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Asymptotic behavior of solutions to a
crystalline flow
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Abstract. The paper extends an author’s result that, under certain technical assump-
tions, presents the self-similar solutions to a crystalline flow defined independently by
M. Gurtin and J.E . Taylor as attractors for any other solutions. The existing result con-
cerns the crystalline flow defined on the space of closed, convex polygons with respect to
a reference convex body. On the same space of polygons, the present work shows that
even for an arbitrary weight function \gamma defined on a certain set of normal directions, the
self-similar solutions are attractors in the following sense: Let the system of equations
defining the flow be

\frac{dh_{i}(t)}{dt}=\frac{\gamma_{i}}{l_{i}(t)} , 1\leq i\leq n , (*)

where h_{i}(t)=h(\theta_{i}, t) is the distance from the origin to the i-th side of the evolving
convex polygon, while l_{i}(t)=l(\theta_{i}, t) is the length of the i-th side at the moment t , and
\gamma i=\gamma(\theta_{i}) is a strictly positive function on the set of normal directions to the sides of
the polygon.

Our main result says that if the family of convex polygonal curves which evolve by
(*) is normalized to enclose constant area, then for any sequence of times diverging to
infinity, there is a convergent subsequence of polygons which converges to the shape of
a self-similar solution. Moreover, for a \pi-periodic weight function, there is a unique self-
similar solution of the flow which is a global attractor for the family of evolving polygons.

Key words: crystalline flows, self-similar solutions, anisotropic energy density.

1. Introduction

Motion by crystalline energy or crystalline curvature is viewed as a
typical example of geometric evolution by nonsmooth interfacial energy.
Analyzing the behavior of planar crystalline interfaces endowed with energy
densities defined on a finite set of normal directions to the curve is a problem
of interest in material sciences. The finite set of normal directions is the set
of orientations that appear on the Wulff shape, which is the crystal of least
total boundary energy at fixed enclosed area. Motion of planar curves by
crystalline curvature is often considered for piecewise linear curves with the
same ordered set of orientations as the Wulff shape. Such curves are called
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admissible. The evolution of admissible curves can be then described by a
simple system of ordinary differential equations.

Angenent and Gurtin [AG] derived a model for the crystal evolution
based on the balance of forces and the second law of thermodynamics. The
planar case is governed by the following differential equations for the normal
velocitites, V_{i} , of the i-th side of an admissible curve of normal directions
\{n_{i}\}_{1\leq i\leq n} :

V_{i}(t)= \frac{1}{\beta(n_{i})} (\tilde{l}_{i}(t)K_{i}(t)-U) , (1)

where \tilde{l}_{i} denotes the length of the i-th side of the Wulff shape, K_{i}= \frac{Xi}{l_{i}} is the
crystalline curvature, and \chi_{i} has the constant value -1, +1 or 0 depending
whether the crystal is strictly convex, strictly concave, or neither near the
i-th side, \beta(n_{i})>0 is the kinetic modulus, which depends only on the set
of admissible directions, and U is the constant bulk energy.

Independently, Taylor ([T]) proposed an evolution for the planar crys-
talline motion under the assumptions: U=0, \beta(n_{i})=\frac{1}{\tilde{h}_{i}} where \tilde{h}_{i} is the
distance from the origin to the support line of the i-th side of the Wulff
shape.

The goal of this paper is to settle the asymptotic behavior of closed,
convex, polygonal solutions of a version of the anisotropic flow proposed by
Angenent and Gurtin for interfacial motion, with no driving term U :

V_{i}=-\gamma_{i}K_{i} , 1\leq i\leq n , (2)

where \gamma_{i}=\gamma(n_{i}) is a strictly positive function on the set of normal directions
to the sides of the polygon.

Our main result is:

Theorem 1.1 If the family of closed, convex polygonal curves which evolve
by (2) is normalized to enclose constant area, then for any sequence of times
diverging to infinity, there is a convergent subsequence of polygons which
converges in the Hausdorff metric to the shape of a self-similar solution.

The theorem 1.1 implies also a couple of results concerning self-similar
solutions, i.e. the solutions for which the family of evolving polygons are
self-similar with the initial polygonal curve.

Corollary 1.1 (The existence of self-similar solutions)
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Given any positive function \gamma defined on the set of admissible directions,
there exists a self-similar solution to (2).

Corollary 1.2 (The decomposition of the weight function)
Every positive function \gamma defined on the set of admissible directions can

be written as

\gamma_{i}=\tilde{h}_{i}\tilde{l}_{i} 1\leq i\leq n ,

where \tilde{h}_{i} is the distance from the origin to the i -th side of a convex polygon
and \tilde{l}_{i} is the length of the i -th side of normal direction n_{i} .

These results are known for smooth energies ([DGM], [G1], [GL]). A
direct proof for the decomposition of the weight function and the existence
of the self-similar solutions which requires in fact only boundedness of the
weight function is provided by Dohmen, Giga and Mizoguchi ([DGM]).

In many respects the crystalline evolution has a behavior typical of
the parabolic partial differential equation satisfied by the curvature flows
in the case of smooth planar curves. This is supported by a recent result
by Giga and Gurtin ([GG]). They have established a comparison theorem
for the planar crystalline evolution which sets the basis for extending the
usual comparison principle from the smooth case to weak formulations of
evolutions problems.

The system (2) represents a discrete version of the weighted curvature
equation for convex, closed, smooth curves. In fact, Gir\tilde{a}0 and Kohn ([GK],
[G3] ) use crystalline evolution as a method of approximating generalized
curve-shortening equations.

The weighted curvature equation has been also studied in the context
of geometric evolutions of curves represented by graphs including the case
when the interface energy is not necessarily smooth ([FG]). In that partic-
ular paper the evolution law with U\equiv 0 for the crystalline interface energy
is justified.

More recently, M.-H. Giga and Y Giga extended the theory of gen-
eralized solutions for crystalline energy even if U is non-identically zero,
([GMHG]). The comparison principle by Giga and Gurtin ([GG]), which we
have mentioned earlier, is fundamental in describing the large time behavior
when the driving term comes in.

We would like to recall now an earlier uniqueness result of the author:
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Theorem 1.2 ([S]) Let \tilde{K} be a convex polygonal body, symmetric with
respect to the origin, whose distances from the origin to the sides are denoted
by \tilde{h}_{i} and the lengths of the sides are \tilde{l}_{i} . Then the flow defined by

V_{i}=-\tilde{h}_{i}\tilde{l}_{i}K_{i} , 1\leq i\leq n , n>4 (3)

has a unique self-similar solution which is a homothety of \tilde{K} and this is an
attractor for any other solution to the flow.

In conjunction to the theorem 1.2, the corollary 1.2 leads to the follow-
ing conclusion:

Corollary 1.3 If \gamma is positive and \pi -periodic on the set of admissible
directions of cardinal strictly greater than four, there is a unique self-similar
solution to (2) and any evolving family of polygonal curves shrinks to a self-
similar shaped point.

The proof of our main result is modeled on the proof that M. Gage and
Y Li ([GL]) used for the existence of self-similar solutions to the anisotropic
curve shortening equation.

I would like to thank Mike Gage for pointing out the possibility to
solve this problem using similar techniques. In addition, I am grateful to
the referee for his comments and suggestions.

2. Estimates

Let K(t) be a family of convex, polygonal bodies whose boundaries are
a solution to the crystalline flow (2) re-written:

\frac{dh_{i}(t)}{dt}=-\frac{\gamma_{i}}{l_{i}(t)} , 1\leq i\leq n , (2’)

where h_{i}(t)=h(\theta_{i}, t) is the distance from the origin to the i-th side of the
evolving convex polygon at the moment t , while l_{i}(t)=l(\theta_{i}, t) is the length
of the i-th side at time t . We identify the normal direction to the i-th side,
n_{i}= ( \cos\theta_{i} , sin \theta_{i} ), by \theta_{i} and the set of all such normal directions will be
refered to as the set of admissible directions.

It is known that a convex polygon evolving by (2) stays convex until its
area becomes zero in finite time \omega , ([G3]). Moreover, it is not hard to see
that at time \omega all the sides of the evolving polygon become of zero length,
([T]). Thus also Area(K (\omega) ) =:A(\omega)=0 .
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In fact, during the evolution the area enclosed by K(t) is decreasing at
a constant rate:

Lemma 2.1

\frac{dA}{dt}=-\sum_{i=1}^{n}\gamma_{i} , (4)

where A(t)=Area(K(t)) .

Proof. From the geometry of the polygonal body K it follows that:

l_{i}(t)=h_{i+1}(t) csc \triangle\theta_{i+1}+h_{i-1}(t) csc \triangle\theta_{i}

-h_{i}(t) (cot \triangle\theta_{i+1}+\cot\triangle\theta_{i} ),

where \triangle\theta_{i} is the angle of the i-th vertex of \partial K , made by the i-1-th and
i-th side. More precisely, \triangle\theta_{i}=\pi-(\theta_{i}-\theta_{i-1}) .

The lemma follows now from the evolution equations of the h_{i} ’s, rein-
dexing two sums (The indices n+1=1 (mod n) and n=0 (mod n) .)

\square

Remark 2.1. The area of K(t) is given by the following expression:

A(t)=( \omega-t)\sum\gamma_{i}n .
i=1

This will suggest to consider the normalized flow in which the figure is
expanded to keep the enclosed area constant.

Another reason to do so is the lack of control over the blow up rate
of \frac{1}{l_{i}} . The most we can say about the unnormalized quantity \frac{1}{l_{i}} lies in the
following two estimates:

Lemma 2.2 There exist two strictly positive constants m and M depend-
ing on the initial conditions only such that

[( \min_{i}(\frac{\gamma_{i}}{l_{i}(0)}))^{-2}-m \frac{2t}{\max_{i}\gamma_{i}}]-1/2

\leq\min_{i}\frac{\gamma_{i}}{l_{i}}\leq(\frac{m}{\max_{i}\gamma_{i}})^{-1/2} (2\omega-2t)^{-1/2}
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and

( \frac{M}{\min_{i}\gamma_{i}})^{-1/2}
(2 \omega-2t)^{-1/2}\leq\max_{i}\frac{\gamma_{i}}{l_{i}}

\leq[(\max_{i}(\frac{\gamma_{i}}{l_{i}(0)}))^{-2}-M \frac{2t}{\min_{i}\gamma_{i}}]-1/2

Remark 2.2. The first inequality will imply the existence of a positive con-
stant depending on the initial conditions only which bounds from below each

\frac{1}{l_{i}} , 1\leq i\leq n during the entire evolution.

Proof of the Lemma 2.2 Consider the evolution equation for \frac{\gamma_{i}}{l_{i}} :

( \frac{\gamma_{i}}{l_{i}})_{t}=-\frac{\gamma_{i}}{l_{i}^{2}} (l_{i})_{t}=- \frac{\gamma_{i}}{l_{i}^{2}}(\frac{\gamma_{i}}{l_{i}}A_{i}-\frac{\gamma_{i+1}}{l_{i+1}}B_{i}-\frac{\gamma_{i-1}}{l_{i-1}}C_{i})

=- \frac{1}{\gamma_{i}}[(\frac{\gamma_{i}}{l_{i}})^{3}A_{i}-(\frac{\gamma_{i}}{l_{i}})^{2}\frac{\gamma_{i+1}}{l_{i+1}}B_{i}-(\frac{\gamma_{i}}{l_{i}})^{2}\frac{\gamma_{i-1}}{l_{i-1}}C_{i}] ,

where, for simplicity, we made the following notations:

A_{i}:=\cot\triangle\theta_{i+1}+\cot\triangle\theta_{i}

B_{i}:=\csc\triangle\theta_{i+1} , C_{i}:=\csc\triangle\theta_{i}=B_{i-1}

Then if y= \frac{\gamma_{i}}{l_{i}}=\min_{j}\frac{\gamma_{j}}{l_{j}} we have \frac{\gamma_{j}}{l_{j}}\geq y for all j ’s which implies
together with B_{i} , C_{i}>0 that:

y_{t}\geq.
\frac{y^{3}}{\gamma_{i}}(B_{i}+C_{i}-A_{i}) ,

and furthermore, labeling by m the following constant, depending on the
set of admissible directions, defined a priori by the initial conditions:

m:= \min_{i}(B_{i}+C_{i}-A_{i}) ,

we have

y_{t} \geq\frac{y^{3}}{\max_{i}\gamma_{i}} m .

The minimum of \frac{\gamma_{i}}{l_{i}} , as well as its maximum, is a continuous function,
but it may not be differentiate. It is however Lipschitz. Therefore the
notation y_{t} refers to y_{t}= \lim\inf_{\epsilon\nearrow 0}\frac{y(t+\epsilon)-y(t)}{\epsilon} .
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(5)

From a comparison principle we can see that once y is bigger than a
solution of z’= \frac{z^{3}}{\max_{i}\gamma_{i}} m , it must stay bigger. So if y is bigger than the

solution (m \cdot\frac{2\omega}{\max_{i}\gamma_{i}}-\delta-m\cdot\frac{2t}{\max_{i}\gamma_{i}})^{-1/2} for any t and any positive \delta , then
we obtain a contradiction, since in this case the blow-up of \min_{i}\frac{\gamma_{i}}{l_{i}} must
occur at an earlier time than \omega .

We conclude that \min_{i}\frac{\gamma_{i}}{l_{i}}\leq(m\cdot\frac{2\omega}{\max_{i}\gamma_{i}}-\delta-m \frac{2t}{\max_{i}\gamma_{i}} ) for any t

and any positive \delta and this proves half of the first sequence of inequalities.
The left inequality of the sequence follows immediately from the com-

parison principle by comparing y with the solution of the equation z
’

=
\frac{z^{3}}{\max_{i}\gamma_{i}} m having the same initial condition, z(0)=y(0)= \min_{i}\frac{\gamma_{i}}{l_{i}(0)} .

The second sequence of inequalities follows in a similar way. \square

Remark 2.3. Note that on the other hand, if y= \min_{i}\frac{\gamma_{i}}{l_{i}} is strictly less

than the solution (m \cdot\frac{2\omega}{\max_{i}\gamma_{i}}+\delta-m\cdot\frac{2t}{\max_{i}\gamma_{i}})^{-1/2} for all t and any positive \delta ,
then we obtain a contradiction, since in this case \min_{i}\frac{\gamma_{i}}{l_{i}} remains finite at t=
\omega and the blow up must occur at a later time. But this only proves that for

each \delta there exists a time t(\delta) such that y \geq(m\cdot\frac{2\omega}{\max_{i}\gamma_{i}}+\delta-m\cdot\frac{2t}{\max_{i}\gamma_{i}})^{-1/2}

for all t\geq t(\delta) . Unfortunately, t(\delta) increases as \delta goes to zero. In conclusion,
we cannot determine the exact blow up rate of the crystalline curvature.

Before we proceed to normalize the flow we consider the entropy func-
tional whose study is essential for our work:

Definition 2.1 Let the entropy be:

\mathcal{E}(t)=\sum\gamma_{i}n log ( \frac{\gamma_{i}}{l_{i}})

i=1

Proposition 2.1

\frac{d\mathcal{E}}{dt}=\sum\gamma_{i}n(\log(\frac{\gamma_{i}}{l_{i}}))_{t}\leq\frac{\sum_{i=1}^{n}\gamma_{i}}{2} \frac{1}{\omega-t}

i=1

where \omega is the time at which one, hence all, of the l_{i} ’s becomes zero.

Proof. Let

u_{i}=( \log(\frac{\gamma_{i}}{l_{i}}))_{t}=-\frac{(l_{i})_{t}}{l_{i}}
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=- \frac{1}{l_{i}} ( \frac{\gamma_{i}}{l_{i}} A_{i}- \frac{\gamma_{i+1}}{l_{i+1}} B_{i}- \frac{\gamma_{i-1}}{l_{i-1}} C_{i}).
where A_{i} , B_{i} , C_{i} are defined as before in the proof of the lemma 2.2.

We have then:

(u_{i})_{t}=( \frac{2\gamma_{i}}{l_{i}^{3}}A_{i}-\frac{\gamma_{i+1}}{l_{i+1}l_{i}^{2}}B_{i}-\frac{\gamma_{i-1}}{l_{i-1}l_{i}^{2}}C_{i})(l_{i})_{t}

- \frac{\gamma_{i+1}}{l_{i+1}l_{i}^{2}}B_{i}(l_{i+1})t-\frac{\gamma_{i-1}}{l_{i-1}l_{i}^{2}}C_{i}(l_{i-1})t

and since (l_{j})_{t}=-u_{j}l_{j} for all j ’s it follows that:

(u_{i})_{t}=2u_{i}^{2}+ \frac{\gamma_{i+1}}{l_{i+1}l_{i}}B_{i}(u_{i+1}-u_{i})+\frac{\gamma_{i-1}}{l_{i-1}l_{i}}C_{i}(u_{i-1}-u_{i})

for all i=1 , . , n .
Thus:

\mathcal{E}_{tt}=(\sum_{i=1}^{n}\gamma_{i}u_{i})_{t}

= \sum_{i=1}^{n}2\gamma_{i}u_{i}^{2}+\sum_{i=1}^{n}\frac{\gamma_{i+1}}{l_{i+1}}\frac{\gamma_{i}}{l_{i}}B_{i}(u_{i+1}-u_{i})+\frac{\gamma_{i-1}}{l_{i-1}}\frac{\gamma_{i}}{l_{i}}C_{i}(u_{i-1}-u_{i}) .

And since C_{i}=B_{i-1} by reindexing the last sum we have

\mathcal{E}_{tt}=\sum_{i=1}^{n}2\gamma_{i}u_{i}^{2}\geq 2\frac{(\sum_{i=1}^{n}\gamma_{i}u_{i})^{2}}{\sum_{i=1}^{n}\gamma_{i}}=2\frac{(\mathcal{E}_{t})^{2}}{\sum_{i=1}^{n}\gamma_{i}} .

We used Schwartz inequality. Setting y= \sum_{i=1}^{n}\gamma_{i}u_{i} yields

y_{t} \geq\frac{2}{\sum_{i=1}^{n}\gamma_{i}}y^{2} .

The equation (5) follows now from a comparison principle and the fact that
the entropy must be infinite at time t=\omega . The latter is given by the
definition of \omega as the time when the area enclosed by the polygonal curve
is zero, which coincides with the time when all the sides of the polygon
become of zero length ([T]). \square

Proposition 2.2 Magnify R^{2} by \mu=(2\omega-2t)^{-1/2} and make the change
of variable \tau=-\frac{1}{2}\log(2\omega - 2t) . Then the evolution equations are trans-
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formed into the rescaled equations:

( \overline{h}_{i})_{\tau}=(\mu h_{i})_{\tau}=-\frac{\gamma_{i}}{l_{i}^{-}}+\overline{h}_{i} (6)

(l_{i}^{-})_{\tau}= \overline{l}_{i}+\frac{\gamma_{i}}{l_{i}^{-}}A_{i}-\frac{\gamma_{i+1}}{\overline{l}_{i+1}}B_{i}-\frac{\gamma_{i-1}}{\overline{l}_{i-1}}C_{i} (7)

\overline{L}_{\tau}=\overline{L}+\sum_{i=1}^{n}(\frac{\gamma_{i}}{\overline{l}_{i}}A_{i}-\frac{\gamma_{i+1}}{\overline{l}_{i+1}}B_{i}-\frac{\gamma_{i-1}}{\overline{l}_{i-1}}C_{i}) (8)

\overline{A}=\frac{1}{2}\sum_{i=1}^{n}\gamma_{i}=constant . (9)

All the equations follow by direct calculation.
We will refer to the equations (6)-(9) as the normalized equations, as

the family of evolution curves encloses constant area for all time.
We have then a normalized entropy estimate which follows by direct

calculation as well as from its definition and the equation (5):

Corollary 2.1

\overline{\mathcal{E}}_{\tau}(\tau)=(\sum_{i=1}^{n}\gamma_{i}\log\frac{\gamma_{i}}{\overline{l}_{i}})_{\tau}\leq 0 (10)

and

\overline{\mathcal{E}}(\tau)=\sum_{i=1}^{n}\gamma_{i}\log\frac{\gamma_{i}}{\overline{l}_{i}}\leq\overline{C}_{\mathcal{E}} (11)

where \overline{C}_{\mathcal{E}} depends only on the initial curve.

Following Gage and Li [GL], we now obtain a lower bound on the width
of the normalized curve in terms of the entropy bound. This implies a lower
bound on the inradius of the normalized curve which leads to upper bounds
on its diameter and its length.

Lemma 2.3 Let w(\theta_{0}) be the width of the curve in the unitary direction
( \cos(\theta_{0}) , sin (\theta_{0}) ).

Then there exists a constant, C_{\mathcal{E},\gamma} , depending on the initial conditions
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only such that

log w( \theta_{0})\geq\frac{1}{n} ( -4c^{\gamma}\pi log 2-C_{\mathcal{E},\gamma} )

where c^{\gamma}:= \min_{i}|\theta_{i+1}-\theta_{i}| is the minimum of the differences between two
consecutive admissible directions, independent of the flow ’s evolution.

Proof. This can be deduced from the bound on the entropy using
Hamilton’s idea: The width of a curve in a unit direction is given by taking
the mixed volume with an interval in that direction.

2w( \theta_{0})=\sum_{i=1}^{n}| sin (\theta_{i}-\theta_{0})| \overline{l}_{i} .

We consider first only the directions \theta_{0} for which \sin(\theta_{i}-\theta_{0})\neq 0 , for
all i=1 , , n .

Therefore by taking the logarithm and using the inequality between the
arithmetic and geometric means of positive numbers we have:

log 2w( \theta_{0})=\log(\sum_{i=1}^{n}|\sin(\theta_{i}-\theta_{0})| \overline{l}_{i})

\geq\frac{1}{n}\sum_{i=1}^{n}\log(|\sin(\theta_{i}-\theta_{0})| ^{\overline{l}_{i}})

= \frac{1}{n}\sum_{i=1}^{n}(\log|\sin(\theta_{i}-\theta_{0})|+\log\overline{l}_{i})

= \frac{1}{n}(\sum_{i=1}^{n}\log|\sin(\theta_{i}-\theta_{0})|-\sum_{i=1}^{n}\log(\frac{1}{\overline{l}_{i}}))

The complex-valued function f(z)=\log|1-z|=\log|1-r exp i\theta| is
harmonic on B(0, r) for any r\leq 1 . By using a mean value formula for
r=1 , we see that:

\int_{0}^{2\pi} log |\sin(\theta)|d\theta=-2\pi log 2.

We use \{\theta_{i}\}_{i=1}^{n} as a partition of the interval [0, \pi/2]\cup[\pi/2, \pi]\cup[\pi, 3\pi/2]\cup

[3\pi/2,2\pi] for a Riemann sum bounded below by the value of the integral
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and obtain:

-2\pi log 2 \leq\frac{1}{2}\sum_{i=1,0<\theta_{i}-\theta_{0}\leq\pi/2}^{n}\log(|\sin(\theta_{i}-\theta_{0})|) |\theta_{i}-\theta_{i-1}|

+ \frac{1}{2}\sum_{i=1,\pi/2<\theta_{i}-\theta_{0}<\pi}^{n} log (|\sin(\theta_{i}-\theta_{0})|) |\theta_{i+1}-\theta_{i}|

+ \frac{1}{2}\sum_{i=1,\pi<\theta_{i}-\theta_{0}\leq 3\pi/2}^{n} log (|\sin(\theta_{i}-\theta_{0})|) |\theta_{i}-\theta_{i-1}|

+ \frac{1}{2}\sum_{i=1,3\pi/2<\theta_{i}-\theta_{0}<2\pi}^{n} log (|\sin(\theta_{i}-\theta_{0})|) |\theta_{i+1}-\theta_{i}|

\leq\frac{1}{2}\sum_{i=1,\theta_{i}-\theta_{0}\neq 0,\pi,2\pi}^{n}.\log(|\sin(\theta_{i}-\theta_{0})|)\min_{i=1,\ldots,n}|\theta_{i+1}-\theta_{i}|

= \frac{1}{2}\sum_{i=1,\theta_{i}-\theta_{0}\neq 0,\pi,2\pi}^{n}.\log(|\sin(\theta_{i}-\theta_{0})|)
, c^{\gamma} .

The lower bound on the negative of the second sum follows from the
upper bound on the entropy which concludes the result for the selected
unitary directions.

We have proved then that the width stays bounded from below for all,
but at most 2n+1 unitary directions \{\theta_{1}, \ldots, \theta_{n}, \theta_{1}+\pi, . , \theta_{n}+\pi, \theta_{1}+2\pi\}= :
N. However, for any \theta_{0}\in N there exists a natural number N_{\theta_{0}} such that
for all m\geq N_{\theta_{0}} the sequence with the general term \theta_{m}:=\theta_{0}+\frac{1}{m} lies in the
complement of N in the interval [0, 2\pi] and \theta_{m} converges to \theta_{0} as m goes to
infinity. Then since the width is a continuous function on [0, 2\pi] it follows
that for any direction \theta_{0} in N we have

w( \theta_{0})=\lim_{marrow\infty}w(\theta_{m})\geq\frac{1}{n} ( -4c^{\gamma}\pi log 2-C_{\mathcal{E},\gamma} ).

which concludes the proof for all the unitary directions. \square

The following estimates are purely geometrical and they do not depend
on the evolution of the boundary of K :

Lemma 2.4 The inradius of a convex curve ( i.e . the radius of the largest
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circle inscribed inside the curve) satisfies:
r_{in} \geq\frac{1}{3}\min_{\theta}w(\theta) .

(A proof can be found in [GL] or in some classical books on convex
geometry, [E] for example.)

And, since

\overline{A}\geq\sum_{i=1}^{n}\frac{\overline{l_{i}}r_{in}}{2}=\frac{r_{in}}{2} \overline{L}\geq\frac{r_{in}}{2} 2D \geq\frac{\min_{\theta}w(\theta)}{3} D

it follows

Corollary 2.2 In addition, the diameter of the curve is bounded

D \leq\frac{3\overline{A}}{\min_{\theta}w(\theta)}

and, since \overline{L}\leq\pi D , so is the length of the normalized curve.

3. Conclusions

Let

H( \tau, a, b)=\sum_{i=1}^{n}\gamma_{i} log \overline{h}_{i} (12)

where \overline{h}_{i}=\overline{h}_{i}(\tau, a, b)=\overline{h}(\tau, \theta_{i}, a, b) is the support function relative to the
point (a, b) of the i-th side of normal direction (cos \theta_{i} , sin \theta_{i} ) of a polygonal
curve p(\tau) which is evolving under the normalized equations.

Lemma 3.1 The evolution of H is described by the following equation:

H( \tau, a, b)_{\tau}=\sum_{i=1}^{n}(\gamma_{i}-\frac{\gamma_{i}^{2}}{\overline{l_{i}}\overline{h}_{i}})\leq 0 (13)

Proof. This follows by a direct calculation using the equations (6), (9)
and the Schwartz inequality:

\sum_{i=1}^{n}\frac{\gamma_{i}^{2}}{\overline{l}_{i}\overline{h}_{i}}
\sum_{i=1}^{n}\overline{h}_{i}\overline{l_{i}}\geq(\sum_{i=1}^{n}\gamma_{i})^{2}

\square
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It is necessary at this point to choose a center (a, b) such that the
support functions \overline{h}(\tau, \theta_{i}) stay positive for all time and therefore the value
of H(\tau, a, b) remains bounded for all time.

Let \{h(\theta_{i}, 0,0)|i=1, , n\} be the support functions of the flat sides a
convex polygon with respect to the origin (0, 0) . Then the support function
h(\theta_{i}, a, b) is given by:

h(\theta_{i}, a, b)=-\langle X-(a, b), N_{i})\rangle

=h(\theta_{i}, 0, O)-a cos \theta_{i}-b sin \theta_{i} , (14)

where X=X(\theta_{i}) is the position vector of the convex curve in the direction
N_{i}=N(\theta_{i})= ( \cos\theta_{i} , sin \theta_{i} ) normal to the i-th side.

By a direct calculation one can check that

l_{i}(0,0)=h_{i+1}(0,0) csc \triangle\theta_{i+1}+h_{i}(0, 0)\csc\triangle\theta_{i}

-h_{i}(0,0) (cot \triangle\theta_{i+1}+\cot\triangle\theta_{i} )
=h_{i+1}(a, b) csc \triangle\theta_{i+1}+h_{i}(a, b)\csc\triangle\theta_{i}

-h_{i}(a, b) (cot \triangle\theta_{i+1}+\cot\triangle\theta_{i} ) =l_{i}(a, b)

and if \{h(\tau, \theta, 0,0)|i=1, \ldots, n\} is a solution of the equation (2) in some
time interval, so is \{h(\tau, \theta, a, b)|i=1, . , n\} in the same time interval.

Using (14) we see that the normalized support functions satisfy:

\overline{h}(t, \theta_{i}, a, b)=\frac{h(t,\theta_{i},a,b)}{(2\omega-2t)^{-1/2}}

= \frac{h(t,\theta_{i},0,0)}{(2\omega-2t)^{-1/2}}-\frac{a\cos\theta_{i}}{(2\omega-2t)^{-1/2}}-\frac{b\sin\theta_{i}}{(2\omega-2t)^{-1/2}}

and by the definition of \tau :

\overline{h}(t, \theta_{i}, a, b)=\overline{h}(t, \theta_{i}, 0, O)-a exp \tau . cos \theta_{i}-b exp \tau . sin \theta_{i} (15)

This means that a translation of the initial curve gives a solution whose
support functions of the sides are equal to the original support functions
shifted by distances which increase exponentially with \tau .

Proposition 3.1 If r_{in} denotes the minimum value of the inradius of
the family of evolving normalized curves, then for any initial curve p_{0} there
is a choice of origin such that H(\tau) is uniformly bounded below by
\log(r_{in})\sum_{i=1}^{n}\gamma_{i} for all positive \tau ’s.

Also, the evolving normalized curves remain within a fixed ball.
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Proof. It suffices to show that we can choose a point (a, b) within the
initial curve p(0) and implicitely an initial set of support functions
\{\overline{h}(0, \theta_{i}, a, b)|i=1, \ldots, n\} such that H(\tau) is bounded by the desired con-
stant and then apply the continuous dependence of the solutions on initial
conditions to show that H(\tau) remains bounded by \log(r_{in})\sum_{i=1}^{n}\gamma_{i} .

Notice from the earlier estimates (Lemma 2.3 and Lemma 2.4) that the
inradius of the normalized curve p(\tau) is bounded below for all time by a
positive constant r_{in} .

Let \tau_{j} be a sequence of times diverging to \infty such that for each \tau_{j} there
is choice of (\tilde{a}_{j},\tilde{b}_{j}) which makes

\overline{h}_{i}(\tau_{j}, 0,0)-\tilde{a}_{j} cos \theta_{i}-\tilde{b}_{j} sin \theta_{i}\geq r_{in} ,

by simply taking (\tilde{a}_{j},\tilde{b}_{j}) the center of the inradius circle at the time \tau_{j} .
Set now: a_{j}=\tilde{a}_{j} exp (-\tau_{j}) and b_{j}=\tilde{b}_{j} exp (-\tau_{j}) , so \overline{h}_{i}(\tau_{j}, a_{j}, b_{j})\geq r_{in} .
Since \overline{h}_{i} is strictly positive at a time \tau_{j} it must be strictly positive for

all earlier times, because if it would be negative in some direction \theta_{0} the
equation (6) implies that it will stay negative in that direction. The fact
that \overline{h}_{i}(0, a_{j}, b_{j}) are all positive shows also that the point (a_{j}, b_{j}) lies inside
the curve p(0) .

Since H(\tau, a_{j}, b_{j}) is decreasing we also have:

H( \tau, a_{j}, b_{j})\geq\log(r_{in})\sum_{i=1}^{n}\gamma_{i} , for all \tau\leq\tau_{j} .

The sequence (a_{j}, b_{j}) lies in a compact set, so it contains a subsequence,
denoted the same for simplicity, which converges to (a_{\infty}, b_{\infty}) .

Fixing \tau we have that

\overline{h}_{i}(\tau, a_{j}, b_{j})arrow\overline{h}_{i}(\tau, a_{\infty}, b_{\infty}) as (a_{j}, b_{j})arrow(a_{\infty}, b_{\infty})

and

-log \overline{h}_{i}(\tau, a_{j}, b_{j})arrow- log \overline{h}_{i}(\tau, a_{\infty}, b_{\infty}) as (a_{j}, b_{j}) – (a_{\infty}, b_{\infty})

Also, \{-\log\overline{h}_{i}(\tau, a_{j}, b_{j})|i=1, \ldots, n\} is uniformly bounded below by
the negative of the logarithm of the diameter.

It follows that:

\sum_{i=1}^{n} ( -\gamma_{i} log \overline{h}_{i} ( \tau , a_{\infty} , b_{\infty}) ) \leq\lim_{j}\inf\sum_{i=1}^{n} ( -\gamma_{i} log \overline{h}_{i}(\tau,

a_{j} , b_{j}) )
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or

\sum_{i=1}^{n}\gamma_{i} log \overline{h}_{i}(\tau, a_{\infty}, b_{\infty})\geq\lim\sup_{j}\sum_{i=1}^{n} ( \gamma_{i} log \overline{h}_{i} ( \tau , a_{j} , b_{j} ))

\geq\log(r_{in})\sum_{i=1}^{n}\gamma_{i} .

\square

We assume from now on that the choice of the origin is the one from
the Proposition 3.1.

Corollary 3.1 For this choice of the origin the \overline{h}_{i} ’s are uniformly bounded
independently of \tau .

Proof. The support function with respect to the point (a, b) as above is
non-negative and bounded above by the diameter’s bound. \square

Proposition 3.2 The normalized crystalline curvature is bounded for all
time.

Proof. First notice that if \max_{i}\frac{1}{\overline{l}_{i}}<m at time \tau_{0} , there is a \delta depending
only on m and the set of admissible directions such that \max_{i}\frac{1}{\overline{l}_{i}}<2m for
all \tau in [\tau_{0}, \tau_{0}+\delta] . (This follows from the comparison of \max_{i}\frac{1}{l_{i}} with the
solution of the equation y_{t}=Cy3 for the appropriate constant C. )

Then the following series converges:

\sum_{j=0}^{\infty}\int_{j\delta}^{(j+1)\delta}\sum_{i=1}^{n}(\gamma_{i}-\frac{\gamma_{i}^{2}}{\overline{h}_{i}\overline{l}_{i}})dt=\lim_{\tauarrow\infty}H(\tau)-H(0)>-\infty .

Thus by the convergence criterion for series

\lim_{jarrow\infty}\int_{j\delta}^{(j+1)\delta}\sum_{i=1}^{n}(\gamma_{i}-\frac{\gamma_{i}^{2}}{\overline{h}_{i}\overline{l}_{i}})dt=0 .

And by the mean value theorem, there exists \xi\in[j\delta, (j+1)\delta] such that

\frac{1}{\delta}\int_{j\delta}^{(j+1)\delta}\sum_{i=1}^{n}(\gamma_{i}-\frac{\gamma_{i}^{2}}{\overline{h}_{i}\overline{l}_{i}})dt=\sum_{i=1}^{n}(\gamma_{i}-\frac{\gamma_{i}^{2}}{\overline{h}_{i}(\xi)\overline{l}_{i}(\xi)})
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So for any \epsilon and j large enough there exists \xi_{j}\in[j\delta, (j+1)\delta] such that

( \sum_{i=1}^{n}\gamma_{i})+\epsilon\geq\frac{(\min_{i}\gamma_{i})^{2}}{\max_{i}\overline{h}_{i}}\sum_{i=1}^{n}\frac{1}{\overline{l_{i}}(\xi_{j})}\geq\frac{(\min_{i}\gamma_{i})^{2}}{\max_{i}\overline{h}_{i}}(\frac{1}{\overline{l}_{i}(\xi_{j})})_{\max}

It follows that ( \frac{1}{\overline{l}_{i}(\xi_{j})})_{\max}<m where m depends on the initial curve
but not on \tau_{j} . Using the observation from the beginning of the proof we
have ( \frac{1}{\overline{l}_{i}(\xi_{j})})_{\max}<2m for all \tau in [\xi_{j}, \xi_{j}+2\delta]\supseteq[(j+1)\delta, (j+2)\delta] which
completes the proof. \square

Let

J( \tau, a, b)=-\sum_{i=1}^{n}\overline{h}_{i}\overline{l}_{i}+2\sum_{i=1}^{n}\gamma_{i} log \overline{h}_{i} . (16)

Lemma 3.2 J(\tau, a, b) evolves under the normalized flow by the equation:

J_{\tau}=-2 \sum_{i=1}^{n}\frac{1}{\overline{h}_{i_{i}^{\frac{1}{\overline{l}}}}}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l_{i}}})^{2}

\leq(\overline{h}_{i})_{\max}(\frac{1}{\overline{l}_{i}})_{\max}-2\sum_{i=1}^{n}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l_{i}}})^{2}\leq-C\sum_{i=1}^{n}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l}_{i}})^{2}

where C depends only on the initial conditions.
Moreover,

J(\tau)\geq-2\overline{A}(0)+2 log \overline{h}_{\min}\sum_{i=1}^{n}\gamma_{i} .

These two inequalities imply that

\lim_{\tauarrow\infty}J_{\tau}=0 .

Proof. Using the expression of the length of the i-th segment in terms of
its neighboring support functions, as we did in the proof of the Lemma 2.1,
we obtain the following evolution equation for \overline{l}_{i} :

(\overline{l}_{i})_{\tau}(\tau)=(\overline{h}_{i+1})_{\tau}(\tau) csc \triangle\theta_{i+1}+(\overline{h}_{i-1})_{\tau}(\tau) csc \triangle\theta_{i}

-(\overline{h}_{i})_{\tau}(\tau) (cot \triangle\theta_{i+1}+\cot\triangle\theta_{i} ).
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This consequently implies, by reindexing two of the sums:

J_{\tau}=-2 \sum_{i=1}^{n}\overline{l}_{i}(\overline{h}_{i})_{\tau}+2\sum_{i=1}^{n}\gamma_{i}\frac{(\overline{h}_{i})_{\tau}}{\overline{h}_{i}}=-2\sum_{i=1}^{n}\frac{\overline{l}_{i}}{\overline{h}_{i}}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l}_{i}})^{2}

\leq-2\frac{(\overline{l}_{i})_{\min}}{(\overline{h}_{i})_{\max}}\sum_{i=1}^{n}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l_{i}}})^{2}\leq-C\cdot\sum_{i=1}^{n}(\overline{h}_{i}-\frac{\gamma_{i}}{\overline{l}_{i}})^{2}

The last inequality follows from the bounds on \overline{h}_{i} and \frac{1}{\overline{l}_{i}} of the Corollary
3.1 and the Proposition 3.2. \square

Theorem 3.1 There exists a self-similar solution to the equation (2).

Proof. Let \tau_{j} be a sequence of times diverging to infinity. The functions
\frac{1}{\overline{l}_{i}(\tau)} and \overline{h}_{i}(\tau) are continuous and bounded, so \frac{1}{l_{i}(\tau_{j})} and \overline{h}_{i}(\tau_{j}) must each
contain a converging subsequence. By the previous lemma, the converging
subsequence must converge to a solution of the equation \overline{h}_{i}-\frac{\gamma_{i}}{\overline{l}_{i}}=0 , and
this is the equation which defines a self-similar solution. \square

In the process of proving the Theorem 3.1, we have seen that the shape
of a self-similar solution defined by the set \{\tilde{h}_{i}\}_{1\leq i\leq n} and the set of normal
admissible directions \{\theta_{i}\}_{1\leq i\leq n} (which therefore determines the set of sides
\{\tilde{l}_{i}\}_{1\leq i\leq n} by the relation used in the proof of Lemma 2.1) is tied to the
definition of the function \gamma on the set of admissible directions by n equalities:

\tilde{h}_{i}-\frac{\gamma_{i}}{\tilde{l}_{i}}=0 1\leq i\leq n .

(In the above expression the self-similar solution is normalized so that
the its enclosed area equals \frac{1}{2}\sum_{i=1}^{n}\gamma_{i}. )

Since there exists, at least, a self-similar solution to the crystalline flow
defined by (2), we have the implication regarding the form of the function
\gamma as in the Corollary 1.2.
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