyponormal operators, as a continuation
of the paper [5].

2. The Joint Approximate Point Spectrum

In this section we give a new proof of a result, due to Xia [15], on the
joint approximate point spectrum of an operator. The result implies that
if T=U|T| is the polar decomposition of the operator T and \lambda\in\sigma_{ja}(T)

with joint “approximate eigenvectors” \{x_{n}\} , then |\lambda|\in\sigma(|T|)\cap\sigma(|T^{*}|)

with approximate eigenvectors \{x_{n}\} . If in addition, \lambda=|\lambda|e^{i\theta}\neq 0 , then
i\thetae \in\sigma_{ja}(U) with joint approximate eigenvectors \{x_{n}\} . Applications of this

result will be given in the remaining sections.

Theorem 1 Let T=U|T| be the polar decomposition of the operator T,
\lambda\in \mathbb{C} , and \{x_{n}\} be a sequence of vectors. If (T-\lambda)x_{n} -0 and (T^{*}-
\overline{\lambda})x_{n}arrow 0 , then (|T|-|\lambda|)x_{n}arrow 0 and (|T^{*}|-|\lambda|)x_{n}arrow 0 . If in addition,
\lambda=|\lambda|e^{i\theta}\neq 0 , then (U-e^{i\theta})x_{n}arrow 0 and (U^{*}-e^{-i\theta})x_{n}arrow 0 .

Proof Since ||Tx||=|||T|x|| for any vector x , Tx_{n} -arrow 0 if and only if
|T|x_{n} -0. Similarly, T^{*}x_{n} –0 if and only if |T^{*}|x_{n} –0. This proves
the theorem for the case \lambda=0 . Now, assume \lambda=|\lambda|e^{i\theta}\neq 0 . This implies
the positive operators |T|+|\lambda| and |T^{*}|+|\lambda| are invertible. The first result
follows since

(|T|+|\lambda|)(|T|-|\lambda|)=T^{*}(T-\lambda)+\lambda(T^{*}-\overline{\lambda}) (2)

and

(|T^{*}|+|\lambda|)(|T^{*}|-|\lambda|)=T(T^{*}-\overline{\lambda})+\overline{\lambda}(T-\lambda) . (3)

The second result follows since

|\lambda|(U-e^{i\theta})=(T-\lambda)-U(|T|-|\lambda|) (4)

and

|\lambda|(U^{*}-e^{-i\theta})=(T^{*}-\overline{\lambda})-U^{*}(|T^{*}|-|\lambda|) . (5)

The proof is complete. \square

Although the proof of Theorem 1 is entirely elementary, except in [5],
equations (2)-(5) do not seem to have been observed. Corollary 2 below
was previously established by Ch\={o} [6, Lemma 3] under the added assump-
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tion that U is unitary. More recently, Duggal [10, Theorem 4], employing
the more elaborate Berberian’s extension technique, proved the equivalence
between parts (a) and (b) of Corollary 2.

Corollary 2 Let T=U|T| be the polar decomposition of the operator T_{J}.
\lambda=|\lambda|e^{i\theta}\neq 0 , and \{x_{n}\} be a sequence of vectors. The following assertions
are equivalent.
(a) (T-\lambda)x_{n}arrow 0 and (T^{*}-\overline{\lambda})x_{n}arrow 0 .
(b) (|T|-|\lambda|)x_{n}arrow 0 and (U-e^{i\theta})x_{n}arrow 0 .
(c) (|T^{*}|-|\lambda|)x_{n}arrow 0 and (U^{*}-e^{-i\theta})x_{n}arrow 0 .

Proof. Both (b) and (c) follow from (a) by Theorem 1. That (b) implies
(a) follows from equations (4) and (2) in the proof of Theorem 1. Similarly,
(c) implies (a) follows from equations (5) and (3). \square

3. Operators Having Identical Approximate and Joint Approxi-
mate Point Spectra

In this section we apply Theorem 1 to obtain several spectral properties
for operators whose approximate and joint approximate point spectra are
identical. In particular, the results obtained here apply to p-hyponormal
and \log-hyponormal operators, and to operators in the class K(p) .

Theorem 3 below is a direct consequence of Theorem 1. We there-
fore omit its proof. With the added assumption that the polar factor U is
unitary, part (a) of Theorem 3 was shown to hold for hyponormal opera-
tors by Putnam [12, Theorem 1], and for p-hyponormal operators by Ch\={o},
Huruya and Itoh [8, Theorem 2]. On the other hand, Duggal [10, Theorem 4]
obtained part (a) in its generality for operators in the class K(p) .

Theorem 3 Let T=U|T| be the polar decomposition of the operator T

with \sigma_{ja}(T)=\sigma_{a}(T) .
(a) If \lambda\in\sigma_{a}(T) , then |\lambda|\in\sigma(|T|)\cap\sigma(|T^{*}|) . In particular, if \lambda\in\partial\sigma(T) ,

then |\lambda|\in\sigma(|T|)\cap\sigma(|T^{*}|) .
(b) If \lambda=|\lambda|e^{i\theta}\neq 0 is such that \lambda\in\sigma_{a}(T) , then e^{i\theta}\in\sigma_{ja}(U) .

For hyponormal operators T=U|T| with unitary polar factor U ,
Putnam [12, Theorem 3] proved that if z=|z|e^{i\theta}\neq 0 is such that z\in

\sigma(T) , then e^{i\theta}\in\sigma(U) . Our next application is to generalize Putnam’s
result.
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Theorem 4 Let T=U|T| be the polar decomposition of the operator T
with \sigma_{ja}(T)=\sigma_{a}(T) . If z=|z|e^{i\theta}\neq 0 is such that z\in\sigma(T) , then e^{i\theta}\in

\sigma_{ja}(U) .

Proof. Let \lambda=re^{i\theta} , where r= \sup\{|w| : |w|e^{i\theta}\in\sigma(T)\} . Then \lambda\in

\partial\sigma(T)\subset\sigma_{a}(T) . The result follows from Theorem 3. \square

For r>0 , let

C_{r}=\{z : |z|=r\}

be the circle in \mathbb{C} with center 0 and radius r .

Corollary 5 Let T=U|T| be the polar decomposition of the operator T
with \sigma_{ja}(T)=\sigma_{a}(T) . If \sigma(U) does not contain the unit circle C_{1} , then
\sigma(T) does not contain the circle C_{r} for any r>0 .

Proof. The assumption implies there is a \theta\in \mathbb{R} for which e^{i\theta}\not\in\sigma(U) .
Therefore, e^{i\theta}\not\in\sigma_{ja}(U) and the result follows from Theorem 4. \square

The idea of extending from a point z\in\sigma(T) radially to a point \lambda\in

\sigma_{a}(T) in Theorem 4 is due to Putnam [12]. In the next application, extend-
ing from a point z\in\sigma(T) circularly to a point \lambda\in\sigma_{a}(T) will be employed.
For that purpose, let

A_{r}(\alpha, \beta)=\{re^{i\theta} : \alpha\leq\theta\leq\beta\}

be the arc on the circle C_{r} with endpoints re^{i\alpha} and re^{i\beta} .
Let T=U|T| be a p-hyponormal operator. Does it follow that z\in\sigma(T)

implies |z|\in\sigma(|T|) ? Putnam [12] gave an example which shows that even if
the polar factor U is unitary, the answer to the question is in the negative.
The next application shows that if z\neq 0 and \sigma(T) does not contain the
circle C_{|z|} then the answer to the question becomes affirmative.

Theorem 6 Let T=U|T| be an operator with \sigma_{ja}(T)=\sigma_{a}(T) , and let
z=|z|e^{i\alpha}\neq 0 be such that z\in\sigma(T) . If \sigma(T) does not contain the circle
C_{|z|} , then |z|\in\sigma(|T|) and C_{|z|}\cap\sigma_{a}(T)\neq\emptyset .

Proof. Let r=|z| and let \lambda=re_{:}^{i\beta} where \beta=\sup\{\gamma : A_{r}(\alpha, \gamma)\subset

\sigma(T)\} . The assumption that \sigma(T) does not contain the circle C_{r} implies
\lambda\in\partial\sigma(T)\subset\sigma_{a}(T) , and the result follows from Theorem 3. \square
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Corollary 7 Let T=U|T| be an operator with \sigma_{ja}(T)=\sigma_{a}(T) , and let
z=|z|e^{i\alpha}\neq 0 be such that z\in\sigma(T) . If either \sigma(U) does not contain the
unit circle C_{1} or there is a \theta\in \mathbb{R} for which \{re^{i\theta} : r>0\}\cap\sigma(T)=\emptyset , then
|z|\in\sigma(|T|) and C_{|z|}\cap\sigma_{a}(T)\neq\emptyset .

Proof The assumption that \{re^{i\theta} : r>0\}\cap\sigma(T)=\emptyset implies that \sigma(T)

does not contain the circle C_{r} for any r>0 . By Corollary 5, the same
implication follows if \sigma(U) does not contain the unit circle C_{1} . The result
follows from Theorem 6. \square

4. p-Hyponormal and \log-Hyponormal Operators

An operator T is said to be p-hyponormal, p>0 , if (T^{*}T)^{p}\geq(TT^{*})^{p} .
A p-hyponormal operator is called hyponormal if p=1 , semi-hyponormal
if p=1/2 . It is a consequence of the L\"owner-Heinz inequality that if T is
p-hyponormal, then it is q-hyponormal for any 0<q\leq p . An invertible
operator T is said to be \log-hyponormal if \log(T^{*}T)\geq\log(TT^{*}) . Log-
hyponormal operators were independently introduced in [3] and [13]. It was
shown in [13], through an example, that neither the class of p-hyponormal
operators nor the class of \log-hyponormal contains the other.

Let T=U|T| be the polar decomposition of the operator T . Following
[1] (see also [2]) we define \overline{T}=|T|^{1/2}U|T|^{1/2} . The operator \overline{T} plays an
important role in the study of spectral properties of the p- or \log- hyp\underline{o}normal

operator T We need two spectral properties concerning T and T which
serve to motivate our further development of this section. The first property
is well-known. It shows that the spectra of T and T are identical. The
second, which does not seem to have been recognized before, shows that the
approximate point spectra of T and \overline{T} are identical as well.

Lemma 8 For an operator T=U|T| , \sigma(T)=\sigma(\overline{T}) .

Lemma 9 For an operator T=U|T| , \sigma_{a}(T)=\sigma_{a}(\overline{T}) .

Proof Let \lambda\neq 0 be such that (T-\lambda)x_{n} -0 for some sequence \{x_{n}\}

of unit vectors. Since ||(T-\lambda)x_{n}||\geq|||Tx_{n}||-|\lambda|| , we may assume the
sequence \{||Tx_{n}||\}=\{|||T|x_{n}||\} is bounded away from 0. Since |||T|x_{n}||\leq

|||T|^{1/2}|||||T|^{1/2}x_{n}|| , the sequence \{|||T|^{1/2}x_{n}||\} is bounded away from 0.
Thus,

(\overline{T}-\lambda)|T|^{1/2}x_{n}=|T|^{1/2}(T-\lambda)x_{n}arrow 0 .
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If Tx_{n}arrow 0 , then |T|x_{n} –0. Consequently, |T|^{1/2}x_{n}arrow 0 . Thus,
\overline{T}x_{n} –0. Therefore, \sigma_{a}(T)\subset\sigma_{a}(\overline{T}) . Now, let \lambda\neq 0 be such that (\overline{T}-

\lambda)x_{n} –0 for some sequence \{x_{n}\} of unit vectors. Again, we may assume
the sequence \{||\overline{T}x_{n}||\} is bounded away from 0. Consequently, the sequence
\{||U|T|^{1/2}x_{n}||\} is bounded away from 0. Thus,

(T-\lambda)U|T|^{1/2}x_{n}=U|T|^{1/2}(\overline{T}-\lambda)x_{n}arrow 0 .

Suppose \overline{T}x_{n}=|T|^{1/2}U|T|^{1/2}x_{n} -arrow 0 . There are two cases to consider.
Case 1, the sequence \{||U|T|^{1/2}x_{n}||\} is bounded away from 0. In this case
we have

T(U|T|^{1/2}x_{n})=U|T|^{1/2}\overline{T}x_{n}arrow 0 .

Case 2, the sequence \{||U|T|^{1/2}x_{n}||\} is not bounded away from 0. Passing
to a subsequence if necessary, we may assume U|T|^{1/2}x_{n}arrow 0 . Consequently,
U^{*}U|T|^{1/2}x_{n}=|T|^{1/2}x_{n} –0, and hence Tx_{n} –0. Therefore, \sigma_{a}(\overline{T})\subset

\sigma_{a}(T) . \square

If T is p-hyponormal, does it follow that |T| and |\overline{T}| have identical
spectra? Lemmas 8 and 9 notwithstanding, the answer to the question is in
the negative [ 11\lfloor. In the remainder of this section, we give conditions under
which |T| and |T| will have identical spectra.

Lemma 10 ([3])If-*T=U|T| is either p-hyponormal or log-hyponormal,
then |\overline{T}|\geq|T|\geq|T| . Consequently, \overline{T} is semi-hyponormal.

Theorem 11 ([9, 12, 14, 15]) If T=U|T| is either p-hyponormal or log
hyponormal then \sigma(|T|)\subset\rho(\sigma(T)) , where \rho : \mathbb{C}arrow \mathbb{R} is defined by \rho(z)=

|z| .

The above theorem was proven for hyponormal operators by Putnam
[12, Theorem 7], for semi-hyponormal operators by Xia [15], and for p-
hyponormal operators by Ch\={o} and Itoh [9, Theorem 4]. As for log-hyp0-
normal operators, Tanahashi observed in the proof of [14, Theorem 7] that
if T=U|T| is \log-hyponormal, then, replacing T by cT for sufficiently
large c>0 if necessary, one may assume that \log|T| is both positive and
invertible. Consequently, there is a semi-hyponormal operator S for which
|S|=\log|T| and T=Ue^{|S|} . It is then seen that the above theorem, in the
case of \log-hyponormal T\backslash follows from Tanahashi’s [14, Lemma 6].
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Lemma 12 Let T=U|T| be an operator which satisfies \sigma_{ja}(T)=\sigma_{a}(T)

and \sigma(|T|)\subset\rho(\sigma(T)) . If \sigma(T) does not contain the circle C_{r} for any r>0 ,
then \rho(\sigma_{a}(T))=\sigma(|T|) .

Proof. Let r\in\sigma(|T|) be such that r\neq 0 . The assumption implies there
is a z\in\sigma(T) for which |z|=r . Since \sigma(T) does not contain C_{|z|} , there is
a \lambda\in\partial\sigma(T)\subset\sigma_{a}(T) for which |\lambda|=r by Theorem 6. If O\in\sigma(|T|) , then
there is a sequence \{x_{n}\} of unit vectors for which ||Tx_{n}||=|||T|x_{n}|| -

0. Therefore, \sigma(|T|)\subset\rho(\sigma_{a}(T)) . On the other hand, \rho(\sigma_{a}(T))\subset\sigma(|T|)

follows from Theorem 3. \square

Corollary 13 Let T=U|T| be an operator which satisfies \sigma_{ja}(T)=

\sigma_{a}(T) and \sigma(|T|)\subset\rho(\sigma(T)) . If either \sigma(U) does not contain the unit
circle C_{1} , or there is a \theta\in \mathbb{R} for which \{re^{i\theta} : r>0\}\cap\sigma(T)=\emptyset , then
\rho(\sigma_{a}(T))=\sigma(|T|) .

Proof. Either the assumption on \sigma(U) or the assumption on \sigma(T) implies
that \sigma(T) does not contain the circle C_{r} for any r>0 . The result follows
from Lemma 12. \square

Theorem 14 Let T=U|T| be either p-hyponormal or log-hyponormal. If
either
(a) \sigma(T) does not contain the circle C_{r} for any r>0 ,
(b) \sigma(U) does not contain the unit circle C_{1} , or
(c) there is a \theta\in \mathbb{R} for which \{re^{i\theta} : r>0\}\cap\sigma(T)=\emptyset ,
then \rho(\sigma_{a}(T))=\sigma(|T|) .

Theorem 15 Let T=U|T| be either p-hyponormal or log-hyponormal. If
either
(a) \sigma(T) does not contain the circle C_{r} for any r>0 ,
(b) \sigma(U) does not contain the unit circle C_{1} , or
(c) there is a \theta\in \mathbb{R} for which \{re^{i\theta} : r>0\}\cap\sigma(T)=\emptyset ,
then \sigma(|T|)=\sigma(|\overline{T}|) , and for each r\in\sigma(|T|\underline{)} there is a sequence \{x_{n}\} of
unit vectors for which (|T|-r)x_{n}arrow 0 and (|T|-r)x_{n}arrow 0 .

Proof. Theorem 14, Lemma 9 and Theorem 3 imply

\sigma(|T|)=\rho(\sigma_{a}(T))=\rho(\sigma_{a}(\overline{T}))\subset\sigma(|\overline{T}|) . (6)

Since |\overline{T}|\geq|T| , it follows that if 0\in\sigma(|\overline{T}|) and \{x_{n}\} is a sequence of unit
vectors for which |\overline{T}|x_{n}arrow 0 , then 0\in\sigma(|T|) and |T|x_{n}arrow 0 . Let r\neq 0 be
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such that r\in\sigma(|\overline{T}|) . Theorem 11 and Lemma 8 imply there is a z\in\sigma(T)

for which |z|=r . Since \sigma(T) does not contain the circle C_{r} , it follows
from Theorem 6 and Lemma 9 that there is a \lambda\in\sigma_{a}(T) for which |\lambda|=r .
Consequently, Theorem 3 implies r\in\sigma(|T|) , and hence \sigma(|\overline{T}|)\subset\sigma(|T|) .
Thus, \sigma(|\overline{T}|)=\sigma(|T|) . Again, it follows from (6) that there is a \lambda=re^{i\theta}\in

\sigma_{a}(\overline{T}) and a sequence \{x_{n}\} of unit vectors for which (\overline{T}-\lambda)x_{n}arrow 0 . Then,
(\overline{T}-\overline{\lambda})x_{n}*

-arrow 0 by [7] and [14]. It follows from Theorem 1 that ( |\overline{T}|
-

r)x_{n}arrow 0 and (|T|-r)x_{n}arrow 0 . Since

|\overline{T}|-r\geq|T|-r\geq|\overline{T}*|-r ,

we have

(|\overline{T}|-r)-(|\overline{T}*|-r)\geq|T|-|\overline{T}*|\geq 0 .

Therefore, (|T|-|\overline{T}*|)x_{n}arrow 0 , and consequently,

(|T|-r)x_{n}=((|T|-|\overline{T}*|)x_{n}+(|\overline{T}*|-r)x_{n}arrow 0 .

The proof is complete. \square

5. Invariant Subspace

In this final section we consider conditions which are sufficient for an
operator T satisfying \sigma_{a}(T)=\sigma_{ja}(T) to possess a nontrivial invariant sub-
space. A complex number \lambda is in the compression spectrum \sigma_{c}(T) of an
operator T if the range of T-\lambda is not dense in H . It is known that \sigma(T)=

\sigma_{a}(T)\cup\sigma_{c}(T) for any operator T Moreover, if \lambda\in\sigma_{c}(T) and T\neq\lambda , then
it is readily verified that the closure of the range of T-\lambda is a nontrivial
invariant subspace of T

Theorem 16 Let T=U|T| be an operator with \sigma_{a}(T)=\sigma_{ja}(T) . If there
is a \lambda\in\sigma(T) for which |\lambda|\not\in\sigma(|T|)\cap\sigma(|T^{*}|) , then T has a nontrivial
invariant subspace.

Proof. By Theorem 3, \lambda\not\in\sigma_{a}(T) . Therefore, \lambda\in\sigma_{c}(T) , and hence T has
a nontrivial invariant subspace. \square

Theorem 17 Let T=U|T| 6e either p-hyponormal or log-hyponormal. If
\sigma(|T|)\neq\sigma(|\overline{T}|) , then T has a nontrivial invariant subspace.

Proof. Let r\in\sigma(|T|) . Theorem 11 and Lemma 8 imply there is a z\in
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\sigma(T)=\sigma(\overline{T}) for which |z|=r . If r\not\in\sigma(|\overline{T}|) , then z\not\in\sigma_{a}(\overline{T})=\sigma_{a}(T)

by Theorem 3 and Lemma 9. Consequently, z\in\sigma_{c}(T) , and hence T has
a nontrivial invariant subspace. Similarly, if there is an r\in\sigma(|\overline{T}|) and
r\not\in\sigma(|T|) , then T has a nontrivial invariant subspace. \square

Theorem 18 Let T=U|T| be an operator satisfying \sigma_{a}(T)=\sigma_{ja}(T)

and \sigma(|T|)\subset\rho(\sigma(T)) . If \sigma(|T|) is not connected; then T has a nontrivial
invariant subspace.

Proof. Without loss of generality, we may assume \sigma(T)=\sigma_{a}(T) . This
assumption and Theorem 3 imply \sigma(|T|)=\rho(\sigma(T)) . If \sigma(|T|) is not con-
nected, then \sigma(T) is not connected, and hence T has a nontrivial invariant
subspace. \square

Corollary 19 Let T=U|T| be either p-hyponormal or log-hyponormal.
If \sigma(|T|) is not connected, then T has a nontrivial invariant subspace.

The above corollary was proven for hyponormal operators by Putnam
[12, Theorem 10], and for p hyponormal operators by Ch\={o}, Huruya and
Itoh [8, Theorem 4]. In both cases they proved the corollary under the
assumption that \sigma(|T^{*}|) is not connected. It is easy to verify that the
reduction \sigma(T)=\sigma_{a}(T) in the proof of Theorem 18 assures that \sigma(|T|)=

\sigma(|T^{*}|) .
The proof of Corollary 19 relies on Theorem 11. It is not known whether

Theorem 11 holds for operators T in Duggal’s class K(p) . Thus, we prove
a generalization of Corollary 19 which does apply to the class K(p) as
well. This generalization is based on the fact that both p-hyponormal and
\log-hyponormal operators are normaloid. Recall that an operator T is nor-
maloid if ||T||=r(T) , the spectral radius of T Operators in K(p) are
normaloid as shown in [10].

Theorem 20 Let T=U|T| be a normaloid operator which satisfies
\sigma_{a}(T)=\sigma_{ja}(T) and \inf\{|z| : z\in\sigma(T)\}\leq\inf\{r : r\in\sigma(|T|)\} . If \sigma(|T|) is
not connecled, then T has a nontrivial invariant subspace.

Proof. Again, we may assume \sigma(T)=\sigma_{a}(T) . Let a= \inf\{|z| : z\in\sigma(T)\}

and b=||T||=|||T||| . Since T is normaloid, there is a z_{2}\in\sigma(T) such
that |z_{2}|=b . Let z_{1}\in\sigma(T) be such that |z_{1}|=a . Since \sigma(|T|) is not
connected, there is an r\not\in\sigma(|T|) such that a<r<b . Theorem 3 implies
C_{r}\cap\sigma(T)=\emptyset . Therefore, \sigma(T) is not connected, whence T has a nontrivial
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invariant subspace. \square

Theorem 20 is a generalization of Corollary 19. Indeed, in view of
Theorem 11, the inequality in Theorem 20 clearly holds for p-hyponormal
and \log-hyponormal operators.

Corollary 21 Let T=U|T| be a noninvertible normaloid operator with
\sigma_{a}(T)=\sigma_{ja}(T) . If \sigma(|T|) is not connected, then T has a nontrivial invari-
ant subspace.

Proof. Since O\in\sigma(T) , the inequality in Theorem 20 automatically holds
for T \square
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