Hokkaido Mathematical Journal Vol. 23(1994) p. 241-276

On certain integral equations
related to nonlinear wave equations

Rentaro AGEMI, K6ji KUBOTA and Hiroyuki TAKAMURA
(Received February 8, 1993)

§ 1. Introduction

This paper is concerned with the global in time existence of solutions
for integral equations related to the Cauchy problem for nonlinear wave
equations.

In order to describe integral equations we introduce some notations.
For a function ¢(x, ¢) of (x, t)ER"XR, we define, dividing into two cases
of odd or even space dimensions,

M(elx, 7 ; t)=[ <=lqo(x-!-rcu, t)dSw, n=2m+1,

- [ et rEt) _
M(glx, 7 ; t) /m;l I dg, n=2m,
where dS. stands for the surface element of the unit sphere in R*. When
¢(x) is independent of ¢, we denote M(glx,  ; t) by M(¢|x, »).
We consider the integral equations for scalar unknowns u(x, t) of the
form

(1.2) ulx, )=v(x, t)+L(F(u))(x, t), (x, t)ER"X[0, 00),

(1.1)

where
1.3)  L(F()x, )=An f U= MFW)lx, t—: 1)dr.

Moreover, v and F are given functions and A, is a given positive con-
stant. Note that L is a positive linear operator.
We now specify the constant A, as follows;

1 2

(1.4) Anzm (n—1)wne1

(n=2m+1), A= (n=2m),
where w» stands for the measure of the unit sphere in R”. Let f(x) and
g(x) be given functions with compact support. And let v=uw(x, ¢) be a

unique solution to the Cauchy problem for a linear wave equation
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?vo(x, t)— dvo(x, t)=G(x, t), (x, )ER"X[0, ),

(1.5) vox, 0)=F(x), dwolx, 0)=g(x), xER"

where
(1.6) G(x, )=2(m—1)AM(F(f)|x, ¢t).

Then we will find in section 3 that a solution u(x, #) to the integral equa-
tion (1.2) is a solution to the Cauchy problem for a nonlinear wave equa-
tion of the form

Oiu(x, t)—du(x, t)=F(u)(x, t)— H(x, t), (x, $)ER"X[0, o),

(1.7) u(x,0)=7F(x), deu(x,0)=g(x), xER",

where
(1.8)  H(x, )=2(m—1)A, f MGF (@)%, t—1: 7)dr.

The uniqueness of solutions to the Cauchy problem (1.7) follows from
Appendix in [6]. Note that G and H vanish for #=2 or 3.

When F(u) is of the form Alu|? (A>0), F. John has proved the
global existence of solutions to (1.7) in three space dimensions provided
p>1+42 and initial data are small. R.T. Glassey has also proved
the same results in two space dimensions for p>(3+417)/2. Moreover, Y.
Choquet-Bruhat has studied the global existence in the Sobolev spaces
for higher dimensions.

Let po(%) be the positive root of
(1.9) (n—1)p*—(n+1)p—2=0.

This quadratic equation appeared for the first time in W. A. Strauss [8].
Then it follows that 1<pe(n)=<2 for #=4 and the equality holds only for =
=4. In this paper we first establish the global existence of C'-solutions to
the integral equation (1.2), provided a suitable norm of v is small and the
following hypothesis (H); holds:

(H), F(s) is of class C' with Holder exponent 8 (0<8<1) and F(0)=
F’(0)=0. Hence there exists a positive constant A such that
|[FO(s)|< AlslP~(j=0,1) for p=1+08>po(n), |s|=1.

Note that, for =4, a hypothesis (H)., stated in section 2, similar to (H),
holds and hence (1.2) has a global solution of class C%. Next we estab-
lish the global existence of solutions to the nonlinear wave equations (1.7)
provided some derivatives of f and g are small.
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The plan of this paper is as follows. In section 2 we introduce the
weighted L”-norms and state more precisely the above main results.
Introducing the weights is related to the decay rates of solutions to (1.5)
and to the condition p>po(#n). To illustrate our situations we assume that
initial data f and g are supported in a ball {x&R":|x|<k}. The solutions
to (1.5) have the classical decay rate

D2 g9 f—00,

This fact will be proved in section 3 by using the explicit representation of
solutions and the methods in and [9]. As is well known, Huygens’
principle is valid for #=2m+1. In the case where #=2m, we will also
find in section 3 that the solutions to (1.5) decay in the solid characteristic
cone {(x, H)ER"X[0,0): |x|<t—Fk} as

(1. 10) (¢ +]|x|+28) 02t —|x|+2k)- 372,

Note that for solutions to (1.5) with G=0 one can replace the power —(»
—3)/2 by —(n—1)/2. The condition p>po(n) guarantees the integrability
of a function s gver [1, ), where

n+1
5

(L1D)  gln, p)="5 10—

The existence of solutions to the integral equation (1.2) is proved in sec-
tion 5 by using the basic estimates established in section 4 and the classi-
cal iteration method by Picard. The main tool to prove the basic esti-
mates is the fundamental identity for the integral of a plane wave function

(see [4] p.8)
! 2
112) [ g-wdSe=wni [ (1= 1)"7g(lylp)db,

where ¢(s) is a function of the scalar variable s. Finally we point out
that the observation in p. 243 is also useful for general even space
dimensions.

§ 2. Statement of main results

In this section we assume n#=4 and state main results on the global
existence of solutions to the integral equation (1.2) and the nonlinear
wave equation (1.7). For that we introduce the following norm for u&
CR"X[0.0)) with supp «C{(x, t): |x|<t+Ek};

2.1)  llull= sup [(*ti-r,;r—%)(n_l)/zN(L_?;kﬂ)Iu(x, t)\]

(x, t)ER"X[0, )
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where »=|x| and % is a fixed positive constant.
The function N(s) of s€[1,) in (2.1) is defined by dividing into
three cases. For the odd dimensional case, n=2m+1, we set

(2.2) N(s)=s?"? if p> po(n),

where po(n) and ¢(n, p) are defined by (1,9) and (1.11), respectively.
For the even dimensional case, we first set

SUPif po(m) < p<—2E,
(n—-1)/2
(2. 3) N(S)ZW T()Sgﬁ's—) if P:%,
gn-nr2 if p> nZi/ll'

When #=2, 3, the above norms are essentially the same ones as in ,
[5]. However, in order to discuss the solution to the equation (1.7), we
need another function N(s) for the even dimensional case. For a fixed
number ¢ which satisfies

(2.4)

we next set

n+1),

a(n, b) : 2 /-
S if po(n)<p< o (g+ 5

st if p= n2_1(67+"‘2"1>.

We here give some remarks on the above norms and relations between
p, q(n, p) and g. First of all, since

(2.5) N(s)={

2 (- n+1> 2n
n—l\q+ 2 <n—1
and
G<q(np)  if and only if p= 31(q+”;1>,
(2.6) "
n;1<q(n, p) if and only if p> nzfl’

we know that the norm (2.1) with (2.5) is weaker than that with (2, 3).
Next, the factor (¢+»+2k)" """ in (2.1) indicates the decay rate of a
solution v to (1.5) in its support and N((t—»+2k)/k) is closely related
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to the decay rate of v, inside of the solid characteristic cone {(x, t)ER" X
[0, 0) : y<t—Fk}. Finally, since (1.9) and (1, 11) imply q(#, p)>q(n,
po(n))=1/po(n) for p>po(n), we know that

2.7 pa(n, p)>1, pg>1if p>po(n), g=1/po(n).
For each j=1, 2 let X; be a Banach space defined by

(2. 8) Xi={ucs C(R"X[0, )) : supp u{(x, t)ER"X[0, ) :
y<t+k}, ||Diu||< oo for |a| </}

equipped with a norm ||u||x,=Xieis; ||Dfu|l. Here we use the usual nota-
tions ;

Diu=D{"-Di*u. a=(m, -, an), a;20,

(2.9) D;=0/0x; and |e|=a1+ -+ + an.

We also define a function space C‘**’(R) consisting all functions of class
C* with Horder exponent 6(0<48<1).
In order to show the global existence of C?*-solutions to (1.2), we

require the following hypothesis (H): instead of (H): stated in the section
1.

(H); F(s)€C**?(R) and there exist positive constants p and A such
that po(n)<p<2+46 and |FY(s)|<Als|?~ for |s|£1, 0</=5p.

Note that a typical example F(s)=s? for n=5 satisfies the above hypothe-
sis.

Now we state our theorems, the first of which will be proved in sec-
tion 5.

THEOREM 1. Assume the hypothesis (H);, where j=1 or 2. Then
the integral equation (1.2) is uniquely and globally solvable in X;, provied
vEX; and ||v|| does not exceed a certain positive number which depends on
A, k n pand q.

In the proof of the theorem the following a priori estimate proved in
section 4 will play an essential role.

LEMMA 2.1. Let L be the linear integral operator defined by (1.3).
Assume that u<= C'(R" %[0, 00)) with supp #C{(x, t)ER"X[0, o) : |x| <t + &}
and ||u||<oo. Then therve exists a positive constant C depending only on n,
p and G such that

(BE)  |IL(ul®)|< CEH|ull® if p>po(n).
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REMARK 2.1. When # is even, the basic estimate (BE) does not
hold, if N(s)=s? and ¢ >(n—1)/2. For details see Appendix at the end of
this paper. Besides, if #=3 then (BE) coincides in essence with (50a) in

John [5].

Next, for the global in time existence of solutions to the nonlinear
wave equation (1.7), we will prove in section 3 the following.

THEOREM 2. Assume that fECF3R"Y), g€ CI*4R") and supports
of f and g ave contained in {xER":|x|<k}. Furthermore, assume that F
eC™YR) and F satisfies the inequality in (H)s. Let the norm (2.1) be
given by (2.5) with q=(n—3)/2 in even space dimensions. Then there
exists a unique solution u €Xz to the Cauchy problem (1.7) provided
|D¢f|(lal< m+1), |Digl (1B1=m) and |DIF(HI(7|Sm—1) are sufficiently
small.

§3. Proof of Theorem 2

Before proving and Lemma 2.1, we shall give an example
of v which satisfies the assumption of for j=2. That is vo, a
unique solution to the Cauchy problem for a linear wave equation (1.5).
Moreover, we will show in this section that the solution in X: to the inte-
gral equation (1.2) for v=w, is a solution to the Cauchy problem for the
nonlinear wave equation (1.7). Since readily follows from
Theorem 1, Proposition 3. 1 and 3. 2 below, we shall concentrate to prove
the propositions.

PROPOSITION 3.1. Let wvo be a wunique solution to (1.5) with fE€
Cr3(R"), g=CI*(R") and

supp £, supp gC{xER": |x|<k}.

Moreover, let FEC™(R). Then vo satisfies the assumptions on v for j=2
in Theorem 1, provided |Dif(x)|(lal€m+1), |Dig(x)|(|8l=m) and
|IDIF(NOI(l7|S£m—1) are sufficiently small. Especially, ve€ Xz for the norm
(2. 1) given by (2.5) with g=(n—3)/2 in the even space dimensions.

PROPOSITION 3.2. Let vo be a solution of class C* to (1.5) with FE

CXR). Then a solution of class C* to (1.2) for v=uo is a unique solution
to (1.7).

Now, it is well known that there exists a unique solution v to the
Cauchy problem (1.5) by general theory for linear wave equation. So we
here study becay rates of w. To this end, we shall derive an explicit
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expression for v,. We first write vo in the form
(3.1) vo=1uo+w in R*X]0, co).

Here uo is a unique solution to the Cauchy problem for the homogeneous
linear wave equation

(3.2) {G?uo—duo=0 in R” X (0, c0)
' uo(x, 0)=/£(x), dauolx,0)=g(x), xER",
and w is a unique solution to the inhomogeneous problem

(3.3) {8?w—dw=G in R™ % (0, )
’ w(x, 0)=0w(x, 0)=0, xER",

where G is defined by (1.6). As is known, uo is expressed in the form
m L m—1 . i
(3. 4) uox, 1)= 2 fit'0tM(flx, t)+ X2 g:t ' 9iM (glx, 1),

where f; and ¢: are constants depending only on #. For instance, see R.
Courant and D. Hilbert [1], pp. 688-690, also see (3.22) below. For w, we
have

LEMMA 3.1. Let w be a unique solution to (3.3). Then w is expres-
sed in the form

(3.5 wln O=3wt G MEQF) 1),

wherve w; are positive constants depending only on n.
PrROOF. We note that M(F(f)|x, t) satisfies the Darboux equation
(3.6) M +2mt o M=4M.

For instance, see F. John [4], p. 97. Using this equation, we get

(3.7) (8?—11)(t"85‘2M)=i(z’—l)Ml-_z+2iM,-_1—ijgz)(l—)"‘z"'—(z;—,z)!Mm,
where M;_,=t""20{°M for i=2, ---, m. Thus, by comparing the
coefficients of M;-» in each side of (3.3), we see the following facts. Let
m=2. Then we get 2w,=2(2—1)A,, where A, is defined by (1.4). Hence
wz=An.

Let m=3. Then we get

[3(3—1)+2-3(3—2)]ws—2uw.=0,
2w, =2(3—1)An.
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Hence w:=2A», ws=3""'An.
Next, let m=4. It follows from (3.5) and (3.7) that

m i~2 . (7—92)
(2—DHw= i_g“)i[i(l._ DMi—2+2iM;y _ijgo(_ 1)1—2—](2_].!_2_)_-Mj+1].

Using this equality, we regard (3.3) as an identity for M;—. (=2, -+, m).
Then we get the following system of (m—1)-equations with respect to w:.

(3. 8) -z [m(m—1)+2m(m—2)]wn+[2(m—1)—2m]wn-1=0,

(3.8)m-s [—2m(m—2)(m—3)]wn
+{(m—1)(m— 2)—2m(m—3)]wn-1
+[2(m—2)—2m]wn-—2=0,

(3.8)m-s [2m(m—2)(m—3)(m—4) wn+[—2m(m—3)(m— 4)]wn
+[(m—2)(m—3)+2m(m—4) wm—2
+[2(m—3)—2m]wn-3=0,

(3.8), [—2m(—1)" 3 (m—2) wn+[—2m(—1)""*(m—3) ] wm-
+ (= 12m)ws+ 43+ 4m) wa+ (6 —2m) ws =0,

(3.8)y  [—2m(=D)" % m—2) wn+[—2m(—1)"*(m—3)!lwn-1
+eot(—dm)ws+ 32+ 2m)ws+(4—2m) w.=0,

(3. 8)0 2w2=2(m—1)An.

Note that the left hand side of (3.8):-» coincides with the coefficient of
M;_, in (0?—d)w for each i=2, -, m. Moreover, in this system, we first
add (m—3) times (3.8)m-2 to (3.8)n-s, next (m—4) times (3.8)n-s to (3.
8)m-s, and so on. Finally we add one times (3.8): to (3.8);.. Thus we
obtain the following system of (m—1)-equations with respect to ws, -,
Wn ;

[m(m—1)+2m(m—2) | wn=2wn-1,
m(m—1)(m—3)wn
+[(m—1)(m—2)+2m—2)(m— 3)]wm 1 =4 Wn_a,
(m—1)(m—2)(m—4) wn-
+[(m—2)m—3)+C2m—4)(m—4)]wn-2=6wn-s,
5e4+2ws+[4:3+82]wi=2m—6)ws,
431ws+[3:2+6°1 ws=2m—4)ws,
we=(m—1)An.
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Since all the coefficients of w; are positive, we see from the first (m

—2)-equations that there are positive constants ¢, ***, ¢» such that w:=
cawe for =2, ---, m. Hence we conclude that there exist positive con-
stants w; (=2, ---, m) which satisfy the equation (3.3) when w is expres-

sed by (3.5), as required.

Now, we have already obtained the explicit expression of vy given by
(3.1)-(3.5). Thus we are in a position to estimate vo. The following esti-
mates are in essence due to S. Klainerman or W. von Wahl [9].

LEMMA 3.2. Let f, g and F be as in Proposition 3. 1. Then
(3.9 lulx, )= Cll Almer+lgln)(t +1)-2
and
(3.10)  lw(x, )| ClF()lmaa(t +1)0002

for |x|St+k and t20, where C\, C: are positive constants depending only
on n, k and

loli= 2 sup | Dgo(x)l.
lalsi x=R"

PROOF. Suppose #=<2. Then it immediately follows from (1.1), (3.
4) and (3.5) that

|uo(x, = C(If|m+1glm-1)
and
lw(x, )< C'|F(H)ln-2,

which imply (3,9) and (3. 10).

In what follows, suppose #=2. Then one can derive (3.9) from the
results in [7], replacing the L'-norms by L*-norms.

We shall here review briefly Klainerman [7], pp.52-55. First of all,
the following inequality will pkay a key role; Let 7, ; be nonnegative inte-
gers with j<#—1 and let o= C{**(R"). Then

@11 o

lw|=1

da\
(a’p) qo(x-i—pw)la’Sw
é—}THDiHHqDHu for 0>0.

First, suppose #=2m+1 and ¢< C(R"). Then it follows from (1.1)
that
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myi i —ym+i d
"M (plx, t)=t ++1f (dt> o(x+ tw)dSe.

By virtue of (3.11) with j=m—1—1, we therefore get

|t 0iM (o, t)lémﬂl)mﬂ

pet™™
for =0, ---, m—1. Moreover, if e=CI(R"), then (3.11) with i=m,
7=0 yields

[t"or M (plx, I=|ID™ @l|iet ™.

Hence, by (3.4), we obtain (3.9), because ||D¢||.1=Cl¢|;. Similarly, (3.
10) follows from (3.5) and (3.11) with j=m—2—1¢ for {=0, -+, m—2.

Next, suppose #=2m and ¢= C{*(R"). Then we see from (1.1) that,
for each =0, ---, m,

t10iM (glx, t)=1*" /\/t—z—H— /lwi:l(dip>i¢(x+pw)d8w
=L+1,

where [, stands for the integral over t—1=p<t and [ the one over 0<.0
=t—1. Since

pi tz
T 2_J2t i for 0=p=t—1,

we have
|| < t®27"| Dgl|11,
Moreover, (3.11) with j=0 yields
L2/ 2| D g 127

because p" '*'=2t7! po” ! for t—1=p=t, t=2, and

[ IJ;Z_—pdp<f_

Hence we obtain
190 (g, |24 Z D s +ID ™ gll)- 1027+

for i=0, ---, m. Therefore we get (3.9) for »=2m by this inequality and
(3.4). Analogously, we obtain (3.10) by (3.5). The proof is complete.

In order to prove Proposition 3. 1, we also employ the following two
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lemmas. For convenience, we set
(3.12)  Moolx, t)=t>""M(oplx, ).
LEMMA 3.3. Let
(3.13) ¥<t—2k and t>0, where r=|x|.
Suppose that o= CYR*™) and supp ¢C{xER*":r=<k}). Then

619)  |(22) Mol O] cllglenle+r+20) 0Pt — 4+ 2ky 00

for each nonnegative integer j, where
Cj:(Zj_ 1)!!2(1/2)+j.4(1/2)+j

with (—1)!'=1. Besides,

d(1 dY
(3.15) ‘ 8t< t ot ) Mgz, t)‘
<27+ DE el ollo(t+7r+28)" VP (t —r+2k)" VD,
PrROOF. The definitions of M, and M ; (3.12) and (1.1) imply

(3.16)  M(glx, t)Z/lzc_ylét/%dy

o(v) .

- yisk /2 —|x — yl|?

The second equality follows from (3. 13), because

t—|lx—y|=2t—r—Fk>k for yEsupp ¢.
In view of (3.13) and (3. 16), we have

(3 kol 0

=(~1/@i-D!

p(y)(t?—|x —y|)~ " dy.
|yI<k
Moreover, (3.13) implies that

20t+|x—y|)=2t>t+r»+2k and
At—|x—y|))=4(t—r—k)>t—r+2k for |y|ZE.

Therefore we obtain (3.14). Note that (3.15) follows from

t 1 1
Grl=D == = 1—r—k "k

for |y|=k.
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LEMMA 3.4. Let f, g and F be as in Proposition 3.1, and let w be
a unique solution to the Cauchy problem (3.3). Then there is a constant
Ci depening only on n such that

(3.17)  w(x, )| CN|FO||(t+7+2k) " V2(t—y 4 2k)" =32
for n =2m whenever (3.13) holds.

PROOF. First, we shall express w in terms of (¢7'0/0t)YMo(F(f)|x, t),
more precisely, show that

(3.18) (a%)lM(F(f)!x, t)
1 9

=1 (Y (P, 1)

Jj=0

with some constants «;, depending only on m and /, such that a;=1. Set
s=1? so that

o0_1 o
2‘/_83 os 2t ot
Then it follows from (3.12) and (3.16) that

—m+(1/2 F(f()’))
M(F(f)|x, t)=sm )1y|5k/*dy'

Hence we obtain (3.18) easily.
From (3.5) and (3.18) we have

< ig1-am—(imnys o 1 a Y
w(x, )= wit't P e Mf(F(f)lx, t)
=2 t a

_ < 43-2m2(i—2) 1 o
= S L) (R, 1)

+§‘,w~t3‘2’"§a¢2’< 1 9
= = t ot

2 MAF (P, )
because @;-2=1. Hence one can write
(3.19) w=w+uw",

where

wi(x, t)= Z/Uml<

LWL 2 (), 1)

NIP—‘

and

w'(x, D=5 Bit> (Y My F (), 1)
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with some constants B, *-*, An-3 depending only on w: and a;.
Now, we shall derive (3.17). It follows from Lemma 3. 3 that

| (¢, )| S wnenol|[FP|ret 7t + 7 +2R) 2"t — v +2k)P77.
Since 2¢ >t+r+2k by (3.13), we have
lw (x, D)L 2wncn-a||F(Ai(t +7+28) VP "t —r +2k)277.

Besides,

m—3 .
|w”(x, = B8l £** || F ()l ¥
X(t+7r+2k)" P~ (t—r+2k) 1P
<(t+7r+2R)2 "t —r+2R) P F(Hll X

m—3 am-3-2i| .(t_7’+2k>m_2—j
xRl )

hence we have
|w"(x, D= Cll F()I|urlt + 7 +2) VP x

c(t—r sappon( 127 E2R)

t+7r+2k
Therefore by (3.19) we obtain (3.17).

PROOF OF PROPOSITION 3.1. It follows from (3.4), (3.5) and (1.1)
that, for each ¢ =0,

C{xeR": r=
SUpp o, SUPP W {(xER": r<t+Ek},

in particular, if » is odd, then
supp o, Supp wC{xER": t—k=<r=t+k}
x€ER xER

namely, the strong Huygens’ principle holds.

We shall first examine ||vol]. It follows from (3.1), (3.9) and (3.10)
that

(3.20)  lwolx, DI=(Cit G Amer+gln+ I F(lm-1)(t +1)77 77

for »<t+#k and #=0. Hence, if # is odd, by virtue of (2.1), (2.2) and
the strong Huygens’ principle,

3.21)  lwoll= CUAnar+lgln+F(Hln-),

where the constant C depends only on %, p and k, because ¢ —r»+2k=3k
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for r=¢—k. Thus if |f|m+1, |gln and |F(f)|n-1 are small then so is ||v|l.
Now let # be even and suppose (3.13) holds. Then we adopt another
expression for uo ;

(3.22)  wolx, t)=0.R(flx, t)+R(glx, t),

where

Riglx, )=yl o) 1" Mok, )

See for instance Courant and Hilbert [1], p.682. Applying (3.14) and (3.
15) with (3.12) to (3.22), we have

|uox, )= cm-s(llgllzr+@m—1)7|f]21) X
X (¢ + 7 +2R) 1Dt~y +2R) D

Therefore it follows from (3.18) and (3.1) that
lvo(x, )< C(flo+1glo+|F(A)lo)(t + v +2k)" "3 (f —y+2k)~ =312

for »<t—2k. Thus, according to (3.20), (2.1) and (2.5) with ¢=(%—3)/2,
we obtain

(3.23) ”UOH§ Cl(|f|m+1+|g|m+|F(f)|m—1),

where the constant C’ depends only on # and k, because ¢t —#» +2k£<4k for
r=t—2k. Thus if [|flln+, llgll= and ||F(f)||n-1 are small then so is ||vol|.

Finally we examine ||Dfvo|| for |a|<2. It follows from (1.1) that D%
and M commute. Hence the procedure we derived (3.21) and (3.23)
yields

| DEvol| < (C+ C')|Dif lms1+1Diglm+| DEF () mor).

Thus vE X, provided f€CI3*(R"), g=Ci**R") and FEC™R). The
proof is complete.

PROOF OF PROPOSITION 3.2. Since the usiqueness of solutions to (1.
7) follows from Appendix of John [6], it suffices to show that a C?-solu-
tion u(x, t) to (1.2) with v=up is a solution to the Cauchy problem (1.7).

From (1.3) we see that # has the same Cauchy data as v, and that
0: L(F(u))(x, t)=AM(F()|x,0; t)
+An£t[28tM(F(u)|x, t—1: D) +(t—0)EMF)lx, t— 1 : 1))dr.

Moreover, (1.4) yields
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AM(F(u)lx,0;t)=Cm—1)"F(u)(x, t).

Noting that M(F(u)|x, t —r; r) satisfies the Darboux equation, like (3. 6),
EM+2m(t—r) o.M=4M,

we thus get

(0= A) L(F(u))(x, t)

=5 F(u)(x, )= @m—2D A [ 9M(F()lx, t—1; )dr.
Since

OM(F(u)lx, t—1; 0)=M0(F(w))|x, t—7; 1)

—oM(F(u)lx,t—1; 1)

and

[ oM(Fu)x, t—; 2)de=M(F(wlx, 0; )~ M(F()x, ¢ ;0)

=[@m—1 A" F(u)(x, t)—M(F(f)lx, t),

we obtain

(0f—Dulx, t)
=(0f = Dlwolx, 1)+ LIF(u))(x, t)]
=Gz, 1)+ F(u)(x, 1)
H(x,t)  F(u)(x, t)
Cm—2A,  @m—1A,

=G(x, )+ F(u)(x, t)—H(x, t)—2m—2) AM(F(f)|x, t).
After all, (1.6) yields (1.7). The proof is completed.
§4. Proof of Lemma 2.1

—(2m—2) Anl +M(F(f)lx, t)]

Throughout this section we assume #=3 and adopt the following form
N(s)=s? with appropriate g for the function N in (2.1), unless # is even
and p=2#n/(n—1). For odd n we set g=q(n, ). When » is even, we
take a number ¢ such that

1/po(n) < g=min{q(n, p), (n—1)/2}

in each case. We also suppose that »<¢+% and u(x, ¢) is such a function
as stated in Lemma 2.1. Then it follows from (1.3) and (1.1) that
L(|u|?) also has the same properties as u except for ||L(|u«|?)||<eo.
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Besides, we denote various constants depending only on #, p and ¢ by C
or (.
Let #» be odd. Then it follows from (1.3), (1.1), (2.1) and (2.2) that

4.1 |L(ul)(x, )= AnllalPRDE22 (x, 2),

where

2 Je 0= [(=0dr [ _blx+(t—0)l 0dS.

and
(4.3) b(A, T)=(r+A+2k)" " VP2(r— 1+ 2k) "1
for 0=A=Zr+#k, and b(4, r)=0 for A>7r+% or A<0.

When # is even, we also obtain similarly (4.1) with

(4.4)  Jlx, t):f(,f_,)drfmél b(|x+(1t_—lgl)2§|, ) g

unless p=2n/(n—1).

We shall here employ the following fundamental identity for spherical
means.

LEMMA 4.1. Let b(A, t) be the function defined by (4.3). Let 720
and 0>0. Then

5 [ _blx+ool, DdS,
=20l [ A, DA, 0, 7)di,

where
(4. 6) h(/l’ 0, 7):{/12_(‘0_ 7,)2}(71—3)/2{(0_i_ 7)2_/12}(71—3)/2.

PROOF. Since |x+pw|=|o—7]|, if |o—7|=r+£ then it follows from
(4. 3) that each side of (4.5) vanishes. Hence we suppose

lo—7|<r+k

and set

g(s)=b(V/r*+p*+s, 1) for si<s<s,,
(4.7) 9(s)=0 for s<s, or s>ss,
where s;=—270 and s;=(r+£)*—(»+p)>
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We here want to apply (1.12). Although it is assumed in that
g(s) is a continuous function, we find that (1.12) is still valid for the func-
tion defined by (4.7) provided »=3. For, the g(s) can be approximated
by a decreasing sequence of uniformly bounded continuous functions
supported in the interval [si—1, s2+1].

We are now in a position to prove (4.5). Since

lx + pw|=V 7+ 0*+20x° o,

it follows from (4.7) that
b(|lx+ pwl, 1)=9(20x+ w).

Therefore, setting y=2px in (1.12), we have
flwl:lb(lx+pa)|, 7)dS .

1
=wn_1[1(1— p2) " =2p() i+ 0?2077, T)dy.

Moreover we introduce a variable of integration A instead of 7 by

A=y 72+ 0*+20r7,
as in [4], p.80. Then, since
dA _rp

dn A

and

- Wle=r Vo)

we obtain (4.5). The proof is complete.
For (A, o, ) we will use only the following three estimates.

LEMMA 4.2. Let WA, o, 7) be the function defined by (4.6). Sup-
pose that lo—r|£ASp+7r and 020. Then

(4.8) A—7|S oA+,

4.9) W4, p, ¥)S4TETAT,

(4.10) KA, p, r)S2"3pn 3y n 2 (n=B)2
and

(4.11) KA, p, 7)=8" 2" 3",
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PROOF. By assumption we get p—7=A<p+7 and »—p=<A, which
imply (4.8). Moreover (4.6) can be rewritten as

WA, o, r)={0*— (A= 7)Y {1+ r )2 — p?}-9"2
Since

' =(A=r)=QA+7ry—(A—r)=4ir
and

(A+7r)—p*=(A+7)—(A—7r),
we have (4.9). In addition,

02— (A—7)2< p?

yields (4.10). Moreover A<p+7 implies that A<20 or A<2r. If A<2p
then (4.11) follows from (4.9). If A<2r then (4.10) gives

h(A, o, ¥)=(24/2)" 3" 33,

which implies (4.11). The proof is complete.

Now, suppose # is odd. By virtue of (4.2) and we then
get

J(x, t)=2"w,I(7, t),

where

t t—7+71r
(4.12)  I(~r, t)zrz_”[; (t—r)‘”"”dr/lt_r_rl/ib(/l, (A t—r, 7)dA,
so that (4.1) can be written as
(4.13)  [L(ul”)(x, )= An2® "wn-i]|||PRP-DPDP9[ (4 1),

Next suppose # is even. Then, changing variables (¢t —7)é=y—x and

switching to polar coordinates y—x=pw, |w|=1, we have similarly from
(4. 4)

J(x, 1)=2°"wn,11(7, t),

where

W.14)  I(r, £)=r*" [ (= o "dr x

t-r 0 p+T
x [ T [ 300, kA, 0, r)da
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with b(4, r) and %(4, p, ) defined by (4.3) and (4.6) respectively. More-
over (4.13) is still valid unless the function N(s) in (2.1) is given by (2.3)
with p=2n/(n—1).

Furthermore, inverting the order of the (p, A)-integral in (4.14), we
find from (4.8) that

I(r,)=L(r, t)+L(r,t),

where

4.15)  L(r, £)=2>" / (t— oy ndr f (A DA

—-r—1|
w [FT_ekA 0, 1)
A-7] ,/ t—Z')z—p

and

(t—-7)+ T
(4.16) L(r, t)=7»* "/ (t—r)z”‘dr’/o- Ab(A, T)dA

f”’ oh(4, p, r)
A=r| / l‘—z-)z—p

with (¢—7);=max{¢t—#,0}. Therefore (4.1) can be written as
(4.17) L ulP)(x, 1) = An28"||u||PR V2D E9([ (4, $)+ L(7, t)).

Consequently we have only to estimate the quantities given by (4. 12),
(4.15) and (4. 16).
From now on we often use for convenience the following notations

(4.18) a=rt+4, B=r—4,

so that (4.3) can be written as

(@+2k)" " DP2(B+2k) " for a2 =k,

(4.19)  b(4, T):{O for B<—Fk or a<p.

First consider the case where # is odd.

LEMMA 4.3. Let I(r, t) be given by (4.12) with g=q(n, p), where
q(n, p) is the number befined by (1.11). Suppose that n=3 is odd and
p>po(n). Then therve is a constant C., depending only on n and b, such
that

(4.20)  I(r, 1)< G990 Dty +2R) 02§ — 4 2 ) 9m )
for r=t+=k.
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PROOF.  First suppose 47 <¢+7+2k, namely,
(4.21) FHr+2kZ2(t—r+2k).
By (4.11) we have

sl [
4.22)  I(r, 1)=8 37£dff

|t—r—1

t+r-t

Iﬂb(/i, T)dA.
Moreover, changing variables by (4.18), we get, by (4.19),
n-al [T 1-((n-1)p/2) ® ~pa(n, p)
(4.23) 10, )58 [ (a+2) da [ (8+2k)y 7" P dp.
Besides, the a-integral is dominated by
I —

since (1.11) can be written as

(4.24) 1— (”—21)1’ = ”;1 —q(n, p).

Therefore in virtue of (2.7), (4.21) and (4.23) we obtain (4. 20).
Next suppose

(4.25)  4dr=t+r+2k.
Then by (4.10) we get
t
n-3,_.(1—n)/2
(4.26)  I(r, t)<2" %y ldrﬁ
t+r—
|[t—7r

t
§22”‘4(z‘+7+2k)‘1‘”)’2/;d2'f

t+r—

AnDER(A Ydi

-r—t

AnDp(3 B an,

_z'l

Moreover, similarly to (4.23), we see from (2.7) that the integral is
dominated by

Ckl—pq(n, p)/”r(a+2k)(n—l—(n—1)1>)/2da.
[t—7]

Therefore by (4.24) we obtain (4.20). Thus we prove Lemma 4. 3.
Next we shall estimate 1.

LEMMA 4.4. Let Ii(7, t) be given by (4.15), where q is such a num-
ber as stated in the opemning of this section. Suppose n=4 is even and p
>po(n). Then there is a constant C., depending only on n, p and q, such
that
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(4.27)  L(r, )S GR Pt +r4+2k) D2t —y +2k)" 9 P
for v <t+k, where qg(n, p) is as in the preceding lemma.

PrOOF. First suppose (4.21) holds. We see from (4.11) that the
p-integral in (4.15) is dominated by

t—-1
8n—3 n-3 f— n-3 1Y d .
r"(t—r1) l (el

Besides,

A

Hence (4.22) holds with 7=17.. Thus we obtain (4.27), as before.
Next suppose (4.25) holds. Then by (4.10) and (4.28) we get (4.26)
with /=1. Hence we obtain (4.27), as before. The proof is complete.
Finally consider /.

LEMMA 4.5. Let t>7 and L(7, t) be given by (4.16). Suppose n, p,
q and q(n, p) are as in the preceding lemma. Then there is a constant Cs,
depending only on n, p and q, such that, for r<t+k,

(4.29)  L(r, )< Csk' (¢t +7+2k) D12
X(t—7+2k)"00 P
if p<2n/(n—1),

(4.29), L7, t)< Csk* (¢ + 7 +2k)" "7
x(¢— r+2k)“”‘”/2<1+1og
if p=2n/(n—1)

=g

and

(4.29)s  L(r, 1)< Cak'Pa-90n 0)+((n=1/2)
X(t+r+2k) V2t —y+2k)"(-112
if p>2n/(n—1).

REMARK. When p=2n/(n—1), it follows from (1.11) that q(n, p)=
(n—1)/2 hence (4.29), implies (4.29), and (4. 29).

PrROOF OF LEMMA 4.5. First we shall show
(4. 30) L(r, t) S CR'PI-9 (4 y 42 )~ (7=D12
for 0<t—7»=Fk. Since
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12(7/» t)él(ry t):](xa t)/(zs_nwn—l))
if r<t+k<3k, we see from (4.3) and (4.4) that
L(r, t)< Chtn=0pi21-pa,

Hence by (4.24) we obtain (4.30). Next suppose =2k and 0<t—r=*k.
Then (4.30) is equivalent to

(4.31)  L(r, t)S CkIPa-am £y -miz.
since » =k for such 7, t. It follows from (4.10), (4.3) and (4. 24) that
L7, ) 2m-(2k) -9 P fpay 0=

p T4k t-t
x [(t=orar [Tar [ = E—de

Hence by (4.28) we obtain (4. 31).

In what follows we assume

(4.32) t—r=k.

First we shall prove

(4.33)  L(r, )SCR"P(t+7r+2k)2"
X /O‘t—r(a+2k)‘”‘”(2“”’2(t—r—a')‘”zda'.

It follows from (4.9) and (4.16) that

L(r, t)§4"‘3—1— f = rar £ T D

/‘/1+r

dp.
A=l x/(t_T)Z-P
Moreover, since

(t—1)—p*2(t—1)*—(A+7)*
=(t—r—A—7r)t—r+A+7)

and

A+T
/u pdp =274,

-]

we have

Lir, )<4m% [ Yendy f TR 7)
X (t—y—1—2) ”Z(t+r—r+/1)‘”2d/1.
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Noting that 4(¢—r)=t+7+2k for r<t—#» with (4.25) and that 6(;—7)=
t+r+2k for t=(t—7)/2 with (4.32), we therefore obtain

(4. 34) Iz(?’, l‘)é C(t‘f‘ 7’+2k)2_n[3(7’, t)+4n_3214(7’, If),

where

t—7 -r—-7
.3 Krn=[ d [T 1600
X(t—r—r=A)"(t+r—r+A)"2dA

and I(r, t)=0 for 4 =¢+r+2&,

t—r t-r—1
.36) LG, 0=["" ar [ a6, 0)

X(t—r—r—=A) Y2 (t+r—1+2)""%dA
for dr=t+r+2k.

because A" 2<(t—17)"% for 0SA<t—r.

First consider L. Changing variables by (4.18), we see from (4.19)
and (4.35) that

430 LK 0= [ (a+zhynoeer
X(t—r—a)yda [ (B+2k)*(t+7r— )" dB.
Furthermore we find that

4.38) [ (B+2k)y " (t+r—B)dB
SCE"P(t+r+2k) V2 for 0<a<t—7.

In fact, dividing the integral as

[ as+ [as

we see that the left hand side of (4.38) is dominated by

<t +7 —%)M [ (a+akyrag

a -bpq a a -1/2
+<7+2k> 27(l‘+7’——2—>
Hence (4. 38) follows from (2.7) and (4. 32).

Next consider I, Similarly to (4.37) we have, from (4.36) and (4.
38),
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(4.39)  L(r, )S CE " (t+7r+2k) 2"
X £ (@t 2k)IEPE(t— — g) V2
for 4r<t+r+2k,
since (4.21) implies

(@+2R) <42 (t+r+2k)"
for a=(t—7r)/2.

Consequently we obtain (4.33) by virtue of (4.34), (4.37), (4.38) and (4.

39).
We are now in a position to prove (4.29). Dividing the integral in

t—r (t—1)/2
(4.33) as /(;_T)/za’a+ ﬁ de, by (4.24) we have

[2(7", t)é Ckl—t)q(t + +2k)(1—n)/2
t—r
X_/(' (@+2k)~ 9 P=WB(t —p — )12y

t—1)/2

t—r
F OB+ 7 2000 (1 =) [ a2k,

Hence by (4.32) we get

L(r, 1)< CRVP(t + 7 +28) 0Pt — 7 +2k) " P
+ CEPI(t+ 7+ 2R)I V(¢ — 4 2R)0

x [ (a+2r)re gy
0

Therefore by (4.24) and (4.30) we obtain (4.29), noting that condition
(n—1)p>2n is equivalent to (n—1)(2—p)<—2. Thus we prove Lemma 4.
5.

PROOF OF LEMMA 2.1. If n is odd, then (BE) follows from (2.1), (2.
2), (4.13) with g=q(n, p) and (4.20), where C=An2* "wn-1C1, because (1.
11) implies

n— n—1

(4.40) 75 Lyi1- T—a(n, p)=2.

From now on we assume # is even. We first deal with the case where
the norm in (BE) is given by (2.3). If po(n)<p<2n/(n—1), from (4.17),
(4.27) and (4.29); we obtain (BE) as above, taking ¢=gq(#, p).

Next suppose p>2n/(n—1). Then, since ¢{—r+2k=k and (2.6)
implies (2—1)/2<q(#n, p), it follows from (4.17), (4.27) and (4.29)s that
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|L(|u|p)(x’ t)l < C“ullpkl+((n—1)p/2)-q(n, P)+((n—-1)/2)
X(t+7+2k) " V2t —r +2k) D2,

Hence by (4. 40) we obtain (BE), taking ¢=(n—1)/2.
Finally suppose

p=2n/(n—1),

so that ¢(n, p)=(n—1)/2. We shall then prove (BE) with a weaker norm
of u instead of ||«|| on the right hand side. Set

e =sup (2R (= 2R Y i,

where ¢ is a number satisfying (2.4), say, ¢g=1/po(#). Then it follows
from (4.17), (4.27) and (4. 29), that

(4.41)  |LUul®)(x, )= Ca(|l el o)PE 02D (¢ 4 4 40 )~ (n-D12

X (t— r-|—2k)‘(”_”’2(1+10g—t — g;% )

for r=t+*k, where ¢=1/po(n) and C, is a constant depending only on #,
p and q. Moreover, since

t—r+2k 1
1+log 2% < log210g<1+

by (2.1), (2.3) and (4.40) we get

t—r+2k>
k ’

Ll Sty

Besides, since po(n)>2/ (n—1), we have
sHPeM < Cos=D12/10a(1+s) for s=1

with some constnat Cs hence ||u||q<Cs|lu|l. Thus we obtain (BE) for
p=2n/(n—1).
We next deal with the case where the norm is given by (2.5). If

p(m)<p<— 1( + ”;“1>

then, since 7 <(n—1)/2, we have p<2xn/(n—1). Hence the present case is
a part of the preceding one.
From now on we assume

2 [ n+1
pz —q\a+ 2>
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Then (2.6) imlies

g=q(n,p).

Therefore, if p<2n/(n—1), it follows from (4.17), (4.27) and (4.29), with
q= q that

(4.42)  |L(lul?)(x, t)l(’/LM—,;L%)WI)m(u/:—%)(7

S CllullP(t —r +2k)7T 2D pr=Do/D+1=(n-D/2) =7
= C”u||pk((”—I)P/2)+1—((n_1)/2)_q(n’ )

because ¢t —»+2k=k. By (4.40) we thus obtain (BE).
Next suppose

p>2n/(n—1).

Then, using (4.29); instead of (4.29);, one can dominate analogously the
left hand side of (4.42) by

CH u”p(t —r+ Zk)E_(("_l)/z)k((n—l)p/z)+1-q(n’ -7
< CHuI|pk((”_l)p/Z)H_((”_l)/z)"7("’ p),

because § <(n—1)/2. Hence we get (BE) as above.

Finally suppose p=2#n/(n—1). Then (4.41) is still valid with ¢ re-
placed by g. Therefore by (2.1), (2.5) and (4.40) we obtain (BE),
because now ||u||=||«||; and s?- " V/2(1+]logs) is bounded for s=1. Thus
we prove Lemma 2. 1.

§5. Proof of Theorem 1

In this section, we shall construct the solution to the integral equation

(1.2) in X;(j=1.2) by employing and the classical iteration
method by Picard;

Uo=T
(5.1) {ul:v+L(F(uz—1)) for /EN.

Throughout the present section we fix j as j=1 or j=2, unless otherwise
stated. We divide the proof, which claims that the sequence {u:}ien
defined by (5.1) converges in X; (j=1,2) as [—oco, into three parts
according as the order of derivatives. In each part, we need the following
inequalities for all functions v, v with the properties stated above (2.1);

(5.2) oz, )1 =]|ui]

and
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(5. 3) o8 w22l £ N|nll®] |02l '~ for 0= 6=1.

One can readily derive these inequalities from (2. 1).
We note that, by the definition of po(#), (1.9),

G.4)  1<pln)= ”*Hﬂz”é;ﬁ);;“(”_l) <2 for nz4

and the equality holds only for n=4. When #=2 or 3, since po(#)>2, it
is natural to assume F(0)=F'(0)=F"(0)=0. However, there exists a typi-
cal example F(s)=s? for n=5, which satisfies the hypothesis (H). but
does not satisfy F7(0)=0. Thus some derices will be required in the proof
of existence of C*-solutions.

PART 1. Convergence of {uiien for vE€X; (j=1, 2)
We choose a function v X; such that

(5.5) lvl|P 1< (22(A+1)ACr)™ for p>po(n)
and ||v]|£27,

where A is the constant in the hypothesis (H); and C.=CFk* is the one in
Lemma 2.1. Then one can show by induction with respect to / that

(5. 6) || =2l|v|| for /EN.
In fact, assume that ||z,-1||<2||v|l. Then it follows from (H); that
|L(F(ui-))(x, )| AL(ui-|?)(x, t).

Recall that L is a positive linear operator by its definition (1.3). By vir-
tue of (BE) in Lemma 2.1, we get

(5. 7) ”L(F(uz—l))néACkHuz—al-
Hence (5.1) and (5.5) yield

el 1|0l + ACk|lwill?
<|lvll+AC2?||v||”~| o]
<|vl|+(A+D) vl
<2||vll.

Therefore we obtain (5.6). Besides, (5.6) and (5.5) implies
(5.8) l|2¢:||£1 for /EN.

Next, we shall show that
(5.9) 2¢100— i | £27 Y| see— ws-1|| for IEN.
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It follows from (5.1) that
Ui+1— uz=L(F(uz)—F(uz_1)).
Moreover, (H); implies

IF(uz)_F(uz—1)| §|F'(§z)||ul— ul—l‘
éAlEll"‘lluz—uz-xl
éAwf’_lluz—uz_ll,

where
(5. 10) §z=uz-1+/i(uz—uz-1)
with some 0<A<1. Here and in what follows, we set

wix, t)=max{lux, )|, luir(x, )|}
610 | e el Tl

Hence we get

26001 — 2i|| < Al L(w? = 2er— wi-a))l.
Here we write

w? ™ ur— | =(wi V" lui— i |'P)?.
Then it follows from (BE) and (5.3) that

(5.12) ||u1+1— uz” éACkngp_l)m‘ul— ul_1|1/p||f’
< ACH|willPMwr—uil].

Therefore (5.11), (5.6) and (5.5) yield (5.9), which implies
(5.13)  |wwsri—u|£Cie27" for IE€N,
where Ci=||u:—0||.

PART 2. Convergence of {Dauibiex for vEX; (j=1, 2).
We first claim that, for each =1, ---, #,
(5.14)  ||D:ui||£ C; for IEN,
where C.=2||D:v||. Indeed, it follows from (5.1) that

I Dacl| | Dol + || LA F(2e1-1) Dizesa Dl

Note that L and D:=09/0x commute by the definition (1.3).

larly to the proof of (5.9), we get

Thus, simi-
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| Daed| < || Davll+ ACkl| e |P 7| Diztal|
< HD,UH +2_1||Diuz—l||-

Therefore we obtain (5.14) by induction with respect to /.
Now, we shall estimate ||D:(#1—u:)||. In the sequel we will derive
(5.17) and (5.22) below. It follows from (H); that

|DZ(F(Z/£1) - F(uz—l))l

(5.15) S|F(u)Dwr— i) +(F () — F'(#00-1)) Ditg—1|
§A|uz|‘°‘llDi(uz— ul_1)| + |(F’(uz)"‘F’(uz_l))Diuz_1|.

Dealing with the first term as in the proof of (5.9), we get

(5.16) || L(Alwd* M| Di(ur— i) S AChl| 60l |PH| Diztr— w0l
§2_1||Di(u1_ uz—1)||.

For the second term, we have to divide its estimate into the following two
cases.

First, suppose (H): holds and vEX:. Then we see that there is a
positive constant B; depending only on F such that

|F'(u)— F'(ui-)| £ Bilwi— i’
Hence

|F'(u:) = F'(u-1))Diter—1| € Bilwts— w01|* | Dia|
with po(n)<p=1+6<2,

Thus, analogously to the proof of (5.12), it follows from (5.13) and
(5.14) that

||L(|(F'(uz) _F'(u—l))Diw—lDH =B CkHuz— ut—l”"—l”Dz‘qu
=B Ck(C1°2'”‘“)”“ Ce
= Cye27 7V,

where C;=27"'B,C.C.C{™".
Therefore fror:nr(5.1), (5.15) and (5.16) we have
(5.17)  [IDurri—udll
<2 Diar— )| + 3 Corz®04>
S Cyl27®" V! for [EN
if (H), holds and v€ X,, where Ci=max{||D:(z:—v)||, Cs}.
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From now on we suppose that (H). holds and vEX:. Then, since
FEC¥R), one can write the second term on the right hand side of (5.15)
as

(5.18) |(F’(uz)—F’(uz-1))Diuz-1| =|F"(&)(u,— ui-1)Dirgs|,

where & has the form (5.10) with another A. In view of (5.4), we have
to deal with the right hand side separately according as po(#)<p=<2 or 2<
p.

Let po(n)<p=<2. Then it follows from (5.2) and (5.8) that

(5.19)  |F"(&)|<Cs for [EN,

where Cs=sup{|F"(s)| : |s|=1}. Moreover, writing as
|Dites+|=|Dsrer1|P~"| Diera [,

we have from (5.14)
|Divs1| < C3?|Dsue| P~

Hence
|F"(&)(es—~wi-1) Direr—| < Cs C3~Plus— win|| Diwas—o|P~.

Thus, analogously to the case where vEX;, it follows from (5.13) and
(5.14) that

(5.20)  |ILUF"(&)(ur—wi-1) Dssy))||
= C5C22_ka||uz—‘uz—l”'”Diul—IHP_l
S GCsCEPChCre2 0 e,

Next, let p>2. Then, according to (H). and (5.11), the second term
on the right hand side of (5.15) is dominated by

Aw{"zluﬁ uz—1”D5u1—1|
=A(w§p—2)/2|uz— uz—1|1/p|Diuz—1|1/p)p-

To estimate this, we here use the following inequality which follows from
(5.3).

(5.21)  llloal*loof’lvsl 1= ol vl Pl ws] |7
for 0=a, B, y=<1 and a+ 8+ y=1.

Thus, by virture of (BE), (5.13) and (5. 14), we get
|[L(Aw§"2|uz—uz—1||Diuz—1|)||
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éACk”ZA)z“p_ZHuI_ ul—l” ‘|
éACkHul“ uz_1||'||Dz-uz—1||
S_ACkCVZ_(l_l)CZ,

because (5.11) and (5.8) imply ||lw.||<1. Hence it follows from (5. 1), (5.
15), (5.16) and (5.18)-(5.20) that

| Di(2ere1—ud)| <27YDwr— )|+ Ce27"

for /EN, where Cs=2C.C:C: max{A, Cs}. This implies the desired esti-
mate;

(5.22)  1Dsii—u)||£ Cri27¢ for IEN

if (H), holds and vE€ X, where C;= max{||D:{u:—v)||, Cs}. By virtue of
(5.13) and (5.17), one can conclude that {u:};ex converges in X; as [—©
under the condition on the size of ||vl|, (5.5). Therefore it remains to
show the convergence in X..

Diul—IH

PART 3. Convergence of {D:Djui}ien for vEXe
Assume (H ). holds and vE X.

We first claim that, for each 7, =1, -, n, ||D:D;ui|| is bounded for
/[EN. It follows from (H ). that

| D:D;F (i NS F(t61-1) DiDswt 1|+ F7 (6 1-1) Ditts-1 Dies-1|.
First, let po(n)<p=2. Then we get

|D:D;F(1,-1)| € Alwi1|P7 Y DiDjst 11|+ Cs C3?| Diwty—1|| Djer—1|P 7,
where Cs is the constant in (5.19), because (5.14) yields

|Djser-1|=|Djues1|P""| Dsees s [*~*
< C3?|Djus|P7
Thus, analogously to Part 2, we see that
|D:Dsul| < || D:Dsvl| + || LU D:DsF (u:-1))|
<||D:Dvl||+ ACkl|ui-l|P | DiDjses ||
+Cs zz_kaHDiuz—lu'HDjuz—al_l
§||Dz’DjUH+2_1||DiDjuz—1”+CkCSC%.
Next, let p>2. Then, by virtue of (H)., (BE) and (5.21), we have

| D:Dsuil| 1| D:Dsv| + ACk||twr1||P Y| DiDjuas-il|
+ ACkl|t0i—1||P 2| Dizes—il| * || Dsoes-|
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Besides, (5.8) implies ||u:-1|[*"2<1. Hence (5.6), (5.5) and (5.14) yield

| D:Dju.|| < || D:Djv|| +27 Y| DiDjui—|| + ACC3.
Therefore we obtain, for p> po(n),

| D:Djus|| 27| D:Djur—1| |+ Cs,
where Cs=||D:D;v||+ CrC5 max{A, Cs}. This implies the desired conclu-
sion
(5.23)  IDDudlS2 DD+ Z Cor2™

=(, for /€N,
where Co=||D:D;v||+2Cs.
Now, we shall estimate ||D:Dj(z:+1—u:)||. To this end, we write

L[DiDj(F(uz) _F(uz—l))]
ZL[(F’(uz) — Fl(“l—l))DiDjul]
+L[F'(uz—1)DiDj(uz_ uz-l)]
+L[F”(uz—1)Di(uz_ uz—l)Djul—l]
+ L[F”(uz—l)Diusz(uz— ul—l)]
+ L[(F"(u)— F"(u:-1))D:uDju,)
=L+ Lo+Ls+Ls+ Ls.

First of all, we shall estimate L,. Note that
Li=L[F"(&)u—ui-1)D:D;u.],

where & has the form (5.10) with another 4. Then it follows analogously
to Part 2, with (5.14) replaced by (5.23), that

l|L1||§{CkC3C92_pHUI_Ul—lll'”DiDjul”p_l if po(n)<p=2,
CkA“fz”p_zHuz—uz—1”'||DiDjuz|| if 2<p
<{CkC9€5C1'2—(l_l) if po(n)<p§2,

- CkAC1‘2_(l_1)C9 if 2<l)

Therefore we obtain
(5.24) ||Li||£ Cio*27" for /€N,

where Ci1o=2C.CoC: max{A, Cs}. Next, we note that Ls and L, have the
same form as L;. Thus, as above, we have from (5.14) and (5.22)

CrCsCEPCr(1—1)21CF Y if po(m)<p=2

Il LS e o if 2< 5.
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Hence we get
(5.25)  ||Ls||+||Ldl|= Cu(/—1)27" for [EN,

where C11=2C.C;C, max{A, Cs}. Moreover, the procedure in the proof of
(5.9) yields

(5. 26) ”Lz”éACk”uz“p_lHDiDj(ul‘“uz—l)”
<27Y|D:D;(u:— u:-1)|| for /EN.

As last step, we shall estimate Ls. In view of (H):;, we see that there is a
positive constant B; depending only on F such that

|\F"(1)— F"(t0-1)| £ Bol i — u1-1)° for 0<8<1.

Hence we have
|Ls| < BoL(| 0. — 1-1|°| Diwei| | Dsuad]).

Let po(n)<p=<2. Then it follows from (5.2), (5.13) and (5.14) that
lot:— u11°| Diseo| | Dyer) £ (Cro27"P)?| D] | Djued| P~ C5%.

Thus, analogously to Part 2, we get

| Lsl|< B:Ca(Cr+277V)° CE*|| Diwdl ||| Djaaa 1P~
<2°B,C.C3Ci-27"

Next, let 2<p=2+6. Then it follows from (5.13) and §=p—2>0 that

qu— UI—1|8|Dz’ul”Djul|
<(Cr+27 )=y — 40,4 |P72| D] | Dyl

Hence, as above, we have

||L5|| éBZCk(C1'2_(1_1))8'(‘0‘2)”uz— uz-1||p'2||Diuz||°||D,-uz||
<2°B,C.C3CP-27°%.

Therefore we obtain

(5.27)  ||Lsl|£2°B.CxC3C1+27" for /EN.

In the end, it follows from (5.1) and (5.24)-(5.27) that
ID:Di(wrir—u|| = 27| DiDi( i — i)l + Crze 127%,

where Ci2=max{Cu, Ci1, 2°B.C.C5C?}. This implies

(5.28)  ||D:iDfwrs1—ud)l]
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-1
<27'|D:Di(ur— uo)H‘FEOClz(l— y)2 0=y

-1
é(HDil)j(Z{l— U)H + C12§0(l— y)).2—3l for /EN.

Thus, by (5.13), (5.22) anb (5.28), we can conclude that {wi}iex  con-
verges in X, as /—co under the condition on the size of loll, (5.5).
Now, the uniqueness of the solution to (1.2) follows from a standard

argument. Thus we prove [Theorem 1.

Appendix

In this appendix we show that the decay rate of L(lu|?)(x, t) in the
basic estimate (BE) is best possible when # is even and p>2n/(n—1).
More precisely we have

PROPOSITION A.  Let n be even. Suppose the Sfunction N in (2.1) is
of the form N(s)=s Assume that (BE) holds Jor all such functions u
as stated in Lemma 2. 1. Then q<(n—1)/2.

PROOF. It suffices to show that one can construct a function # such
that [[«||=1 and ||L(|«|?)||=c0 provided qg>(n—1)/2.

Set

(A.D) uly, D)=k 02495 g(y)(b(|y], 7))2,

Here &(4,7) is the function defined by (4.3) and eECr(RY), ¢=CP(RY)

are cutoff functions such that 0<¢<1, 0<¢<1, ¢(r)=1 for 3k= T< 4k,

supp ¢C(2k, 5k), ¢(v)=1 for £<|y|<2k and supp ¢C{0<|y|<3k}). Then

one can see easily that «& C5(R" X (0, ©)), supp u(y, 2)C{(y, 1) : |y|< z+ k)

and |l#||=1. Thus it suffices to verify that IL(u|?)||=00 if ¢> (n—1)/2.
In what follows we suppose

r<t—9¢k.
Then it follows from (1.1), (1.3) and (A.1) that

L{Jul?)(x, t)=Ax £ t(t—Lf)n—Z/w_xlgt-r J (tlur()yz’—rl)f—xlz @

_ e gr b(lyl, )
(n=1)p/2)+bq ,
= Aok L (t—r)"‘2£§|y|§2k¢(t_f)2_|y_x|2 @,
because, if 3k=r<4k, kélyléZ/é and »<t—9k, then ¢(r)=1, ¢(y)=1 and
|ly—x|<¢t—7—3k. In addition, since r+|y|+2k< 8k and r—|y|+2k<6k,
(4.3) yields




On certain integral equations related to nonlinear wave equations 275

b(|yl, ) =(8k)"~DP2(GE) P4,

Moreover

(t—)" 2 (t—1)—|y—xF <" for 0.
Therefore we have

L(ul?)(x, t) = Cut™"
2 Cut Ut + v +2k),

where C,=8 ""V?267P9A,4,k"". Consequently, it follows from (2.1)
with N(s)=s? that

(A.2)  [[L(lz/”)
e e e M )
2 Crt"M(t —r +2k)7

for »<t—9k, where Cir=Cpk™ (" V=9

Now let ¢ be an arbitrary positive number with §<1. Suppose

r<(1—6)t and t >9%/9,

so that »<#—9k. Then (A.2) implies
IL(l|”)l| 2 Crgot - t=072),

Thus we find that ||L(|«|?)||=o if ¢>(n—1)/2. The proof is complete.
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