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Characterizations of multipliers in the distribution
spaces with restricted growth
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Abstract. Let \mathscr{K}_{M}’ be the space of distributions on R^{n} which grow no
faster than e^{M(kx)} for some k>0 and an index function M(x) and let K_{M}’ be
the Fourier transform of \mathscr{K}_{\acute{M}}. We establish the characterizations of the
space \mathscr{O}_{M}(^{c}X_{M}’ ;\mathscr{K}’M) of multipliers in \mathscr{K}_{M}’ and prove various types of the
continuity from or into \mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{M}^{\cdot}) . Also we define the space
\mathscr{O}M(K_{\acute{M}} ; K_{M}’) of multipliers in K_{M}’ and find the relation b etween
\mathscr{O}_{M}(K_{\acute{M}} ; K_{M}’) and the space \mathscr{O}_{\acute{C}}(\mathscr{K}_{\acute{M}};\mathscr{K}’ M) of convolution operators in \mathscr{K}_{M}’

by the Fourier transformation.

Let \mathscr{K}_{1}^{r} be the space of distributions of exponential growth. In \mathscr{K}_{1}’ ,

M. Hasumi [4] and Z. Zielezny [8] established the characterizations of the
space \mathscr{O}_{M}(\mathscr{K}\acute{1};\mathscr{K}’1) of multipliers and the space \mathscr{O}\acute{c}(\mathscr{K}_{1}’ ; \mathscr{K}’1) of convolu-
tion operators in \mathscr{K}_{\acute{1}} . On the other hand, D. H. Pahk [5][6] introduced the
space \mathscr{K}_{\acute{M}}, of distributions that grow no faster than exp(M(h)) for some
integer k and an index function M(x) , and the space \mathscr{O}_{\acute{C}}(\mathscr{K}_{M}’ ; \mathscr{K}’M) of con-
volution operators in \mathscr{K}_{M}’ which are extention of \mathscr{K}_{1}’ and \mathscr{O}_{\acute{C}}(\mathscr{K}_{1}’ ; \mathscr{K}_{1}’) ,

respectively. In \mathscr{K}_{\acute{M}}, he [5] and S. Abdullah [1][2] characterized the
space \mathscr{O}_{\acute{C}}(\mathscr{K}\acute{M} ; \mathscr{K}_{M}’) and the space \mathscr{O}_{M}(\mathscr{K}\acute{M} ; \mathscr{K}\acute{M}) of multipliers in \mathscr{K}_{M}’. In
this note, we find the other characterizations of \mathscr{O}_{M}(\mathscr{K}_{M}’,\cdot \mathscr{K}_{\acute{M}}) and prove
the completeness of \mathscr{O}_{M}(\mathscr{K}’M ; \mathscr{K}_{\acute{M}}) with the topology which we give, and
various types of the continuity from or into \mathscr{O}_{M}(\mathscr{K}_{M}’ ; ff_{\acute{M}}) . Also we define
the space \mathscr{O}_{M}(K_{M}’ ; K_{\acute{M}}) of the multipliers in K_{\acute{M}}, the Fourier transform of

\mathscr{K}_{\acute{M}}, and prove that the Fourier transformation from \mathscr{O}\acute{c}(\mathscr{K}_{M}’ ; \mathscr{K}’M) into
\mathscr{O}M(K_{\acute{M}} ; K_{M}’) is continuous under given topology.

Before presenting our theorems we recall briefly the basic facts about
the spaces \mathscr{K}_{M}^{r}, \mathscr{O}\acute{c}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{M}’) and K_{M}’. For further details we refer to [5].

The space \mathscr{K}_{M}’. Let \mu(\xi)(0\leq\xi\leq\infty) denote a continuous increasing
function such that \mu(0)=0 , \mu(\infty)=\infty . For x\geq 0 , we define

M(x)= \int_{0}^{x}\mu(\xi)d\xi .
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The function M(x) is an increasing, convex and continuous function
with M(0)=0 , M(\infty)=\infty . For x<0 , we define M(x) to be M(-x) and for
x=(x_{1}, \cdots, x_{n})\in R^{n} . n\geq 2 , we define M(x) to be M(x_{1})+\cdots+M(x_{n}) .

Now we list some properties of M(x) which will be used in the proof,

(i) M(x)+M(y)\leq M(x+y) for all x , y\geq 0

(ii) M(x+y)\leq M(2x)+M(2y) for all x , y\geq 0 .

Let \mathscr{K}_{M} be the space of all C^{\infty}-functions \phi in R^{n} such that

fJ_{k}( \phi)=\sup_{|a|\leq k}e^{M(kx)}|D^{a}\phi(x)|<\infty x\in R^{n}’ k=1,2,3
, \cdots

where D^{a}=D_{1}^{a_{1}}\cdots D_{n}^{a_{n}} and D_{j}=i^{-1}( \frac{\partial}{\partial x_{j}}) . Provided with the topology

defined by the seminorms 11_{k} , \mathscr{K}_{M} is a Frechet space. The dual \mathscr{K}_{M}’ of
\mathscr{K}_{M} is the space of all continuous linear functionals on \mathscr{K}_{M} . Then a dis-
tribution u is in \mathscr{K}_{M}’ if and only if there exist m\in N^{n} . k\in N and a bounded
ed continuous function f(x) on R^{n} such that

u=D^{m}(e^{M(kx)}f(x)) .
\mathscr{K}_{\acute{M}} is endowed with the topology of uniform convergence on all

bounded sets in \mathscr{K}_{M} .

The space \mathscr{O}_{\acute{C}}(\mathscr{K}_{M}’ ; \mathscr{K}_{\acute{M}}) . If u\in \mathscr{K}_{\acute{M}} and \phi\in \mathscr{K}_{M} , then the convolu-
tion u*\phi is a C^{\infty}-function defined by

u*\phi(x)=\langle u_{y}, \phi(x-y)\rangle

where \langle u, \phi\rangle=u(\phi) .
The space \mathscr{O}\acute{c}(\mathscr{B}^{r_{M}} ; \mathscr{K}’M) of convolution operators in \mathscr{K}_{\acute{M}} consists of

distributions S\in \mathscr{K}_{M}’ satisfying one of the following equivalent conditions:

(i) the distribution S_{k}=\gamma_{k}S , k=1,2 , \cdots are in the tempered distribu-
tion space; where \gamma_{k}(x)=e^{M(kx)} ;

(ii) for every integer k\geq 0 , there exists an integer m\geq 0 such that

S= \sum_{|a|\leq m}D^{a}f_{a}

where f_{a} are continuous functions in R^{n} such that whose product with
e^{M(kX)} are bounded

(iii) for every \phi\in \mathscr{K}_{M} , the convolution S*\phi is in \mathscr{K}_{M} and the map
\phiarrow S*\phi from \mathscr{K}_{M} into \mathscr{K}_{M} is continuous.
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The space K_{\acute{M}}. For \phi\in \mathscr{K}_{M} , the Fourier transform

\hat{\phi}(\xi)=\int_{R^{n}}e^{-i<\chi,\xi>}\phi(x)dx

can be continued in C^{n} as an entire function of \zeta=\xi+i\eta\in C^{n} such that

\omega_{k}(\hat{\phi})=\sup_{\zeta\in C^{n}}(1+|\zeta|)^{k}e^{-\Omega(\eta/k)}|\hat{\phi}(\zeta)|<\infty , k=1,2 , \cdots (1)

where \Omega(y) is the dual of M(x) in the sense of Young. If K_{M} is the space
of all entire functions with the property (1) and the topology in K_{M} is
defined by the seminorms \omega_{k} , then the Fourier transform is an isomor-
phism of \mathscr{K}_{M} onto K_{M} . The dual K_{M}’ of K_{M} is the space of the Fourier
transformations of distributions in \mathscr{K}\acute{M}. For u\in \mathscr{K}_{M}’, the Fourier trans-
fo r \^u is defined by the Parseval formula. Also if S\in \mathscr{O}\acute{c}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{M}’) and
\phi\in \mathscr{K}_{M} , we have the formula

\overline{S*\phi}=\hat{S}\hat{\phi}

where the product on the right-hand side is defined by \langle \hat{S}\hat{u}, \chi\rangle=\langle\hat{u},\hat{S}\chi\rangle ,
\chi\in \mathscr{K}_{M} .

Now we study the space of multipliers in \mathscr{K}_{M}’. Let S\in \mathscr{K}_{\acute{M}}, we find
for conditions on the C^{\infty}-function \alpha(x) in order that \alpha S\in \mathscr{K}_{M}’. If \alpha(x)=

exp(exp|x|^{2}) , \alpha S\not\in \mathscr{K}_{M}^{r} for M(x)=|x|^{2}/2 , the reason being that \alpha(x) grows
very fast at infinity. Hence we consider the following definition:

DEFINITION 1 [1]. We denote by \mathscr{O}_{M}(ff_{\acute{M}} ; ff_{\acute{M}}) of all \phi\in C^{\infty}(R^{n})

such that for every \alpha\in N^{n} there exist k_{0}\in N and C_{0}>0 such that
|D^{a}\phi(x)|\leq C_{0}e^{M(kox)} . x\in R^{n} .

We present the characterizations of the element of \mathscr{O}_{M}(\mathscr{K}_{M}’;\mathscr{K}_{\acute{M}}) .

THEOREM 2. Let \phi\in C^{\infty}(R^{n}) . The following statements are equiva-
lent:

(a) \phi\in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) .
(b) for every f\in \mathscr{K}_{M}, \phi\cdot f\in \mathscr{K}_{M}.
(c) for every \alpha\in N^{n} and f\in \mathscr{K}_{M}, D^{a}\phi\cdot f is bounded in R^{n} .

PROOF. (a) \Leftrightarrow(b) . This equivalence follows from the Theorem 6 of
[1].

(b)\supset(c) . Since D^{a} maps \mathscr{O}_{M}(\mathscr{K}_{\acute{M}},\cdot \mathscr{K}_{\acute{M}}) into itself, the implication fol-
lows immediately.
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(c)\supset(a) . First, we remark that condition (a) is implied by the follow-
ing condition: there exist k_{0}\in N and L>0 so that for any \alpha\in N^{n} .

|D^{a}\phi(x)|\leq e^{M(kox)} for |x|\geq L (2)

Indeed, if (2) holds, condition (a) is satisfied for

C_{0}= \max\{X |x|\leq L\sup_{\in R^{n}},|D^{a}\phi(x)|, 1\}
.

The proof will be by contradiction. Suppose that (2) does not hold.
Hence by induction, we can find a sequence \{x_{j}\}\in R^{n} with |x_{j+1}|\geq|x_{j}|+2

such that, for some \alpha_{0}\in N^{n}

|D^{ao}\phi(x_{j})|>e^{M(2j\chi_{j})} .

Let \gamma\in C_{c}^{\infty}(R^{n}) be such that 0\leq\gamma\leq 1 , su p\gamma\subset\overline{B(0,1)} , the ball centered
0 with radius 1, and \gamma(0)=1 . Define

\phi(x)=\sum_{j=1}^{\infty}\frac{\gamma(x-x_{j})}{e^{M(j\chi_{j})}} .

The sum is well-defined, since the supports of the functions \gamma(x-x_{j})

are disjoint. Then \phi(x)-0 in \mathscr{K}_{M} as |x|arrow\infty , i . e. , \emptyset\in \mathscr{K}_{M} . Indeed, let
t=(t_{1}, t_{2,-}\ldots t_{n}) , t_{j}=(t_{j_{1}}, t_{jz}, \cdots. t_{jn})\overline{1}nR^{n} with |t_{i}|-1\leq|t_{j_{i}}|\leq|t_{i}|+1 for all
i=1,2 , \cdots . n and \alpha\in N^{n} , k\in N . By the properties of M(x) and the
definition of M(x) for x<0 and x\in R^{n} . it follows that

\sup_{t}e^{M(kt)}D^{a}\phi(t)

= \sup_{t}\frac{e^{M(kt)}D^{a}\gamma(t-t_{j})}{e^{M(jt_{J})}}

\leq\sup_{t}e^{M(2k(t-t_{J}))+M(2kt_{J})-M(jt_{j})}D^{a}\gamma(t)

\leq C_{a,\gamma}\sup_{t}e^{nM(2k)-M((j-2k\rangle t_{J})}arrow 0 as |t|arrow\infty

where C_{a,\gamma}= \sup_{t}D^{a}\gamma(t)<\infty and t-t_{j}=(t_{1}-t_{j_{1}}, t_{2}-t_{j_{2}}, \cdots. t_{n}-t_{j_{\mathfrak{n}}}) .

But we have
|\phi(x_{j})D^{ao}\phi(x_{j})|>e^{M(j\chi_{j})} for j=1,2 , \cdots

which contradicts condition (c). Q. E. D.

We define on \mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{M}’) the topology by the family of seminorms

\delta_{\phi,k}(f)=\sup_{x\in R^{n},|a|\leq k’}e^{M(kx)}|\phi(x)D^{a}f(x)|
,
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where \phi\in \mathscr{K}_{M} and k\in N . In [1], S. Abdullah introduced the family of
seminorms \rho\phi,k on \mathscr{O}_{M}(\mathscr{K}_{M}’ ;\mathscr{K}_{\acute{M}}) , that are equivalent to \delta_{\phi,k} , defined by

\rho_{\phi,k}(f)=\sup_{x\in R^{n},|a|\leq k’}e^{M(kx)}|D^{a}(f\cdot\phi)|
, k\in N and \phi\in \mathscr{K}_{M} .

But he did not mention about the properties of the space
\mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{\acute{M}}) itself. In this direction we have

THEOREM 3. The space \mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{\acute{M}}) with the topology defined by
the family of seminorms \delta_{\phi,k}, k\in N and \phi\in \mathscr{K}_{M}, is complete.

PROOF. Let \{f_{n}\} be a Cauchy sequence in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{\acute{M}}) and let
\alpha\in N^{n}\wedge Then \{f_{n}\} is obviously a Cauchy sequence in C^{\infty} By the com-
pleteness of C^{\infty} , there exist f\in C^{\infty} such that f_{n}arrow f in C^{\infty} . hence D^{a}f_{n}arrow D^{a}f

in R^{n} Since f_{n}\in \mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}\acute{M}) , there exist k_{0}\in N which depends on \alpha

and n and C_{0}>0 such that

|D^{a}f_{n}(x)|\leq C_{0}e^{M(kox)} for all n .

Hence, for such k_{0}\in N and C_{1}>0 ,

|D^{a}f(x)|\leq C_{1}e^{M(k_{0}X)} , C_{1}=C_{0}+1 ,

i . e. , f\in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}’M) . Now we claim that f_{n}arrow f in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) . Since
\{f_{n}\} is a Cauchy sequence in \mathscr{O}M(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{\acute{M}}) , for all k\in N and \phi\in \mathscr{K}_{M} ,

there is a constant C_{\phi,k} which is dependent on \phi and k such that

\sup_{x\in R^{n},|a|\leq k’}e

M(kX)|\phi(x)D^{a}fn(x)|\leq C_{\phi,k} , \forall n\in N . (3)

But this inequality implies that, given \epsilon>0 , there is a constant M>0
such that

\sup_{x\in R^{n},|a|\leq k’}e

M(kX)|\phi(x)D^{a}f_{n}(x)|\leq\epsilon , \forall n\in N and x with |x|>M . (4)

Indeed, suppose that (4) is false. For some k’\in N , \alpha_{0}\in N^{n} with |\alpha_{0}|\leq

k’ and \phi_{0}\in \mathscr{K}_{M} , there exist \epsilon_{0}>0 and a sequence \{x_{j}\} with |x_{j}|arrow\infty as
jarrow\infty such that

e^{M(k’x_{j})}|\phi_{0}(x_{j})D^{a_{0}}fn_{0}(x_{j})|\geq\epsilon_{0} ,

where n_{0} is some integer. Then
e^{M((k’+1)x_{j})}|\phi_{0}(x_{j})D^{a_{0}}fn_{0}(x_{j})|\geq\epsilon_{0}e^{M(x_{j})_{arrow\infty}} as jarrow\infty

which is contradict to (3).
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Since f_{n}arrow f in C^{\infty} it follows that f satisfies inequality (3) Hence by
(4), it follows that for x with |x|>M , we have

\sup_{x\in R^{n},|a|\leq k’}e^{M(kx)}|\phi(x)D^{a}f(x)|\leq\epsilon
. (5)

On the other hand, since f_{n}arrow f in C^{\infty}D^{a}f_{n} converges uniformly to
D^{a}f on the compact set \{x\in R^{n} : |x|\leq M\} . This implies that, given \epsilon>0 ,
there exist n_{0}\in N such that for n\geq n_{0} ,

\sup_{x\in R^{n},|a|\leq k’}e^{M(kx)}|\phi(x)D^{a}(f_{n}-f)|<\epsilon
for all |x|\leq M . (6)

Our last three inequalities (4), (5) and (6) implies that, given \epsilon>0 ,
there exist n_{0}\in N such that for n\geq n_{0} ,

\sup_{x\in R^{n},|a|\leq k’}e

M(kX)|\phi(x)D^{a}(f_{n}-f)|<\epsilon . Q. E. D.

THEOREM 4. We have the inclusions
\mathscr{K}_{M^{L}arrow \mathscr{O}_{M}(\mathscr{K}_{M}’;\mathscr{K}_{M}^{r})L_{arrow \mathscr{K}_{\acute{M}}}}

with continuous imbeddings. Moreover, \mathscr{K}_{M} is dense in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{\acute{M}}) .

PROOF. Let \psi\in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) and \phi , f\in \mathscr{K}_{M} . It is clear that \mathscr{K}_{M}\subset

\mathscr{O}_{M}(\mathscr{K}_{M}’;\mathscr{K}_{M}’) . Since, for k_{0} in the Definition 1 and k>k_{0} ,

|\langle\phi, \phi\rangle|\leq C_{\psi}\nu_{k}(\phi) ,

where C_{\psi}= \int_{R^{n}}e^{-M(kx)}\phi(x)dx\leq Co\int_{R^{n}}e^{-M((k-ko)x)}dx<\infty , \emptyset defines an element

of \mathscr{K}_{M}’. Hence \mathscr{O}M(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’)\subset \mathscr{K}_{\acute{M}}. The two inequalities

\delta_{\phi,k}(f)\leq C_{\phi 1/_{k}}(f) ,

where C_{\phi}= \sup_{x\in R^{n}}|\phi(x)|<\infty , and

|\langle\phi, \phi\rangle|\leq C’\delta_{\phi,k}(\phi) ,

where C’= \int_{R^{n}}e^{-M(kx)}dx<\infty imply that the imbeddings are continuous. To

prove the second assertion, we shall use the idea in the proof of
Theorem 3. For \psi\in \mathscr{O}_{M}(\mathscr{K}\mathscr{K}_{\acute{M}} ; \mathscr{K}_{\acute{M}}) , since \emptyset is also in C^{\infty} and C_{C}^{\infty} is a
dense subspace of C^{\infty} (Theorem 4. 2 [3]), there is a sequence \{\phi_{n}\} in C_{C}^{\infty}

such that \phi_{n}arrow\phi in C^{\infty}- Since for all n\in N , \phi_{n}\in C_{C}^{\infty} , for all k\in N and \phi\in

\mathscr{K}M , there is a constant C_{\phi,k} which is dependent on \phi , n and k such that



Multipliers in the distribution spaces 379

\sup_{x\in R^{n},|a|\leq k’}e

M(kX)|\phi(x)D^{a}\phi_{n}(x)|\leq C_{\phi,k} .

Then the inequality (4) in the proof of Theorem 3 holds for \phi_{n} instead of
f_{n} by the same reason in the proof. Now by \phi_{n}arrow\phi in C^{\infty} . the inequality
(5) and (6) in the proof of Theorem 3 for \phi_{n} instead of f_{n} do hold. Hence
\phi_{n}arrow\phi in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) . But \phi_{n}\in C_{C}^{\infty}\overline{1}S also in \mathscr{K}_{M} , \mathscr{K}_{M} is dense in

6^{r_{M}}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) . Q. E. D.

For \phi\in \mathscr{O}_{M}(\mathscr{K}_{\acute{M}}j\mathscr{K}_{\acute{M}}) and S\in \mathscr{K}_{\acute{M}}, we define the product \phi S by

\langle\phi S, f\rangle=\langle S, \phi f\rangle for f\in \mathscr{K}_{M} . (7)

In [1], S. Abdullah proved that if \phi\in \mathscr{O}_{M}(\mathscr{K}_{\acute{M}} ; \mathscr{K}_{\acute{M}}) , f\in \mathscr{K}_{M} and S\in

\mathscr{K}_{M}’, the mapping f– \phi f from \mathscr{K}_{M} into \mathscr{K}M and the mapping Sarrow\phi S from
\mathscr{K}_{\acute{M}}\overline{1}nto\mathscr{K}_{\acute{M}} are continuous. We can also prove the following sequential
continuity.

THEOREM 5. If \phi\in \mathscr{O}_{M}(\mathscr{K}\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) , f\in \mathscr{K}_{M} and S\in \mathscr{K}_{M}’, then the
mapping \phiarrow\phi f from \mathscr{O}_{M}(\mathscr{K}_{M}’ ;\mathscr{K}_{\acute{M}}) into \mathscr{K}_{M} and the mapping \phiarrow\phi S from
\mathscr{O}_{M}(\mathscr{K}_{\acute{M}},\cdot \mathscr{K}\acute{M}) into \mathscr{K}_{\acute{M}} are sequenlially continuous.

PROOF. Let \phi\in \mathscr{O}_{M}(\mathscr{K}_{\acute{M}};\mathscr{K}_{M}’) . By the Leibniz formula,

\sup_{x\in R^{n},|a|\leq k’}e^{M(kx)}|D^{a}(f\cdot\phi)|\leq C_{a’,a^{r;\sup_{x\in R^{n}}e^{M(kx)}}}|D^{a’}f\cdot D^{a’}\phi||a’|,|a’|\leq k
.

S_{\overline{1}}nce D^{a’}f=f_{a’}\in \mathscr{B}\mathscr{N}_{M} , \iota/_{k}(f\cdot\phi)\leq C_{a^{r},a’}\delta_{f_{a},k}(\phi) for a constant C_{a’,a^{r}} .
Hence if \phi_{j}arrow 0 in \mathscr{O}_{M}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) , then \phi_{j}arrow 0 in \mathscr{K}_{M} , i . e . the first mapping
is sequentially continuous. The second part of the theorem follows from
(7) and the first part of the theorem. Q. E. D.

REMARK. We will not mention the further topological properties of
\mathscr{O}_{M}(\mathscr{K}_{M}’;\mathscr{K}’M) in this paper. The report of our progress in this direction
will be publish soon.

Finally, let K_{M} and K_{M}’ be the Fourier transformation of \mathscr{K}_{M} and \mathscr{K}_{M}’,

respectively. Now we define the space \mathscr{O}_{M}(K_{\acute{M}} ; K_{\acute{M}}) and find the relation
between \mathscr{O}_{\acute{C}}\langle \mathscr{K}_{\acute{M}} ; \mathscr{K}_{M}’) and \mathscr{O}_{M}(K_{\acute{M}} ; K_{\acute{M}}) by the Fourier transformation.

DEFINITION 6. We denote by \mathscr{O}_{M}(K_{M}’ ; K_{M}’) of all \psi\in C^{\infty} extendable
over C^{n} as entire funct\overline{l}ons such that there exist k_{1}\in N and C_{1}>0 such
that

|\phi(\zeta)|\leq C_{1}(1+|\zeta|)^{k_{1}}e^{-\Omega(\eta/h)} ,
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where \zeta=\xi+i\eta\in C^{n} and \Omega(y) is the dual of M(x) in the sense of Young.

We define on \mathscr{O}_{M}(K_{M}’ ; K_{\acute{M}}) the topology by the family of seminorms

\sigma_{\overline{\phi},k}(f)=\sup_{\zeta\in C^{n}}(1+|\zeta|)^{k}e^{-\Omega(\eta/k)}|\overline{\phi}\cdot f|

where \phi\in \mathscr{K}_{M}’ , i . e.,\hat{\phi}\in K_{M} and k\in N .
By the Paley-Wiener-Schwartz Theorem for \mathscr{O}_{\acute{C}}(\mathscr{K}_{M}’ ; \mathscr{B}^{r_{\acute{M}}}) (Theorem

4. 1 (b) in [5] ) , the element in \mathscr{O}M(K_{M}’ ; K_{M}’) is a Fourier transformation of
the element of \mathscr{O}_{\acute{C}}(ff_{M}’ ; \mathscr{K}_{\acute{M}}) . And, the space \mathscr{O}_{M}(K_{\acute{M}} ; K_{\acute{M}}) is the mult\overline{l}-

pliers in K_{M}’ by the following;

THEOREM 7. Let \phi\in \mathscr{O}_{M}(K_{\acute{M}} ; K_{M}’) . Then for all f\in \mathscr{K}_{M},\hat{f}\cdot \phi\in K_{M},
and the map \hat{f}arrow\hat{f}\phi from K_{M} into itself is continuous.

PROOF. For any k and for C_{1} , k_{1} , in the Definition [6] and some l ,

\omega_{k}(\psi\cdot\hat{f})=\sup_{\zeta\in C^{n}}(1+|\zeta|)^{k}e^{-\Omega(\eta/k)}|\phi\cdot\hat{f}|

\leq C_{1}\sup_{\zeta\in C^{n}}(1+|\zeta|)^{k+k_{1}}e^{-\Omega(\eta/k)-\Omega(\eta/k_{1})}|\hat{f}|

\leq C_{1}\sup_{\zeta\in C^{n}}(1+|\zeta|)^{2(k+k_{1})}e^{-\Omega(\eta/2(k+h))}|\hat{f}|

=C_{1}\omega_{2(k+k_{1})}(\hat{f})\leq C_{1}\nu_{l}(f) ,

where we use the properties of \Omega(x) and the Paley-Wiener-Schwartz The-
orem for \hat{f} (Theorem 4. 1 [a] in [5]) and the continuity of the Fourier
transform from \mathscr{K}_{M} onto K_{M} . This completes the proof of the theorem.

THEOREM 8. The Fourier transforma tion from \mathscr{O}\acute{c}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) into
\mathscr{O}M(K_{M}’ ; K_{M}’) is continuous.

PROOF. Let \mathscr{L}\in \mathscr{O}\acute{c} (\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) and \phi\in \mathscr{K}_{M} . We recall that if
\mathscr{L}_{j}arrow \mathscr{S} in \mathscr{O}\acute{c}(\mathscr{K}_{M}’ ; \mathscr{B}\mathscr{N}_{M}’) then \mathscr{L}j^{*}\phiarrow \mathscr{S}^{*}\phi in \mathscr{K}_{M} by the equivalent condi-

tion (iii) of \mathscr{O}_{\acute{C}}(\mathscr{K}_{M}’ ; \mathscr{K}_{M}’) .

For any k\in N and \alpha\in N^{n} with |\alpha|\leq k , by Lemma 1. 3 in [5].

| \zeta^{a}\overline{\mathscr{S}}\cdot\hat{\phi}|=|\zeta^{a}(\mathscr{S}*\phi)|=|\int_{R^{n}}-e^{-i<x,\zeta>}D^{a}(\mathscr{S}*\phi)(x)dx|

\leq\int_{R^{n}}e^{<x,\eta>}e^{-M((k+1)x)+M((k+1)x)}|D^{a}(\mathscr{S}*\phi)(x)|dx

\leq

|a| \leq k+’ 1\sup_{x\in R^{n}}\{e^{M((k+1)\chi)}|D^{a}(\mathscr{S}*\phi)(x)|\}\sup_{x\in R^{n}}\{e^{<x,\eta>-M(kx)}\}

\cross\int_{R^{n}}e^{-M(X)}dx

\leq C’e^{\Omega(\eta/k)}1\nearrow_{k+1}(\mathscr{S}*\phi) ,
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where C’ does not dependent on \phi .
Hence

\sigma_{\overline{\phi},k}(\overline{\mathscr{L}})=\sup_{\zeta\in C^{n}}(1+|\zeta|)^{k}e^{-\Omega(\eta/k)}|\overline{\mathscr{S}}\cdot\hat{\phi}|

\leq C_{k}’\nu_{k+1}(\mathscr{S}*\phi) .

Thus if \mathscr{S}jarrow \mathscr{S} in \mathscr{O}\acute{c} (\mathscr{K}_{M}’ ; _{\mathscr{K}M}’) , \hat{\mathscr{L}}jarrow\hat{\mathscr{S}} in \mathscr{O}M(K_{M}’,\cdot K_{M}’) . Since
.\mathscr{O}_{\acute{C}}(\mathscr{K}_{\acute{M}},\cdot \mathscr{K}_{\acute{M}}) is bornological [2] and the Fourier transformation is linear,
the result holds. Q. E. D.
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