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\S 1. Introduction

This paper is concerned with the global in time existence of solutions
for integral equations related to the Cauchy problem for nonlinear wave
equations.

In order to describe integral equations we introduce some notations.
For a function \varphi(x, t) of (x, t)\in R^{n}\cross R , we define, dividing into two cases
of odd or even space dimensions,

M( \varphi|x, r ; t)=\int_{|\omega|=1}\varphi(x+r\omega, t)dS_{\omega} , n=2m+1 ,

(1. 1)
M( \varphi|x, r;t)=\int_{|\xi|\leqq 1}\frac{\varphi(x+r\xi,t)}{\sqrt{1-|\xi|^{2}}}d\xi , n=2m,

where dS_{\omega} stands for the surface element of the unit sphere in R^{n} When
\varphi(x) is independent of t , we denote M(\varphi|x, r:t) by M(\varphi|x, r) .

We consider the integral equations for scalar unknowns u(x, t) of the
form

(1. 2) u(x, t)=v(x, t)+L(F(u))(x, t) , (x, t)\in R^{n}\cross[0^{ },\infty) ,

where

(1. 3) L(F(u))(x, t)=A_{n} \int_{0}^{t}(t-\tau)M(F(u)|x, t-\tau:\tau)d\tau .

Moreover, v and F are given functions and A_{n} is a given positive con-
stant. Note that L is a positive linear operator.

We now specify the constant A_{n} as follows;

(1. 4) A_{n}= \frac{1}{(n-2)\omega_{n}}(n=2m+1) , A_{n}= \frac{2}{(n-1)\omega_{n+1}}(n=2m) ,

where \omega_{n} stands for the measure of the unit sphere in R^{n} Let f(x) and
g(x) be given functions with compact support. And let v=v_{0}(x, t) be a
unique solution to the Cauchy problem for a linear wave equation
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\partial_{t}^{2}v_{0}(x, t)-\Delta v_{0}(x, t)=G(x, t) , (x, t)\in R^{n}\cross[0^{ },\infty) ,(1. 5)
v_{0}(x, 0)=f(x) , \partial_{t}v_{0}(x, 0)=g(x) , x\in R^{n} .

where

(1. 6) G(x, t)=2(m-1)A_{n}M(F(f)|x, t) .

Then we will find in section 3 that a solution u(x, t) to the integral equa-
tion (1. 2) is a solution to the Cauchy problem for a nonlinear wave equa-
tion of the form

\partial_{t}^{2}u(x, t)-\Delta u(x, t)=F(u)(x, t)-H(x, t) , (x, t)\in R^{n}\cross[0, \infty) ,(1. 7)
u(x, 0)=f(x) , \partial_{t}u(x, 0)=g(x) , x\in R^{n}\wedge

where

(1. 8) H(x, t)=2(m-1)A_{n} \int_{0}^{t}M(\partial_{t}(F(u))|x, t-\tau;\tau)d\tau .

The uniqueness of solutions to the Cauchy problem (1. 7) follows from
Appendix in [6]. Note that G and H vanish for n=2 or 3.

When F(u) is of the form A|u|^{p}(A>0) , F. John [5] has proved the
global existence of solutions to (1. 7) in three space dimensions provided
p>1+\sqrt{2} and initial data are small. R. T. Glassey [3] has also proved
the same results in two space dimensions for p>(3+\sqrt{17})/2 . Moreover, Y\tau

Choquet-Bruhat [2] has studied the global existence in the Sobolev spaces
for higher dimensions.

Let p_{0}(n) be the positive root of
(1. 9) (n-1)p^{2}-(n+1)p-2=0 .

This quadratic equation appeared for the first time in W. A. Strauss [8].
Then it follows that 1<p_{0}(n)\leqq 2 for n\geqq 4 and the equality holds only for n
=4 . In this paper we first establish the global existence of C^{1_{-}}solutions to
the integral equation (1. 2), provided a suitable norm of v is small and the
following hypothesis (H)_{1} holds:
(H)_{1} F(s) is of class C^{1} with H\"older exponent \delta(0<\delta<1) and F(0)=

F’(0)=0 . Hence there exists a positive constant A such that
|F^{(j)}(s)|\leqq A|s|^{p-j}(j=0,1) for p=1+\delta>p_{0}(n) , |s|\leqq 1 .

Note that, for n=4, a hypothesis (H)_{2} , stated in section 2, similar to (H)_{1}

holds and hence (1. 2) has a global solution of class C^{2} . Next we estab-
lish the global existence of solutions to the nonlinear wave equations (1. 7)
provided some derivatives of f and g are small.
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The plan of this paper is as follows. In section 2 we introduce the
weighted L^{\infty}-norms and state more precisely the above main results.
Introducing the weights is related to the decay rates of solutions to (1. 5)
and to the condition p>p_{0}(n) . To illustrate our situations we assume that
initial data f and g are supported in a ball \{x\in R^{n} : |x|\leqq k\} . The solutions
to (1. 5) have the classical decay rate

t^{-(n-1)/2} as tarrow\infty .

This fact will be proved in section 3 by using the explicit representation of
solutions and the methods in [7] and [9]. As is well known, Huygens’
principle is valid for n=2m+1 . In the case where n=2m, we will also
find in section 3 that the solutions to (1. 5) decay in the solid characteristic
cone \{(x, t)\in R^{n}\cross[0^{ },\infty):|x|<t-k\} as
(1. 10) (t+|x|+2k)^{-(n-1)/2}(t-|x|+2k)^{-(n-3)/2} .

Note that for solutions to (1. 5) with G=0 one can replace the power -(n
-3)/2 by -(n-1)/2 . The condition p>p_{0}(n) guarantees the integrability
of a function s^{-pq(n,p\rangle} over [1, \infty) , where

(1. 11) q(n, p)= \frac{n-1}{2}p-\frac{n+1}{2} .

The existence of solutions to the integral equation (1. 2) is proved in sec-
tion 5 by using the basic estimates established in section 4 and the classi-
cal iteration method by Picard. The main tool to prove the basic esti-
mates is the fundamental identity for the integral of a plane wave function
(see [4] p. 8)

(1. 12) \int_{|\omega|=1}g(y\cdot\omega)dS_{\omega}=\omega_{n-1}\int_{-1}^{1}(1-p^{2})^{(n-3)/2}g(|y|p)dp ,

where g(s) is a function of the scalar variable s . Finally we point out
that the observation in [3] p. 243 is also useful for general even space
dimensions.

\S 2. Statement of main results

In this section we assume n\geqq 4 and state main results on the global
existence of solutions to the integral equation (1. 2) and the nonlinear
wave equation (1. 7). For that we introduce the following norm for u\in

C^{0}(R^{n}\cross[0^{ }.\infty)) with su p u\subset\{(x, t):|x|\leqq t+k\} ;

(2. 1) ||u||= \sup_{0x,l\in R^{n}\cross,\infty}[()\ddagger)(\frac{t+r+2k}{k})^{(n-1)/2}N(\frac{t-r+2k}{k})|u(x, t)|]
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where r\equiv|x| and k is a fixed positive constant.
The function N(s) of s\in[1^{ },\infty) in (2. 1) is defined by dividing into

three cases. For the odd dimensional case, n=2m+1 , we set

(2. 2) N(s)=s^{q(n,p)} if p>p_{0}(n) ,

where p_{0}(n) and q(n, p) are defined by (1, 9) and (1. 11), respectively.
For the even dimensional case, we first set

(2. 3) N(s)=

s^{q(n,p)} if p_{0}(n)<p< \frac{2n}{n-1},

\frac{s^{(n-1)/2}}{1og(1+s)} if p= \frac{2n}{n-1} ,

s^{(n-1)/2} if p> \frac{2n}{n-1} .

When n=2,3 , the above norms are essentially the same ones as in [3],
[5]. However, in order to discuss the solution to the equation (1. 7), we
need another function N(s) for the even dimensional case. For a fixed
number \overline{q} which satisfies

(2. 4) \frac{1}{p_{0}(n)}\leqq\overline{q}<\frac{n-1}{2} ,

we next set

(2. 5) N(s)=\{

s^{q(n,p)} if p_{0}(n)<p< \frac{2}{n-1}(\overline{q}+\frac{n+1}{2}) ,

s^{\overline{q}} if p \geqq\frac{2}{n-1}(\overline{q}+\frac{n+1}{2}) .

We here give some remarks on the above norms and relations between
p, q(n, p) and \overline{q} . First of all, since

\frac{2}{n-1}(\overline{q}+\frac{n+1}{2})<\frac{2n}{n-1}

and

\overline{q}\leqq q(n, p) if and only if p \geqq\frac{2}{n-1}(\overline{q}+\frac{n+1}{2}) ,
(2. 6)

\frac{n-1}{2}<q(n, p) if and only if p> \frac{2n}{n-1} ,

we know that the norm (2. 1) with (2. 5) is weaker than that with (2, 3) .
Next, the factor (t+r+2k)^{(n-1)/2} in (2. 1) indicates the decay rate of a
solution v_{0} to (1. 5) in its support and N((t-r+2k)/k) is closely related
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to the decay rate of v_{0} inside of the solid characteristic cone \{(x, t)\in R^{n}\cross

[0^{ },\infty) : r<t-k}. Finally, since (1. 9) and (1, 11) imply q(n, p)>q(n ,
p_{0}(n))=1/p_{0}(n) for p>p_{0}(n) , we know that

(2. 7) q(n, p)>1 , pq>1 if p>p_{0}(n) , q\geqq 1/p_{0}(n) .

For each j=1,2 let X_{j} be a Banach space defined by

(2. 8) X_{j}=\{u\in C^{0}(R^{n}\cross[0^{ },\infty)) : supp u\subset\{(x, t)\in R^{n}\cross[0^{ },\infty) :
r\leqq t+k\} , ||D_{x}^{a}u||<\infty for |\alpha|\leqq j}

equipped with a norm ||u||_{x_{j}}= \sum_{|a|\leqq j}||D_{x}^{a}u|| . Here we use the usual nota-
tions;

D_{x}^{a}u=D_{1}^{a_{1}}\cdots D_{n}^{a_{n}}u . \alpha=(\alpha_{1}, \cdots, \alpha_{n}) , \alpha_{j}\geqq 0 ,(2. 9)
D_{j}=\partial/\partial x_{j} and |\alpha|=\alpha_{1}+\cdots+\alpha_{n} .

We also define a function space C^{l+8}(R) consisting all functions of class
C^{l} with H\"order exponent \delta(0<\delta<1) .

In order to show the global existence of C^{2_{-}}solutions to (1. 2), we
require the following hypothesis (H)_{2} instead of (H)_{1} stated in the section
1.

(H)_{2} F(s)\in C^{2+8}(R) and there exist positive constants p and A such
that p_{0}(n)<p<2+\delta and |F^{(j)}(s)|\leqq A|s|^{p-j} for |s|\leqq 1,0\leqq j\leqq p .

Note that a typical example F(s)=s^{2} for n\geqq 5 satisfies the above hypothe-
sis.

Now we state our theorems, the first of which will be proved in sec-
tion 5.

THEOREM 1. Assume the hypothesis (H)_{j}, where j=1 or 2. Then
the integral equation (1. 2) is uniquely and globally solvable in X_{j}, provied
v\in X_{j} and ||v|| does not exceed a certain positive number which depends on
A, k, n, p and \overline{q} .

In the proof of the theorem the following a priori estimate proved in
section 4 will play an essential role.

LEMMA 2. 1. Let L be the linear integral operator defifined by (1. 3).
Assume that u\in C^{0}(R^{n}\cross[0^{ },\infty)) with supp u\subset\{(x, t)\in R^{n}\cross[0, \infty):|x|\leqq t+k\}

and ||u||<\infty . Then there exists a positive constant C depending only on n,
p and \overline{q} such that

(BE) ||L(|u|^{p})||\leqq Ck^{2}||u||^{p} if p>p_{)}(n) .
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REMARK 2. 1. When n is even, the basic estimate (BE) does not
hold, if N(s)=s^{q} and q>(n-1)/2 . For details see Appendix at the end of
this paper. Besides, if n=3 then (BE) coincides in essence with (50a) in
John [5].

Next, for the global in time existence of solutions to the nonlinear
wave equation (1. 7), we will prove in section 3 the following.

THEOREM 2. Assume that f\in C_{0}^{m+3}(R^{n}) , g\in C_{0}^{m+2}(R^{n}) and supports

of f and g are contained in \{x\in R^{n} : |x|\leqq k\} . Furthermore, assume that F
\in C^{m+1}(R) and F satisfifies the inequality in (H)_{2} . Let the norm (2. 1) be
given by (2. 5) with \overline{q}=(n-3)/2 in even space dimensions. Then there
exists a unique solution u\in X_{2} to the Cauchy problem (1. 7) provided
|D_{x}^{a}f|(|\alpha|\leqq m+1) , |D_{x}^{\beta}g|(|\beta|\leqq m) and |D_{x}^{\gamma}F(f)|(|\gamma|\leqq m-1) are sufficiently
small.

\S 3. Proof of Theorem 2

Before proving Theorem 1 and Lemma 2. 1, we shall give an example
of v which satisfies the assumption of Theorem 1 for j=2 . That is vo , a
unique solution to the Cauchy problem for a linear wave equation (1. 5).
Moreover, we will show in this section that the solution in X_{2} to the inte-
gral equation (1. 2) for v=v_{0} is a solution to the Cauchy problem for the
nonlinear wave equation (1. 7). Since Theorem 2 readily follows from
Theorem 1, Proposition 3. 1 and 3. 2 below, we shall concentrate to prove
the propositions.

PROPOSITION 3. 1. Let vo be a unique solution to (1. 5) with f\in

C_{0}^{m+3}(R^{n}) , g\in C_{0}^{m+2}(R^{n}) and

supp f, supp g\subset\{x\in R^{n} : |x|\leqq k\} .

Moreover, let F\in C^{m+1}(R) . Then v_{0} satisfifies the assumptions on v for j=2
in Theorem 1, provided |D_{x}^{a}f(x)|(|\alpha|\leqq m+1) , |D_{x}^{\beta}g(x)|(|\beta|\leqq m) and
|D_{x}^{\gamma}F(f)|(|\gamma|\leqq m-1) are sufficiently small. Especially, v_{0}\in X_{2} for the norm
(2. 1) given by (2. 5) with \overline{q}=(n-3)/2 in the even space dimensions.

PROPOSITION 3. 2. Let vO be a solution of class C^{2} to (1. 5) with F\in

C^{2}(R) . Then a solution of class C^{2} to (1. 2) for v=v_{0} is a unique solution
to (1. 7).

Now, it is well known that there exists a unique solution v_{0} to the
Cauchy problem (1. 5) by general theory for linear wave equation. So we
here study becay rates of vo . To this end, we shall derive an explicit
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expression for vo . We first write vo in the form

(3. 1) v_{0}=u_{0}+w in R^{n}\cross[0, \infty) .

Here u_{0} is a unique solution to the Cauchy problem for the homogeneous
linear wave equation

(3. 2) \{

\partial_{t}^{2}u_{0}-\Delta u_{0}=0 in R^{n}\cross(0^{ },\infty)

u_{0}(x, 0)=f(x) , \partial_{t}u_{0}(x, 0)=g(x) , x\in R^{n}-

and w is a unique solution to the inhomogeneous problem

(3. 3) \{

\partial_{t}^{2}w-\Delta w=G in R^{n}\cross(0^{ },\infty)

w(x, 0)=\partial_{t}w(x, 0)=0 , x\in R^{n} .

where G is defined by (1. 6). As is known, u_{0} is expressed in the form

(3. 4) u_{0}(x, t)= \sum_{i=0}^{m}f_{i}t^{i}\partial_{t}^{i}M(f|x, t)+\sum_{i=0}^{m-1}g_{i}t^{i+1}\partial_{t}^{i}M(g|x, t) ,

where f_{i} and g_{i} are constants depending only on n . For instance, see R.
Courant and D. Hilbert [1], pp. 688-690, also see (3. 22) below. For w , we
have

LEMMA 3. 1. Let w be a unique solution to (3. 3). Then w is expres-
sed in the form

(3. 5) w(x, t)= \sum_{i=2}^{m}w_{i}t^{i}\partial_{t}^{i-2}M(F(f)|x, t) ,

where w_{i} are positive constants depending only on n.

PROOF. We note that M(F(f)|x, t) satisfies the Darboux equation

(3. 6) \partial_{t}^{2}M+2mt^{-1}\partial_{t}M=\Delta M .

For instance, see F. John [4], p. 97. Using this equation, we get

(3. 7) ( \partial_{t}^{2}-\Delta)(t^{i}\partial_{t}^{i-2}M)=i(i-1)M_{i-2}+2iM_{i-1}-2m\sum_{j=0}^{i-2}(1-)^{i-2-j}\frac{(i-2)!}{j!}M_{j+1} ,

where Mi- 2=t^{i-2}\partial_{t}^{i-2}M for i=2 , \cdots , m . Thus, by comparing the
coefficients of Mi-2 in each side of (3. 3), we see the following facts. Let
m=2 . Then we get 2 w_{2}=2(2-1)A_{n} , where A_{n} is defined by (1.4). Hence
w_{2}=A_{n} .

Let m=3. Then we get

[3(3-1)+2\cdot 3(3-2)]w_{3}-2w_{2}=0 ,
2w_{2}=2(3-1)A_{n} .



248 R. Agemi, K. Kubota and H. Takamura

Hence w_{2}=2A_{n} , w_{3}=3^{-1}A_{n} .

Next, let m\geqq 4 . It follows from (3. 5) and (3. 7) that

( \partial_{t}^{2}-\Delta)w=\sum_{i=2}^{m}w_{i}[i(i-1)M_{i-2}+2iM_{i-1}-2m\sum_{j=0}^{i-2}(-1)^{i-2-j}\frac{(i-2)!}{j!}M_{j+1}] .

Using this equality, we regard (3. 3) as an identity for Mi-2 (i=2, \cdots, m) .
Then we get the following system of (m-1)-equations with respect to w_{i} .

( 3. 8)_{m-2}[m(m-1)+2m(m-2)]w_{m}+[2(m-1)-2m]Wm- l=0 ,

( 3. 8)_{m-3}[-2m(m-2)(m-3)]w_{m}
+[(m-1)(m-2)-2m(m-3)] Wm-l
+[2(m-2)-2m] Wm- 2=0 ,

(3. 8)_{m-4} [2m(m-2)(m-3)(m-4)]w_{m}+[-2m(m-3)(m-4)]Wm-l
+[(m-2)(m-3)+2m(m-4)]w_{m-2}
+[2(m-3)-2m] Wn- 3=0 ,

...... ,

(3. 8)_{2} [-2m(-1)^{m-3}(m-2)!]w_{m}+[-2m(-1)^{m-4}(m-3)!]w_{m-1}

+\cdots+(-12m)w_{5}+(4\cdot 3+4m)w_{4}+(6-2m)w_{3}=0 ,

( 3. 8)_{1} [-2m(-1)^{m-2}(m-2)!]w_{m}+[-2m(-1)^{m-3}(m-3)!]w_{m-1}

+\cdots+(-4m)w_{4}+(3\cdot 2+2m)w_{3}+(4-2m)w_{2}=0 ,

( 3. 8)_{0} 2w_{2}=2(m-1)A_{n} .

Note that the left hand side of (3. 8)_{i-2} coincides with the coefficient of
Mi-2 in (\partial_{t}^{2}-\Delta)w for each i=2, \cdots , m. Moreover, in this system, we first
add (m-3) times (3. 8)_{m-2} to (3. 8)_{m-3} , next (m-4) times (3. 8)_{m-3} to (3.
8)_{m-4} , and so on. Finally we add one times (3. 8)_{2} to (3. 8)_{1} . Thus we
obtain the following system of (m-1)-equations with respect to w_{2} , \cdots ,

Wm ;

[m(m-1)+2m(m-2)]w_{m}=2w_{m-1} ,
m(m-1)(m-3)w_{m}
+[(m-1)(m-2)+(2m-2)(m-3)] Wm- l=4w_{m-2} ,

(m-1)(m-2)(m-4)_{Wm-1}
+[(m-2)(m-3)+(2m-4)(m-4)]w_{m-2}=6w_{m-3} ,

5\cdot 4\cdot 2w_{5}+[4\cdot 3+8\cdot 2]w_{4}=(2m-6)w_{3} ,

4 \cdot 3\cdot 1w_{4}+[3\cdot 2+6\cdot 1]w_{3}=(2m-4)w_{2} ,
w_{2}=(m-1)A_{n} .
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Since all the coefficients of w_{i} are positive, we see from the first (m
-2)-equations that there are positive constants c_{2} , \cdots , c_{m} such that w_{i}=

c_{i}w_{2} for i=2, \cdots , m . Hence we conclude that there exist positive con-
stants w_{i} (i=2, \cdots, m) which satisfy the equation (3. 3) when w is expres-
sed by (3. 5), as required.

Now, we have already obtained the explicit expression of vo given by
(3. 1)-(3.5) . Thus we are in a position to estimate vo . The following esti-
mates are in essence due to S. Klainerman [7] or W. von Wahl [9].

LEMMA 3. 2. Let f, g and F be as in Proposition 3. 1. Then
(3. 9) |u_{0}(x, t)|\leqq C_{1}(|f|_{m+1}+|g|_{m})(t+1)^{-(n-1\rangle/2}

and

(3. 10) |w(x, t)|\leqq C_{2}|F(f)|_{m-1}(t+1)^{-(n-1)/2}

for |x|\leqq t+k and t\geqq 0 , where C_{1} , C_{2} are positive constants depending only
on n, k, and

|\varphi|_{i}=\Sigma su|a|\leqq ix\in p_{n}|D_{x}^{a}\varphi(x)| .

PROOF. Suppose t\leqq 2 . Then it immediately follows from (1. 1), (3.
4) and (3. 5) that

|u_{0}(x, t)|\leqq C(|f|_{m}+|g|_{m-1})

and

|w(x, t)|\leqq C’|F(f)|_{m-2} ,

which imply (3, 9) and (3. 10).
In what follows, suppose t\geqq 2 . Then one can derive (3.9) from the

results in [7], replacing the L^{1}-norms by L^{\infty}-norms.
We shall here review briefly Klainerman [7], pp. 52-55. First of all,

the following inequality will pkay a key role; Let i , j be nonnegative inte-
gers with j\leqq n-1 and let \varphi\in C_{0}^{i+j+1}(R^{n}) . Then

(3. 11) \rho^{n-1-j}\int_{|\omega|=1}|(\frac{d}{d\rho})^{i}\varphi(x+\rho\omega)|dS_{\omega}

\leqq\frac{1}{j!}||D^{i+j+1}\varphi||_{L^{1}} for \rho>0 .

First, suppose n=2m+1 and \varphi\in C_{0}^{m}(R^{n}) . Then it follows from (1. 1)

that
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t^{m}t^{i+1} \partial_{t}^{i}M(\varphi|x, t)=t^{m+i+1}\int_{|\omega|=1}(\frac{d}{dt})^{i}\varphi(x+t\omega)dS_{\omega} .

By virtue of (3. 11) with j=m-1-i, we therefore get

|t^{i+1} \partial_{t}^{i}M(\varphi|x, t)|\leqq\frac{1}{(m-1-i)!}||D^{m}\varphi||_{L^{1}}\cdot t^{-m}

for i=0, \cdots , m-1 . Moreover, if \varphi\in C_{0}^{m+1}(R^{n}) , then (3. 11) with i=m,

j=0 yields

|t^{m}\partial_{t}^{m}M(\varphi|x, t)|\leqq||D^{m+1}\varphi||_{L^{1}}\cdot t^{-m} .

Hence, by (3. 4), we obtain (3. 9), because ||D^{i}\varphi||_{L^{1}}\leqq C|\varphi|_{i} . Similarly, (3.
10) follows from (3.5) and (3.11) with j=m-2-i for i=0 , \cdots , m-2 .

Next, suppose n=2m and \varphi\in C_{0}^{i+1}(R^{n}) . Then we see from (1. 1) that,
for each i=0 , \cdots , m ,

t^{i+1} \partial_{t}^{i}M(\varphi|x, t)=t^{2-n}\int_{0}^{t}\frac{\rho^{n-1+i}}{\sqrt{t^{2}-\rho^{2}}}d\rho\int_{|\omega|=1}(\frac{d}{d\rho})^{i}\varphi(x+\rho\omega)dS_{\omega}

\equiv I_{1}+I_{2} ,

where I_{1} stands for the integral over t-1\leqq\rho\leqq t and I2 the one over 0\leqq\rho

\leqq t-1 . Since

\frac{\rho^{i}}{\sqrt{t^{2}-\rho^{2}}}\leqq\frac{t^{i}}{\sqrt{2t-1}} for 0\leqq\rho\leqq t-1 ,

we have
|I_{2}|\leqq t^{(3/2)-n+i}||D^{i}\varphi||_{L^{1}} .

Moreover, (3. 11) with j=0 yields

|I_{1}|\leqq 2\sqrt{2}||D^{i+1}\varphi||_{L^{1}}\cdot t^{(3/2)-n+i}

because \rho^{n-1+i}\leqq 2t^{i-1}\rho\rho^{n-1} for t-1\leqq\rho\leqq t , t\geqq 2 , and

\int_{t-1}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}d\rho\leqq\sqrt{2t}

Hence we obtain

|t^{i+1}\partial_{t}^{i}M(\varphi|x, t)|\leqq 2\sqrt{2}(||D^{i}\varphi||_{L^{1}}+||D^{i+1}\varphi||_{L^{1}})\cdot t^{(3/2)-n+i}

for i=0 , \cdots , m . Therefore we get (3. 9) for n=2m by this inequality and
(3. 4). Analogously, we obtain (3. 10) by (3. 5). The proof is complete.

In order to prove Proposition 3. 1, we also employ the following two
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lemmas. For convenience, we set

(3. 12) M_{0}(\varphi|x, t)=t^{2m-1}M(\varphi|x, t) .

Lemma 3. 3. Let

(3. 13) r<t-2k and t>0 , where r=|x| .

Suppose that \varphi\in C_{0}^{0}(R^{2m}) and supp \varphi\subset\{x\in R^{2m} : r\leqq k\} . Then

(3.14) |( \frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(\varphi|x, t)|\leqq c_{j}||\varphi||_{L^{1}}(t+r+2k)^{-(1/2)-j}(t-r+2k)^{-(1/2)-j}

for each nonnegative integer j, where

c_{j}=(2j-1)!!2^{(1/2)+j}\cdot 4^{(1/2)+j}

with (-1)! !=1 . Besides,

(3. 15) | \frac{\partial}{\partial t}(\frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(\varphi|x, t)|

\leqq(2j+1)k^{-1}c_{j}||\varphi||_{L^{1}}(t+r+2k)^{-(1/2)-j}(t-r+2k)^{-(1/2)-j} .

PROOF. The definitions of M_{0} and M,\cdot (3. 12) and (1. 1) imply

(3. 16) M_{0}( \varphi|x, t)=\int_{|x-y|\leqq t}\frac{\varphi(y)}{\sqrt{t^{2}-|x-y|^{2}}}dy

= \int_{|y|\leqq k}\frac{\varphi(y)}{\sqrt{t^{2}-|x-y|^{2}}}dy .

The second equality follows from (3. 13), because

t-|x-y|\geqq t-r-k>k for y\in supp\varphi .

In view of (3. 13) and (3. 16), we have

( \frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(\varphi|x, t)

=(-1)^{j}(2j-1)!! \int_{|y|\leqq k}\varphi(y)(t^{2}-|x-y|^{2})^{-(1/2)-j}dy .

Moreover, (3. 13) implies that

2(t+|x-y|)\geqq 2t>t+r+2k and
4(t-|x-y|)\geqq 4(t-r-k)>t-r+2k for |y|\leqq k .

Therefore we obtain (3. 14). Note that (3. 15) follows from

\frac{t}{(t+|x-y|)(t-|x-y|)}\leqq\frac{1}{t-r-k}<\frac{1}{k} for |y|\leqq k .
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LEMMA 3. 4. Let f, g and F be as in Proposition 3. 1, and let w be
a unique solution to the Cauchy problem (3. 3). Then there is a constant
C_{1} depening only on n such that

(3. 17) |w(x, t)|\leqq C_{1}||F(f)||_{L^{1}}(t+r+2k)^{-(n-1)/2}(t-r+2k)^{-(n-3)/2}

for n=2m whenever (3. 13) holds.

PROOF. First, we shall express w in terms of (t^{-1}\partial/\partial t)^{j}M_{0}(F(f)|x, t) ,
more precisely, show that

(3. 18) ( \frac{\partial}{\partial t})^{l}M(F(f)|x, t)

=t^{1-2m-l} \sum_{j=0}^{l}\alpha_{j}t^{2j}(\frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(F(f)|x, t)

with some constants \alpha_{j} , depending only on m and l , such that \alpha_{l}=1 . Set
s=t^{2} , so that

\frac{\partial}{\partial t}=2\sqrt{s}\frac{\partial}{\partial s} , \frac{\partial}{\partial s}=\frac{1}{2t}\frac{\partial}{\partial t} .

Then it follows from (3.12) and (3.16) that

M(F(f)|x, t)=s^{-m+(1/2)} \int_{|y|\leqq k}\frac{F(f(y))}{\sqrt{s-|x-y|^{2}}}dy .

Hence we obtain (3.18) easily.
From (3. 5) and (3. 18) we have

w(x, t)= \sum_{i=2}^{m}w_{i}t^{i}t^{1-2m-(i-2)}\sum_{j=0}^{i-2}\alpha_{j}t^{2j}(\frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(F(f)|x, t)

= \sum_{i=2}^{m}w_{i}t^{3-2m}t^{2(i-2)(\frac{1}{t}\frac{\partial}{\partial t})^{i-2}M_{0}(F(f)|x,t)}

+ \sum_{i=3}^{m}w_{i}t^{3-2m}\sum_{j=0}^{i-3}\alpha_{j}t^{2j}(\frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(F(f)|x, t)

because \alpha_{i-2}=1 . Hence one can write

(3. 19) w=w’+w’.

where

w’(x, t)=w_{m} \frac{1}{t}(\frac{1}{t}\frac{\partial}{\partial t})^{m-2}M_{0}(F(f)|x, t)

and

w’(x, t)= \sum_{j=0}^{m-3}\beta_{j}t^{3-2m+2j}(\frac{1}{t}\frac{\partial}{\partial t})^{j}M_{0}(F(f)|x, t)
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with some constants \beta_{0} , \cdots , \beta_{m-3} depending only on w_{i} and \alpha_{j} .
Now, we shall derive (3. 17). It follows from Lemma 3. 3 that

|w’(x, t)|\leqq w_{m}c_{m-2}||F(f)||_{L^{1}}\cdot t^{-1}(t+r+2k)^{(3/2)-m}(t-r+2k)^{(3/2)-m} .

Since 2 t>t+r+2k by (3. 13), we have

|w’(x, t)|\leqq 2w_{m}c_{m-2}||F(f)||_{L^{1}}(t+r+2k)^{(1/2)-m}(t-r+2k)^{(3/2)-m} .

Besides,

|w’(x, t)| \leqq\sum_{j=0}^{m-3}|\beta_{j}|t^{3-2m+2j}c_{j}||F(f)||_{L^{1}}\cross

\cross(t+r+2k)^{-(1/2)-j}(t-r+2k)^{-(1/2)-j}

\leqq(t+r+2k)^{(1/2)-m}(t-r+2k)^{(3/2)-m}||F(f)||_{L^{1}}\cross

\cross\sum_{j=0}^{m-3}2^{2m-3-2j}|\beta_{j}|c_{j(\frac{t-r+2k}{t+r+2k})^{m-2-j}}

hence we have
|w^{rr}(x, t)|\leqq\overline{C}_{0}||F(f)||_{L^{1}}(t+r+2k)^{(1/2)-m}\cross

\cross(t-r+2k)^{(3/2)-m}(\frac{t-r+2k}{t+r+2k}) .

Therefore by (3. 19) we obtain (3. 17).

PROOF OF PROPOSITION 3. 1. It follows from (3. 4), (3. 5) and (1. 1)

that, for each t\geqq 0 ,

\sup_{x\in R}P\mathcal{U}0
, \sup_{x\in R}Pw\subset\{x\in R^{n} ^{:} ^{r\leqq t+k\}} ,

in particular, if n is odd, then

\sup_{x\in R}P\mathcal{U}0
, \sup_{x\in R}Pw\subset\{x\in R^{n}:^{t-k\leqq\gamma\leqq t+k\}} ,

namely, the strong Huygens’ principle holds.
We shall first examine ||v_{0}|| . It follows from (3. 4), (3. 9) and (3. 10)

that

(3. 20) |v_{0}(x, t)|\leqq(C_{1}+C_{2})(|f|_{m+1}+|g|_{m}+|F(f)|_{m-1})(t+1)^{-(n-1)/2}

for r\leqq t+k and t\geqq 0 . Hence, if n is odd, by virtue of (2. 1), (2. 2) and
the strong Huygens’ principle,

(3. 21) ||v_{0}||\leqq C(|f|_{m+1}+|g|_{m}+|F(f)|_{m-1}) ,

where the constant C depends only on n, p and k, because t-r+2k\leqq 3k
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for r\geqq t-k . Thus if |f|_{m+1} , |g|_{m} and |F(f)|_{m-1} are small then so is ||v_{0}|| .
Now let n be even and suppose (3. 13) holds. Then we adopt another

expression for u_{0} ;

(3. 22) u_{0}(x, t)=\partial_{t}R(f|x, t)+R(g|x, t) ,

where

R( \varphi|x, t)=\frac{1}{(2\pi)^{m}}(\frac{1}{t}\frac{\partial}{\partial t})^{m-1}[t^{2m-1}M(\varphi|x, t)] .

See for instance Courant and Hilbert [1], p. 682. Applying (3. 14) and (3.
15) with (3. 12) to (3. 22), we have

|u_{0}(x, t)|\leqq c_{m-1}(||g||_{L^{1}}+(2m-1)k^{-1}||f||_{L^{1}})\cross

\cross(t+r+2k)^{(1/2)-m}(t-r+2k)^{(1/2)-m} .

Therefore it follows from (3. 18) and (3. 1) that

|v_{0}(x, t)|\leqq C(|f|_{0}+|g|_{0}+|F(f)|_{0})(t+r+2k)^{-(n-3)/2}(t-r+2k)^{-(n-3)/2}

for r<t-2k . Thus, according to (3. 22), (2. 1) and (2. 5) with \overline{q}=(n-3)/2 ,
we obtain

(3. 23) ||v_{0}||\leqq C’(|f|_{m+1}+|g|_{m}+|F(f)|_{m-1}) ,

where the constant C’ depends only on n and k, because t-r+2k\leqq 4k for
r\geqq t-2k . Thus if ||f||_{m+1} , ||g||_{m} and ||F(f)||_{m-1} are small then so is ||v_{0}|| .

Finally we examine ||D_{x}^{a}v_{0}|| for |\alpha|\leqq 2 . It follows from (1. 1) that D_{x}^{a}

and M commute. Hence the procedure we derived (3.21) and (3.23)
yields

||D_{x}^{a}v_{0}||\leqq(C+C’)(|D_{x}^{a}f|_{m+1}+|D_{x}^{a}g|_{m}+|D_{x}^{a}F(f)|_{m-1}) .

Thus v_{0}\in X_{2} provided f\in C_{0}^{m+3}(R^{n}) , g\in C_{0}^{m+2}(R^{n}) and F\in C^{m+1}(R) . The
proof is complete.

PROOF OF PROPOSITION 3. 2. Since the usiqueness of solutions to (1.
7) follows from Appendix of John [6], it suffices to show that a C^{2_{-}}solu-
tion u(x, t) to (1. 2) with v=v_{0} is a solution to the Cauchy problem (1. 7).

From (1. 3) we see that u has the same Cauchy data as v_{0} and that
\partial_{t}^{2}L(F(u))(x, t)=A_{n}M(F(u)|x, 0;t)

+A_{n} \int_{0}^{t}[2\partial_{t}M(F(u)|x, t-\tau:\tau)+(t-\tau)\partial_{t}^{2}M(F(u)|x, t-\tau;\tau)]d\tau .

Moreover, (1. 4) yields
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A_{n}M(F(u)|x, 0;t)=(2m-1)^{-1}F(u)(x, t) .

Noting that M(F(u)|x, t-\tau;\tau) satisfies the Darboux equation, like (3. 6),

\partial_{t}^{2}M+2m(t-\tau)^{-1}\partial_{t}M=\Delta M ,

we thus get

(\partial_{t}^{2}-\Delta)L(F(u))(x, t)

= \frac{1}{2m-1}F(u)(x, t)-(2m-2)A_{n}\int_{0}^{t}\partial_{t}M(F(u)|x, t-Tj\tau)d\tau .

Since

\partial_{t}M(F(u)|x, t-\tau;\tau)=M(\partial_{t}(F(u))|x, t-\tau;\tau)

-\partial_{\tau}M(F(u)|x, t-\tau;\tau)

and

\int_{0}^{t}\partial_{\tau}M(F(u)|x, t-\tau;\tau)d\tau=M(F(u)|x, 0;t)-M(F(u)|x, t; 0)

=[(2m-1)A_{n}]^{-1}F(u)(x, t)-M(F(f)|x, t) ,

we obtain
(\partial_{t}^{2}-\Delta)u(x, t)

=(\partial_{t}^{2}-\Delta)[v_{0}(x, t)+L(F(u))(x, t)]

=G(x, t)+ \frac{1}{2m-1}F(u)(x, t)

-(2m-2)A_{n}[ \frac{H(x,t)}{(2m-2)A_{n}}-\frac{F(u)(x,t)}{(2m-1)A_{n}}+M(F(f)|x, t)]

=G(x, t)+F(u)(x, t)-H(x, t)-(2m-2)A_{n}M(F(f)|x, t) .

After all, (1. 6) yields (1. 7). The proof is completed.

\S 4. Proof of Lemma 2. 1

Throughout this section we assume n\geqq 3 and adopt the following form
N(s)=s^{q} with appropriate q for the function N in (2. 1), unless n is even
and p=2n/(n-1) . For odd n we set q=q(n, p) . When n is even, we
take a number q such that

1/p_{0}(n) \leqq q\leqq\min\{q(n, p), (n-1)/2\}

in each case. We also suppose that r\leqq t+k and u(x, t) is such a function
as stated in Lemma 2. 1. Then it follows from (1. 3) and (1. 1) that
L(|u|^{p}) also has the same properties as u except for ||L(|u|^{p})||<\infty .
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Besides, we denote various constants depending only on n, p and q by C
or C’

Let n be odd. Then it follows from (1. 3), (1. 1), (2. 1) and (2. 2) that

(4. 1) |L(|u|^{p})(x, t)|\leqq A_{n}||u||^{p}k^{((n-1)p/2)+pq}J(x, t) ,

where

(4. 2) J(x, t)= \int_{0}^{t}(t-\tau)d\tau\int_{|\omega|=1}b(|x+(t-\tau)\omega|, \tau)dS_{\omega}

and

(4. 3) b(\lambda, \tau)=(\tau+\lambda+2k)^{-(n-1)p/2}(\tau-\lambda+2k)^{-pq}

for 0\leqq\lambda\leqq\tau+k , and b(\lambda, \tau)=0 for \lambda>\tau+k or \lambda<0 .

When n is even, we also obtain similarly (4. 1) with

(4. 4) J(x, t)= \int_{0}^{t}(t-\tau)d\tau\int_{|\xi|\leqq 1}\frac{b(|x+(t-\tau)\xi|,\tau)}{\sqrt{1-|\xi|^{2}}}d\xi

unless p=2n/(n-1) .

We shall here employ the following fundamental identity for spherical
means.

LEMMA 4. 1. Let b(\lambda, \tau) be the function defifined by (4. 3). Let \tau\geqq 0

and \rho>0 . Then

(4. 5) \int_{|\omega|=1}b(|x+\rho\omega|, \tau)dS_{\omega}

=2^{3-n} \omega_{n-1}(r\rho)^{2-n}\int_{|\rho-r|}^{\rho+r}\lambda b(\lambda, \tau)h(\lambda, \rho, r)d\lambda ,

where

(4. 6) h(\lambda, \rho, r)=\{\lambda^{2}-(\rho-r)^{2}\}^{(n-3)/2}\{(\rho+r)^{2}-\lambda^{2}\}^{(n-3)/2} .

PROOF. Since |x+\rho\omega|\geqq|\rho-r| , if |\rho-r|\geqq\tau+k then it follows from
(4. 3) that each side of (4. 5) vanishes. Hence we suppose

|\rho-r|<\tau+k

and set

g(s)=b(\sqrt{r^{2}+\rho^{2}+s}, \tau) for s_{1}\leqq s\leqq s_{2} ,
(4. 7) g(s)=0 for s<s_{1} or s >s_{2} ,

where s_{1}=-2r\rho and s_{2}=(\tau+k)^{2}-(r+\rho)^{2} .
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We here want to apply (1. 12). Although it is assumed in [4] that
g(s) is a continuous function, we find that (1. 12) is still valid for the func-
tion defined by (4. 7) provided n\geqq 3 . For, the g(s) can be approximated
by a decreasing sequence of uniformly bounded continuous functions
supported in the interval [s_{1}-1, s_{2}+1] .

We are now in a position to prove (4. 5). Since

it follows from (4. 7) that

b(|x+\rho\omega|, \tau)=g(2\rho x\cdot\omega) .

Therefore, setting y=2\rho x in (1. 12), we have

\int_{|\omega|=1}b(|x+\rho\omega|, \tau)dS_{\omega}

= \omega_{n-1}\int_{-1}^{1}(1-\eta^{2})^{(n-3)/2}b(\sqrt{r^{2}+\rho^{2}+2\rho r\eta}, \tau)d\eta .

Moreover we introduce a variable of integration \lambda instead of \eta by

\lambda=\sqrt{r^{2}+\rho^{2}+2\rho r\eta} ,

as in [4], p. 80. Then, since

\frac{d\lambda}{d\eta}=\frac{r\rho}{\lambda}

and

1- \eta^{2}=\frac{(\lambda^{2}-(\rho-r)^{2})((\rho+r)^{2}-\lambda^{2})}{4r^{2}\rho^{2}} ,

we obtain (4. 5). The proof is complete.
For h(\lambda, \rho, r) we will use only the following three estimates.

LEMMA 4. 2. Let h(\lambda, \rho, r) be the function defifined by (4. 6). Sup-
pose that |\rho-r|\leqq\lambda\leqq\rho+r and \rho\geqq 0 . Then

(4. 8) |\lambda-r|\leqq\rho\leqq\lambda+r,

(4. 9) h(\lambda, \rho, r)\leqq 4^{n-3}r^{n-3}\lambda^{n-3}-

(4. 10) h(\lambda, \rho, r)\leqq 2^{n-3}\rho^{n-3}r^{(n-3)/2}\lambda^{(n-3)/2}

and

(4. 11) h(\lambda, \rho, r)\leqq 8^{n-3}\rho^{n-3}r^{n-3} .
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PROOF. By assumption we get \rho-r\leqq\lambda\leqq\rho+r and r-\rho\leqq\lambda , which
imply (4. 8). Moreover (4. 6) can be rewritten as

h(\lambda, \rho, r)=\{\rho^{2}-(\lambda-r)^{2}\}^{(n-3)/2}\{(\lambda+r)^{2}-\rho^{2}\}^{(n-3)/2} .

Since
\rho^{2}-(\lambda-r)^{2}\leqq(\lambda+r)^{2}-(\lambda-r)^{2}=4\lambda r

and

(\lambda+r)^{2}-\rho^{2}\leqq(\lambda+r)^{2}-(\lambda-r)^{2} .

we have (4. 9). In addition,

\rho^{2}-(\lambda-r)^{2}\leqq\rho^{2}

yields (4. 10). Moreover \lambda\leqq\rho+r implies that \lambda\leqq 2\rho or \lambda\leqq 2r . If \lambda\leqq 2\rho

then (4. 11) follows from (4. 9). If \lambda\leqq 2r then (4. 10) gives

h(\lambda, \rho, r)\leqq(2\sqrt{2})^{n-3}\rho^{n-3}r^{n-3} .

which implies (4. 11). The proof is complete.
Now, suppose n is odd. By virtue of (4. 2) and Lemma 4. 1 we then

get

J(x, t)=2^{3-n}\omega_{n-1}I(r, t) ,

where

(4. 12) I(r, t)=r^{2-n\int_{0}^{t}(t-\tau)^{3-n}d\tau\int_{|t-\tau-r|}^{t-\tau+r}\lambda b(\lambda,\tau)h(\lambda,t-\tau,r)d\lambda} ,

so that (4. 1) can be written as
(4. 13) |L(|u|^{p})(x, t)|\leqq A_{n}2^{3-n}\omega_{n-1}||u||^{p}k^{((n-1)p/2)+pq}I(r, t) .

Next suppose n is even. Then, changing variables (t-\tau)\xi=y-x and
switching to polar coordinates y-x=\rho\omega , |\omega|=1 , we have similarly from
(4. 4)

J(x, t)=2^{3-n}\omega_{n-1}I(r, t) ,

where

(4. 14) I(r, t)=r^{2-n} \int_{0}^{t}(t-\tau)^{2-n}d\tau\cross

\cross\int_{0}^{t-r}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho\int_{|\rho-r|}^{\rho+r}\lambda b(\lambda, \tau)h(\lambda, \rho, r)d\lambda
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with b(\lambda, \tau) and h(\lambda, \rho, r) defined by (4. 3) and (4. 6) respectively. More-
over (4.13) is still valid unless the function N(s) in (2. 1) is given by (2. 3)
with p=2n/(n-1) .

Furthermore, inverting the order of the (\rho, \lambda)- integral in (4. 12), we
find from (4. 8) that

I(r, t)=I_{1}(r, t)+I_{2}(r, t) ,

where

(4. 15) I_{1}(r, t)=r^{2-n\int_{0}^{t}(t-\tau)^{2-n}d\tau\int_{|t-r-\tau|}^{t+r-\tau}\lambda b(\lambda,\tau)d\lambda}

\cross\int_{|\lambda-r|}^{t-\tau}\frac{\rho h(\lambda,\rho,r)}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho

and

(4. 16) I_{2}(r, t)=r^{2-n\int_{0}^{(t-r)_{+}}(t-\tau)^{2-n}d\tau\int_{0}^{t-r-\tau}\lambda b(\lambda,\tau)d\lambda}

\cross\int_{|\lambda-r|}^{\lambda+r}\frac{\rho h(\lambda,\rho,r)}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho

with (t-r)_{+}= \max\{t-r, 0\} . Therefore (4. 1) can be written as
(4. 17) |L(|u|^{p})(x, t)|\leqq A_{n}2^{3-n}||u||^{p}k^{((n-1)p/2)+pq}(I_{1}(r, t)+I_{2}(r, t)) .

Consequently we have only to estimate the quantities given by (4. 12),
(4. 15) and (4. 16).

From now on we often use for convenience the following notations

(4. 18) \alpha=\tau+\lambda , \beta=\tau-\lambda ,

so that (4. 3) can be written as

(4. 19) b(\lambda, \tau)=\{

(\alpha+2k)^{-(n-1)p/2}(\beta+2k)^{-pq} for \alpha\geqq\beta\geqq-k ,
0 for \beta<-k or \alpha<\beta .

First consider the case where n is odd.

LEMMA 4. 3. Let I(r, t) be given by (4. 12) with q(n, p) , where
q(n, p) is the number befifined by (1. 11). Suppose that n\geqq 3 is odd and
p>p_{0}(n) . Then there is a constant C_{1} , depending only on n and p, such
that

(4. 20) I(r, t)\leqq C_{1}k^{1-pq(n,p)}(t+r+2k)^{-(n-1)/2}(t-r+2k)^{-q(n,p)}

for r\leqq t+k .
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PROOF. First suppose 4 r\leqq t+r+2k , namely,

(4. 21) t+r+2k\leqq 2(t-r+2k) .

By (4. 11) we have

(4. 22) I(r, t) \leqq 8^{n-3}\frac{1}{r}\int_{0}^{t}d\tau\int_{|t-r-\tau|}^{t+r-\tau}\lambda b(\lambda, \tau)d\lambda .

Moreover, changing variables by (4. 18), we get, by (4. 15),

(4. 23) I(r, t) \leqq 8^{n-3}\frac{1}{r}\int_{|t-r|}^{t+r}(\alpha+2k)^{1-((n-1)p/2\rangle}d\alpha\int_{-k}^{\infty}(\beta+2k)^{-pq(n,p)}d\beta .

Besides, the \alpha- integral is dominated by

(|t-r|+2k)^{1-((n-1)p/2)} \int_{t-r}^{t+r}d\alpha ,

since (1. 11) can be written as

(4. 24) 1- \frac{(n-1)p}{2}=-\frac{n-1}{2}-q(n, p) .

Therefore in virtue of (2. 7), (4. 21) and (4. 23) we obtain (4. 20).
Next suppose

(4. 25) 4r\geqq t+r+2k .

Then by (4. 10) we get

(4. 26) I(r, t) \leqq 2^{n-3}r^{(1-n)/2}\int_{0}^{t}d\tau\int_{|t-r-\tau|}^{t+r-\tau}\lambda^{(n-1)/2}b(\lambda, \tau)d\lambda

\leqq 2^{2n-4}(t+r+2k)^{(1-n)/2}\int_{0}^{t}d\tau\int_{|t-r-\tau|}^{t+r-\tau}\lambda^{(n-1)/2}b(\lambda, \tau)d\lambda .

Moreover, similarly to (4. 23), we see from (2. 7) that the integral is
dominated by

Ck^{1-pq(n,p)} \int_{|t-\gamma|}^{t+r}(\alpha+2k)^{(n-1-(n-1)p)/2}d\alpha .

Therefore by (4. 24) we obtain (4. 20). Thus we prove Lemma 4. 3.
Next we shall estimate I_{1} .

LEMMA 4. 4. Let I_{1}(r, t) be given by (4. 15), where q is such a num-
ber as stated in the openning of this section. Suppose n\geqq 4 is even and p
>p_{0}(n) . Then there is a constant C_{2} , depending only on n, p and q, such
that
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(4. 27) I_{1}(r, t)\leqq C_{2}k^{1-pq}(t+r+2k)^{-(n-1)/2}(t-r+2k)^{-q(n,p)}

for r\leqq t+k, where q(n, p) is as in the preceding lemma.

PROOF. First suppose (4. 21) holds. We see from (4. 11) that the
\rho-integral in (4. 15) is dominated by

8^{n-3}r^{n-3}(t- \tau)^{n-3}\int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho .

Besides,

(4. 28) \int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho=t-\tau .

Hence (4. 22) holds with I=I_{1} . Thus we obtain (4. 27), as before.
Next suppose (4. 25) holds. Then by (4. 10) and (4. 28) we get (4. 26)

with I=I_{1} . Hence we obtain (4. 27), as before. The proof is complete.
Finally consider I2.

LEMMA 4. 5. Let t>r and I_{2}(r, t) be given by (4. 16). Suppose n, p,
q and q(n, p) are as in the preceding lemma. Then there is a constant C_{3} ,
depending only on n, p and q, such that, for r\leqq t+k,

(4. 29)_{1} I_{2}(r, t)\leqq C_{3}k^{1-pq}(t+r+2k)^{-(n-1)/2}

\cross(t-r+2k)^{-q(n,p)}

if p<2n/(n-1) ,

(4. 29)_{2} I_{2}(r, t)\leqq C_{3}k^{1-pq}(t+r+2k)^{-(n-1\rangle/2}

\cross(t-r+2k)^{-(n-1)/2}(1\dagger\log\frac{t-r+2k}{2k})

if p=2n/(n-1)

and

(4. 29)_{3} I_{2}(r, t)\leqq C_{3}k^{1-pq-q(n,p)+((n-1)/2)}

\cross(t+r+2k)^{-(n-1)/2}(t-r+2k)^{-(n-1)/2}

if p>2n/(n-1) .

REMARK. When p\geqq 2n/(n-1) , it follows from (1. 11) that q(n, p)\geqq

(n-1)/2 hence (4. 29)_{1} implies (4. 29)_{2} and (4. 29)_{3} .

PROOF OF LEMMA 4. 5. First we shall show

(4. 30) I_{2}(r, t)\leqq Ck^{1-pq-q(n,p)}(t+r+2k)^{-(n-1)/2}

for 0<t-r\leqq k . Since
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I_{2}(r, t)\leqq I(r, t)=J(x, t)/(2^{3-n}w_{n-1}) ,

if r\leqq t+k\leqq 3k , we see from (4. 3) and (4. 4) that

I_{2}(r, t)\leqq Ck^{2-((n-1))p/2)-pq} .

Hence by (4. 24) we obtain (4. 31). Next suppose t\geqq 2k and 0<t-r\leqq k .
Then (4. 30) is equivalent to

(4. 31) I_{2}(r, t)\leqq Ck^{1-pq-q(n,p)}r^{(1-n)/2} ,

since r\geqq k for such r , t . It follows from (4. 10), (4. 3) and (4. 24) that

I_{2}(r, t)\leqq 2^{n-3}(2k)^{-1-q(n,p)}k^{-pq}r^{(1-n)/2}

\cross\int_{0}^{k}(t-\tau)^{-1}d\tau\int_{0}^{\tau+k}d\lambda\int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho .

Hence by (4. 28) we obtain (4. 31).
In what follows we assume

(4. 32) t-r\geqq k .

First we shall prove

(4. 33) I_{2}(r, t)\leqq Ck^{1-pq}(t+r+2k)^{(3/2)-n}

\cross\int_{0}^{t-r}(\alpha+2k)^{(n-1)(2-p)/2}(t-r-\alpha)^{-1/2}d\alpha .

It follows from (4. 9) and (4. 16) that

I_{2}(r, t) \leqq 4^{n-3_{\frac{1}{r}}}\int_{0}^{t-r}(t-\tau)^{2-n}d\tau\int_{0}^{t-r-\tau}\lambda^{n-2}b(\lambda, \tau)d\lambda

\cross\int_{|\lambda-r|}^{\lambda+r}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho .

Moreover, since
(t-\tau)^{2}-\rho^{2}\geqq(t-\tau)^{2}-(\lambda+r)^{2}

=(t-\tau-\lambda-r)(t-\tau+\lambda+r)

and

\int_{|\lambda-r|}^{\lambda+\gamma}\rho d\rho=2r\lambda ,

we have

I_{2}(r, t) \leqq 4^{n-3}2\int_{0}^{t-r}(t-\tau)^{2-n}d\tau\int_{0}^{t-r-\tau}\lambda^{n-1}b(\lambda, \tau)

\cross(t-r-\tau-\lambda)^{-1/2}(t+r-\tau+\lambda)^{-1/2}d\lambda .
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Noting that 4(t-\tau)\geqq t+r+2k for \tau\leqq t-r with (4. 25) and that 6(t-\tau)\geqq

t+r+2k for \tau\leqq(t-r)/2 with (4. 32), we therefore obtain
(4. 34) I_{2}(r, t)\leqq C(t+r+2k)^{2-n}I_{3}(r, t)+4^{n-3}2I_{4}(r, t) ,

where

(4. 35) I_{3}(r, t)= \int_{0}^{t-\tau}d\tau\int_{0}^{t-r-\tau}\lambda^{n-1}b(\lambda, \tau)

\cross(t-r-\tau-\lambda)^{-1/2}(t+r-\tau+\lambda)^{-1/2}d\lambda

and I_{4}(r, t)=0 for 4r\geqq t+r+2k ,

(4. 36) I_{4}(r, t)= \int_{(t-r)/2}^{t-r}d\tau\int_{0}^{t-r-\tau}\lambda b(\lambda, \tau)

\cross(t-r-\tau-\lambda)^{-1/2}(t+r-\tau+\lambda)^{-1/2}d\lambda

for 4 r\leqq t+r+2k .

because \lambda^{n-2}\leqq(t-\tau)^{n-2} for 0\leqq\lambda\leqq t-\tau .

First consider I_{3} . Changing variables by (4. 18), we see from (4. 19)
and (4. 35) that

(4. 37) I_{3}(r, t) \leqq\int_{0}^{t-r}(\alpha+2k)^{(n-1)(2-p)/2}

\cross(t-r-\alpha)^{-1/2}d\alpha\int_{-k}^{a}(\beta+2k)^{-pq}(t+r-\beta)^{-1/2}d\beta .

Furthermore we find that

\langle 4. 38) \int_{-k}^{a}(\beta+2k)^{-pq}(t+r-\beta)^{-1/2}d\beta

\leqq Ck^{1-pq}(t+r+2k)^{-1/2} for 0\leqq\alpha\leqq t-r .

In fact, dividing the integral as

\int_{-k}^{a/2}d\beta+\int_{a/2}^{a}d\beta ,

we see that the left hand side of (4. 38) is dominated by

(t+r- \frac{\alpha}{2})^{-1/2}\int_{-k}^{\infty}(\beta+2k)^{-pq}d\beta

+( \frac{\alpha}{2}+2k)^{-pq}2\frac{\alpha}{2}(t+r-\frac{\alpha}{2})^{-1/2}

Hence (4. 38) follows from (2. 7) and (4. 32).
Next consider I_{4} . Similarly to (4. 37) we have, from (4.36) and (4.

38),
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(4. 39) I_{4}(r, t)\leqq Ck^{1-pq}(t+r+2k)^{(3/2)-n}

\cross\int_{0}^{t-r}(\alpha+2k)^{(n-1)(2-p)/2}(t-r-\alpha)^{-1/2}d\alpha

for 4r\leqq t+r+2k ,

since (4. 21) implies

(\alpha+2k)^{2-n}\leqq 4^{n-2}(t+r+2k)^{2-n}

for \alpha\geqq(t-r)/2 .

Consequently we obtain (4. 33) by virtue of (4. 34), (4. 37), (4. 38) and (4.
39).

We are now in a position to prove (4. 29). Dividing the integral in

(4. 33) as \int_{(t-r)/2}^{t-r}d\alpha+\int_{0}^{(t-r)/2}d\alpha , by (4. 24) we have

I_{2}(r, t)\leqq Ck^{1-pq}(t+r+2k)^{(1-n)/2}

\cross\int_{(t-r)/2}^{t-r}(\alpha+2k)^{-q(n,p)-(1/2)}(t-r-\alpha)^{-1/2}d\alpha

+Ck^{1-pq}(t+r+2k)^{(3/2)-n}(t-r)^{-1/2} \int_{0}^{t-r}(\alpha+2k)^{(n-1)(2-p)/2}d\alpha .

Hence by (4. 32) we get

I_{2}(r, t)\leqq Ck^{1-pq}(t+r+2k)^{(1-n)/2}(t-r+2k)^{-q(n,p)}

+Ck^{1-pq}(t+r+2k)^{(1-n)/2}(t-r+2k)^{(1-n)/2}

\cross\int_{0}^{t-r}(\alpha+2k)^{(n-1)(2-p)/2}d\alpha .

Therefore by (4. 24) and (4. 30) we obtain (4. 29), noting that condition
(n-1)p>2n is equivalent to (n-1)(2-p)<-2 . Thus we prove Lemma 4.
5.

PROOF OF LEMMA 2. 1. If n is odd, then (BE) follows from (2. 1), (2.
2), (4. 13) with q=q(n, p) and (4. 20), where C=A_{n}2^{3-n}\omega_{n-1}C_{1} , because (1.
11) implies

(4. 40) \frac{n-1}{2}p+1-\frac{n-1}{2}-q(n, p)=2 .

From now on we assume n is even. We first deal with the case where
the norm in (BE) is given by (2.3). If p_{0}(n)<p<2n/(n-1) , from (4. 37),
(4. 27) and (4. 29)_{1} we obtain (BE) as above, taking q=q(n, p) .

Next suppose p>2n/(n-1) . Then, since t-r+2k\geqq k and (2. 6)

implies (n-1)/2<q(n, p) , it follows from (4. 37), (4. 27) and (4. 29)_{3} that
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|L(|u|^{p})(x, t)|\leqq C||u||^{p}k^{1+((n-1)p/2\rangle-q(n,p)+((n-1)/2)}

\cross(t+r+2k)^{-(n-1)/2}(t-r+2k)^{-(n-1)/2} .

Hence by (4. 40) we obtain (BE), taking q=(n-1)/2 .
Finally suppose

p=2n/(n-1) ,

so that q(n, p)=(n-1)/2 . We shall then prove (BE) with a weaker norm
of u instead of ||u|| on the right hand side. Set

||u||_{q}= sux\in t\geqq 0p_{n}[(\frac{t+r+2k}{k})^{(n-1)/2}(\frac{t-r+2k}{k})^{q}|u(x, t)|] ,

where q is a number satisfying (2. 4), say, q=1/p_{0}(n) . Then it follows
from (4. 17), (4. 27) and (4. 29)_{2} that

(4. 41) |L(|u|^{p})(x, t)|\leqq C_{4}(||u||_{q})^{p}k^{1+ttn-1)p/2)}(t+r+2k)^{-(n-1)/2}

\cross(t-r+2k)^{-(n-1)/2}(1+\log\frac{t-r+2k}{2k})

for r\leqq t+k , where q=1/p_{0}(n) and C_{4} is a constant depending only on n ,
p and q . Moreover, since

1+ \log\frac{t-r+2k}{2k}\leqq\frac{1}{\log 2}\log(1+\frac{t-r+2k}{k}) ,

by (2. 1), (2. 3) and (4. 40) we get

||L(|u|^{p})|| \leqq\frac{C_{4}}{1og2}k^{2}(||u||_{q})^{p}

Besides, since p_{0}(n)>2/(n-1) , we have
s^{1/p_{0}(n)}\leqq C_{5}s^{(n-1)/2}/\log(1+s) for s\geqq 1

with some constnat C_{5} Hence ||u||_{q}\leqq C_{5}||u|| . Thus we obtain (BE) for
p=2n/(n-1) .

We next deal with the case where the norm is given by (2. 5). If

p_{0}(n)<p< \frac{2}{n-1}(\overline{q}+\frac{n+1}{2}) ,

then, since \overline{q}<(n-1)/2 , we have p<2n/(n-1) . Hence the present case is
a part of the preceding one.

From now on we assume

p \geqq\frac{2}{n-1}(\overline{q}+\frac{n+1}{2}) .
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Then (2. 6) imlies

\overline{q}\leqq q(n, p) .

Therefore, if p<2n/(n-1) , it follows from (4. 1 ), (4. 27) and (4. 29)_{1} with
q=\overline{q} that

(4. 42) |L(|u|^{p})(x, t)|( \frac{t+r+2k}{k})^{(n-1)/2}(\frac{t-r+2k}{k})^{\overline{q}}

\leqq C||u||^{p}(t-r+2k)^{\overline{q}-q(n,p)}k^{((n-1)p/2)+1-((n-1)/2)-\overline{q}}

\leqq C||u||^{p}k^{((n-1)p/2)+1-((n-1)/2)-q(n,p)} ,

because t-r+2k\geqq k . By (4. 40) we thus obtain (BE).
Next suppose

p>2n/(n-1) .

Then, using (4. 29)_{3} instead of (4. 29)_{1} , one can dominate analogously the
left hand side of (4. 42) by

C||u||^{p}(t-r+2k)^{\overline{q}-((n-1)/2)}k^{((n-1)p/2)+1-q(n,p)-\overline{q}}

\leqq C||u||^{p}k^{((n-1)p/2)+1-((n-1)/2)-q(n,p)} .

because \overline{q}<(n-1)/2 . Hence we get (BE) as above.
Finally suppose p=2n/(n-1) . Then (4.41) is still valid with q re-

placed by \overline{q} . Therefore by (2. 1), (2. 5) and (4. 40) we obtain (BE),
because now ||u||=||u|| - and s^{\overline{q}-((n-1)/2)}(1+\log s) is bounded for s\geqq 1 . Thus
we prove Lemma 2. 1.

\S 5. Proof of Theorem 1

In this section, we shall construct the solution to the integral equation
(1. 2) in X_{j}(j=1.2) by employing Lemma 2. 1 and the classical iteration
method by Picard;

(5. 1) \{

u_{0}=v

u_{l}=v+L(F(u_{l-1})) for l\in N .

Throughout the present section we fix j as j=1 or j=2 , unless otherwise
stated. We divide the proof, which claims that the sequence \{u_{l}\}_{l\in N}

defined by (5. 1) converges in X_{j}(j=1,2) as l– \infty , into three parts
according as the order of derivatives. In each part, we need the following
inequalities for all functions v_{1} , v_{2} with the properties stated above (2. 1);

(5. 2) |v_{1}(x, t)|\leqq||v_{1}||

and
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(5. 3) |||v_{1}|^{\theta}|v_{2}|^{1-\theta}||\leqq||v_{1}||^{\theta}||v_{2}||^{1-\theta} for 0\leqq\theta\leqq 1 .

One can readily derive these inequalities from (2. 1).

We note that, by the definition of p_{0}(n) , (1. 9),

(5. 4) 1<p_{0}(n)= \frac{n+1+\sqrt{(n+1)^{2}+8(n-1)}}{2(n-1)}\leqq 2 for n\geqq 4

and the equality holds only for n=4. When n=2 or 3, since p_{0}(n)>2 , it
is natural to assume F(0)=F’(0)=F’(0)=0. However, there exists a typi-
cal example F(s)=s^{2} for n\geqq 5 , which satisfies the hypothesis (H)_{2} but
does not satisfy F’(0)=0. Thus some derices will be required in the proof
of existence of C^{2}-solutions.

PART 1. Convergence of \{u_{l}\}_{l\in N} for v\in X_{j}(j=1,2)

We choose a function v\in X_{j} such that

(5. 5) ||v||^{p-1}\leqq(2^{p}(A+1)AC_{k})^{-1} for p>p_{0}(n)

and ||v||\leqq 2^{-1} ,

where A is the constant in the hypothesis (H)_{j} and C_{k}=Ck^{2} is the one in
Lemma 2. 1. Then one can show by induction with respect to l that

(5. 6) ||u_{l}||\leqq 2||v|| for l\in N .

In fact, assume that ||u_{l-1}||\leqq 2||v|| . Then it follows from (H)_{j} that

|L(F(u_{l-1}))(x, t)|\leqq AL(|u_{l-1}|^{p})(x, t) .

Recall that L is a positive linear operator by its definition (1. 3). By vir-
tue of (BE) in Lemma 2. 1, we get

(5. 7) ||L(F(u_{l-1}))||\leqq AC_{k}||u_{l-1}||^{p}

Hence (5. 1) and (5. 5) yield

||u_{l}||\leqq||v||+AC_{k}||u_{l-1}||^{p}

\leqq||v||+AC_{k}2^{p}||v||^{p-1}||v||

\leqq||v||+(A+1)^{-1}||v||

\leqq 2||v|| .

Therefore we obtain (5.6). Besides, (5.6) and (5.5) implies

(5. 8) ||u_{l}||\leqq 1 for l\in N .

Next, we shall show that

(5.9) ||u_{l+1}-u_{l}||\leqq 2^{-1}||u_{l}-u_{l-1}|| for l\in N .
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It follows from (5.1) that

u_{l+1}-u_{l}=L(F(u_{l})-F(u_{l-1})) .

Moreover, (H)_{j} implies

|F(u_{l})-F(u_{l-1})|\leqq|F’(\xi_{l})||u_{l}-u_{l-1}|

\leqq A|\xi_{l}|^{p-1}|u_{l}-u_{l-1}|

\leqq Aw_{l}^{p-1}|u_{l}-u_{l-1}| ,

where

(5. 10) \xi_{l}=u_{l-1}+\lambda(u_{l}-u_{l-1})

with some 0<\lambda<1 . Here and in what follows, we set

(5. 11) \{

w_{l}(x, t)= \max\{|u_{l}(x, t)|, |u_{l-1}(x, t)|\}

||w_{l}||= \max\{||u_{l}||, ||u_{l-1}||\} .

Hence we get

||u_{l+1}-u_{l}||\leqq A||L(w_{l}^{p-1}|u_{l}-u_{l-1}|)|| .

Here we write
w_{l}^{p-1}|u_{l}-u_{l-1}|=(wI^{p-1)/p}|u_{l}-u_{l-1}|^{1/p})^{p}

Then it follows from (BE) and (5.3) that

(5. 12) ||u_{l+1}-u_{l}||\leqq AC_{k}||wf^{p-1)/p}|u_{l}-u_{l-1}|^{1/p}||^{p}

\leqq AC_{k}||w_{l}||^{p-1}||u_{l}-u_{l-1}|| .

Therefore (5. 11), (5. 6) and (5. 5) yield (5. 9), which implies

(5. 13) ||u_{l+1}-u_{l}||\leqq C_{1}\cdot 2^{-l} for l\in N ,

where C_{1}=||u_{1}-v|| .

PART 2. Convergence of \{D_{i}u_{l}\}_{l\in N} for v\in X_{j}(j=1,2) .

We first claim that, for each i=1 , \cdots , n ,

(5. 14) ||D_{i}u_{l}||\leqq C_{2} for l\in N ,

where C_{2}=2||D_{i}v|| . Indeed, it follows from (5.1) that

||D_{i}u_{l}||\leqq||D_{i}v||+||L(|F’(u_{l-1})D_{i}u_{l-1}|)|| .

Note that L and D_{i}=\partial/\partial_{xi} commute by the definition (1.3). Thus, simi-
larly to the proof of (5.9), we get
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||D_{i}u_{l}||\leqq||D_{i}v||+AC_{k}||u_{l-1}||^{p-1}||D_{i}u_{l-1}||

\leqq||D_{i}v||+2^{-1}||D_{i}u_{l-1}|| .

Therefore we obtain (5.14) by induction with respect to l .
Now, we shall estimate ||D_{i}(u_{l+1}-u_{l})|| . In the sequel we will derive

(5.17) and (5.22) below. It follows from (H)_{j} that

|D_{i}(F(u_{l})-F(u_{l-1}))|

(5. 15) \leqq|F’(u_{l})D_{i}(u_{l}-u_{l-1})|+|(F’(u_{l})-F’(u_{l-1}))D_{i}u_{l-1}|

\leqq A|u_{l}|^{p-1}|D_{i}(u_{l}-u_{l-1})|+|(F’(u_{l})-F’(u_{l-1}))D_{i}u_{l-1}| .

Dealing with the first term as in the proof of (5.9), we get

(5. 16) ||L(A|u_{l}|^{p-1}|D_{i}(u_{l}-u_{l-1})|)||\leqq AC_{k}||u_{l}||^{p-1}||D_{i}(u_{l}-u_{l-1})||

\leqq 2^{-1}||D_{i}(u_{l}-u_{l-1})|| .

For the second term, we have to divide its estimate into the following two
cases.

First, suppose (H)_{1} holds and v\in X_{1} . Then we see that there is a
positive constant B_{1} depending only on F such that

|F’(u_{l})-F’(u_{l-1})|\leqq B_{1}|u_{l}-u_{l-1}|^{8} .

Hence
|F’(u_{l})-F’(u_{-1}))D_{i}u_{l-1}|\leqq B_{1}|u_{l}-u_{l-1}|^{p-1}|D_{i}u_{l}|

with p_{0}(n)<p=1+\delta<2 .

Thus, analogously to the proof of (5.12), it follows from (5.13) and
(5. 14) that

||L(|(F’(u_{l})-F’(u_{-1}))D_{i}u_{l-1}|)||\leqq B_{1}C_{k}||u_{l}-u_{l-1}||^{p-1}||D_{i}u_{l}||

\leqq B_{1}C_{k}(C_{1}\cdot 2^{-(l-1)})^{p-1}C_{2}

=C_{3}\cdot 2^{-(p-1)l} .

where C_{3}=2^{p-1}B_{1}C_{k}C_{2}C_{1}^{p-1} .

Therefore from (5.1), (5.15) and (5. 16) we have

(5. 17) ||D_{i}(u_{l+1}-u_{l})||

\leqq 2^{-l}||D_{i}(u_{1}-u_{0})||+\sum_{\nu=0}^{l-1}C_{3}\cdot 2^{-(p-1)(l-\nu)-\nu}

\leqq C_{4}l2^{-(p-1)l} for l\in N

if (H)_{1} holds and v\in X_{1} , where C_{4}= \max\{||D_{i}(u_{1}-v)||, C_{3}\} .
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From now on we suppose that (H)_{2} holds and v\in X_{2} . Then, since
F\in C^{2}(R) , one can write the second term on the right hand side of (5.15)
as
(5. 18) |(F’(u_{l})-F’(_{\mathcal{U}_{l-1}}))D_{i}u_{l-1}|=|F’(\xi_{l})(u_{l}-u_{l-1})D_{i}u_{l-1}| ,

where \xi_{l} has the form (5.10) with another \lambda . In view of (5.4), we have
to deal with the right hand side separately according as p_{0}(n)<p\leqq 2 or 2<
p.

Let p_{0}(n)<p\leqq 2 . Then it follows from (5.2) and (5.8) that
(5. 19) |F’(\xi_{l})|\leqq C_{5} for l\in N ,

where C_{5}= \sup\{|F’(s)|. |s|\leqq 1\} . Moreover, writing as
|D_{i}u_{l-1}|=|D_{i}u_{l-1}|^{p-1}|D_{i}u_{l-1}|^{2-p} ,

we have from (5. 14)

|D_{i}u_{l-1}|\leqq C_{2}^{2-p}|D_{i}u_{l}|^{p-1} .

Hence

|F’(\xi_{l})(u_{l}-u_{l-1})D_{i}u_{l-1}|\leqq C_{5}C_{2}^{2-P}|u_{l}-u_{l-1}||D_{i}u_{l-1}|^{p-1}\wedge

Thus, analogously to the case where v\in X_{1} , it follows from (5.13) and
(5. 14) that

(5. 20) ||L(|F’(\xi_{l})(u_{l}-u_{l-1})D_{i}u_{l-1}|)||

\leqq C_{5}C_{2}^{2-p}C_{k}||u_{l}-u_{l-1}||\cdot||D_{i}u_{l-1}||^{p-1}

\leqq C_{5}C_{2}^{2-p}C_{k}C_{1}\cdot 2^{-(l-1)}C_{2}^{p-1}

Next, let p>2 . Then, according to (H)_{2} and (5. 11), the second term
on the right hand side of (5.15) is dominated by

Aw_{l}^{p-2}|u_{l}-u_{l-1}||D_{i}u_{l-1}|=A(w\mathfrak{l}^{p-2)/2}|u_{l}-u_{l-1}|^{1/p}|D_{i}u_{l-1}|^{1/p})^{p}

.

To estimate this, we here use the following inequality which follows from
(5. 3).

(5. 21) |||v_{1}|^{a}|v_{2}|^{\beta}|v_{3}|^{\gamma}||\leqq||v_{1}||^{a}||v_{2}||^{\beta}||v_{3}||^{\gamma}

for 0\leqq\alpha , \beta , \gamma\leqq 1 and \alpha+\beta+\gamma=1 .

Thus, by virture of (BE), (5. 13) and (5. 14), we get

||L(Aw_{l}^{p-2}|u_{l}-u_{l-1}||D_{i}u_{l-1}|)||
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\leqq AC_{k}||w_{l}||^{p-2}||u_{l}-u_{l-1}||\cdot||D_{i}u_{l-1}||

\leqq AC_{k}||u_{l}-u_{l-1}||\cdot||D_{i}u_{l-1}||

\leqq AC_{k}C_{1}\cdot 2^{-(l-1)}C_{2} ,

because (5. 11) and (5. 8) imply ||w_{l}||\leqq 1 . Hence it follows from (5. 1), (5.
15), (5. 16) and (5. 18)-(5. 20) that

||D_{i}(u_{l+1}-u_{l})||\leqq 2^{-1}||D_{i}(u_{l}-u_{l-1})||+C_{6}\cdot 2^{-l}

for l\in N , where C_{6}=2C_{k}C_{2}C_{1} max \{A, C_{5}\} . This implies the desired esti-
mate;

(5. 22) ||D_{i}(u_{l+1}-u_{l})||\leqq C_{7}l2^{-l} for l\in N

if (H)_{2} holds and v\in X_{2} , where C_{7}= \max\{||D_{i}(u_{1}-v)||, C_{6}\} . By virtue of
(5. 13) and (5. 17), one can conclude that \{u_{l}\}_{l\in N} converges in X_{1} as larrow\infty

under the condition on the size of ||v|| , (5. 5). Therefore it remains to
show the convergence in X_{2} .

PART 3. Convergence of \{D_{i}D_{j}u_{l}\}_{l\in N} for v\in X_{2}

Assume (H)_{2} holds and v\in X_{2} .

We first claim that, for each i , j=1 , \cdots , n , ||D_{i}D_{j}u_{l}|| is bounded for
l\in N . It follows from (H)_{2} that

|D_{i}D_{j}F(u_{l-1})|\leqq|F’(u_{l-1})D_{i}D_{j}u_{l-1}|+|F’(u_{l-1})D_{i}u_{l-1}D_{j}u_{l-1}| .

First, let p_{0}(n)<p\leqq 2 . Then we get

|D_{i}D_{j}F(u_{l-1})|\leqq A|u_{l-1}|^{p-1}|D_{i}D_{j}u_{l-1}|+C_{5}C_{2}^{2-p}|D_{i}u_{l-1}||D_{j}u_{l-1}|^{p-1} .

where C_{5} is the constant in (5.15), because (5. 14) yields

|D_{j}u_{l-1}|=|D_{j}u_{l-1}|^{p-1}|D_{j}u_{l-1}|^{2-p}

\leqq C_{2}^{2-p}|D_{j}u_{l-1}|^{p-1} .

Thus, analogously to Part 2, we see that

||D_{i}D_{j}u_{l}||\leqq||D_{i}D_{j}v||+||L(|D_{i}D_{j}F(u_{l-1})|)||

\leqq||D_{i}D_{j}v||+AC_{k}||u_{l-1}||^{p-1}||D_{i}D_{j}u_{l-1}||

+C_{5}C_{2}^{2-p}C_{k}||D_{i}u_{l-1}||\cdot||D_{j}u_{l-1}||^{p-1}

\leqq||D_{i}D_{j}v||+2^{-1}||D_{i}D_{j}u_{l-1}||+C_{k}C_{5}C_{2}^{2} .

Next, let p>2 . Then, by virtue of (H)_{2} , (BE) and (5.21), we have

||D_{i}D_{j}u_{l}||\leqq||D_{i}D_{j}v||+AC_{k}||u_{l-1}||^{p-1}||D_{i}D_{j}u_{l-1}||

+AC_{k}||u_{l-1}||^{p-2}||D_{i}u_{l-1}||\cdot||D_{j}u_{l-1}|
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Besides, (5.8) implies ||u_{l-1}||^{p-2}\leqq 1 . Hence (5.6), (5.5) and (5. 14) yield

||D_{i}D_{j}u_{l}||\leqq||D_{i}D_{j}v||+2^{-1}||D_{i}D_{j}u_{l-1}||+AC_{k}C_{2}^{2} .

Therefore we obtain, for p>p_{0}(n) ,

||D_{i}D_{j}u_{l}||\leqq 2^{-1}||D_{i}D_{j}u_{l-1}||+C_{8} ,

where C_{8}=||D_{i}D_{j}v||+C_{k}C_{2}^{2} \max\{A, C_{5}\} . This implies the desired conclu-
sion

(5. 23) ||D_{i}D_{j}u_{l}|| \leqq 2^{-l}||D_{i}D_{j}u_{0}||+\sum_{J’=0}^{l-1}C_{8}\cdot 2^{-\nu}

\leqq C_{9} for l\in N ,

where C_{9}=||D_{i}D_{j}v||+2C_{8} .

Now, we shall estimate ||D_{i}D_{j}(u_{l+1}-u_{l})|| . To this end, we write
L[D_{i}D_{j}(F(u_{l})-F(u_{l-1}))]

=L[(F’(u_{l})-F’(u_{l-1}))D_{i}D_{j}u_{l}]

+L[F’(u_{l-1})D_{i}D_{j}(u_{l}-u_{l-1})]

+L[F’(u_{l-1})D_{i}(u_{l}-u_{l-1})D_{j}u_{l-1}]

+L[F’(u_{l-1})D_{i}u_{l}D_{j}(u_{l}-u_{l-1})]

+L[(F’(u_{l})-F’(u_{l-1}))D_{i}u_{l}D_{j}u_{l}]

\equiv L_{1}+L_{2}+L_{3}+L_{4}+L_{5} .

First of all, we shall estimate L_{1} . Note that
L_{1}=L[F’(\xi_{l})(u_{l}-u_{l-1})D_{i}D_{j}u_{l}] ,

where \xi_{l} has the form (5.10) with another \lambda . Then it follows analogously
to Part 2, with (5.14) replaced by (5.23), that

||L_{1}||\leqq\{

C_{k}C_{3}C_{9}^{2-p}||u_{l}-u_{l-1}||\cdot||D_{i}D_{j}u_{l}||^{p-1} if p_{0}(n)<p\leqq 2 ,
C_{k}A||\xi_{l}||^{p-2}||u_{l}-u_{l-1}||\cdot||D_{i}D_{j}u_{l}|| if 2<p

\leqq\{

C_{k}C_{9}C_{5}C_{1}\cdot 2^{-(l-1)} if p_{0}(n)<p\leqq 2 ,
C_{k}AC_{1}\cdot 2^{-(l-1)}C_{9} if 2<p .

Therefore we obtain

(5. 24) ||L_{1}||\leqq C_{10}\cdot 2^{-l} for l\in N ,

where C_{10}=2C_{k}C_{9}C_{1} max \{A, C_{5}\} . Next, we note that L_{3} and L_{4} have the
same form as L_{1} . Thus, as above, we have from (5.14) and (5.22)

||L_{3}||+||L_{4}||\leqq 2\{

C_{k}C_{5}C_{2}^{2-p}C_{7}\cdot(l-1)2^{1-l}C_{2}^{p-1} if p_{0}(n)<p\leqq 2

C_{k}AC_{2}C_{7}\cdot(l-1)2^{1-l} if 2<p .
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Hence we get

(5. 25) ||L_{3}||+||L_{4}||\leqq C_{11}(l-1)2^{-l} for l\in N ,

where C_{11}=2C_{k}C_{7}C_{2} max \{A, C_{5}\} . Moreover, the procedure in the proof of
(5.9) yields

(5. 26) ||L_{2}||\leqq AC_{k}||u_{l}||^{p-1}||D_{i}D_{j}(u_{l}-u_{l-1})||

\leqq 2^{-1}||D_{i}D_{j}(u_{l}-u_{l-1})|| for l\in N .

As last step, we shall estimate L_{5} . In view of (H)_{2} , we see that there is a
positive constant B_{2} depending only on F such that

|F’(u_{l})-F^{rr}(u_{l-1})|\leqq B_{2}|u_{l}-u_{l-1}|^{8} for 0<\delta<1 .

Hence we have
|L_{5}|\leqq B_{2}L(|u_{l}-u_{l-1}|^{8}|D_{i}u_{l}||D_{j}u_{l}|) .

Let p_{0}(n)<p\leqq 2 . Then it follows from (5.2), (5. 13) and (5.14) that
|u_{l}-u_{l-1}|^{8}|D_{i}u_{l}||D_{j}u_{l}|\leqq(C_{1}\cdot 2^{-(l-1)})^{8}|D_{i}u_{l}||D_{j}u_{l}|^{p-1}C_{2}^{z-p}

Thus, analogously to Part 2, we get

||L_{5}||\leqq B_{2}C_{k}(C_{1}\cdot 2^{-(l-1)})^{8}C_{2}^{2-p}||D_{i}u_{l}||\cdot||D_{j}u_{l}||^{p-1}

\leqq 2^{8}B_{2}C_{k}C_{2}^{2}C_{1}^{8}\cdot 2^{-8l}

Next, let 2<p\leqq 2+\delta . Then it follows from (5.13) and \delta\geqq p-2>0 that

|u_{l}-u_{l-1}|^{8}|D_{i}u_{l}||D_{j}u_{l}|

\leqq(C_{1}\cdot 2^{-(l-1)})^{8-(p-2)}|u_{l}-u_{l-1}|^{p-2}|D_{i}u_{l}||D_{j}u_{l}| .

Hence, as above, we have
||L_{5}||\leqq B_{2}C_{k}(C_{1}\cdot 2^{-(l-1)})^{8-(p-2)}||u_{l}-u_{l-1}||^{p-2}||D_{i}u_{l}||\cdot||D_{j}u_{l}||

\leqq 2^{8}B_{2}C_{k}C_{2}^{2}C_{1}^{8}\cdot 2^{-8l}

Therefore we obtain

(5. 27) ||L_{5}||\leqq 2^{8}B_{2}C_{k}C_{2}^{2}C_{1}^{8}\cdot 2^{-8l} for l\in N .

In the end, it follows from (5.1) and (5.24)-(5.27) that

||D_{i}D_{j}(u_{l+1}-u_{l})||\leqq 2^{-1}||D_{i}D_{j}(u_{l}-u_{l-1})||+C_{12}\cdot l2^{-8l}

where C_{12}= \max\{C_{10}, C_{11},2^{8}B_{2}C_{k}C_{2}^{2}C_{1}^{8}\} . This implies

(5. 28) ||D_{i}D_{j}(u_{l+1}-u_{l})||
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\leqq 2^{-l}||D_{i}D_{j}(u_{1}-u_{0})||+\sum_{\nu=0}^{l-1}C_{12}(l-\iota\nearrow)2^{-8(l-\nu)-\nu}

\leqq(||D_{i}D_{j}(u_{1}-v)||+C_{12}\sum_{\nu=0}^{l-1}(l-\nu))\cdot 2^{-8l} for l\in N .

Thus, by (5.13), (5.22)anb (5.28), we can conclude that \{u_{l}\}_{l\in N} con-
verges in X_{2} as larrow\infty under the condition on the size of ||v|| , (5.5).

Now, the uniqueness of the solution to (1.2) follows from a standard
argument. Thus we prove Theorem 1.
Appendix

In this appendix we show that the decay rate of L(|u|^{p})(x, t) in the
basic estimate (BE) is best possible when n is even and p>2n/(n-1) .
More precisely we have

PROPOSITION A. Let n be even. Suppose the function N in (2.1) is
of the form N(s)=s^{q} . Assume that (BE) holds for all such functions u
as stated in Lemma 2. 1. Then q\leqq(n-1)/2 .

PROOF. It suffices to show that one can construct a function u such
that ||u||=1 and ||L(|u|^{p})||=\infty provided q>(n-1)/2 .

Set

(A. 1) u(y, \tau)=k^{((n-1)/2)+q}\varphi(\tau)\phi(y)(b(|y|, \tau))^{1/p} .

Here b(\lambda, \tau) is the function defined by (4.3) and \varphi\in C_{0}^{\infty}(R^{1}) , \emptyset\in C_{0}^{\infty}(R^{n})

are cutoff functions such that 0\leqq\varphi\leqq 1,0\leqq\phi\leqq 1 , \varphi(\tau)=1 for 3k\leqq\tau\leqq 4k ,
supp \varphi\subset(2k, 5k) , \phi(y)=1 for k\leqq|y|\leqq 2k and supp \emptyset\subset\{0<|y|<3k\} . Then
one can see easily that u\in C_{0}^{\infty}(R^{n}\cross(0^{ },\infty)) , supp u(y, \tau)\subset\{(y, \tau):|y|<\tau+k\}

and ||u||=1 . Thus it suffices to verify that ||L(|u|^{p})||=\infty if q>(n-1)/2 .
In what follows we suppose

r<t-9k .

Then it follows from (1.1), (1.3) and (A. 1) that

because, if 3k\leqq\tau\leqq 4k , k\leqq|y|\leqq 2k and r<t-9k , then \varphi(\tau)=1 , \phi(y)=1 and
|y-x|\leqq t-\tau-3k . In addition, since \tau+|y|+2k\leqq 8k and \tau-|y|+2k\leqq 6k ,
(4.3) yields
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b(|y|, \tau)\geqq(8k)^{-(n-1)p/2}(6k)^{-pq} .

Moreover

(t-\tau)^{n-2}\sqrt{(t-\tau)^{2}-|y-x|^{2}}\leqq t^{n-1} for \tau\geqq 0 .

Therefore we have

L(|u|^{p})(x, t)\geqq C_{k}t^{1-n}

\geqq C_{k}t^{(1-n\rangle/2}(t+r+2k)^{(1-n)/2}-

where C_{k}=8^{-(n-1)p/2}6^{-pq}A_{n}\omega_{n}k^{n+1}- Consequently, it follows from (2. 1)
with N(s)=s^{q} that

(A. 2) ||L(|u|^{p})||

\geqq\sup_{r<t-9k}|L(|u|^{p})(x, t)|(\frac{t+r+2k}{k})^{(n-1)/2}(\frac{t-r+2k}{k})^{q}

\geqq C_{k}’t^{(1-n)/2}(t-r+2k)^{q}

for r<t-9k , where C_{k}’=C_{k}k^{-((n-1)/2)-q} .

Now let \delta be an arbitrary positive number with \delta<1 . Suppose

r<(1-\delta)t and t>9k/\delta ,

so that r<t-9k . Then (A. 2) implies

||L(|u|^{p})||\geqq C_{k}’\delta^{q}t^{q-((n-1)/2)} .

Thus we find that ||L(|u|^{p})||=\infty if q>(n-1)/2 . The proof is complete.
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