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Abstract. An extension of Fatou’s lemma for generalized s-numbers of
measurable operators associated with a semifinite von Neumann algebra is
obtained. We extend several fundamental results on non-commutative
Banach function spaces associated with finite von Neumann algebras to
those of semifinite cases. They are such as correspondence between re-
arrangement invariant function norms and non-commutative Banach func-
tion spaces, heredity of absolute continuity of norms and separability.

0. Introduction

Let \mathscr{M} be a semifinite von Neumann algebra with a faithful normal
semifinite trace \tau .

We defined in [W2] a system of axioms for non-commutative Banach
function spaces, and we proved that if \mathscr{M} is a II_{1^{-}}factor then non-com-
mutative Banach function spaces bijectively correspond to rearrangement
invariant function norms on (0, \tau(1)) . We also obtained a necessary and
sufficient condition for a non-commutative Banach function space to be
separable.

Our aim in this article is to extend the results obtained in [W2] to
general \sigma-finite semifinite von Neumann algebras by a simple device
related to convergence in measure.

The notion of convergence in measure has played a fundamental role
in the non-commutative integration theory after the elegant treatment by
E. Nelson. The convergence in measure is easily expressed in terms of
generalized s-numbers. A non-commutative version of Fatou’s lemma or
dominated convergence theorem is proved for sequences assumed to be
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converging in measure [FK ; Lemma 3. 3, Theorem 3. 5] ) . However, for
various operations of \tau-measurable operators, sometimes it is not enough
to consider the convergence in measure. If \tau(1)<\infty , since the strong oper-
ator topology agrees with the L^{2}-norm topology induced by \tau on the unit
ball of \mathscr{M} . there exist few such problems. On the contrary, if \tau(1)=\infty ,

then even a sequence of monotone increasing projections in \mathscr{M} may not
converge in measure. In order to treat with such natural objects, we will
introduce the notion of convergence locally in measure, which is an inter-
pretation of the convergence almost everywhere in the commutative con-
text.

Since several commutative methods (such as taking the supremum
function of a family of functions) seem no more available, our theorems
will be stated in form as how one can employ commutative results in the
non-commutative context.

The first half of Section 1 consists of some preliminaries related to
commutative Banach function spaces or to measurable operators. In the
rest, we give a slight modification of the axioms for non-commutative
Banach function spaces, a1ld we show that the associate space itself
satisfies the modified axioms.

One of the principal results of this paper (Theorem 2. 5) is that if \mathscr{M}

is a \sigma-finite semifinite factor then non-commutative Banach function
spaces bijectively correspond to rearrangement invariant function norms
on (0, \tau(1)) . By the way, using some techniques developed in [H], we
obtain an extension of Fatou’s lemma for generalized s-numbers of mea-
surable operators which seems to be important itself.

Finally, in Section 3, we show that a non-commutative Banach func-
tion space determined by a rearrangement invariant function norm has
absolutely continuous norm if and only if the function norm is absolutely
continuous (Theorem 3. 4). As a consequence, we obtain an extension of
separability condition for non-commutative Banach function spaces to gen-
eral semifinite cases (Theorem 3.8).

1. Preliminaries

Let (X, \mu) be a totally \sigma-finite measure space. Let \mathfrak{M} be the collec-
tion of all extended complex valued \mu-measurable functions on X and let
\mathfrak{M}_{0} be the class of functions in \mathfrak{M} that are finite \mu-a.e . We denote by L_{\rho} a
Banach function space determined by a Banach function norm \rho (see [BS ,\cdot

Chapter 1, Definition 1. 1] for definition). We also denote by f^{*} the
decreasing rearragement of f. Two functions f, g\in \mathfrak{M}_{0} are said to be
equimeasurable if f^{*}(t)=g^{*}(t) , t>0 . A function norm \rho is said to be re-
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arrangement invariant if \rho(f)=\rho(g) for every pair of equimeasurable func-

tions f, g\in \mathfrak{M}_{0} . When f, g\in \mathfrak{M}_{0} , we write g\prec f if \int_{0}^{t}g^{*}(s)ds\leq\int_{0}^{t}f^{*}(s)ds , t

>0 . For basic properties of rearrangement invariant Banach function
spaces, the reader is referred to [BS], [CR], [L].

Next, we shall collect some fundamental definitions concerning to
measurable operators. Throughout this paper, we denote by \mathscr{M} a \sigma-finite
semifinite von Neumann algebra on a Hilbert space \mathscr{H} with faithful nor-
mal semifinite trace \tau . A closed densely defined operator x on \mathscr{H} with its
domain \mathscr{D}(x) is said to be affiliated with \mathscr{M} if, for each unitary u in the
commutant of \mathscr{M} the identity u^{*}xu=x holds. Then x is said to be
\tau^{-}measurable if, for every \epsilon>0 , there exists a projection e\in \mathscr{M} such that
e\mathscr{H}\subset \mathscr{D}(x) and \tau(e^{\perp})\leq\epsilon , where e^{\perp} denotes l-c. The set of all \tau-measur-
able operators will be denoted by \overline{\mathscr{M}} which is a *-algebra with sum and
product being the respective closure of the algebraic operations. For any
\epsilon , \delta>0 , we put

N(\epsilon, \delta)=\{x\in\overline{\mathscr{M}} ; there exists a projection e\in \mathscr{M} such that
||xe||\leq\epsilon and \tau(e^{\perp})\leq\delta\} .

The family \{N(\epsilon, \delta):\epsilon, \delta>0\} forms a base at 0 for a complete Hausdorff
topology on \overline{\mathscr{M}} which is called the measure topology. The proofs of
these facts may be found in [N] and [Te].

Now we recall several preliminary facts related to generalized s -num-
here of \tau-measurable operators. We state them here in a form suitable
for our purposes. Details and proofs are found in [FK] or [H].

For a closed densely defined operator x affiliated with \mathscr{M} the general-
ized s-number \mu.(x) is defined by

\mu_{t}(x)=\inf{ ||xe||:e is a projection in \mathscr{M} with \tau(e^{\perp})\leq t }.

Then x is \tau-measurable if and only if \mu_{t}(x)<\infty for all t>0 . For each x
\in\overline{\mathscr{M}} the map t – \mu_{t}(x) from (0, \infty) into [0, \infty) is non-increasing and
right-continuous. If we put f\prime_{S}(x)=\tau(E_{(s,\infty)}(|x|)) , s\geq 0 , then \mu_{t}(x)=\inf\{s>0 :
\nu_{s}(x)\leq t\} , t>0 , where E_{(s,\infty)}(|x|) denotes the spectral projection of |x| cor-
responding to the interval (s^{ },\infty) .

For each x\in\overline{\mathscr{M}} . the following conditions are equivalent;
(1) x\in \mathscr{M}+L^{1}(\mathscr{M}. \tau) ,

(2) \int_{0}^{s}\mu_{t}(x)dt<\infty for some s>0 ,

(3) |x|E_{(\gamma,\infty)}(|x|)\in L^{1}(\mathscr{M}-\tau) for some r>0 .
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An operator x\in\overline{\mathscr{M}} is said to be \tau^{-}compact if x belongs to the closure
of \{x\in \mathscr{M} ; \tau(s(|x|))<\infty\} under the measure topology, where s(|x|) denotes
the support projection of |x| .

For each x\in\overline{\mathscr{M}} . the following conditions are equivalent;
(1) x is \tau^{-}compact,
(2) \nu_{s}(x)<\infty for all s>0 ,
(3) \lim_{tarrow\infty}\mu_{t}(x)=0 ,

(4) |x|E_{(1/}n,n1(|x|)\in L^{1}(\mathscr{M}, \tau) for all n\geq 1 .

Now we introduce the notion of convergence locally in measure.

DEFINITION 1. 1. We say that a sequence \{x_{n}\}_{n=1}^{\infty} in \overline{\mathscr{M}} converges
locally in measure to an element x in \overline{\mathscr{M}} if, for any projection p in \mathscr{M}

with \tau(p)<\infty , the sequence \{px_{n}p\}_{n=1}^{\infty} converges in measure to pxp.

REMARK 1. 2. Clearly, the convergence in measure leads to the con-
vergence locally in measure. If \tau(1)<\infty , then the above two convergences
are equivalent each other.

Consider the case \mathscr{M}=B(\mathscr{H}) and \tau=canonicaltrace . Then there
exists a sequence \{p_{n}\}_{n=1}^{\infty} of increasing projections such that p_{n}\uparrow 1 strongly
and \tau(p_{n})=n . It is easy to see that \{p_{n}\}_{n=1}^{\infty} does not converge in measure.
However, p_{n}\uparrow 1 locally in measure by [Wl; Lemma 2. 1].

In order to complete the theory of non-commutative Banach function
spaces for infinite von Neumann algebras, we should modify the system of
axioms for symmetric norms. We would like to take the modification as
slightly as possible.

DEFINITION 1. 3. A mapping |||\cdot||| : \overline{\mathscr{M}}+arrow[0^{ },\infty] is called a symmetric
Banach function norm (or simply symmetric norm) if, for all x , y , x_{n}\in\overline{\mathscr{M}}_{+} ,

for all a\in \mathscr{M} for all constants \alpha\geq 0 , and for all projections p in \mathscr{M}_{-} the
following properties hold:

(P- I) |||x|||=0\Leftrightarrow x=0 , |||\alpha x|||=\alpha|||x||| , |||x+y|||\leq|||x|||+|||y|||

(P-II) 0\leq y\leq x\Rightarrow|||y|||\leq|||x|||

(P-III)’ x_{n}arrow x(locally in measure)\Rightarrow lllxlll\leq lim \inf |||x_{n}|||

(P-IV) \tau(p)<\infty\Rightarrow|||p|||<\infty ,
(P-V) \tau(p)<\infty\Rightarrow\tau(px)\leq C_{p}|||x|||

(P-VI) |||a^{*}xa|||\leq||a|||||x|||||a|| .

For the convenience in after, we consider two conditions for a sym-
metric norm.
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(b-1) The value |||p||| in (P-IV) depends only on the value \tau(p) .
(\mathfrak{h}-2) The constant C_{p} in (P-V) depends only on the value \tau(p) .

Let ||| ||| be a symmetric norm. We denote by \mathfrak{S}_{|||\cdot|||} the collection of
all operators x in \overline{\mathscr{M}} for which ||||x||||<\infty . Define |||x||| for x\in \mathfrak{S}_{|||\cdot|||} by
|||x|||=||||x|||| . The statements corresponding to [W2: Lemma 1. 2, PropO-
sition 1. 3] hold without any change. We summarize them as follows.

PROPOSITION 1. 4.
(1) If x_{n}, x in \mathfrak{S}_{|||\cdot|||} and |||x_{n}-x|||arrow 0 , then |x_{n}-x|arrow 0 locally in mea-

sure.
(2) If ||| ||| satisfifies (\mathfrak{h}-2) and \mathscr{M} has no minimal projection, then \mathfrak{S}_{|||\cdot|||}

is an \mathscr{M}- bimodule Banach space with \mathfrak{S}_{|||\cdot|||}\subset \mathscr{M}+L^{1}(\mathscr{M}, \tau) .

Let |||c ||| be a symmetric norm on \overline{\mathscr{M}} Its associate norm ||| |||’ is
defined without any change. That is,

|||y|||’= \sup\{\tau(xy) : x\in\overline{\mathscr{M}}_{+}, |||x|||\leq 1\} , y\in\overline{\mathscr{M}}_{+} .

PROPOSITION 1. 5. Let ||| ||| be a symmetric norm. Then the associ-
ate norm |||\cdot |||’ satisfifies (P-III)’. and it is a symmetric norm.

PROOF. To show that ||| |||’ satisfies (P-III)’. let y_{n} , y\in\overline{\mathscr{M}}+andy_{n}

arrow y locally in measure. Put e_{k}=E_{[0,k]}(y) and y^{(k)}=ye_{k} . Fix a number k .
Take a family \{p_{j}\}_{j=1}^{\infty} of increasing projections in \mathscr{M} such that \tau(p_{j})<\infty

and p_{j}\uparrow e_{k} strongly. Then we have

p_{jy_{n}}p_{j} -arrow p_{j}yp_{j}=p_{j}y^{(k)}p_{j} in measure as n -arrow\infty .

Hence, for any element x in \mathscr{M}+with|||x|||\leq 1 ,

x^{1/2}p_{jy_{n}}p_{j}x^{1/2}arrow x^{1/2}p_{j}y^{(k)}p_{j}x^{1/2} in measure as narrow\infty .

It follows from the Fatou’s lemma of trace version that

\tau(x^{1/2}p_{j}y^{(k)}p_{j}x^{1/2})\leq\lim_{narrow}\inf_{\infty}\tau(x^{1/2}p_{j}y_{n}p_{j}x^{1/2})

= \lim_{narrow}\inf_{\infty}\tau(y_{n}^{1/2}p_{j}xp_{j}y_{n}^{1/2}) .

Since |||p_{j}xp_{j}|||\leq 1 , this implies that \tau(x^{1/2}p_{j}y^{(k)}p_{j}x^{1/2})\leq\lim_{narrow}\inf_{\infty}|||y_{n}|||’

On the other hand, x^{1/2}p_{j}y^{(k)}p_{j}x^{1/2}arrow x^{1/2}y^{(k)}x^{1/2} strongly in \mathscr{M} as jarrow\infty .
By the lower semi-continuity of \tau , we have \tau(x^{1/2}y^{(k)}x^{1/2})\leq\lim_{narrow}\inf_{\infty}|||y_{n}|||’

Since x^{1/2}y^{(k)}x^{1/2}\uparrow x^{1/2}yx^{1/2} in measure, we have \tau(x^{1/2}y^{(k)}x^{1/2})\uparrow\tau(x^{1/2}yx^{1/2}) .

Therefore we have \tau(x^{1/2}yx^{1/2})\leq\lim_{narrow}\inf_{\infty}|||y_{n}|||’ It is easy to see that
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|||y|||’= \sup\{\tau(xy);x\in \mathscr{M}_{+}, |||x|||\leq 1\} , y\in\overline{\mathscr{M}}_{+} .

Thus the desired inequality is proved. \blacksquare

The normed space \mathfrak{S}_{|||\cdot|||’} is called the associate space of \mathfrak{S}=\mathfrak{S}_{|||\cdot|||} and is
simply denoted by \mathfrak{S}’ . We can obtain elementary facts on \mathfrak{S}’ such as
H\"older’s inequality in the same way as [W2; Remark 2. 3 –Lemma 2. 6].
Here we summarize them.

PROPOSITION 1. 6.
(1) If ||| ||| satisfifies (\mathfrak{h}- 1) , then the associate norm ||| |||’ satisfifies (\mathfrak{h}-2) .

If ||| ||| satisfifies (\mathfrak{h}- 2) , then the associate norm |||\circ|||’ satisfifies (\mathfrak{h}-1) .
(2) Let \mathfrak{S}’ be the associate space of \mathfrak{S} . If x\in \mathfrak{S} and y\in \mathfrak{S}’ , then

xy\in L^{1}(\mathscr{M}. \tau) and

\tau(|xy|)\leq|||x||||||y|||’

(3) Suppose that \mathfrak{S} is complete. Let y be an element in \overline{\mathscr{M}} Then y is
in \mathfrak{S}’ is equivalent to that xy\in L^{1}(\mathscr{M}, \tau) for all x\in \mathfrak{S} .

THEOREM 1. 7. If \tau(1)<\infty , or if ||| ||| satisfifies (\mathfrak{h}-1) and (\mathfrak{h}-2) and
\mathscr{M} has no minimal projection, then \mathfrak{S}=\mathfrak{S}’

PROOF. At first, from the assumption, the spaces \mathfrak{S} and \mathfrak{S}’ are both
complete. Clearly ||| |||’ is a symmetric norm. If x\in \mathfrak{S} , then H\"older’s

inequality leads that x\in \mathfrak{S}’ and |||x|||’\leq|||x||| .

For the converse, let p be a projection in \mathscr{M} with \tau(p)<\infty . The
argument in the proof of [W2: Theorem 3. 7] shows that |||x|||\leq|||x|||’

whenever x\in p\overline{\mathscr{M}}p . Choose an increasing sequence \{p_{n}\}_{n=1}^{\infty} of projections
in \mathscr{M} which converges to 1 in the strong operator topology and satisfies
\tau(p_{n})<\infty . For x\in\overline{\mathscr{M}}- we have |||p_{n}|x|p_{n}|||\leq|||p_{n}|x|p_{n}|||’\leq|||x|||’ Let q be
a projection in \mathscr{M} with \tau(q)<\infty . Since qp_{n}arrow q in measure by [Wl;
Lemma 2. 1], we have qp_{n}|x|p_{n}q -arrow q|x|q in measure. Hence p_{n}|x|p_{n}arrow|x|

locally in measure, so (P-III)’ implies that |||x||| \leq\lim_{narrow}\inf_{\infty}|||p_{n}|x|p_{n}||| . Thus

we get the desired inequality |||x|||\leq|||x|||’ \blacksquare

2. Correspondence between symmetric norms and R. I. function norms

Recall that a measure space (X, \mu) is said to be resonant if, for each
pair of measurable functions f and g with finite absolute values almost
everywhere, the identity

\int_{0}^{\infty}f^{*}(t)g^{*}(t)dt=\sup\int_{X}|f\tilde{g}|d\mu
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holds, where the supremum is taken over all functions \tilde{g} on X
equimeasurable with g . In [H], Hiai introduced an analogue of
equimeasurability for measurable operators. A pair x , y\in\overline{\mathscr{M}} is said to be
spectral equivalent if \mu.(x)=\mu.(y) and denoted by x\sim y (in [H], it is
denoted by x\approx y ).

DEFINITION 2. 1. (\mathscr{M}, \tau) is said to be resonant if, for each pair of
elements x and y in \overline{\mathscr{M}}+ , the identity holds:

\int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt=\sup\{\tau(x\overline{y}) ; _{\tilde{\mathcal{Y}}}\in\overline{\mathscr{M}}+,\overline{y}\sim y\} .

PROPOSITION 2. 2. Let \mathscr{M} be a semififinite von Neumann algebra with
a faithful normal semififinite trace \tau. If \mathscr{M} has no minimal projection,
then (\mathscr{M}, \tau) is resonant.

To prove this proposition, we need the following lemma. It is an
extension of [FK : Lemma 3. 4], and it plays a crucial role in this article.

LEMMA 2. 3. Suppose that \mathscr{M} has no minimal projection. Let x\in
\overline{\mathscr{M}}_{+} and let \{x_{n}\}_{n=1}^{\infty} be a sequence in \overline{\mathscr{M}}_{+} . If x_{n}arrow x locally in measure,
then \mu_{t}(x)\leq\lim_{narrow}\inf_{\infty}\mu_{t}(x_{n}) for each t>0 .

PROOF. Let p be a projection in \mathscr{M} with \tau(p)<\infty . Since px_{n}p -arrow pxp

in measure, we obtain by [FK : Lemma 3. 4] that \mu_{t}(pxp)\leq\lim_{narrow}\inf_{\infty}\mu_{t}(px_{n}p)

\leq\lim_{narrow}\inf_{\infty}\mu_{t}(x_{n}) for each t>0 . Now we divide the proof into three cases.

Case (1) Suppose that \lim_{tarrow\infty}\mu_{t}(x)=0 . This is equivalent to that
\tau(E_{(S,\infty)}(x))<\infty for each s>0 . Putting p_{k}=E_{(1/k,\infty)}(x) , we have \tau(p_{k})<\infty

and p_{k}xp_{k}\uparrow x in measure. Hence \mu_{t}(p_{k}xp_{k})\uparrow\mu_{t}(x) for each t>0 .

Case (2) Suppose that \lim_{tarrow\infty}\mu_{t}(x)=\alpha>0 and \mu_{t}(x)>\alpha for all t>0 . Put-

ting p_{k}=E_{(a+1/k,\infty)}(x) , we have \tau(p_{k})<\infty and

E_{(S,\infty)}(p_{k}xp_{k})=\{

E_{(a+1/k,\infty)}(x) if 0<s<\alpha+1/k ,
E_{(S,\infty)}(x) if s\geq\alpha+1/k .

Therefore we get

\mu_{t}(p_{k}xp_{k})=\{

\mu_{t}(x) if 0<t<\tau(p_{k}) ,

0 if t\geq\tau(p_{k}) .

Since \tau(p_{k})\uparrow\infty by \mu_{t}(x)>\alpha for all t>0 , we obtain \mu_{t}(p_{k}xp_{k})\uparrow\mu_{t}(x) for
each t>0 .
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Case (3) Suppose that \lim_{tarrow\infty}\mu_{t}(x)=\alpha>0 and \mu_{t}(x)=\alpha for some t>0 . This

is equivalent to that \tau(E_{(a,\infty)}(x))<\infty , \tau(E_{(a-\epsilon,\infty)}(x))=\infty , \forall\epsilon>0 . Note that
\tau(E_{(a-\epsilon,a1}(x))=\infty , \forall\epsilon>0 . Since \mathscr{M} has no minimal projection, we can
take a projection q_{k}\leq E_{(a-1/k,al}(x) such that k\leq\tau(q_{k})<\infty . Putting p_{k}=

E_{(a,\infty)}(x)+q_{k} , we have

\tau(p_{k})<\infty ,
p_{k}xp_{k}=xE_{(a,\infty)}(x)+q_{k}xq_{k} and

( \alpha-\frac{1}{k})q_{k}\leq q_{k}xq_{k}\leq\alpha q_{k} .

We denote a=xE_{(a,\infty)}(x)+(\alpha-1/k)q_{k} and b=xE_{(a,\infty)}(x)+\alpha q_{k} . Then it fol-
lows that a\leq p_{k}xp_{k}\leq b ,

E_{(S,\infty)}(a)=\{

E_{ta,\infty)}(x)+q_{k} if 0<s<\alpha-1/k ,
E_{(a,\infty)}(x) if \alpha-1/k\leq s<\alpha ,
E_{(s,\infty)}(x) if s\geq\alpha ,

and

E_{ts,\infty)}(b)=\{\begin{array}{l}E_{(a,\infty)}(x)+q_{k}E_{(S,\infty)}(x)\end{array} ifif 0<s<\alpha s\geq\alpha.
’

Put t_{0}=\tau(E_{(a,\infty)}(x)) , t_{k}=\tau(E_{(a,\infty)}(x)+q_{k}) . It follows from elementary prop-
erties of s-number \mu.(x) and distribution functions \tau(E_{(\cdot,\infty)}(x)) that
t_{0}= \inf\{t>0,\cdot\mu_{t}(x)=\alpha\} . Then we get

\mu_{t}(a)=\{\begin{array}{l}\mu_{t}(x) if 0<t<l_{0},\alpha-1/k if t_{0}\leq t<t_{k},0 if t\geq t_{k}\end{array}

and

\mu_{t}(b)=\{

\mu_{t}(x) if 0<t<t_{k} ,

0 if t\geq t_{k} .

Hence we have \mu_{t}(p_{k}xp_{k})=\mu_{t}(x) if 0<t<t_{0} and \alpha-1/k=\mu_{t}(a)\leq\mu_{t}(p_{k}xp_{k})\leq

\mu_{t}(b)=\alpha if t_{0}\leq t<t_{k} .
Fix an arbitrary number t\geq t_{0} . Since k\leq\tau(q_{k}) - \infty , we can find a

number k_{0} such that t_{0}\leq t<t_{k} for each k\geq k_{0} . Then we have \alpha-1/k\leq

\mu_{t}(p_{k}xp_{k})\leq\alpha for each k\geq k_{0} . Hence \mu_{t}(p_{k}xp_{k}) - \alpha=\mu_{t}(\chi) . Thus we con-
clude that \mu_{t}(p_{k}xp_{k}) -arrow\mu_{t}(x) for each t>0 .

In any case, taking the supremum in the inequality \mu_{t}(pxp)\leq
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\lim_{narrow}\inf_{\infty}\mu_{t}(x_{n}) , \forall t>0 over projections p in \mathscr{M} with \tau(p)<\infty , we have the

desired inquality \mu_{t}(x)\leq\lim_{narrow}\inf_{\infty}\mu_{t}(x_{n}) , \forall t>0 . \blacksquare

PROOF OF PROPOSITION 2. 2. We may assume 0< \int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt .

Fix any number \beta satisfying 0< \beta<\int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt . We can choose a

sequence \{p_{n}\}_{n=1}^{\infty} of projections in \mathscr{M} such that p_{n}\uparrow 1 strongly, \tau(p_{n})<\infty

and each p_{n} commutes with y . Then x^{1/2}p_{n}x^{1/2}\uparrow x and y^{1/2}p_{n}y^{1/2}\uparrow y locally
in measure. By the previous lemma and the monotone convergence the0-
rem, there exists a number N such that

\beta<\int_{0}^{\infty}\mu_{t}(x^{1/2}p_{N}x^{1/2})\mu_{t}(y^{1/2}p_{N}y^{1/2})dt=\int_{0}^{\infty}\mu_{t}(p_{N}xp_{N})\mu_{t}(p_{N}yp_{N})dt .

Now (p_{N}\mathscr{M}p_{N}, \tau(p_{N}\cdot p_{N})) is strongly resonant by [W2: Proposition 3. 2].
We can therefore take a positive element z\in p_{N}\overline{\mathscr{M}}p_{N} with z \sim p_{N}yp_{N} such
that

\int_{0}^{\tau(p_{N})}\mu_{t}(p_{N}xp_{N})\mu_{t}(p_{N}yp_{N})dt=\tau(p_{N}xzp_{N}) .

It follws from \mu_{t}(p_{N}xp_{N})=0 , \forall t\geq\tau(p_{N}) that \beta<\tau(p_{N}xzp_{N})=\tau(xz) . Put \overline{y}

=z+p_{N}^{\perp}yp_{N}^{\perp} . Since p_{N} commutes with y , we have

\mu_{t}(\tilde{y})=\inf\{s\geq 0 ; \tau(E_{(s,\infty)}(z))+\tau(E_{(s,\infty)}(p_{N}^{\perp}yp_{N}^{\perp}))\leq t\}

= \inf\{s\geq 0 : \tau(E_{(s,\infty)}(p_{N}yp_{N}))+\tau(E_{(s,\infty)}(p_{N}^{\perp}yp_{N}^{\perp}))\leq t\}

= \inf\{s\geq 0 ; \tau(E_{(S,\infty)}(y))\leq t\}

=\mu_{t}(y) .

Hence \beta<\tau(xz)\leq\tau(x\overline{y}) . This completes the proof. \blacksquare

The following lemma is shown by the previous proposition and TheO-
rem 1. 7 as in the proof of [W2; Lemma 3. 3].

LEMMA 2. 4. Let \mathscr{M} be a semififinite von Neumann algebra which has
no minimal projection. Let ||| ||| be a symmetric norm. Suppose the fol-

lowing condition (\#) is satisfified :

(\#) \mu.(x)=\mu.(y) almost everywhere\Rightarrow|||x|||=|||y||| , x, y\in\overline{\mathscr{M}}

Then the following identities hold:

|||y|||’= \sup\{\int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt ; |||x|||\leq 1\} , y\in\overline{\mathscr{M}}_{+}

and



358 K. Watanabe

|||x|||= \sup\{\int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt ; |||y|||’\leq 1\} , x\in\overline{\mathscr{M}}_{+} .

Now we are in a position to characterize the symmetric norms in the
case of \mathscr{M} is a \sigma-finite semifinite factor.

THEOREM 2. 5. Let \mathscr{M} be a a-finite semififinite factor and let \tau be a

faithful normal semififinite trace on \mathscr{M} Then there exists a bijective corre-
spondence between the collection of all symmetric norms ||| ||| on \overline{\mathscr{M}} and
the collection of all rearrangement invariant function norms \rho on \mathfrak{M}_{0}((0 ,
\tau(1)) , m) , where m denotes the Lebesgue measure.

PROOF. We may assume that \mathscr{M} is a factor of type II_{\infty} . Suppose
that \rho is a rearrangement invariant function norm on \mathfrak{M}_{0}=\mathfrak{M}_{0}((0^{ },\infty) , m) .
Define |||x|||_{\rho}=\rho(\mu.(x)) . As in the proof of [DDP: Theorem 4. 2], we
already have |||x+y|||_{\rho}\leq|||x|||_{\rho}+|||y|||_{\rho} by the majorization \mu.(x+y)

\prec\mu.(x)+\mu.(y) , x , y\in\overline{\mathscr{M}} For (P-III)’ suppose that xn arrow x locally in mea-
sure as narrow\infty . Then we have \mu.(x)\leq\lim\inf\mu.(x_{n}) by Lemma 2. 3. Hence

|||x|||_{\rho}=\rho(\mu.(x))\leq\rho (\lim inf \mu.(x_{n}) ) \leq\lim inf \rho(\mu.(x_{n}))=\lim inf |||x_{n}|||_{\rho} .

Conversely, let ||| ||| be a symmetric norm on \overline{\mathscr{M}} Considering m as a
trace on L^{\infty}((0^{ },\infty) , m) , let \mathfrak{M}_{1} be the set of all functions whose multiplica-
tion operators are m-measurable. Note that L^{\infty}+L^{1}\subset \mathfrak{M}_{1} . For any f\in

\mathfrak{M}_{1} , we want to take an element \chi\in\overline{\mathscr{M}}_{+} such that f^{*}=\mu.(x) almost every-
where, and to define as \rho|||\cdot|||(f)=|||x||| . Since \mathscr{M} has no minimal projec-
tion, there exists a family of increasing projections \{e_{t}\}_{0\leq t<\infty} in \mathscr{M} such

that e_{t}\uparrow 1 strongly and \tau(e_{t})=t . If we put x= \int_{0}^{\infty}f^{*}(t)de_{t} , then we have

\mu.(x)=f^{*} and x is \tau-measurable. Suppose that y\in\overline{\mathscr{M}} is another element
satisfying \mu.(x)=\mu.(y)=f^{*} . It follows from [H ; Proposition 1. 2 (1)] that
the condition x\in \mathscr{M}+L^{1}(\mathscr{M}, \tau) is equivalent to y\in \mathscr{M}+L^{1}(\mathscr{M}, \tau) . If x\not\in

\mathscr{M}+L^{1}(\mathscr{M}, \tau) , then we have |||x|||=\infty=|||y||| by Proposition 1. 4. Assume
that x\in \mathscr{M}+L^{1}(\mathscr{M}, \tau) . Take an increasing sequence \{p_{n}\}_{n=1}^{\infty} of projec-
tions in \mathscr{M} such that p_{n}\uparrow 1 strongly and \tau(p_{n})<\infty . Then \mu_{t}(p_{n}yp_{n})\leq\mu_{t}(x)

for all t>0 and each p_{n}yp_{n} is a \tau-compact operator, that is \mu_{t}(p_{n}yp_{n}) -arrow 0

as tarrow\infty . By the assumption that \mathscr{M} is a factor and by [H : Theorem 3.
1], we can conclude that |||p_{n}yp_{n}|||\leq|||x||| . It is clear that p_{n}yp_{n}arrow y locally
in measure. By (P-III)’r, we get |||y||| \leq\lim\inf|||p_{n}yp_{n}|||\leq|||x||| . Similarly
we have |||x|||\leq|||y||| , so the condition (\#) is satisfied and the value \rho|||\cdot|||(f)

is independent of the choice of an element such that \mu.(x)=f^{*}- Thus \rho|||\cdot|||

is well-defined. If f\not\in \mathfrak{M}_{0} , then we define as \rho|||\cdot|||(f)=\infty . We simply
denote \rho=\rho|||\cdot||| .
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Suppose that g\prec f . Take an elements x , y\in\overline{\mathscr{M}}_{+} such that \mu.(x)=f^{*} .

\mu.(y)=g^{*}- respectively. It follows from Hardy’s Lemma (cf. [BS ; Propo .

sition 3. 6]) and Lemma 2. 4 that \rho(g)=|||y|||\leq|||x|||=\rho(f) .

Let f, g\in \mathfrak{M}_{0} . We put x= \int_{0}^{\infty}f^{*}(t)de_{t} , f_{k}=f^{*}\chi_{(0,k\rangle} and x_{k}= \int_{0}^{\infty}f_{k}(t)de_{t} .

We also define g_{k} and y_{k} similarly. Then we have x-x_{k}= \int_{lk,\infty)}f^{*}(t)de_{t}=

x(1-e_{k}) . It follows that x_{k}\uparrow x locally in measure. By (P-III)’. we have
\rho(f_{k})=|||x_{k}|||\uparrow|||x|||=\rho(f) . Since (f+g)^{*}\chi_{(0,k)}\prec(f^{*}+g^{*})\chi_{(0,k\rangle}=f_{k}+g_{k}=(f_{k}

+g_{k})^{*} for each k>0 , we have

\rho(f+g)=\sup_{k}\rho((f+g)^{*}\chi_{(0,k)})

\leq\sup_{k}\rho((f^{*}+g^{*})\chi_{(0,k)})

= \sup_{k}|||x_{k}+y_{k}|||\leq\sup_{k}|||x_{k}|||+\sup_{k}|||y_{k}|||

= \sup_{k}\rho(f_{k})+\sup_{k}\rho(g_{k})=\rho(f)+\rho(g) .

For (P3) in [BS ; Chapter 1, Definition 1. 1], let 0\leq f_{n}\uparrow f almost every-
where. Then for any k>0 , we have f_{n}^{*}\chi_{(0,k)}\uparrow f^{*}\chi_{(0,k)} in measure. If we
define x , x_{k} as in the above argument and

x_{n,k}= \int_{0}^{\infty}f_{n}^{*}\chi_{(0,k)}(t)de_{t} ,

then

x_{n,k}\uparrow x_{k} in measure as n\uparrow\infty ,
x_{n,k}\uparrow x_{n} locally in measure as k\uparrow\infty and

x_{k}\uparrow x locally in measure as k\uparrow\infty .

It follows from (P-III)’ that

\rho(f)=|||x|||=\sup_{k}|||x_{k}|||=\sup_{k,n}|||x_{n,k}|||=\sup_{n}|||x_{n}|||=\sup_{n}\rho(f_{n}) .

(P4) follows from (P-IV).

Finally, for any measurable set E and for 0\leq f\in \mathfrak{M}_{0} ,

\int_{E}f_{k}(t)dt\leq\int_{(0,m(E))}f_{k}^{*}(t)dt\leq\int_{(0,m(E))}\mu_{t}(x_{k})dt

=\tau(e_{m(E)}x_{k}e_{m(E)})\leq C_{E}|||x_{k}|||\leq C_{E}\rho(f) ,

by (P-V). Letting karrow\infty , we have (P5).
Obviously, this correspondence in bijective. This completes the proof.

\blacksquare
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REMARK 2. 6. In the proof of the previous theorem, we saw that, if
\mathscr{M} is a factor, then any symmetric norm satisfies the condition (\#) .

Suppose that \mathscr{M} has no minimal projection. If a symmetric norm
||| ||| satisfies the condition (\#) , then it immediately satisfies (\mathfrak{h}-1) , so
||| |||’ satisfies (\mathfrak{h}-2) . Moreover, by the identity

|||y|||’= \sup\{\int_{0}^{\infty}\mu_{t}(x)\mu_{t}(y)dt ; |||x|||\leq 1\} , y\in\overline{\mathscr{M}}_{+} ,

if \mu.(x)=\mu.(y) then we have |||x|||’=|||y|||’ Therefore, ||| |||’ satisfies (\mathfrak{h}-1) ,
so ||| ||| satisfies (\mathfrak{h}- 2) , too.

3. Absolutely continuity of symmetric norms

In this section we study absolutely continuity of a symmetric norm
||| ||| which is defined by a rearrangement invariant function norm \rho . We
also consider the separability of \mathfrak{S}_{|||\cdot|||\rho} .

Recall that a function f\in L_{\rho} is said to have absolutely continuous
norm if \rho(f\chi_{E_{n}}) -arrow 0 for every sequence \{E_{n}\}_{n=1}^{\infty} of measurable sets satisfy-
ing \chi_{En}arrow 0 almost everywhere. A function norm \rho is said to be absolutely
continuous if each function in L_{\rho} has absolutely continuous norm.

Let \{E_{n}\}_{n=1}^{\infty} be a sequence of measurable sets satisfying \chi_{E_{n}}arrow 0 almost
everywhere. Then the sequence F_{n}= \bigcup_{k\geq n}E_{k}(n=1,2, \cdots) is decreasing and
\chi_{F_{n}}\downarrow 0 . So one can see the following fact. A function f has absolutely
continuous norm if and only if \rho(f\chi_{En})\downarrow 0 for every sequence \{E_{n}\}_{n=1}^{\infty} satis-
fying \chi_{En}\downarrow 0 almost everywhere (cf. [BS ; Chapter 1, Proposition 3. 2]).

Let \{p_{n}\}_{n=1}^{\infty} be a sequence of projections satisfying p_{n}arrow 0 in the strong
operator topology. Although the sequence q_{n}=\check{k\geq}np_{k}(n=1,2, \cdots) is

decreasing, we can not assure that q_{n}\downarrow 0 strongly.

EXAMPLE 3. 1. Let \{x_{n}\}_{n=1}^{\infty} be a sequence of unit vectors in L^{2}([0,1])

defined by

x_{n}(t)=\sqrt{2n+1}t^{n} . t\in[0,1] .

If we define one-rank projections by p_{n}=x_{n}\otimes x_{n} , then p_{n}arrow 0 strongly and
q_{n}=p_{k}=1\check{k\geq}n for each n .

As a formulation considering semifinite cases in general, we should
define the absolute continuity for an element in a non-commutative
Banach function spaces as follows.
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DEFINITION 3. 2. Let ||| ||| be a symmetric norm on \overline{\mathscr{M}}_{r} An element
x\in \mathfrak{S}=\mathfrak{S}_{|||\cdot|||} is said to have absolutely continuous norm if |||xp_{n}|||\downarrow 0 for
every sequence \{p_{n}\}_{n=1}^{\infty} of projections in \mathscr{M} satisfying p_{n}\downarrow 0 in the strong
operator topology. The set of all elements in \mathfrak{S} of absolutely continuous
norm is denoted by \mathfrak{S}_{a} . If \mathfrak{S}=\mathfrak{S}_{a} , then ||| ||| itself is said to have absolutely
ly continuous norm.

LEMMA 3. 3. Let ||| ||| be a symmetric norm on \overline{\mathscr{M}} Let x\in\overline{\mathscr{M}}

Let p and q be projections in \mathscr{M} such that q\leq p . Then we have

(1) |||xp|||=||||x|p|||

(2) |||xq|||\leq|||xp|||

PROOF. (1) is clear by the polar decomposition. So we may assume
that x\geq 0 to show (2). Since \mu.(xp)=\mu.(xpx)^{1/2} . we have \mu.(xq)\leq\mu.(xp) and
|||xq|||=\rho(\mu.(xq))\leq\rho(\mu.(xp))=|||xp||| . \blacksquare

THEOREM 3. 4. Suppose that \mathscr{M} is a a-finite semififinite von Neumann
algebra which has no minimal projection. Let \rho be a rearrangement invar-
iant function norm. Let ||| |||=|||\cap|||_{\rho} be the symmetric norm determined
by \rho . An element x\in \mathfrak{S}_{|||\cdot|||} has absolutely continuous norm if and only if
\mu.(x) has absolutely continuous norm in L_{\rho} . Especially, ||| ||| is absolutely
continuous if and only if \rho is absolutely continuous.

PROOF. Clearly we may assume that x\geq 0 . From the assumption,
for an arbitrary x\in \mathfrak{S}_{+} , there exists a family \{e_{t}\}_{0\leq t<\tau(1)} of increasing pr0-

jections such that x= \int_{0}^{\tau(1)}\mu_{t}(x)de_{t} and \tau(e_{t})=t (cf. [HN2 ; the proof of

Theorem 4. 4]).
Suppose that x has absolutely continuous norm. Let \{E_{n}\}_{n=1}^{\infty} be a

sequence of measurable subsets of (0, \tau(1)) such that \chi_{En}\downarrow 0 almost every-

there Putting p_{n}= \int_{0}^{\tau(1)}\chi_{En}(t)de_{t} , we have p_{n}\downarrow 0 strongly, by the

dominated convergence theorem (applied to d||e_{t}\xi||^{2}\xi is a vector). Since
\rho is rearrangement invariant, we have \rho(\mu.(x)\chi_{En})=\rho(\mu.(xp_{n}))=|||xp_{n}|||\downarrow 0 .
This implies that \mu.(x) has absolutely continuous norm.

To prove the converse, suppose that \mu(x)\in L_{\rho} has absolutely continu-
ous norm. Let \{p_{n}\}_{n=1}^{\infty} be an arbitrary family of projections in \mathscr{M} such
that p_{n}\downarrow 0 strongly. Put x_{n}=(xp_{n}x)^{1/2} . For each projection q in \mathscr{M} with
\tau(q)<\infty , we have qx_{n}^{2}qarrow 0 in measure and \mu.(qx_{n}^{2}q)^{1/2}=\mu(x_{n}qx_{n})^{1/2}\leq\mu.(x) .
It follows from [BS ; Chapter 1, Proposition 3. 6] that |||qx_{n}q|||\leq

\rho(\mu.(qx_{n}^{2}q)^{1/2})\downarrow 0 . Fix an arbitrary positive number \epsilon . Since \mu.(x) has
absolutely continuous norm, we can take a number k such that |||x(1-e_{k})|||
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=\rho(\mu.(x(1-e_{k})))=\rho(\mu.(x)\chi_{(k,\infty)})<\epsilon . Then there exists a number n_{0} such
that \rho(\mu.(e_{k}x_{n}^{2}e_{k})^{1/2})<\epsilon for any n\geq n_{0} by the previous argument. Thus we
have

|||e_{k}x_{n}e_{k}^{\perp}|||=\rho(\mu.(e_{k}x_{n}e_{k}^{\perp}))=\rho(\mu.(e_{k}x_{n}e_{k}^{\perp}x_{n}e_{k})^{1/2})\leq\rho(\mu.(e_{k}x_{n}^{2}e_{k})^{1/2})<\epsilon .

Similarly, |||e_{k}x_{n}e_{k}||| , |||e_{k}^{\perp}x_{n}e_{k}|||<\epsilon . We also obtain |||e_{k}^{\perp}x_{n}e_{k}^{\perp}|||\leq|||e_{k}^{\perp}xe_{k}^{\perp}|||

<\epsilon for any n\geq n_{0} . Therefore we get

|||xp_{n}|||=|||(xp_{n}x)^{1/2}|||=|||x_{n}|||

\leq|||e_{k}x_{n}e_{n}|||+|||e_{k}^{\perp}x_{n}e_{k}|||+|||e_{k}x_{n}e_{k}^{\perp}|||+|||e_{k}^{\perp}x_{n}e_{k}^{\perp}|||

<4\epsilon

for any n\geq n_{0} . Thus x has absolutely continuous norm. This completes
the proof. \blacksquare

The next proposition is similarly proved as [W2; Proposition 4. 3].

PROPOSITION 3. 5. Suppose that \mathscr{M} has no minimal projection. Let x
\in \mathfrak{S}=\mathfrak{S}_{|||\cdot|||} . Consider the following conditions :

(1) whenever x_{n} and y are in \overline{\mathscr{M}} satisfying \mu.(x_{n})\leq\mu.(x) and x_{n} arrow y

locally in measure, then |||x_{n}-y|||arrow 0 ,

(2) x has absolutely continuous norm,
(3) whenever x_{n} and y are in \overline{\mathscr{M}} satisfying \mu.(x_{n})\leq\mu.(x) and x_{n} arrow y in

measure, then |||x_{n}-y|||arrow 0 .
Then we have implications (1)\Rightarrow(2)\Rightarrow(3) .

Let ||| , ||| be a symmetric norm on \overline{\mathscr{M}} In [W2: Definition 4. 4], we
defined \mathfrak{S}_{|||\cdot|||}^{(0)} as the closure of the set \{x\in \mathscr{M} : \tau(s(|x|))<\infty\} in \mathfrak{S}_{|||\cdot|||} .

PROPOSITION 3. 6. \mathfrak{S}_{a}\subset \mathfrak{S}_{|||\cdot|||}^{(0)}\subset \mathfrak{S}_{|||\cdot|||} .

PROOF. Let x\in \mathfrak{S}_{a} . Clearly we may assume that x\geq 0 . Let x=
\int_{0}^{\infty}tde_{t} be the spectral decomposition. Take a family \{p_{m}\}_{m=1}^{\infty} of projec-

tions in \mathscr{M} such that p_{m}\uparrow 1 strongly and \tau(p_{m})<\infty . Put

x_{n}^{(m\rangle}=p_{m}( \int_{0}^{n}tde_{t})p_{m} and x^{(m)}=p_{m}xp_{m} .

It is obvious that x_{n}^{(m)}\in \mathscr{M}_{+} , \tau(s(x_{n}^{(m)}))\leq\tau(p_{m})<\infty and x_{n}^{(m)}\uparrow x^{(m)} in mea-
sure. By Proposition 3. 5, we have |||x_{n}^{(m)}-x^{(m)}|||\downarrow 0 . Hence x^{(m)}\in \mathfrak{S}_{|||\cdot|||}^{(0)} .
Moreover, since 1-p_{m}\downarrow 0 strongly and x\in \mathfrak{S}_{a} , we have |||x-x^{(m)}|||\leq

|||x(1-p_{m})|||+|||(1-p_{m})x|||\downarrow 0 . This implies that x\in \mathfrak{S}_{|||\cdot|||}^{(0)} .



Some results on non-commutative Banach function spaces II (Infifinite cases) 363

The second inclusion is trivial from the definition of \mathfrak{S}_{|||\cdot|||}^{(0)} . \blacksquare

COROLLARY 3. 7. If \rho is absolutely continuous, then \mathfrak{S}_{|||\cdot|||}^{(0)}=\mathfrak{S}_{|||\cdot|||} .

Finally, we obtain a necessary and sufficient condition for \mathfrak{S}_{|||\cdot|||\rho} to be
separable, in terms of \mathscr{M} and \rho .

THEOREM 3. 8. Suppose that \mathscr{M} is a a-finite semififinite von Neumann
algebra which has no minimal projection. Let \rho be a rearrangement invar-
iant function norm on \mathfrak{M}_{0}((0, \tau(1)) , m) and let |||c |||=|||c |||_{\rho} . Then the
symmetrically normed \mathscr{M}- bimodule Banach space \mathfrak{S}_{|||\cdot|||} is separable if and
only if \rho is absolutely continuous and \mathscr{M}_{*} is separable.

PROOF. Suppose first that \mathfrak{S}=\mathfrak{S}_{|||\cdot|||} is separable. Take a family
\{e_{t}\}_{0\leq t<\infty} of increasing projections in \mathscr{M} such that e_{t}\uparrow 1 strongly and \tau(e_{t})

=t . For each f\in L_{\rho} , we put \Phi(f)=\int_{0}^{\infty}f(t)de_{t}\in\overline{\mathscr{M}}. Then we have \mu.(\Phi

(f))=f^{*} and |||\Phi(f)|||=\rho(f^{*})=\rho(f) . Thus \Phi:L_{\rho}arrow \mathfrak{S}_{|||\cdot|||} is a linear
isometric embedding. Hence L_{\rho} is separable. It follows from [BS : Chap-
ter 1, Theorem 5. 5] that \rho is absolutely continuous.

Take a sequence \{p_{j}\}_{j=1}^{\infty} such that p_{j}\uparrow 1 strongly and \tau(p_{j})<\infty . Then
p_{j}\mathfrak{S}_{|||\cdot|||}p_{j} is a non-commutative Banach function space associated with (p_{j}

\mathscr{M}p_{j} , \tau(p_{j}\cdot p_{j})) , constructed by the function norm \rho|_{(0,\tau(p_{j}))} and it is sepa-
rable. By the result of finite cases ([W2; Theorem 4. 6]), we conclude

that p_{j}L^{1}(\mathscr{M}, \tau)p_{j} is separable. Since \bigcup_{j=1}^{\infty}p_{j}L^{1}(\mathscr{M}, \tau)p_{j} is dense in L^{1}(\mathscr{M}, \tau) ,

we have the separability of L^{1}(\mathscr{M}, \tau)\cong \mathscr{M}*\cdot

Conversely, suppose that \rho is absolutely continuous and \mathscr{M}_{*} is sepa-
rable. Notice that \mathfrak{S}_{|||\cdot|||}^{(0)}=\mathfrak{S}_{|||\cdot|||} by Corollary 3. 7. Take \{p_{j}\}_{j=1}^{\infty} as above.
Then we conclude that p_{j}\mathfrak{S}_{|||\cdot|||}p_{j} is separable by the result of finite cases.
Since each x\in \mathfrak{S}_{|||\cdot|||} has absolutely continuous norm by Theorem 3. 4, we
have |||p_{j}xp_{j}-x|||arrow 0 . This implies that \bigcup_{j=1}^{\infty}p_{j}\mathfrak{S}_{|||\cdot|||}p_{j} is dense in \mathfrak{S}_{|||\cdot|||} .
Thus \mathfrak{S}_{|||\cdot|||} is separable. \blacksquare
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