Invertibility of some singular integral operators and a lifting theorem

Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday

Takanori YAMAMOTO (Received September 9, 1992, Revised February 3, 1993)

Abstract. Let P_+ be an analytic projection and let P_- be a co-analytic projection. Let $L^2(W)$ be the usual weighted Lebesgue space on the unit circle. For some weight W, P_+ is not continuous in the norm of $L^2(W)$. We shall define the Hilbert space $L^2((W))$ such that for any weight W, P_+ is continuous from $L^2((W))$ to $L^2(W)$. For an essentially bounded function ϕ , we shall consider a singular integral operator $\phi P_+ + P_-$ as a densely defined continuous operator from $L^2((W))$ to $L^2(W)$. Then $S_{\phi,(W)}$ denotes the bounded extension of $\phi P_+ + P_-$. Necessary and sufficient conditions for the (left) invertibility of $S_{\phi,(W)}$ are given as applications of the Cotlar-Sadosky's lifting theorem. Our results involve the Helson-Szegö theorem and the Widom-Devinatz-Rochberg theorem.

§ 1. Introduction.

Let $C(\mathbf{T})$ be an algebra of all continuous functions f on the unit circle \mathbf{T} , and let A be a disc algebra of all functions f in $C(\mathbf{T})$ whose negative Fourier coefficients vanish. For $1 \leq p \leq \infty$, let $L^p = L^p(\mathbf{T})$ denote the L^p space of \mathbf{T} with respect to the normalized Lebesgue measure m on \mathbf{T} . Put $A_0 = \{f ; f \text{ is in } A, \text{ and } \int_{\mathbf{T}} f \ dm = 0\}$, and put $\overline{A_0} = \{\overline{f} ; f \text{ is in } A_0\}$. By \overline{f} we denote the complex conjugate function of f. Let H^p be the subspace of L^p consisting of functions whose negative Fourier coefficients vanish. Put $H_0^p = \{f ; f \text{ is in } H^p, \text{ and } \int_{\mathbf{T}} f \ dm = 0\}$, and put $\overline{H_0^p} = \{\overline{f} ; f \text{ is in } H_0^p\}$. For an f in L^1 , its harmonic conjugate function \tilde{f} is defined by

$$\tilde{f}(e^{i\theta}) = \int_{\mathbb{T}} \cot\left(\frac{\theta - t}{2}\right) f(e^{it}) dm(e^{it}),$$

the integral being a Cauchy principal value. A function Q in H^{∞} is an inner function if |Q|=1. A function h is an outer function if there exists a real function V in L^1 and a real constant c such that $h=e^{V+i\tilde{V}+ic}$. Let

 $H^{1/2}$ denote the subspace of functions of the form Qh^2 where Q is an inner function and h is an outer function in H^1 . The singular integral operator S is defined by

$$Sf(\zeta) = \frac{1}{\pi i} \int_{T} \frac{f(\eta)}{\eta - \zeta} d\eta, \ (\zeta \in T)$$

(cf. [2, p. 38]). The analytic projection P_+ and the coanalytic projection P_- is defined by $P_+=(I+S)/2$ and $P_-=(I-S)/2$. Then,

$$Sf(\zeta) = (P_+ - P_-)f(\zeta) = i\tilde{f}(\zeta) + \int_{\mathbb{T}} f \ dm.$$

For a ϕ in L^{∞} , the singular integral operator $\phi P_{+} + P_{-}$ is denoted by S_{ϕ} for short. In this paper, a positive function W in L^{1} is said to be a weight. For a weight W, $L^{p}(W)(1 is a space of <math>m$ -measurable functions equipped with the norm

$$||f||_{p, w} = \left\{ \int_{\mathbb{T}} |f|^{p} W dm \right\}^{1/p} < \infty.$$

The weighted Hardy space $H^p(W)$ (resp. $\overline{H}_0^p(W)$) is the norm closure of A (resp. \overline{A}_0) in $L^p(W)$. When we consider S_{ϕ} as an densely defined operator in $L^p(W)$, we wright $S_{\phi} = S_{\phi,p,W}$. $S_{\phi,p,W}$ may not be continuous. In this paper, we shall consider the case p=2, and remain entirely in Hilbert spaces. $L^2(W)$ is a Hilbert space equipped with the inner product

$$(f,g)_W = \int_{\mathbb{T}} f\bar{g} \ Wdm.$$

We shall wright $S_{\phi,2,W}$ as $S_{\phi,W}$, and $\|\cdot\|_{2,W}$ as $\|\cdot\|_{W}$ for short. For an f in the algebraic sum $A + \overline{A}_{0}$, we shall define the inner product

$$(f,g)_{(W)} = (P_+f, P_+g)_W + (P_-f, P_-g)_W.$$

Then $A + \overline{A_0}$ becomes a pre-Hilbert space. $L^2((W))$ denotes the completion of $A + \overline{A_0}$ with norm $\| \cdot \|_{(W)}$ defined by

$$||f||_{(W)} = (f, f)_{(W)}^{1/2}.$$

Then $L^2((W))$ is a Hilbert space, and P_+ is a contraction operator from $L^2((W))$ to $L^2(W)$, since for all f in $A + \overline{A_0}$,

$$||P_+f||_W \le ||f||_{(W)}.$$

We shall define the Helson-Szegö class (HS) as follows (cf. [12]).

$$(HS) = \{e^{u+\tilde{v}}; u \text{ and } v \text{ in } L^{\infty}, ||v||_{\infty} < \pi/2\}.$$

If W is in (HS), then W^{-1} is also in (HS), and hence W^{-1} is in L^1 . If W is in (HS), then $\| \cdot \|_W$ and $\| \cdot \|_{(W)}$ are equivalent norms. If W is not in (HS), then S_{ϕ} , W may not be continuous. For a general weight W, S_{ϕ} is a continuous operator from $L^2((W))$ to $L^2(W)$, that is, there exists a constant c such that for all f in $A + \overline{A_0}$,

$$||S_{\phi}f||_{W} \leq c||f||_{(W)}.$$

In fact, we can take $c=2^{1/2}\max\{\|\phi\|_{\infty},1\}$. Let $S_{\phi,(W)}$ denote the bounded extension of S_{ϕ} . Hence $S_{\phi,(W)}$ is a bounded operator from $L^2((W))$ to $L^2(W)$ satisfying $S_{\phi,(W)} f=S_{\phi}f$ for all f in $A+\overline{A_0}$. We shall study the (left) invertibility of $S_{\phi,(W)}$ using Hilbert space methods and the following Cotlar-Sadosky's lifting theorem (cf. [1], [5], [15], [22]).

THEOREM(Cotlar-Sadosky). Suppose W_1 , W_2 , W_3 are in L^1 , and W_1 , W_2 are real functions. Then the following conditions (1) and (2) are equivalent.

(1) For all f_1 in A and f_2 in \overline{A}_0 ,

$$\int_{\mathbb{T}} \{|f_1|^2 W_1 + |f_2|^2 W_2 + 2 \operatorname{Re}(f_1 \overline{f_2} W_3)\} dm \ge 0.$$

(2) $W_1 \ge 0$, $W_2 \ge 0$ and there exists a k in H^1 such that

$$|W_3-k|^2 \leq W_1 W_2.$$

When W=1, Doninguez [7] studied the invertibility of systems of Toeplitz operators using the Cotlar-Sadosky's type lifting theorem. When W is in (HS), Rochberg [18] defined the Toeplitz operator $T_{\phi,p,w}$ on $H^p(W)$ by $T_{\phi,p,W}$ $f=P_+(\phi f)$ for all f in $H^p(W)$, and got the necessary and sufficient condition for the invertibility of $T_{\phi,p,w}$ (cf. [2, p. 216], [3]). If P_+ is continuous in the norm of $L^p(W)$, then $T_{\phi,p,W}$ is (left) invertible if and only if $S_{\phi,p,W}$ is (left) invertible (cf. [9, p. 124], [17, p. 393]). When W =1, Widom [21] and Devinatz [6] considered the left invertibility and the invertibility of T_{ϕ} and S_{ϕ} (cf. [8, p. 187], [17, p. 371]). Shinbrot [20] considered the invertibility of S_{ϕ} on L^{2} and derived the method for finding the inverse operator of S_{ϕ} . Many generalizations of these results have been considered (cf. [2], [3], [4], [10], [11], [14]). For functions α and β in L^{∞} , the continuity of $\alpha P_+ + \beta P_-$ in the norm of $L^2(W)$ was considered in our preceding paper [15]. For a general weight W, $\alpha P_+ + \beta P_-$ has a bounded extension which is (left) invertible as an operator from $L^2((W))$ to $L^2(W)$ if and only if α^{-1} , β^{-1} are in L^{∞} and $S_{\alpha/\beta,(W)}$ is (left) invertible. When W is in (HS), we can give a simple necessary and sufficient condition for the (left) invertibility of $S_{\phi,W}$. But when W is not in (HS), we can not give a

simple condition.

In Section 2, by the Hilbert space methods and the Cotlar-Sadosky's lifting theorem, we shall give necessary and sufficient conditions for the left invertibility of $S_{\phi,(W)}$. Theorems 1 and 2 are main theorems. In Section 3, Theorem 3 is the main theorem. We shall give necessary and sufficient conditions for the invertibility of $S_{\phi,(W)}$ using the results of Section 2.

The author wishes to thank Prof. T. Nakazi for many helpful conversations.

§ 2. Left invertibility.

In Theorem 1 and Theorem 2, we shall give necessary and sufficient conditions for the left invertibility of the singular integral operator $S_{\phi,(W)}$. When $S_{\phi,(W)}$ is bounded and has a bounded left inverse operator, we shall say $S_{\phi,(W)}$ is left invertible. Since $S_{\phi,(W)}$ is always bounded, $S_{\phi,(W)}$ is left invertible if and only if $S_{\phi,(W)}$ is bounded below. When W is not in (HS), we have been unable to give a simple necessary and sufficient condition for the left invertibility of $S_{\phi,(W)}$. For the left invertibility of $S_{\phi,(W)}$, Prof. T. Nakazi suggested the simple condition (2) in Theorem 2, and the equivalence of (2) and (5). We use the Cotlar-Sadosky's lifting theorem to prove Theorem 1. We use Theorem 1 to prove Theorem 2. Each Theorem involves the Helson-Szegö theorem (cf. [12]). We shall consider weighted norm inequalities.

THEOREM 1. Suppose $|\phi|=1$, W is a weight, δ is a constant satisfying $0 < \delta \le 1$, and put

$$r = \delta(2 - \delta^2)^{1/2}$$
.

Then the following conditions (1) and (2) are equivalent.

(1) For all f in $A + \overline{A_0}$,

$$\delta \|f\|_{(W)} \leq \|S_{\phi}f\|_{W}.$$

(2) There exists an inner function Q, a real function V in L^1 , u and v in L^{∞} such that

$$\phi = Qe^{-i\tilde{V}}, We^{V} = e^{u+\tilde{v}},$$

$$\|v\|_{\infty} \le \cos^{-1}r < \pi/2, |u| \le \cosh^{-1}\{(\cos v)/r\}.$$

PROOF. We shall use the idea of Rochberg (cf. [18]) and the idea of Arocena, Cotlar and Sadosky (cf. [1], [5]). We shall show that (1) implies (2). By (1),

$$\delta^2 \int_{\mathbb{T}} (|f_1|^2 + |f_2|^2) W \ dm \le \int_{\mathbb{T}} |\phi f_1 + f_2|^2 \ W \ dm,$$

for all f_1 in A and f_2 in $\overline{A_0}$. Hence

$$\int_{\mathbb{T}} \{ (1 - \delta^2)(|f_1|^2 + |f_2|^2) + 2\operatorname{Re}(\phi f_1 \overline{f_2}) \} W \ dm \ge 0.$$

By the Cotlar-Sadosky's lifting theorem, $\delta \le 1$ and there exists a k in H^1 such that

$$|\phi w - k| \leq (1 - \delta^2) W$$
.

Since $|\phi|=1$,

$$|W - |k| \le |\phi W - k| \le (1 - \delta^2) \ W \le W.$$

Hence

$$\delta^2 W \leq |k| \leq 2 W$$
.

Since W is a non-zero function, k is a non-zero function in H^1 . Hence $\log W$ is in L^1 . Put $g = ke^{-\log W - i(\log W)^2}$. Since $|\phi| = 1$,

$$|1 - \overline{\phi}ge^{i(\log W)^2}| \leq 1 - \delta^2$$
.

Since $0 < \delta \le 1$ and $r = \delta(2 - \delta^2)^{1/2}$, $0 < r \le 1$. Then there exists a real function v in L^{∞} such that

$$\overline{\phi}ge^{i(\log W)^{2}} = |g|e^{-iv},$$

$$||v||_{\infty} \le \cos^{-1}r < \pi/2$$

(cf. [15, Lemma 2]). Hence $(\cos v)/r \ge 1$. Since $\delta^2 \le |g| \le 2$, g is in H^{∞} , and there exists an inner function Q_0 and a real function u in L^{∞} such that $g = rQ_0e^{-u-i\tilde{u}}$. Since $\bar{\phi}ge^{i(\log W)^*} = re^{-u-iv}$, we have

$$|1-re^{-u-iv}| \leq 1-\delta^2.$$

Since r is a positive constant and

$$|1-re^{-u-iv}|^2-(1-\delta^2)^2=r^2\{e^{-2u}-2(\cos v)/r\}e^{-u}+1\},$$

we have

$$e^{-2u} - 2\{(\cos v)/r\}e^{-u} + 1 \le 0.$$

Since $(\cos v)/r \ge 1$, we have

$$|u| \leq \cosh^{-1}\{(\cos v)/r\}.$$

Put $V = u + \tilde{v} - \log W$, then V is in L^1 , and there exists a real constant c

such that
$$\tilde{V} = \tilde{u} - v - (\log W)^{\sim} + c$$
. Put $Q = Q_0 e^{ic}$, then $\phi = g e^{i(v + (\log W)^{\sim})} / |g| = Q_0 e^{i(v - \tilde{u} + (\log W)^{\sim})} = Q e^{-i\tilde{V}}$.

We shall show that (2) implies (1). By (2),

$$e^{-2u} - 2\{(\cos v)/r\}e^{-u} + 1 \le 0.$$

By the calculation,

$$|1-re^{-u-iv}| \leq 1-\delta^2.$$

Put $k = \phi W r e^{-u - iv}$, then k is in H^1 , since

$$k = rQe^{-i\tilde{V} + (u + \tilde{v} - V) - u - iv} = rQe^{-V - i\tilde{V}}e^{\tilde{v} - iv}.$$

Hence

$$|\phi W - k| = |\phi W (1 - re^{-u - iv})| \le (1 - \delta^2) W.$$

By the Cotlar-Sadosky's lifting theorem, for all f_1 in A and f_2 in \overline{A}_0 ,

$$\int_{\mathbb{T}} \{ (1 - \delta^2)(|f_1|^2 + |f_2|^2) + 2\operatorname{Re}(\phi f_1 \, \overline{f}_2) \} \, Wdm \ge 0.$$

Since $|\phi|=1$,

$$\delta^2 \int_{\mathbb{T}} (|f_1|^2 + |f_2|^2) W dm \le \int_{\mathbb{T}} |\phi f_1 + f_2|^2 W dm.$$

This implies (1). This completes the proof.

COROLLARY 1. Suppose ϕ is in L^{∞} and W is a weight. Then the following conditions are mutually equivalent.

(1) $S_{\phi,(W)}$ is an isometry, that is, for all f in $A + \overline{A}_0$,

$$||S_{\phi}f||_{W} = ||f||_{(W)}.$$

- (2) $|\phi|=1$, and for all f in $A+\overline{A_0}$, $||f||_{(W)} \leq ||S_{\phi}f||_{W}$.
- (3) There exists an inner function Q and a real function V in L^1 such that $\phi = Qe^{-i\tilde{V}}$ and $We^V = 1$.

PROOF. By (1), for all f_1 in A,

$$\int_{\mathbb{T}} (|\phi|^2 - 1) |f_1|^2 \ Wdm = 0.$$

This implies $|\phi|=1$. Hence (1) implies (2). By Theorem 1, (2) and (3) are equivalent. By (3), $\phi W=Qe^{-V-i\tilde{V}}$ and ϕW is in L^1 . This implies

 ϕW is in H^1 , and hence for all f_1 in A and f_2 in \overline{A}_0 ,

$$\int_{T} |\phi f_{1} + f_{2}|^{2} W dm - \int_{T} (|f_{1}|^{2} + |f_{2}|^{2}) W dm$$

$$= 2 \operatorname{Re} \int_{T} \phi f_{1} \overline{f}_{2} W dm = 0.$$

This implies (1). This completes the proof.

Let $H^2(W) \oplus \overline{H}_0^2(W)$ denote the algebraic direct sum of $H^2(W)$ and $\overline{H}_0^2(W)$ (cf. [8, p. 78]). Then $H^2(W) \oplus \overline{H}_0^2(W)$ is the Hilbert space equipped with the inner product

$$(\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle)_{\langle W \rangle} = (f_1, g_1)_W + (f_2, g_2)_W,$$

and the norm

$$\|\langle f_1, f_2 \rangle\|_{\langle W \rangle} = (\langle f_1, f_2 \rangle, \langle f_1, f_2 \rangle)_{\langle W \rangle}.$$

For any f in $L^2((W))$, there exists a sequence f_{1n} in A and a sequence f_{2n} in $\overline{A_0}$ such that $f_{1n}+f_{2n}$ converges to f in the norm of $L^2((W))$. Then there exists an f_1 in $H^2(W)$ and an f_2 in $\overline{H_0^2(W)}$ such that $\langle f_{1n}, f_{2n} \rangle$ converges to $\langle f_1, f_2 \rangle$ in the norm of $H^2(W) \oplus \overline{H_0^2(W)}$. Let J denote the isometry from $L^2((W))$ onto $H^2(W) \oplus \overline{H_0^2(W)}$ defined by

$$Jf = \langle f_1, f_2 \rangle.$$

This definition is correct in the sense that it does not depend on the particular choice of the Cauchy sequence which defines f_1 and f_2 . Let $R_{\phi,W}$ denote the operator from $H^2(W) \oplus \overline{H}_0^2(W)$ to $L^2(W)$ defined by

$$R_{\phi,W}\langle f_1, f_2\rangle = \phi f_1 + f_2.$$

LEMMA 1. Suppose ϕ is in L^{∞} , and W is a weight. Then $R_{\phi,W}$ is a bounded operator from $H^2(W) \oplus \overline{H}_0^2(W)$ to $L^2(W)$. $R_{\phi,W}$ is (left) invertible if and only if $S_{\phi,(W)}$ is (left) invertible.

PROOF. $R_{\phi,W}$ is bounded, since for all $\langle f_1, f_2 \rangle$ in $H^2(W) \oplus \overline{H}_0^2(W)$,

$$||R_{\phi,W}\langle f_1, f_2\rangle||_W \leq \max\{||\phi||_{\infty}, 1\}(||f_1||_W + ||f_2||_W) \leq 2^{1/2}\max\{||\phi||_{\infty}, 1\}||\langle f_1, f_2\rangle||_{\langle W\rangle}.$$

Since $S_{\phi,(W)} = R_{\phi,W} J$, $R_{\phi,W}$ is (left) invertible if and only if $S_{\phi,(W)}$ is (left) invertible.

LEMMA 2. Suppose ϕ , ϕ^{-1} are in L^{∞} and W is a weight. If there exists an inner function Q, outer functions α , β such that $|\alpha|^2 W$, $|\beta|^2 W$ are in (HS), and $\phi = Q\overline{\beta}/\alpha$, then $R_{\phi,W}$ and $S_{\phi,(W)}$ are left invertible. If

T is defined by

$$Tf = \langle \alpha P_{+}(\overline{Q}f/\overline{\beta}), Q\overline{\beta}P_{-}(\overline{Q}f/\overline{\beta}) \rangle,$$

for all f in $L^2(W)$, then T is the left inverse to $R_{\phi,W}$, and $J^{-1}T$ is the left inverse to $S_{\phi,(W)}$. Then

$$J^{-1}Tg = (\alpha P_+ + Q\overline{\beta}P_-)(\overline{Q}g/\overline{\beta}),$$

for all g in $\phi A + \overline{A_0}$.

PROOF. Since $|\alpha|^2W$, $|\beta|^2W$ are in (HS), $(|\alpha|^2W)^{-1}$, $(|\beta|^2W)^{-1}$ are also in (HS). Hence $(|\alpha|^2W)^{-1}$, $(|\beta|^2W)^{-1}$ are in L^1 . For all f in $L^2(W)$, by the Schwarz inequality, $f/\overline{\beta}$ is in L^1 . By the Helson-Szegö theorem (cf. [12]), there exist constants γ , γ' such that

$$\begin{split} \|Tf\|_{\langle W\rangle^{2}} &= \int_{\mathbb{T}} |\alpha P_{+}(\overline{Q}f/\overline{\beta})|^{2} W \ dm + \int_{\mathbb{T}} |Q\overline{\beta}P_{-}(\overline{Q}f/\overline{\beta})|^{2} \ W \ dm \\ &\leq \gamma \int_{\mathbb{T}} |\overline{Q}f/\overline{\beta}|^{2} |\alpha|^{2} W \ dm + \gamma' \int_{\mathbb{T}} |\overline{Q}f/\overline{\beta}|^{2} |\beta|^{2} W \ dm \\ &\leq (\gamma \|\phi^{-1}\|_{\infty}^{2} + \gamma') \int_{\mathbb{T}} |f|^{2} W \ dm. \end{split}$$

For all f_1 in $H^2(W)$ and f_2 in $\overline{H}_0^2(W)$, by the Schwarz inequality, f_1/α is in H_1 and $\overline{Q}f_2/\overline{\beta}$ is in \overline{H}_0^1 . Hence

$$\alpha P_{+}(\overline{Q}(\phi f_{1}+f_{2})/\overline{\beta}) = \alpha P_{+}(f_{1}/\alpha + \overline{Q}f_{2}/\overline{\beta}) = \alpha P_{+}(f_{1}/\alpha) = f_{1},$$

$$Q\overline{\beta} P_{-}(\overline{Q}(\phi f_{1}+f_{2})/\overline{\beta}) = Q\overline{\beta} P_{-}(f_{1}/\alpha + \overline{Q}f_{2}/\overline{\beta}) = Q\overline{\beta} P_{-}(\overline{Q}f_{2}/\overline{\beta}) = f_{2}.$$

This implies $\alpha P_+(\bar{Q}f/\bar{\beta})$ is in $H^2(W)$ and $Q\bar{\beta}P_-(\bar{Q}f/\bar{\beta})$ is in $\bar{H}^2(W)$. Hence

$$TR_{\phi,W}\langle f_1, f_2\rangle = T(\phi f_1 + f_2) = \langle f_1, f_2\rangle.$$

Hence T is the left inverse to $R_{\phi,W}$. By Lemma 1, $J^{-1}T$ is the left inverse to $S_{\phi,(W)}$. For any g in $\phi A + \overline{A}_0$, there exists a g_1 in A and a g_2 in \overline{A}_0 such that $g = \phi g_1 + g_2$. By the calculation, $\alpha P_+(\overline{Q}g/\overline{\beta}) = g_1$, and $Q\overline{\beta}P_-(\overline{Q}g/\overline{\beta}) = g_2$. Hence $\alpha P_+(\overline{Q}g/\overline{\beta})$ is in A, and $Q\overline{\beta}P_-(\overline{Q}g/\overline{\beta})$ is in \overline{A}_0 . Hence

$$J^{-1}Tg = J^{-1}\langle \alpha P_{+}(\overline{Q}g/\overline{\beta}), Q\overline{\beta}P_{-}(\overline{Q}g/\overline{\beta})\rangle$$

= $\alpha P_{+}(\overline{Q}g/\overline{\beta}) + Q\overline{\beta}P_{-}(\overline{Q}g/\overline{\beta}) = (\alpha P_{+} + Q\overline{\beta}P_{-})(\overline{Q}g/\overline{\beta}).$

This completes the proof.

THEOREM 2. Suppose ϕ is in L^{∞} and W is a weight. Then the following conditions on ϕ and W are mutually equivalent.

(1) $S_{\phi,(W)}$ is left invertible.

(2) ϕ^{-1} is in L^{∞} , and there exists an inner function Q and a real function V in L^{1} such that We^{V} is in (HS), and

$$\phi/|\phi| = Qe^{-i\tilde{V}}$$
.

- (3) ϕ^{-1} is in L^{∞} , and there exists an inner function Q, outer functions α , β such that $|\alpha|^2 W$, $|\beta|^2 W$ are in (HS), and $\phi = Q\overline{\beta}/\alpha$,
- (4) ϕ^{-1} is in L^{∞} , and there exists a k in H^1 such that $||1-k/(\phi W)||_{\infty} < 1$.

have exists a positive constant
$$s$$
 such that for all f in $A \perp \overline{A}$

There exists a positive constant δ such that for all f in $A + \overline{A_0}$.

$$\delta \|f\|_{W} \le \min\{\|S_{\phi}f\|_{W}, \|S_{-\phi}f\|_{W}\}.$$

PROOF. We shall show that (1) implies (4) and (2). By (1), there exists a positive constant δ such that

$$\delta \|f\|_{(W)} \leq \|S_{\phi}f\|_{W}$$

for all f in $A + \overline{A_0}$. Hence

(5)

$$\int_{\mathbb{T}} \{ (|\phi|^2 - \delta^2) |f_1|^2 + (1 - \delta^2) |f_2|^2 + 2 \operatorname{Re}(\phi f_1 \overline{f_2}) \} W dm \ge 0,$$

for all f_1 in A and f_2 in $\overline{A_0}$. By the Cotlar-Sadosky's lifting theorem, $0 < \delta \le 1$, $\delta \le |\phi|$ and there exists a k in H^1 such that

$$|\phi W - k| \! \leq \! (1 - \delta^2)^{\scriptscriptstyle 1/2} (|\phi|^2 - \delta^2)^{\scriptscriptstyle 1/2} W \! \leq \! (1 - \delta^2)^{\scriptscriptstyle 1/2} |\phi| \, W.$$

This implies 4). Put $\phi_0 = \phi e^{-\log|\phi| - i(\log|\phi|)^{-}}$, $k_0 = ke^{-\log|\phi| - i(\log|\phi|)^{-}}$, and $\delta_0 = \{1 - (1 - \delta^2)^{1/2}\}^{1/2}$. Then $|\phi_0| = 1$, $0 < \delta_0 \le 1$, k_0 is in H^1 and

$$|\phi_0 W - k_0| \leq (1 - \delta_0^2) W.$$

By the Cotlar-Sadosky's lifting theorem,

$$\int_{\mathbb{T}} \{ (1 - \delta_0^2) (|f_1|^2 + |f_2|^2) + 2 \operatorname{Re}(\phi_0 f_1 \overline{f_2}) \} W dm \ge 0.$$

Hence, for all f in $A + \overline{A_0}$,

$$\delta_0 \|f\|_{(W)} \leq \|S_{\phi_0} f\|_{W}.$$

By Theorem 1, there exists an inner function Q, a real function V in L^1 , and u, v in L^{∞} such that

$$\phi_0 = Qe^{-i\tilde{V}}, We^V = e^{u+\tilde{v}},$$

 $\|v\|_{\infty} \le \cos^{-1}\delta < \pi/2, |v| \le \cosh^{-1}\{(\cos v)/\delta\},$

since $\delta_0(2-\delta_0^2)^{1/2}=\delta$. Hence

$$\phi/|\phi| = \phi_0 e^{i(\log|\phi|)^{\sim}} = Q e^{-i(V - \log|\phi|)^{\sim}},$$

$$W e^{V - \log|\phi|} = e^{u - \log|\phi| + \tilde{v}}.$$

Since $\delta \leq |\phi|$, $\log |\phi|$ is in L^{∞} . This implies $u - \log |\phi|$ is in L^{∞} , and hence $We^{V - \log |\phi|}$ is in (HS). We shall show that (2) implies (3). Put $U = \log |\phi|$, then U is in L^{∞} . Put

$$\alpha = e^{\frac{1}{2}(V-U+i(V-U)^{\sim})}, \ \beta = e^{\frac{1}{2}(V+U+i(V+U)^{\sim})},$$

then α , β are outer functions, and $\phi = Q\overline{\beta}/\alpha$. Since We^{V} is in (HS), $|\alpha|^2W$ and $|\beta|^2W$ are in (HS). This implies (3). By Lemma 2, (3) implies (1). We shall show that (4) implies (1). By (4), there exists a constant δ and a k in H^1 such that $0 < \delta \le 1$, $\delta \le |\phi|^2$, and $|\phi W - k| \le (1 - \delta)|\phi|W$. Then

$$\begin{split} &(1-\delta^2)(|\phi|^2-\delta^2)-(1-\delta)^2|\phi|^2\\ &=\delta(1-\delta)\{2|\phi|^2-\delta(1+\delta)\}\\ &\geq &2\delta(1-\delta)(|\phi|^2-\delta)\geq 0. \end{split}$$

Hence

$$|\phi W - k|^2 \le (1 - \delta^2)(|\phi|^2 - \delta^2) W^2$$
.

By the Cotlar-Sadosky's lifting theorem, for all f_1 in A and f_2 in \overline{A}_0 ,

$$\int_{\mathbb{T}} \{ (|\phi|^2 - \delta^2) |f_1|^2 + (1 - \delta^2) |f_2|^2 + 2 \operatorname{Re}(\phi f_1 \overline{f_2}) \} W dm \ge 0.$$

This implies (1). Since

$$||f||_{W}^{2} + ||Sf||_{W}^{2} = ||P_{+}f + P_{-}f||_{W}^{2} + ||P_{+}f - P_{-}f||_{W}^{2}$$

$$= 2(||P_{+}f||_{W}^{2} + ||P_{-}f||_{W}^{2}) = 2||f||_{W}^{2},$$

we have

$$2^{1/2} ||f||_{(W)} \le ||f||_W + ||Sf||_W \le 2 ||f||_{(W)}.$$

Hence, $S_{\phi,(W)}$ is left invertible if and only if there exists a positive constant δ such that for all f in $A + \overline{A_0}$,

$$\delta(\|f\|_W + \|Sf\|_W) \le \|S_{\phi}f\|_W.$$

Since
$$S^2 f = f$$
 and $S_{\phi} S f = S_{\phi} (P_+ - P_-) f = \phi P_+ f - P_- f = -S_{-\phi} f$, we have $S_{\phi} f = S_{\phi} S^2 f = -S_{-\phi} S f$.

Hence

$$\delta \|f\|_{W} \le \|S_{\phi}f\|_{W}, \ \delta \|Sf\|_{W} \le \|S_{-\phi}Sf\|_{W}.$$

Since f is in $A + \overline{A_0}$ if and only if Sf is in $A + \overline{A_0}$, (1) and (5) are equiva-

lent. This completes the proof.

REMARK. (a) If $S_{\phi,(W)}$ is left invertible, then $\log W$ is in L^1 , and there exists an inner function Q, real functions u, v in L^{∞} such that $||v||_{\infty} < \pi/2$ and

$$\phi/|\phi| = Qe^{i\{v - (u - \log W)^{-}\}}.$$

(b) By condition (2), $S_{\phi,(W)}$ is left invertible if and only if ϕ^{-1} is in L^{∞} and $S_{\phi/|\phi|, (W)}$ is left invertible.

The equivalence of conditions (3) and (4) in Corollary 2 is the Helson –Szegö theorem (cf. [12]). Since $||f||_W^2 + ||Sf||_W^2 = 2||f||_W^2$, we have

$$||f||_{W} \le 2^{1/2} ||f||_{(W)}.$$

COROLLARY 2. For a weight W, the following conditions are mutually equivalent.

(1) $||S_{1,(w)}|| < 2^{1/2}$. That is, there exists a positive constant ε such that for all f in $A + \overline{A_0}$,

$$||f||_W \le (2^{1/2} - \varepsilon)||f||_{(W)}.$$

(2) $S_{1, (W)}$ is left invertible. That is, there exists a positive constant δ such that for all f in $A + \overline{A_0}$,

$$\delta \|f\|_{(w)} \leq \|f\|_{w}.$$

- (3) There exists a positive constant γ such that for all f in $A + \overline{A_0}$, $\|P_+ f\|_{W} \leq \gamma \|f\|_{W}$.
- (4) W is in (HS).
- (5) There exists a k in H^1 such that

$$||1-k/W||_{\infty} < 1.$$

PROOF. We shall show that (1) implies (2). By (1), there exists a positive constant δ such that

$$||f_1 - f_2||_W^2 \le (2 - \delta^2)(||f_1||_W^2 + ||f_2||_W^2),$$

for all f_1 in A and f_2 in \overline{A}_0 . Hence

$$(1-\delta^2)\|f_1\|_W^2+(1-\delta^2)\|f_2\|_W^2+2\operatorname{Re}(f_1,f_2)_W\geq 0.$$

Hence

$$\delta(\|f_1\|_W^2 + \|f_2\|_W^2)^{1/2} \leq \|f_1 + f_2\|_W.$$

This implies (2). This proof is reversible. Since $||P_+f||_W \le ||f||_{(W)}$, (2) implies (3). We shall show that (3) implies (2). By (3),

$$||P_{-}f||_{W} \le ||P_{+}f||_{W} + ||f||_{W} \le \gamma' ||f||_{W},$$

for some constant γ' . Hence

$$||f||_{W}^{2} = ||P_{+}f||_{W}^{2} + ||P_{-}f||_{W}^{2} \le (\gamma^{2} + \gamma'^{2})||f||_{W}^{2}.$$

This implies (2). We shall show that (2) implies (4). By Theorem 2, there exists an inner function Q and a real function V in L^1 such that We^v is in (HS) and $Qe^{-i\tilde{V}}=1$. Since $1/(We^v)$ is also in (HS), $1/(We^v)$ is in L^1 . By the Schwarz inequality, $e^{-V/2}$ is in L^1 . Since $Qe^{-V-i\tilde{V}}=e^{-V}$, a positive function e^{-V} is in $H^{1/2}$. By the Neuwirth-Newman theorem (cf. [16]), V is a constant. Hence W is in (HS). Conversely when W is in (HS), we can choose Q=1, V=0, and $\phi=1$ in the condition (2) of Theorem 2. Hence (4) implies (2). When $\phi=1$, by Theorem 2, $S_{1,(W)}$ is left invertible if and only if there exists a k in H^1 such that $\|1-k/W\|_{\infty} < 1$. Hence (2) and (5) are equivalent. This completes the proof.

Put $W(e^{i\theta})=|1-e^{i\theta}|^2$, $\phi(e^{i\theta})=e^{i\theta}$ and $k(e^{i\theta})=(1-e^{i\theta})^2$, then k is in H^1 and $\phi W+k=0$. By Theorem 2, this implies $S_{\phi,(W)}$ is left invertible. Since W^{-1} is not in L^1 , W is not in (HS). Then by Theorem 2, there exists a positive constant δ such that for all f in $A+\overline{A_0}$,

$$\delta \|f\|_W \leq \|S_{\phi}f\|_W.$$

By Corollary 2, the converse is not true. If W is not in (HS), then $S_{1,(W)}$ is not left invertible, and $S_{1,W}$ is an isometry. But we have the following result.

COROLLARY 3. Suppose ϕ and $(\phi-1)^{-1}$ are in L^{∞} , and W is a weight. If there exists a positive constant δ such that for all f in $A + \overline{A_0}$,

$$\delta \|f\|_{W} \leq \|S_{\phi}f\|_{W},$$

then $S_{\phi-\varepsilon,(W)}$ is left invertible for any constant ε satisfying $0 < \varepsilon \le \delta^2$.

PROOF. Since $\varepsilon \leq \delta^2$, for all f in $A + \overline{A_0}$,

$$\int_{\mathbb{T}} \{(|\phi|^2 - \varepsilon)|f_1|^2 + (1 - \varepsilon)|f_2|^2 + 2\operatorname{Re}((\phi - \varepsilon)f_1\overline{f_2})\} Wdm \ge 0.$$

By the Cotlar-Sadosky's lifting theorem, $\varepsilon \le |\phi|^2$, $\varepsilon \le 1$ and there exists a k in H^1 such that

$$|(\phi - \varepsilon) W - k|^2 \le (1 - \varepsilon)(|\phi|^2 - \varepsilon) W^2$$

$$= \{1 - \varepsilon(|\phi - 1|/|\phi - \varepsilon|)^2\} |(\phi - \varepsilon) W|^2.$$

Since ϕ and $(\phi-1)^{-1}$ are in L^{∞} , there exists a constant ρ , $0 \le \rho < 1$ such that

$$\varepsilon(|\phi-1|/|\phi-\varepsilon|)^2 \ge 1-\rho^2$$
.

Hence

$$|(\phi - \varepsilon)W - k| \leq \rho |\phi - \varepsilon|W.$$

Since

$$|\phi - \varepsilon| \ge |\phi| - \varepsilon \ge \varepsilon^{1/2} (1 - \varepsilon^{1/2}) > 0$$
,

 $(\phi - \varepsilon)^{-1}$ is in L^{∞} , and

$$||1-k/\{(\phi-\varepsilon)W\}||_{\infty} \leq \rho < 1.$$

By Theorem 2, this implies $S_{\phi-\varepsilon, (W)}$ is left invertible.

COROLLARY 4. Suppose ϕ is in L^{∞} and W is a weight. If there existes a real function s in L^1 such that $\phi = e^{is} |\phi|$, and $We^{\bar{s}}$ is in L^1 , then the following conditions (1) and (2) are equivalent.

- (1) $S_{\phi,(W)}$ is left invertible.
- (2) ϕ^{-1} is in L^{∞} , and $We^{\tilde{s}}$ is in (HS).

PROOF. By Theorem 2, (1) implies ϕ^{-1} is in L^{∞} and there exists a k in H^1 such that $||1-k/(\phi W)||_{\infty} < 1$. Hence

$$||1 - (ke^{\tilde{s} - is})/(|\phi| We^{\tilde{s}})||_{\infty} < 1.$$

Since $|\phi|We^{\tilde{s}}$ is in L^1 , $ke^{\tilde{s}-is}$ is in H^1 . By Corollary 2, $|\phi|We^{\tilde{s}}$ is in (HS) and hence $We^{\tilde{s}}$ is in (HS). Conversely, (2) implies $|\phi|We^{\tilde{s}}$ is in (HS). By Corollary 2, there exists a k in H^1 such that $||1-k/(|\phi|We^{\tilde{s}})||_{\infty} < 1$. Hence

$$||1-ke^{is-\tilde{s}}/(\phi W)||_{\infty} < 1.$$

By Theorem 2, this implies (1). This completes the proof.

COROLLARY 5. Suppose ϕ is in L^{∞} and W is a weight. Suppose the argument of ϕ is in L^1 and it's harmonic conjugate function is in L^{∞} . (This condition is satisfied if ϕ is invertible in H^{∞} , or the argument of ϕ is Dini continuous.) Then the following conditions (1) and (2) are equivalent.

- (1) $S_{\phi,(W)}$ is left invertible.
- (2) ϕ^{-1} is in L^{∞} , and W is in (HS).

PROOF. There exists a real function s in L^1 such that $\phi = e^{is}|\phi|$ and \tilde{s} is in L^{∞} . Hence $We^{\tilde{s}}$ is in L^1 . By Corollary 4, ϕ and W satisfy (1) if and only if ϕ^{-1} is in L^{∞} , and $We^{\tilde{s}}$ is in (HS). Since $e^{\tilde{s}}$ is invertible in L^{∞} , $We^{\tilde{s}}$ is in (HS) if and only if W is in (HS). This completes the proof.

§ 3. Invertibility.

When P_+ is continuous in the norm of $L^p(W)$, Rochberg [18] solved the invertibility problem of the Toeplitz operator on the weighted Hardy space $H^p(W)$. When $S_{\phi,(W)}$ has a bounded inverse operator, we shall say $S_{\phi,(W)}$ is invertible.

Prof. T. Nakazi privately communicated me the equivalence of simple conditions (1) and (2) in Theorem 3. We shall prove Theorem 3 using Theorem 2. In Theorem 3, we shall give the form of the inverse to $S_{\phi,(W)}$.

THEOREM 3. Suppose ϕ is in L^{∞} and W is a weight. Then the following conditions on ϕ and W are mutually equivalent.

- (1) $S_{\phi,(W)}$ is invertible.
- (2) ϕ^{-1} is in L^{∞} , and there exists a real constant c and a real function V in L^{1} such that We^{V} is in (HS), and

$$\phi/|\phi| = e^{i(c-\tilde{V})}$$
.

- (3) ϕ^{-1} is in L^{∞} , and there exist outer functions α , β such that $|\alpha|^2 W$, $|\beta|^2 W$ are in (HS), and $\phi = \overline{\beta}/\alpha$.
- (4) ϕ^{-1} is in L^{∞} , and there exists an outer function k in H^1 such that $||1-k/(\phi W)||_{\infty} < 1$.

Suppose $S_{\phi,(W)}$ is invertible. Let T be the operator defined in Lemma 2 with Q=1. Then $S_{\phi,(W)}^{-1}=J^{-1}T$. For all g in $\phi A + \overline{A}_0$,

$$S_{\phi,(W)}^{-1}g = (\alpha P_+ + \overline{\beta}P_-)(g/\overline{\beta}).$$

PROOF. We shall show that (1) implies (2). Since $S_{\phi,(W)}$ is invertible, by Theorem 2, there exists an inner function Q and a real function V in L^1 such that We^V is in (HS), and $\phi/|\phi| = Qe^{-i\tilde{V}}$. Since $S_{\phi,(W)}$ is invertible, there exists an f in $L^2((W))$ such that $S_{\phi,(W)}f=1$. Hence there exists an f_1 in $H^2(W)$ and an f_2 in $\overline{H}_0^2(W)$ such that $\phi f_1 + f_2 = 1$. Then,

$$Qf_1(1-\overline{f_2})e^{-i\tilde{V}-V}=|1-f_2|^2W/(|\phi|We^V)\geq 0.$$

Since ϕ is invertible in L^{∞} and We^{V} is in (HS), $(|\phi|We^{V})^{-1}$ is in L^{1} . Since f_{2} in $\overline{H}_{0}^{2}(W)$, $|1-f_{2}|^{2}W$ is in L^{1} . Hence the left hand side is a non-negative function in $H^{1/2}$. By the Neuwirth-Newman theorem, $Q=e^{ic}$ for

some real constant c. Hence $\phi/|\phi| = e^{i(c-\tilde{V})}$. This implies (2). By Theorem 2 and it's proof with $Q = e^{ic}$, (2) implies (3). We shall show that (3) implies (1). By Lemma 1 and Lemma 2, it is sufficient to show that $R_{\phi,W}$ is right invertible. Let T be the operator defined in Lemma 2 with Q = 1. By (3), $\log W$ is in L^1 . Hence there exists an outer function h in H^2 such that $W = |h|^2$. Since $|\beta|^2 W$ is in (HS), $(|\beta|^2 W)^p$ is also in (HS) for some p, p > 1. Hence $(|\beta|^2 W)^{-p}$ is in L^1 . For all f in $L^2(W)$,

$$\begin{split} &\int_{\mathbb{T}} |f/\overline{\beta}|^{2p/(p+1)} \ dm \\ &\leq &\{\int_{\mathbb{T}} |f|^2 \ W \ dm\}^{p/(p+1)} \{\int_{\mathbb{T}} (|\beta|^2 W)^{-p} \ dm\}^{1/(p+1)} < \infty. \end{split}$$

Since 2p/(p+1)>1, by the Riesz theorem (cf. [13, p. 132]), $P_+(f/\overline{\beta})$ is in $H^{2p/(p+1)}$. Since $|\alpha|^2W$ is in (HS), by the Helson-Szegö theorem, there exists a constant γ such that for all f in $L^2(W)$,

$$\begin{split} &\int_{\mathbb{T}} |\alpha h P_{+}(f/\overline{\beta})|^{2} \ dm = \int_{\mathbb{T}} |P_{+}(f/\overline{\beta})|^{2} |\alpha|^{2} \ W \ dm \\ &\leq \gamma \int_{\mathbb{T}} |f/\overline{\beta}|^{2} |\alpha|^{2} \ W \ dm \leq \gamma \|\phi^{-1}\|_{\infty}^{2} \int_{\mathbb{T}} |f|^{2} \ W \ dm < \infty. \end{split}$$

Hence $\alpha h P_+(f/\overline{\beta})$ is in H^2 . Similarly, $\overline{\beta} h P_-(f/\overline{\beta})$ is in $\overline{H_0^2}$. By the Beurling theorem (cf. [13, p. 110]), there exists a sequence g_n in A such that hg_n converges to $\alpha h P_+(f/\overline{\beta})$ in the norm of L^2 . Hence g_n converges to $\alpha P_+(f/\overline{\beta})$ in the norm of $L^2(W)$. This implies $\alpha P_+(f/\overline{\beta})$ is in $H^2(W)$. Similarly, $\overline{\beta} P_-(f/\overline{\beta})$ is in $\overline{H_0^2}(W)$. Hence

$$R_{\phi,W}Tf = R_{\phi,W}\langle \alpha P_{+}(f/\overline{\beta}), \ \overline{\beta}P_{-}(f/\overline{\beta})\rangle$$

= $\phi \alpha P_{+}(f/\overline{\beta}) + \overline{\beta}P_{-}(f/\overline{\beta}) = \overline{\beta}(P_{+} + P_{-})(f/\overline{\beta}) = f.$

Hence $T = R_{\phi,W}^{-1}$. We shall show that (2) implies (4). By (2), there exist u, v in L^{∞} and a real constant c such that $||v||_{\infty} < \pi/2$, $We^{v} = e^{u+\tilde{v}}$ and $\phi/|\phi| = e^{i(c-\tilde{v})}$. Hence there exists a real constant c' such that

$$\phi/|\phi| = e^{i\{c'+V-(u-\log W)^{-}\}}.$$

Put $k=e^{ic'-(u-\log W)-i(u-\log W)^-}$, then k is an outer function. Since $|k|=We^{-u}$, k is in H^1 . Put $\varepsilon=(\cos\|v\|_{\infty})/\|\phi e^u\|_{\infty}$, then $\varepsilon>0$, since $\|v\|_{\infty}<\pi/2$. Put $\gamma=\|(\phi e^u)^{-1}\|_{\infty}$, then

$$\varepsilon \le (\cos v)/(|\phi|e^u) = \operatorname{Re}\{k/(\phi W)\}$$

$$\le |k|/|\phi W| = |\phi e^u|^{-1} \le \gamma.$$

This implies (let the reader make a diagram)

$$|\gamma^2/\varepsilon - k/(\phi W)| \leq (\gamma/\varepsilon)(\gamma^2 - \varepsilon^2)^{1/2}$$

Put $k' = (\varepsilon/\gamma^2)k$, then k' is an outer function in H^1 such that

$$|1-k'/(\phi W)| \leq \{1-(\varepsilon/\gamma)^2\}^{1/2} < 1.$$

This implies (4). We shall show that (4) implies (2). By (4), $k/(\phi W)$ is invertible in L^{∞} . Since $\log |k|$ is in L^1 , $\log W$ is in L^1 . Since ϕ^{-1} is in L^{∞} , k/W is invertible in L^{∞} . Put $g=(k/W)e^{-i(\log W)^{-}}$, then g is invertible in H^{∞} . Hence there exists a real function u in L^{∞} and a real constant c such that $g=e^{u+i(\bar{u}+c)}$. Since

$$||1(g/\phi)e^{i(\log W)^{\sim}}||_{\infty} = ||1-k/(\phi W)||_{\infty} < 1,$$

there exists a real function v in L^{∞} such that $\|v\|_{\infty} < \pi/2$, and $(g/\phi)e^{i(\log W)^{\gamma}} = |g/\phi|e^{-iv}$. Put $V = \tilde{v} - u - \log W$, then $We^{V} = e^{\tilde{v} - u}$. Hence We^{V} is in (HS), and there exists a real constant c' such that $\phi/|\phi| = e^{i(c'-\tilde{V})}$. This completes the proof.

REMARK. (a) Rochberg [18] showed that if We^V and $We^{V'}$ are in (HS), and $e^{i(c-\tilde{V})} = e^{i(c'-\tilde{V}')}$, then V-V' is a constant.

- (b) If $|\alpha|^2 W$, $|\beta|^2 W$, $|\alpha'|^2 W$ and $|\beta'|^2 W$ are in (HS) and $\overline{\beta}/\alpha = \overline{\beta'}/\alpha'$, then there exists a constant c such that $\alpha' = c\alpha$ and $\beta' = \overline{c}\beta$, since α'/α , β'/β and their complex conjugate functions are in H^1 , and hence they are constants.
- (c) If W^{-1} is in L^1 and $S_{\phi,(W)}$ is invertible, then $S_{\phi,W}$ and $S_{-\phi,W}$ have a dense range, and there exists a positive constant δ such that for all f in $A + \overline{A_0}$,

$$\delta \|f\|_{W} \le \min\{\|S_{\phi}f\|_{W}, \|S_{-\phi}f\|_{W}\}.$$

COROLLARY 6. Suppose ϕ is in L^{∞} and W is a weight such that W^{-1} is in L^{1} . Then, $S_{\phi,(W)}$ is invertible if and only if $S_{\phi,(W)}$ and $S_{\overline{\phi},(W^{-1})}$ are left invertible.

PROOF. Suppose $S_{\phi, (W)}$ and $S_{\overline{\phi}, (W^{-1})}$ are left invertible. By Theorem 2, there exist inner functions Q, Q' and real functions V, V' in L^1 such that We^V , $W^{-1}e^V$ are in (HS), and $\phi/|\phi| = Qe^{-i\tilde{V}}$, $\overline{\phi}/|\phi| = Q'e^{-i\tilde{V}}$. Hence

$$QQ'e^{-(V+V')-i(V+V')^{2}}=e^{-(V+V')}\geq 0.$$

Since $W^{-1}e^{-V}$, $We^{-V'}$ are in L^1 , $e^{-(V+V')/2}$ is in L^1 . By the Neuwirth-Newman theorem, Q and Q' are constants. By Theorem 3, $S_{\phi,(W)}$ is invertible. Suppose $S_{\phi,(W)}$ is invertible. By Theorem 3, there exists a real constant c and a real function V in L^1 such that We^V is in (HS), and $\phi/|\phi|=e^{i(c-\tilde{V})}$. Hence $W^{-1}e^{-V}$ is in (HS), and $\overline{\phi}/|\phi|=e^{i(-c-(-\tilde{V}))}$. By Theorem 2, this

implies $S_{\bar{\phi},(W^{-1})}$ is left invertible. This completes the proof.

Acknowledgement. We are very grateful to the referee, who improved the exposition in the first draft of this paper.

References

- [1] R. AROCENA, M. COTLAR and C. SADOSKY, Weighted inequalities in L^2 and lifting properties, Math. Anal. Appl., Adv. in Math. Suppl. Stud. 7A (1981), 95-128.
- [2] A. BÖTTCHER and B. SILBERMANN, Analysis of Toeplitz Operators, Springer Verlag, Berlin, 1989.
- [3] A. BÖTTCHER and I. M. SPITKOVSKY, Toeplitz operators with PQC symbols on weighted Hardy spaces, J. Funct. Anal. 97 (1991), 194-214.
- [4] K. CLANCEY and I. GOHBERG, Localization of singular integral operators, Math. Z. 169 (1979), 105-117.
- [5] M. COTLAR and C. SADOSKY, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, Proc. Symp. Pure Math. Amer. Math. Soc. 35 I (1979), 383-407.
- [6] A. DEVINATZ, Toeplitz operators on H^2 spaces, Trans. Amer. Math. Soc. 112 (1964), 304-317.
- [7] M. DOMINGUEZ, Invertibility of systems of Toeplitz operators, Operator Theory, Advances and Applications, Vol. 50, 171-190, Birkhäuser Verlag, Basel, 1991.
- [8] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [9] I. GOHBERG and I. FELDMAN, Convolution Equations and Projection Methods for Their Solution, Transl. Math. Monographs, Vol. 41, Amer. Math. Soc., 1974.
- [10] I. GOHBERG, S. GOLDBERG and M. A. KAASHOEK, Classes of Linear Operators, Birkhäuser Verlag, Basel, 1990.
- [11] I. GOHBERG and N. KRUPNIK, One-Dimensional Linear Singular Integral Equations, Birkhäuser Verlag, Basel, 1992.
- [12] H. HELSON and G. SZEGÖ, A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138.
- [13] P. KOOSIS, Introduction to H_p Spaces, London Math. Society Lecture Note Series 40, Cambridge Univ. Press, 1980.
- [14] G. S. LITVINCHUK and I. M. SPITKOVSKII, Factorization of Measurable Matrix Functions, Birkäuser Verlag, Basel, 1987.
- [15] T. NAKAZI and T. YAMAMOTO, Some singular integral operators and Helson-Szegö measures, J. Funct. Anal. 88 (1990), 366-384.
- [16] J. NEUWIRTH and D. J. NEWMAN, Positive $H^{1/2}$ functions are constants, Proc. Amer. Math. Soc. 18 (1967), 958.
- [17] N. K. NIKOL'SKII, Treatise on the Shift Operator, Springer Verlag, Berlin, 1986.
- [18] R. ROCHBERG, Toeplitz operators on weighted H^p spaces, Indiana Univ. Math. J. 26 (1977), 291-298.
- [19] I. B. SIMONENKO, Some general questions in the theory of the Riemann boundary problem, Math. USSR-Izv. 2 (1968), 1091-1099.
- [20] M. SHINBROT, On singular integral operators, J. Math. Mech. 13 (1964), 395-406.
- [21] H. WIDOM, Inversion of Toeplitz matrices II, Illinois J. Math. 4 (1960), 88-99.

[22] T. YAMAMOTO, On the generalization of the theorem of Helson and Szegö, Hokkaido Math. J. 14 (1985), 1-11.

Department of Mathematics Hokkai-Gakuen University Sapporo 062, Japan