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First variation of holomorphic forms
and some applications

Bahman KHANEDANI and Tatsuo SUWA
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Abstract. We study various local invariants associated with a singular holomorphic
foliation on a complex surface admitting a possibly singular invariant curve. We establish
the relation among them and prove/reprove formulas relating the total sum of these
invariants to some global invariants of the foliation and the invariant curve.
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For a holomorphic vector field v on a complex surface leaving a non-
singular curve C invariant, C. Camacho and P. Sad [CS] introduced the
index of v relative to C and proved an index formula, which says that
the total sum of the indices is equal to the Chern number of the normal
bundle of C . After the work of a number of authors, the theory has been
generalized to the case of singular invariant curves in [S], and further, to
the higher dimensional case in [LS]. In [S], the index formula was proved
by taking desingularization of the curve and reducing to the case of non-
singular invariant curves, while the proof in [LS] involves the Chern-Weil
theory, the vanishing theorem and so forth. In this article, we first give a
direct proof of the index theorem for a singular foliation \mathcal{F} on a complex
surface leaving a (possibly singular) compact curve C invariant by explicitly
computing the Chern class of the normal bundle of C (Theorem 1.2).

We then consider “exponent forms” for holomorphic 1-forms defining
the foliation \mathcal{F} and define the “variation” of \mathcal{F} relative to C at a singular
point as the residue of an exponent form along the link of the singularity
in C . This turns out to be a localized class of the (co)normal bundle of the
foliation (Theorem 2.2). We extend the notion of the “multiplicity” of a vec-
tor field v along a (locally) irreducible invariant curve [CLS] to the case of
possibly reducible curves so that it coincides with the “Schwartz index” [SS]
of the restriction of v to the curve. After establishing the relation among
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these invariants in Lemma 2.3, we give a formula for the total sum of the
(Schwartz) indices in Theorem 2.6, which is the “Poincar\’e-Hopf theorem”
for a singular foliation, with possibly non-trivial tangent bundle, on a sin-
gular curve.

In the final section, we discuss the geometric meaning of the variation
and give an alternative proof of the fact that the index of \mathcal{F} relative to
C represents the first order term of the holonomy along the link of the
singularity in C , which was shown earlier in [S].

The first named author would like to thank S. Shahshahani for encour-
agement and advice and the Institute for Studies in Theoretical Physics and
Mathematics for financial support. The second named author would also
like to thank S. Shahshahani for useful conversations.

1. The index formula

We generally use the notation and the definitions in [S]. First we con-
sider everything in a neighborhood of the origin 0 in \mathbb{C}^{2}=\{(x, y)\} . Let v
be a germ of holomorphic vector field at 0 with (at most) an isolated singu-
larity at 0 and \omega a germ of holomorphic 1-form with an isolated singularity
at 0 which annihilates v . More explicitly, if v=a \frac{\partial}{\partial x}+b\frac{\partial}{\partial y} with a and b

germs of holomorphic functions at 0, we may set \omega=b dx -a dy . Also, let
C be a germ of reduced curve with defining function f . We quote Lemma
(1.1) in [S]:

Lemma 1.1 The vector field v leaves C invariant if and only if there exist
germs of holomorphic functions g and h and a germ of holomorphic l-form
\eta such that h and f are relatively prime and that

g\omega=hdf+f\eta . (1.1)

The lemma is proved in [Li] when f is irreducible. Note that if \omega is
non-singular at 0, C is also non-singular at 0 and, by a suitable choice of
f., we may set \eta=0 . Denoting by \mathcal{F} the foliation defined by v (or \omega ), we
define the index of \mathcal{F} relative to C at 0 by

Ind_{0}(\mathcal{F};C)=\frac{\sqrt{-1}}{2\pi}\int_{L}\frac{\eta}{h} ,

where L denotes the link of the singularity 0 in C with natural orientation.
When f is irreducible, this coincides with the one defined in [Li]. See [S]
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Proposition (1.4) for their relation in the general case.
Now let X be a (non-singular) complex surface. Recall that a (co)dimen-

sion one (singular) foliation \mathcal{F} on X is defined by a system \{(U_{\lambda}, \omega_{\lambda}, \varphi_{\lambda\mu})\} ,
where
(i) \{U_{\lambda}\} is an open covering of X ,
(ii) for each \lambda , \omega_{\lambda} is a (not identically zero) holomorphic 1-form on U_{\lambda} and
(iii) for each pair (\lambda, \mu) , \varphi_{\lambda\mu} is a non-vanishing holomorphic function on

U_{\lambda}\cap U_{\mu} with \omega_{\mu}=\varphi_{\lambda\mu}\omega_{\lambda} .
The singular set S(\mathcal{F}) of \mathcal{F} is defined to be the union of the singular

sets of the \omega_{\lambda} ’s. We assume that S(\mathcal{F}) consists of isolated points hereafter.

Theorem 1.2 For a(co)dimension one foliation \mathcal{F} on X and a compact
reduced curve C in X which is invariant by \mathcal{F} , we have

\sum_{p\in S}Ind_{p}(\mathcal{F};C)=C\cdot C
,

where S denotes the set of singular points of \mathcal{F} on C and C C the self-
intersection number of C .

This is proved in [S] Theorem (2.1) and the higher dimensional case is
in [LS]. Here we give a simple direct proof.

Proof. We let S=\{p_{1}, . . , p_{s}\} and take a system \{(U_{\lambda}, \omega_{\lambda}, \varphi_{\lambda\mu})\} as
above so that it further satisfies:
(iv) C is defined by f_{\lambda} on U_{\lambda} ,
(v) for each p_{i} , there is only one U_{\lambda_{i}} with p_{i}\in U_{\lambda_{i}} and U_{\lambda_{i}}\cap U_{\lambda_{j}}=\emptyset , if

i\neq j .
If we set f_{\lambda\mu}= \frac{f_{\lambda\lambda}}{f} on U_{\lambda}\cap U_{\mu} , then the cocycle \{f_{\lambda\mu}\} defines the line

bundle L_{C} on X associated with the divisor C . We compute c_{1}(L_{C})\wedge[C]

= \int_{C}c_{1}(L_{C}) in two ways. First, since c_{1}(L_{C}) is the Poincar\’e dual to the
homology class [C], we see that it is equal to the self-intersection number
C C . Next we compute it directly. If we let \{\rho_{\lambda}\} be a partition of unity
subordinate to \{U_{\lambda}\} , we have

c_{1}(L_{C})|_{U_{\lambda}}= \frac{\sqrt{-1}}{2\pi}\sum_{\mu}d ( \rho_{\mu}d log f_{\mu\lambda} ).

On each U_{\lambda} , we have a decomposition

g_{\lambda}\omega_{\lambda}=h_{\lambda}df_{\lambda}+f_{\lambda}\eta_{\lambda} (1.1_{\lambda})
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as (1.1). We may assume that \eta_{\lambda}=0 for \lambda\neq\lambda_{i} . Evaluation of the both
sides of the identity (1.1_{\lambda}) at each point of U_{\lambda}\cap C gives

g_{\lambda}\omega_{\lambda}=h_{\lambda}df_{\lambda} . (1.2_{\lambda})

Also, from dg_{\lambda}\wedge\omega_{\lambda}+g_{\lambda}d\omega_{\lambda}=(dh_{\lambda}-\eta_{\lambda})\wedge df_{\lambda}+f_{\lambda}d\eta_{\lambda} and (1.2_{\lambda}) , we have,
at each point of U_{\lambda}\cap C ,

d \omega_{\lambda}=(-\frac{\eta_{\lambda}}{h_{\lambda}}+d\log\frac{h_{\lambda}}{g_{\lambda}})\wedge\omega_{\lambda} . (1.3_{\lambda})

From (1.2_{\lambda}) and (1.2_{\mu}) , we have, in U_{\lambda}\cap U_{\mu}\cap C ,

\frac{h_{\mu}}{g_{\mu}}=f_{\lambda\mu}\varphi_{\lambda\mu}\frac{h_{\lambda}}{g_{\lambda}} . (1.4)

Also, from (1.3_{\lambda}) and (1.3_{\mu}) , we have, in U_{\lambda}\cap U_{\mu}\cap C ,

d log \varphi_{\lambda\mu}=\frac{\eta_{\lambda}}{h_{\lambda}}-\frac{\eta_{\mu}}{h_{\mu}}+d\log\frac{h_{\mu}}{g_{\mu}}-d\log\frac{h_{\lambda}}{g_{\lambda}} . (1.5)

Hence from (1.4) and (1.5), we have, at each point of U_{\lambda}\cap U_{\mu}\cap C ,

d \log f_{\mu\lambda}=\frac{\eta_{\lambda}}{h_{\lambda}}-\frac{\eta_{\mu}}{h_{\mu}} . (1.6)

Let C’=C- Sing(C) be the set of regular points of C (note that Sing(C)
S) . Then, from (1.6), we have

c_{1}(L_{C})|_{U_{\lambda}\cap C’}= \frac{\sqrt{-1}}{2\pi}\sum_{\mu}d\rho_{\mu}\wedge(\frac{\eta_{\lambda}}{h_{\lambda}}-\frac{\eta_{\mu}}{h_{\mu}})=-\frac{\sqrt{-1}}{2\pi}\sum_{\mu}d\rho_{\mu}\wedge\frac{\eta_{\mu}}{h_{\mu}} .

Since \eta_{\lambda}=0 for \lambda\neq\lambda_{i} , we have

\int_{C}c_{1}(L_{C})=\int_{C’}c_{1}(L_{C})=\sum_{i=1}^{s}\int_{U_{\lambda_{i}}\cap C’}c_{1}(L_{C}) .

We denote by D_{\lambda_{i}} a disk in U_{\lambda_{i}} with center p_{i} such that \rho_{\lambda_{i}}\equiv 1 on D_{\lambda_{i}} .
Note that \partial D_{\lambda_{i}}\cap C=L_{\lambda_{i}} , the link of C at p_{i} . Then we have

\int_{U_{\lambda_{i}}\cap C’}c_{1}(L_{C})=-\frac{\sqrt{-1}}{2\pi}\int_{U_{\lambda_{i}}\cap C’}d\rho_{\lambda_{i}}\wedge\frac{\eta_{\lambda_{i}}}{h_{\lambda_{i}}}

=- \frac{\sqrt{-1}}{2\pi}\int_{(U_{\lambda_{i}}-D_{\lambda_{i}})\cap C’}d\rho_{\lambda_{i}}\wedge\frac{\eta_{\lambda_{i}}}{h_{\lambda_{i}}}
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=- \frac{\sqrt{-1}}{2\pi}\int_{(U_{\lambda_{i}}-D_{\lambda_{i}})\cap C’}d(\rho_{\lambda_{i}}\frac{\eta_{\lambda_{i}}}{h_{\lambda_{i}}})

= \frac{\sqrt{-1}}{2\pi}\int_{L_{\lambda_{i}}}\rho_{\lambda_{i}}\frac{\eta_{\lambda_{i}}}{h_{\lambda_{i}}}

= \frac{\sqrt{-1}}{2\pi}\int_{L_{\lambda_{i}}}\frac{\eta_{\lambda_{i}}}{h_{\lambda_{i}}}=Ind_{pi}(\mathcal{F};C) .

\square

2. Exponent forms

Suppose \mathcal{F} is a germ of foliation at 0 in \mathbb{C}^{2} with defining 1-form \omega (or
vector field v ) and C a germ of reduced curve with defining function f which
is invariant by \mathcal{F} . In a neighborhood of a non-singular point, there exists a
holomorphic 1-form \alpha such that d\omega=\alpha\wedge\omega . If \alpha’ is another such l-form,
we have \alpha’\equiv\alpha on every leaf. Thus in a neighborhood of 0 (away from 0)
there exists a holomophic multi-valued 1-form \alpha such that d\omega=\alpha\wedge\omega and
that its restriction to each leaf is single-valued. We call \alpha an exponent form
for \omega . We consider the residue of \alpha along C ;

{\rm Res}_{0}( \alpha|_{C})=\frac{1}{2\pi\sqrt{-1}}\int_{L}\alpha ,

where L is the link of 0 in C as before.

Lemma 2.1 The residue {\rm Res}_{0}(\alpha|c) is an invariant of the foliation.
Proof. Suppose \omega’=\varphi\omega with \varphi a non-vanishing holomorphic function.
We have

d\omega’=d\varphi\wedge\omega+\varphi d\omega=d\varphi\wedge\omega+\varphi\alpha\wedge\omega= (\alpha+d log \varphi ) \wedge\omega’

Since \varphi is non-vanishing, we obtain \int_{L}(\alpha+d\log\varphi)=\int_{L}\alpha . \square

In view of the above lemma, we set

Var_{0}(\mathcal{F};C)={\rm Res}_{0}(\alpha|_{C})

and call it the variation of \mathcal{F} relative to C at 0. Note that if C= \bigcup_{i=1}^{r}C_{i}

is the irreducible decomposition of C at 0, \mathcal{F} leaves each component C_{i}



328 B. Khanedani and T. Suwa

invariant and we have

Var_{0}(\mathcal{F};C)=\sum_{i=1}^{r}Var_{0}(\mathcal{F};C_{i}) . (2.1)

Now we go back to the global situation as in Theorem 1.2 and suppose
the foliation \mathcal{F} is defined on a complex surfaceX by a system \{(U_{\lambda}, \omega_{\lambda}, \varphi_{\lambda\mu})\} .
Let T^{*}X denote the (holomorphic) cotangent bundle of X and F the line
bundle defined by the cocycle \{\varphi_{\lambda\mu}\} . Then we have a bundle map on X ;

Farrow T^{*}X\omega ,

which is injective on X-S(\mathcal{F}) . We call F the conormal bundle of the
foliation \mathcal{F} .

Theorem 2.2 In the above situation, if C is a compact curve in X in-
variant by \mathcal{F} , we have

\sum_{p\in S}Var_{p}(\mathcal{F};C)=-c_{1}(F)\wedge[C]
.

Proof. Take a system \{(U_{\lambda}, \omega_{\lambda}, \varphi_{\lambda\mu})\} defining \mathcal{F} so that it satisfies also
(iv) and (v) in the proof of Theorem 1.2. Let \alpha_{\lambda} be an exponent form for

\omega_{\lambda} . For \lambda\neq\lambda_{i} , we may set \alpha_{\lambda}=0 , since we may choose a closed form as
\omega_{\lambda} . As in Theorem 1.2, we have

c_{1}(F)|_{U_{\lambda}}= \frac{\sqrt{-1}}{2\pi}\sum_{\mu}d ( \rho_{\mu}d log \varphi_{\mu\lambda} ).

In U_{\lambda}\cap U_{\mu}\cap C , we have

dlog \varphi_{\lambda\mu}=\alpha_{\lambda}-\alpha_{\mu}

and the rest is done similarly as for Theorem 1.2. \square

Let C be a germ of reduced curve at 0 in \mathbb{C}^{2} invariant by a foliation
\mathcal{F} defined by v . If C is irreducible, then one defines, following [CLS], the
multiplicity of v along C at 0 to be the topological index of v|_{C} at 0, where
C is seen as being homeomorphic to a two dimensional disk. Since it is
also an invariant of the foliation \mathcal{F} , we denote it by Ind_{0}(\mathcal{F}_{C}) . In general,
let C= \bigcup_{i=1}^{r}C_{i} be the irreducible decomposition of C at 0. We define
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Ind_{0}(\mathcal{F}_{C}) by

Ind_{0}(\mathcal{F}_{C})=\sum_{i=1}^{r}Ind_{0}(\mathcal{F}_{C_{i}})-r+1 (2.2)

and call it the index of the restriction of \mathcal{F} to C at 0. Note that it coincides
with the “Schwartz index” of v|c at 0 in the sense of [SS]. Recall that
the Milnor number \mu_{0}(C) of C at 0 is given by [ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}]_{0} , the intersection

number of the curves defined by \frac{\partial f}{\partial x} and \frac{\partial f}{\partial y} at 0.

Lemma 2.3 We have

Ind_{0}(\mathcal{F}_{C})=Var_{0}(\mathcal{F};C)-Ind_{0}(\mathcal{F};C)+\mu_{0}(C) .

Proof. First we prove the lemma when C is irreducible. If we take a
decomposition as in Lemma 1.1, at each point of C we have (see (1.3))

d \omega=(-\frac{\eta}{h}+d\log\frac{h}{g})\wedge\omega .

Hence we get

Var_{0}(\mathcal{F};C)=Ind_{0}(\mathcal{F};C)+[h, f]_{0}-[g, f]_{0} . (2.3)

Now, by a suitable choice of coordinates (x, y) of \mathbb{C}^{2} , we may set g= \frac{\partial f}{\partial y}

and h=-a, when we write v=a \frac{\partial}{\partial x}+b\frac{\partial}{\partial y} (see the proof of Lemma
(1.1) in [S] ) . By [CLS] Proposition 3, Ind_{0}(\mathcal{F}_{C}) is computed as follows. Let
\pi : (D, O)arrow(C, 0) be a Puiseux parametrization. Then the vector field V
in D=\{t\} with \pi_{*}V=v|c is given by V= \frac{a}{\dot{x}}\frac{d}{dt} , \dot{x}=\frac{dx}{dt} . Thus

Ind_{0}(\mathcal{F}_{C})=[h, f]_{0}-[x, f]_{0}+1 . (2.4)

On the other hand, we know from [Li] (8) that

\mu_{0}(C)=[\frac{\partial f}{\partial y}, f]_{0}-[x, f]_{0}+1 . (2.5)

and the formula follows from (2.3), (2.4) and (2.5). Next, in general, if
C= \bigcup_{i=1}^{r}C_{i} is the irreducible decomposition of C , we have ([S] (1.11))

Ind_{0}(\mathcal{F};C)-\mu_{0}(C)=\sum_{i=1}^{r}(Ind_{0}(\mathcal{F};C_{i})-\mu_{0}(C_{i}))+r-1 .
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Hence the lemma follows from the formula for the irreducible case together
with (2.1) and (2.2). \square

Remark 2.4. Let \mathcal{F}^{o} be the foliation defined by df . Then, since we may set
\alpha=0 we have Var_{0}(\mathcal{F}^{o}; C)=0 . Also, since we may set \eta=0 in (1.1), we
have Ind_{0}(\mathcal{F}^{o}; C)=0 and Ind_{0}(\mathcal{F}^{o} ; C_{i})=-\sum_{j\neq i}(C_{i}\cdot C_{j})_{0}([S] Proposition
(1.4). Note that Ind_{0}(\mathcal{F}^{o}; C, C_{i})=0 in the notation used there). Thus, by
Lemma 2.3, we have

Ind_{0}(\mathcal{F}_{[mathring]_{C}})=\mu 0(C) and
Ind_{0}(\mathcal{F}_{[mathring]_{i}_{C}})=\mu 0(C_{i})+\sum_{j\neq i}(C_{i} ^{C_{j}})_{0}

.

The first equality also follows from the fact that the vector field defining
\mathcal{F}^{o} is tangent to the nearby Milnor fibers of f and has no singularities on
the fiber ([SS] Proposition 5.3). The second equality shows that Ind_{0}(\mathcal{F}_{[mathring]_{i}_{C}})

coincides with c_{0}(C, C_{i}) in [S] (1.8). If we set c_{0}(C)= \sum_{i=1}^{r}c_{0}(C, C_{i}) , it is
related to the Milnor number by c_{0}(C)=\mu 0(C)+r-1([S](1.9)) .

The above remark may be used to prove the “adjunction formula” as
follows, although we should note that the argument is essentially equivalent
to the one in [K]. Let C be a compact (reduced) curve in a surface X . We
take a covering \{U_{\lambda}\} of X by coordinate neighborhoods with coordinates
(x_{\lambda}, y_{\lambda}) so that C is defined by f_{\lambda}=0 in U_{\lambda} . Let \mathcal{F}_{\lambda}^{o} be the foliation on U_{\lambda}

defined by df_{\lambda} . Then it is defined by the vector field v_{\lambda}= \frac{\partial f_{\lambda}}{\partial y_{\lambda}}\frac{\partial}{\partial x_{\lambda}}-\frac{\partial f_{\lambda}}{\partial x_{\lambda}}\frac{\partial}{\partial y_{\lambda}} .
By computation, we see that, in U_{\lambda}\cap U_{\mu}\cap C ,

v_{\lambda}=f_{\lambda\mu}\kappa_{\lambda\mu}v_{\mu} ,

where \kappa_{\lambda\mu}=\det\frac{\partial(x_{\mu},y_{\mu})}{\partial(x_{\lambda},y_{\lambda})} , the Jacobian of (x_{\mu}, y_{\mu}) with respect to (x_{\lambda}, y_{\lambda}) .
Thus, if we let \pi : \tilde{C}

– C\subset X be a resolution of C , the collection \{v_{\lambda}|c\}

determines a section of the line bundle \pi^{*}(L_{C}\otimes K_{X})\otimes T\tilde{C} , where K_{X}

denotes the canonical bundle of X and T\tilde{C} the tangent bundle of \tilde{C} . Hence
from the second equality in Remark 2.4, we have the adjunction formula

\chi(\tilde{C})=-K_{X}
C-C \cdot C+\sum_{p\in S}c_{p}(C)

,

where \chi(\tilde{C}) denotes the Euler number of \tilde{C} and K_{X} C=c_{1}(K_{X})\wedge[C] .
Since the Euler number \chi(C) of C is given by \chi(C)=\chi(\tilde{C})-\sum_{p\in S}(r_{p}-1)
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with r_{p} the number of local branches of C at p, we have

\chi(C)=-K_{X} C-CC+ \sum_{p\in S}\mu_{p}(C)
, (2.6)

which is a special case of the formula in [SS] Theorem 5.5.
From Theorem 1.2 and (2.6), we have the following formula, which is a

modified form of the one in [S] Theorem (2.5).

Theorem 2.5 Let X , \mathcal{F} and C be as in Theorem 1.2. We have

\sum_{p\in S}(Ind_{p}(\mathcal{F};C)-\mu_{p}(C))=-K_{X}
C-\chi(C) .

Now we recall that a foliation \mathcal{F} on a complex surface X is also defined
by a system \{(U_{\lambda}, v_{\lambda}, \epsilon_{\lambda\mu})\} , where
(i) \{U_{\lambda}\} is an open covering of X ,
(ii)’ for each \lambda , v_{\lambda} is a (not identically zero) holomorphic vector field on
U_{\lambda} and
(iii)’ for each pair (\lambda, \mu),

\in_{\lambda\mu} is a non-vanishing holomorphic function on
U_{\lambda}\cap U_{\mu} with v_{\mu}=\in_{\lambda\mu}v_{\lambda} .

A system \{(U_{\lambda}, \omega_{\lambda}, \varphi_{\lambda\mu})\} of 1-forms and a system \{(U_{\lambda}, v_{\lambda}, \epsilon_{\lambda\mu})\} of
vector fields define the same foliation \mathcal{F} if, for each \lambda , \omega_{\lambda} and v_{\lambda} have
isolated singularities and they annihilate each other. Suppose this is the
case. Then the singular set S(\mathcal{F}) of \mathcal{F} coincides with the union of the
singular sets of the v_{\lambda} ’s. Let TX denote the tangent bundle of X and E
the line bundle defined by the the cocycle \{\in_{\lambda\mu}\} . Then we have a bundle
map on X ;

Earrow TXv,

which is injective on X-S(\mathcal{F}) . We call E the tangent bundle of the foliation
\mathcal{F} . By a straightforward computation using the explicit relation between
the forms and the vector fields defining \mathcal{F} , we have

F=E\otimes K_{X} .

Therefore, from Lemma 2.3 and Theorems 2.2 and 2.5, we have

Theorem 2.6 For a foliation \mathcal{F} on a complex surface X leaving a compact
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curve C invariant, we have

\sum_{p\in S}Ind_{0}(\mathcal{F}_{C})=\chi(C)-c_{1}(E)\wedge[C]
.

In particular, if \mathcal{F} is defined by a global vector field, then, since E becomes
trivial,

\sum_{p\in S}Ind_{0}(\mathcal{F}_{C})=\chi(C)
.

The second formula above is a special case of the Poincar\’e-Hopf theorem
for singular varieties ([SS] Theorem 5.4). Also, when C is non-singular, the
right hand side of the first formula above is equal to the Chern number of
the normal sheaf of the foliation induced from \mathcal{F} on C (cf. [BB]).

We finish this section with a remark on the topological invariance of
some invariants associated with holomorphic foliations. Recall that the
Milnor number is a topological invariant [L\^e] and that the local intersection
number of two analytic curves is also a topological invariant [GH]. We say
that two foliations are topologically equivalent if there is a homeomorphism
between the ambient spaces preserving the singular sets and the leaves.
Let \mathcal{F} be a foliation on a surface leaving a curve C invariant. If C is
irreducible at a point p , it is shown that Ind_{p}(\mathcal{F}_{C}) is a topological invariant
of holomorphic foliations [CLS]. Hence, by (2.2), it is a topological invariant
in general. Thus, from Theorems 1.2, 2.2 and 2.6 and Lemma 2.3, we have;

Proposition 2.7 For a foliation \mathcal{F} on a surface X admitting a compact
invariant curve C , c_{1}(F)\wedge[C] and c_{1}(E)\wedge[C] are topological invariants.

Note that, in [GSV], it is already shown that c_{1}(E) is a topological
invariant of a dimension one foliation.

3. Relation with holonomy

Let \mathcal{F} be a foliation on a complex surface and \gamma a loop in a leaf of \mathcal{F} .
Suppose for the moment that \mathcal{F} is defined by a closed multi-valued l-form
\omega in a neighborhood of \gamma . Fixing a point p_{0} on \gamma , let \omega_{0} be the restriction
of a branch of \omega to a neighborhood of p0 and let \omega_{1} be the branch obtained
after one revolution around \gamma . Then there exists a holomorphic function \varphi

defined in a neighborhood of x_{0} so that \varphi\omega_{1}=\omega_{0} . Recall that the multiplier
of \mathcal{F} relative to \gamma is the derivative of the holonomy mapping at its basepoint.
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Lemma 3.1 In the above situation, the multiplier is given by \varphi(p_{0}) .

Proof. Let p be a point in \gamma . Since \omega is assumed to be closed, there is
a biholomorphic map \zeta_{p} , by the Frobenius theorem (or simply by ‘straight-
ening out’), from an open neighborhood U_{p} of p onto a neighborhood of 0
in \mathbb{C}^{2}=\{(x, y)\} , \zeta_{p}(p)=0 , such that \zeta_{p}^{*}dy=\omega|_{U_{p}} . By compactness of \gamma ,
there is a finite set of charts \{(U_{i}, \zeta_{i})\} , i=0, \cdots , n , with p_{0}\in U_{0}\cap U_{n} ,
U_{i}\cap U_{i+1}\neq\emptyset , \zeta_{0}^{*}dy=\omega_{0} , and \zeta_{i}^{*}dy equal to the restriction of the branch of
\omega to U_{i} obtained by analytic continuation along \gamma . We have \zeta_{i}^{*}dy=\zeta_{i+1}^{*}dy

in the common domain, from which we deduce that the second coordinate
of ((_{i+1}\circ\zeta_{i}^{-1})(x, y) is y . Now (_{0}^{*}dy=\omega_{0}=\varphi\omega_{1}=\varphi\zeta_{n}^{*}dy , and writing
(_{0}\circ\zeta_{n}^{-1}=(x’, y’) , we see that \varphi\circ\zeta_{n}^{-1} is equal to \frac{\partial y’}{\partial y} and \frac{\partial y’}{\partial x}=0 . \square

Suppose \mathcal{F} is defined by a holomorphic 1-form \omega in a neighborhood of
\gamma . Then one can write d\omega=\alpha\wedge\omega , where \alpha is a multi-valued 1-form in a
neighborhood of \gamma , and the restriction of \alpha to every leaf is single-valued.

Theorem 3.2 The multiplier of \mathcal{F} relative to \gamma is given by exp ( \int_{\gamma}\alpha)

Proof. We have d\omega=\alpha\wedge\omega as above. Let \Gamma be a local transversal at a
point p_{0} of \gamma . Denote by h the backward projection on \Gamma along the leaves,
defined in a neighborhood of \gamma . For p in a neighborhood of \gamma , define:

g(p)= \exp(-\int_{h(p)}^{p}\alpha) .

where integration is performed along a curve from h(p) to p on the leaf
going through p which defines the holonomy. Since any two such curves are
homotopic, the integration is well-defined. We have

d(g \omega)=dg\wedge\omega+gd\omega=-gd(\int_{h(p)}^{p}\alpha)\wedge\omega+g\alpha\wedge\omega .

Now we take a biholomorphic map \zeta from a neighborhood of p_{0} onto a
neighborhood of 0 in \mathbb{C}^{2}=\{(x, y)\} such that \zeta^{*}dy defines the foliation \mathcal{F}

in a neighborhood of p_{0} . Writing \alpha=(^{*}(k_{1}dx+k_{2}dy) , we have, for p in a
neighborhood of p0 , \int_{h(p)}^{p}\alpha=\int_{0}^{x(p)}k_{1}dx so that:

d( \int_{h(p)}^{p}\alpha)=\zeta^{*}d(\int_{0}^{x(p)}k_{1}dx)=\zeta^{*}(k_{1}dx+(\int_{0}^{x(p)}\frac{\partial k_{1}}{\partial y}dx)dy) .
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Therefore using analytic continuation we obtain:

d( \int_{h(p)}^{p}\alpha)\wedge\omega=\alpha\wedge\omega .

Then

d(g\omega)=-g\alpha\wedge\omega+g\alpha\wedge\omega=0 .

Applying Lemma 3.1 to the closed multi-valued 1-form g\omega , we obtain that
the multiplier is g(p_{0})^{-1}= \exp(\int_{\gamma}\alpha) , as desired. \square

Now let \mathcal{F} be a germ of foliation at 0 in \mathbb{C}^{2} and C a germ of reduced
and irreducible curve which is invariant by \mathcal{F} . Since Ind_{0}(\mathcal{F}_{C}) and \mu_{0}(C)

are integers, from Lemma 2.3 we obtain the following result, which is proved
in [S] Proposition (3.1) by different approach.

Corollary 3.3 The quantity \exp(2\pi\sqrt{-1}Ind_{0}(\mathcal{F}, C)) gives the multiplier
of \mathcal{F} relative to the link of the singularity 0 in C .

Note: After the preparation of the manuscript, the recent preprint of M.
Brunella [B] was brought to our attention. Theorem 2.2 above together
with Theorem 1.2 and Lemma 2.3 implies the first formula in [B] Lemme 3
and Theorem 2.6 is equivalent to the second formula there. We note that
the formulas in [B] are given under the assumption that the ambient surface
be compact, which is not necessary in this article.
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