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Abstract. Let P, be an analytic projection and let P- be a co-analytic
projection. Let L*(W) be the usual weighted Lebesgue space on the unit
circle. For some weight W, P. is not continuous in the norm of L* W).
We shall define the Hilbert space L%(W)) such that for any weight W, P.
is continuous from L*((W)) to L*(W). For an essentially bounded func-
tion ¢, we shall consider a singular integral operator ¢P,+ P- as a dense-
ly defined continuous operator from L*(W)) to L*W). Then Ss,mw)
denotes the bounded extension of ¢P.+ P-. Necessary and sufficient con-
ditions for the (left) invertibility of Se,w) are given as applications of the
Cotlar-Sadosky’s lifting theorem. Our results involve the Helson-Szego
theorem and the Widom-Devinatz-Rochberg theorem.

§1. Introduction.

Let C(T) be an algebra of all continuous functions f on the unit circle
T, and let A be a disc algebra of all functions f in C(T) whose negative
Fourier coefficients vanish. For 1=<p<oo, let L?*=L*(T) denote the L*
space of T with respect to the normalized Lebesgue measure » on T. Put
Ao={f: f is in A, and /Tf dm=0}, and put Ao={f; f is in As}. By f

we denote the complex conjugate function of /. Let H? be the subspace
of L? consisting of functions whose negative Fourier coefficients vanish.

Put Hf={f; f is in H?, and /T- f dm=0}, and put H{={f: f is in Hf}.

For an f in L', its harmonic conjugate function f is defined by
f(e“’)=£ cot[%]f(e”)dm(e“),

the integral being a Cauchy principal value. A function @ in H” is an
inner function if |@|=1. A function % is an outer function if there exists a
real function V in L' and a real constant ¢ such that z=eV*V*e Let
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H'? denote the subspace of functions of the form Q#* where @ is an inner

function and % is an outer function in H'. The singular integral operator
S is defined by

SHO=— [ L2y, ()

(cf. [2, p.38]). The analytic projection P, and the coanalytic projection
P_ is defined by P.=(I+S)/2 and P-=(I—S)/2. Then,
SHE=(P.= PIAO=if (O)+ [ 7 dm.

For a ¢ in L”, the singular integral operator ¢P;+ P- is denoted by S, for
short. In this paper, a positive function W in L' is said to be a weight.
For a weight W, LP(W)(1<p<0) is a space of m-measurable functions
equipped with the norm

I, w1 [1£12 Wt} <co.

The weighted Hardy space H?(W) (resp. Hf(W)) is the norm closure of
A (resp. Ao) in L?(W). When we consider S, as an densely defined oper-
ator in LP(W), we wright S¢=Ss»w. Se»w may not be continuous. In
this paper, we shall consider the case p=2, and remain entirely in Hilbert
spaces. L*(W) is a Hilbert space equipped with the inner product

(7, &)w= [ f& Wam.

We shall wright Sezw as Sew, and ||*|z.w as ||*|w for short. For an f in
the algebraic sum A+ A,, we shall define the inner product

(f, &)om=(P:f, P.g)w+(P-f, P-g)w.

Then A+ Ao becomes a pre-Hilbert space. L*(W)) denotes the comple-
tion of A+ Ay with norm |||(w, defined by

||f”(w>:(f, f)(W)”z-

Then L*((W)) is a Hilbert space, and P: is a contraction operator from
LAH(W)) to LAW), since for all f in A+ A,,

1P+ fllw < llow).
We shall define the Helson-Szego class (HS) as follows (cf. [12]).
(HS)={e**7; uw and v in L, |v]~< 7/2}.
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If Wisin (HS), then W is also in (HS), and hence W 'isin L'. If W
is in (HS), then ||*|w and |+lw) are equivalent norms. If W is not in
(HS), then Ss, w may not be continuous. For a general weight W, S, is a
continuous operator from L*(W)) to L* W), that is, there exists a con-
stant ¢ such that for all f in A+ A,

||S¢f||W§C||f“(W)-

In fact, we can take c=2"% max{||¢|~, 1}. Let Sy ) denote the bounded
extension of S,. Hence S, (w) is a bounded operator from L*((W)) to
LA(W) satisfying Se.w) f=Ssf for all f in A+A,. We shall study the
(left) invertibility of Ss, (w) using Hilbert space methods and the following

Cotlar-Sadosky’s lifting theorem (cf.[1], [5], [15], [22]).

THEOREM(Cotlar-Sadosky). Suppose Wi, Wo, Ws are in L', and W,
Wo are real functions. Then the following conditions (1) and (2) are
equivalent.

(1) For all fi in A and f» in A,
ﬁ (AP Wi+ |£a* Wa+2Re(fi 2 Wa)}dm 0.

(2) Wi=0, Wa=0 and there exists a k in H' such that
|\ Ws— k< Wi Wa.

When W=1, Doninguez studied the invertibility of systems of
Toeplitz operators using the Cotlar-Sadosky’s type lifting theorem. When
W is in (HS), Rochberg defined the Toeplitz operator 7y,p,w On
H*(W) by Tepw f=Pi(¢f) for all f in H?(W), and got the necessary
and sufficient condition for the invertibility of Ty»w (cf.[2, p.216], [3].
If P, is continuous in the norm of L?(W), then Ty w is (left) invertible if
and only if Sspw is (left) invertible (cf.[9, p.124], [17, p.393]). When W
=1, Widom and Devinatz considered the left invertibility and the
invertibility of Ty and S, (cf.[8, p.187], [17, p.371]). Shinbrot con-
sidered the invertibility of Sy on L? and derived the method for finding the
inverse operator of Sy. Many generalizations of these results have been
considered (cf.[2], [3] [4] [10], [11], [14]). For functions @ and B in L%,
the continuity of a@P:+ BP- in the norm of L*(W) was considered in our
preceding paper [15]. For a general weight W, aP.+AP- has a bounded
extension which is (left) invertible as an operator from L*(W)) to L*(W)
if and only if 7!, 87! are in L™ and Sasm) is (left) invertible. When W
is in (HS), we can give a simple necessary and sufficient condition for the
(left) invertibility of Se,w. But when W is not in (HS), we can not give a
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simple condition.

In Section 2, by the Hilbert space methods and the Cotlar-Sadosky’s
lifting theorem, we shall give necessary and sufficient conditions for the
left invertibility of S¢,w). Theorems 1 and 2 are main theorems. In Sec-
tion 3, Theorem 3 is the main theorem. We shall give necessary and
sufficient conditions for the invertibility of Ss,(w) using the results of Sec-
tion 2.

The author wishes to thank Prof. T. Nakazi for many helpful conver-
sations.

§ 2. Left invertibility.

In Theorem 1 and Theorem 2, we shall give necessary and sufficient
conditions for the left invertibility of the singular integral operator Sy, w).
When Ss,w) is bounded and has a bounded left inverse operator, we shall
say Se.w) is left invertible. Since Ss,w) is always bounded, Sy,w) is left
invertible if and only if Ss,w) is bounded below. When W is not in (HS),
we have been unable to give a simple necessary and sufficient condition for
the left invertibility of Ss,w). For the left invertibility of Se,w), Prof. T.
Nakazi suggested the simple condition (2) in Theorem 2, and the equiva-
lence of (2) and (5). We use the Cotlar-Sadosky’s lifting theorem to
prove Theorem 1. We use Theorem 1 to prove Theorem 2. Each Theo-
rem involves the Helson-Szegt theorem (cf.[12]). We shall consider
weighted norm inequalities.

THEOREM 1. Suppose |¢|=1, W is a weight, & is a constant
satisfying 0<8=1, and put

r=5(2—8°)"

Then the following conditions (1) and (2) are equivalent.
(1) For all f in A+ A,

Sl lom=ISefllw.

(2) There exists an inner function Q, a real function V in L', u and v
im L™ such that

¢=Qe‘“7, WeV:eu+5’
lvlle<cos™»<x/2, |u|<cosh™{(cos v)/r}.

PrROOF. We shall use the idea of Rochberg (cf.[18]) and the idea of
Arocena, Cotlar and Sadosky (cf.[1], [5]). We shall show that (1)
implies (2). By (1),
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82£(1f1|2+|f2|2)w dm§ﬁ|¢f1+fz|2 W dm,

for all £ in A and f2 in Ao. Hence

J{Q= AP +14P)+2Re(df TN W dmzo0.

By the Cotlar-Sadosky’s lifting theorem, 6 <1 and there exists a % in H'
such that

lpw—k|=(1—6*)W.
Since |¢|=1,

|W—|k|<|oW —k|<(1—-0%) W= W.
Hence

FPWEIk=2W.

Since W is a non-zero function, £ is a non-zero function in H!. Hence
log Wisin L'. Put g=ke e¥-1eW)r  Gince |¢p|=1,

|1— pgeloeWr|<1— 62

Since 0<8=1 and »=06(2—6%"%, 0<r»<1. Then there exists a real func-
tion v in L* such that

pge =" =|gle™",
olle<cos™tr < x/2

(cf.[15, Lemma 2]). Hence (cos v)/» =1. Since &*<|g|<2, g is in H<
and there exists an inner function o and a real function « in L* such that
g=7rtoe . Since ¢ge’ " =y " we have

[1—re *?|<1—6%
Since # is a positive constant and

1—re P —(1—06%)2=r*e2*—2{cosv)/r}e *+1},
we have

e 2 —2{(cos v)/r}e *+1=0.
Since (cos v)/r 21, we have

|| < cosh™{(cos v)/r}.

Put V=u+ 0 —log W, then V is in L', and there exists a real constant ¢
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such that V=ad—v—(_logW) +c. Put @=@we*, then
b= gew o W) | g| = Qelv= i+t W)= Qg7
We shall show that (2) implies (1). By (2),
e 2 —2{(cos v)[r}e *+1=0.
By the calculation,
|1—re ¥ ?|<1—6%
Put k=¢Wre ", then k is in H', since
b=yQe VHu+ P-Vmumiv= Qe V=iV g7,
Hence
oW —k|=|¢W(1—re ™ ?)|=(1-6)W.
By the Cotlar-Sadosky’s lifting theorem, for all /1 in A and f> in Ao,

JH= &)U+ 17+ 2Re( @ F2)) Wm 20,

Since |¢]=1,

8 [+ Wam= [ 16+ £ Wam.

This implies (1). This completes the proof.

COROLLARY 1. Suppose ¢ is in L= and W is a weight. Then the
following conditions ave mutually equivalent.
(1) So.w) is an isometry, that is, for all f in A+ A,

||S¢f||w‘—‘||f”(W)-
(2) |él=1, and for all f in A+ A,
1Al =1Sefllw.

(3) There exists an inner function Q and a real function V in L' such
that $=Qe "V and We'=1.

PrROOF. By (1), for all i in A,
ﬁ (I¢l*=DIAP Wdm=0.

This implies |¢|=1. Hence (1) implies (2). By Theorem 1, (2) and (3)
are equivalent. By (3), W= Qe~ """ and ¢W is in L'. This implies
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¢W is in H', and hence for all 1 in A and f; in A,

J1si-+ A Wam— [(AP+\1f2) Wt
=2Re£¢f1ﬁde=O.

This implies (1). This completes the proof.

Let H(W)® HX W) denote the algebraic direct sum of H*(W) and
HEW) (cf.[8, p.78]). Then HAW)® HE(W) is the Hilbert space equipped
with the inner product

(<f1, fz>, {gi, gz>)<W>:(f1, gl)w+(f2, gz)w,

and the norm

<A, f2ollamn=~KA, >, <A, f2>)ms.

For any f in L*(W)), there exists a sequence fi» in A and a sequence fzx
in A, such that fin+fan converges to f in the norm of L3*((W)). Then
there exists an fi in HX W) and an f: in HZ W) such that {fin, f2n> con-
verges to <A, /> in the norm of H*W)® HW). Let J denote the
isometry from L*((W)) onto H¥(W)® H¥ W) defined by

Jf=<Ah, 2.

This definition is correct in the sense that it does not depend on the partic-
ular choice of the Cauchy sequence which defines fi and f.. Let Ry w
denote the operator from HXW)® H¢(W) to LA W) defined by

R¢,W<fl, f2>: ¢f1+f2.

LEMMA 1. Suppose ¢ is in L=, and W is a weight. Then Rsw is a
bounded operator from H*(W)® HE (W) to LAW). Rsw is (left)
invertible if and only if Sew) is (left) invertible.

PROOF. Ry,w is bounded, since for all <A, 2> in HA(W)® H W),

|Rs,w<f, £l w =max{l|lw, L}(lAllw+Irfllw)
<2"’max{||glle, <A, £l

Since Sy, wmy=Resw J, Ro,w is (left) invertible if and only if Sew) is (left)
invertible.

LEMMA 2. Suppose ¢, ¢ arve in L™ and W is a weight. If there
exists an inner function Q, outer functions a, B such that |a|*W, |B*W
are in (HS), and $=QRB/a, then Rsw and Sesw) ave left invertible. If
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T 1s defined by

Tf=<aP(Qf]B), QBP-(QfIB),

for all f in LAW), then T is the left inverse to Rew, and J'T is the
left inverse to Sewy. Then

J ' Tg=(aP:+ QBP-)(Qg/B),
for all g in $A+ A,.

PROOF.  Since |a|*W, |B*W are in (HS), (la*W)™, (|B?W)™! are also
in (HS). Hence (la*W)™, (I8PW)™" are in L'. For all f in LA W), by
the Schwarz inequality, f/8 is in L'. By the Helson-Szegs theorem (cf.
[12]), there exist constants 7, 7’ such that

| Tf\cw= [ 1aPAQABNW dm+ [|QBP-(QFIBE W dm
<y (18RIl W dm~+y [|\QAIBPIBEW dm
<(rlo~ et v) [17FW dm.

For all /i in HX(W) and f. in H{(W), by the Schwarz inequality, fi/e is in
H, and Qf./8 is in Hs. Hence

aP(Q(¢fi+1)/B)=aP.fila+ Qf/B)=aP.(fi)a)=f,
QBP-(Q(¢fi+12)|B)=QBP-(fila+ Qf/B)=QBP(Q/B)=1e.

This implies aP.(Qf/B) is in HAW) and QBP-(Qf/B) is in HHW).
Hence

TR¢,W<f1, f2>: T(¢f1+f2):<f1, fz>

Hence T is the left inverse to Rs,w. By [Lemma 1, /' 7 is the left inverse
to Se,w). For any g in #A+ A,, there exists a g1 in A and a & in A, such
that g=¢gi+g. By the calculation, aP.(Qg/B)=g, and QBP-(Qg/B)=g.
Hence aP.(Qg/fB) is in A, and QBP-(Qg/B) is in A,. Hence

J' Te=]aP(Qg/B), QBP(Qg/B)> L
=aP.(Qg/B)+ QBP-(Qg/B)=(aP.+ QBP-)(Qg/B).

This completes the proof.

THEOREM 2. Suppose ¢ is in L* and W is a weight. Then the
following conditions on ¢ and W are mutually equivalent.
(1) Ss.w) is left invertible.
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(2) @' is in L, and there exists an inner function Q and a real
Ffunction V in L' such that We" is in (HS), and

¢/l¢l=Qe .

(3) o' is in L, and there exists an inner function Q, outer functions
a, B such that |al*W, |BI*W are in (HS), and ¢=Qp/e,
(4) ¢7'is in L™, and there exists a k in H' such that

11— %/ (¢ W)]=<1.
(5) There exists a positive constant & such that for all f in A+ A,.
SlAlw =min{l|Sefllw, 1S-sflw}.

PROOF. We shall show that (1) implies (4) and (2). By (1), there
exists a positive constant ¢ such that

Sl Allowr =11 Sofllw,
for all fin A+A,. Hence

J 81— 89IAP+1— 891l +2Rel 9 F2)) Wb 20,

for all f1in A and £z in Ao. By the Cotlar-Sadosky’s lifting theorem, 0< ¢
<1, 0=|¢| and there exists a £ in H' such that
|pW — k< (1—06%)"(|¢*— 652 W <(1—6°)"*¢| W.

This implies 4). Put ¢o= g logl#l=iogléh ) — pologlél—illogld)™  and
So={1—(1—6%"Y3"2 Then |¢o|=1, 0< 80 1, ko is in H' and

| W —ko| <(1—85)W.
By the Cotlar-Sadosky’s lifting theorem,

ﬁ (1= ) AP+1AP) +2Re(gofi 7)) Welm =0,

Hence, for all f in A+ A,,
Soll fllow) =[1Spof | w.

By [Theorem 1, there exists an inner function @, a real function V in L}
and %, v in L* such that

¢0: Qe—if/’ Wevze“ 5,
lvle=<cos™'8< 7/2, |v|<cosh™{(cos v)/5},

since 8(2—8%)"*=¢8. Hence
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b/ | = doeoeldh = Qg =iV -logld)™

WeV 1081# — pu—loglglt o

Since 8=|¢|, log|é| is in L. This implies u—log|¢| is in L, and hence
We"98? is in (HS). We shall show that (2) implies (3). Put U=log|d|,
then U is in L*. Put

a= e%(V—U+i(V—U)~) B:e%(v+u+i(V+U)~)
’

’

then @, S are outer functions, and ¢=@QpB/a. Since We' is in (HS), |a*W
and |B)2W are in (HS). This implies (3). By Lemma 2, (3) implies (1).
We shall show that (4) implies (1). By (4), there exists a constant ¢ and
a kin H' such that 0<8=<1, §<|¢*, and |pW —£k|<(1—0)|¢|W. Then

(1=8*)(Ig)*—0%)—(1—06)| ¢l
=8(1—0){2l¢f —o(1+0)}
226(1—-06)(|¢|*— o) =0.

Hence
| W — kIP<(1—6°)(|g°— 6%) W™
By the Cotlar-Sadosky’s lifting theorem, for all 1 in A and f: in A,,

J 91— ENAR+(1 =891 faP+2Re(gfs 7o)} Welm 20.

This implies (1). Since

| AR+ SA=Ps.f + P-f i+ P f — P-flf
=2(1P+ A I+ P-£ %) = 2] £IEw,

we have
2V Aoy SN A lw 1S T w = 21 llow.

Hence, Ss.w) is left invertible if and only if there exists a positive con-
stant & such that for all f in A+ A,

SUAlw +1SAw) <[1Sefllw.
Since S’/ =f and SpSf=Ss(P.—P.)f=¢P.f—P_f=—S_4f, we have
Sef =SeS%f=—S_,5f.
Hence
SIAlw=lSoflw, SISFlw=1S-oSflw.
Since f is in A+ A, if and only if Sf is in A+ A4, (1) and (5) are equiva-
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lent. This completes the proof.

REMARK. (@) If Ssw) is left invertible, then log W is in L', and
theve exists an inner function Q, real functions w, v in L” such that
lolle< /2 and

/19| = Qettr=tu- o),

(b) By condition (2), Ss.w) is left invertible if and only if ¢' is in L
and S, (w) 1S left invertible.

The equivalence of conditions (3) and (4) in is the Helson
-Szegs theorem (cf.[12]). Since |I£1%+ISFI%=2|fl#w), we have

1w <22 fllws.

COROLLARY 2. For a weight W, the following conditions are
mutually equivalent.

(1) [Suaml<2Y2.  That is, there exists a positive comstant € such that for
all f in A+ A,

1A lw = 22—l llcw

(2) S, w) is left invertible. That is, there exists a positive constant o
such that for all f in A+ A,

SIAlm =1 £llw.
(3) There exists a positive constant y such that for all f in A+ A,
1P fllw=7l7lw.

(4) W is in (HS).
(5) There exists a k in H' such that

11— &/ We<1.

PrROOF. We shall show that (1) implies (2). By (1), there exists a
positive constant ¢ such that

11— Falbr= 2 — 65| Allw+ 1 £ell),
for all A1 in A and 2 in Ao. Hence

(1= ANALRA (1= fal+2Re(f, f2)w20.
Hence

SUARA LI A+ fllw.



192 T. Yamamoto

This implies (2). This proof is reversible. Since |[P:fllw=Ifllw), (2)
implies (3). We shall show that (3) implies (2). By (3),

| P-flw=\Pefllw+ £ lw= 717w,

for some constant . Hence
118wy =1 P AR+ P_AIor= (2 + 72N A

This implies (2). We shall show that (2) implies (4). By [Theorem 2,
there exists an inner function @ and a real function V in L' such that
We" is in (HS) and Qe V=1. Since 1/(We") is also in (HS), 1/(We") is
in L'. By the Schwarz inequality, e "? is in L'. Since Qe V V=e7", a
positive function e”" is in H"%. By the Neuwirth-Newman theorem (cf.
[16]), V is a constant. Hence W is in (HS). Conversely when W is in
(HS), we can choose @=1, V=0, and ¢=1 in the condition (2) of Theo-
rem 2. Hence (4) implies (2). When ¢=1, by [Theorem 2, Siw) is left
invertible if and only if there exists a # in H' such that |1—A/W|.<]1.
Hence (2) and (5) are equivalent. This completes the proof.

Put W(e®)=[1—¢e"]? ¢(e?)=¢e" and k(e®®)=(1—e")? then k is in H*
and ¢W+k=0. By [Theorem 2, this implies Ss,w) is left invertible. Since
W='is not in L', W is not in (HS). Then by [Theorem 2, there exists a
positive constant ¢ such that for all f in A+ A,,

Ol A lw=11Sefllw.

By [Corollary 7, the converse is not true. If W is not in (HS), then Siw)
is not left invertible, and Si,w is an isometry. But we have the following
result.

COROLLARY 3. Suppose ¢ and (p—1)"" are in L=, and W is a

weight. If there exists a positive comstant & such that for all f in A
+ A,,

Ol lw=1Saflw,

then Se_e w) is left invertible for any constant € satisfying 0< e= 6>

PROOF. Since €¢<8? for all f in A+ A,,

A{(|¢lz— olfif+1—e)l ol +2Re((¢— &) fi f2)} Wdm 20.

By the Cotlar-Sadosky’s lifting theorem, e<|¢|?, ¢<1 and there exists a %
in H' such that
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(p—e)W—kF=(1—e)(|g*—e) W?
={1—e(p—1/l¢p—e}(p—e) W|*.
Since ¢ and (¢—1)7' are in L=, there exists a constant p, 0=0<1 such

that
e(lg—1l/lp—el)’z1— 0"

Hence
((p—e) W —Fkl=plp—elW.
Since
|p— el =|p| —e=e*(1—€"%) >0,
(p—e)'isin L=, and
11— &/{(¢— ) WHla=p<1.
By [Theorem 2, this implies Sy-e, (w) is left invertible.

COROLLARY 4. Suppose ¢ is in L* and W is a weight. If there
existes a real function s in L' such that ¢=e®|¢|, and We* is in L', then
the following conditions (1) and (2) are equivalent.

(1) Sesw) is left invertible.
(2) ¢ is in L™, and We® is in (HS).

PrOOF. By [Theorem 2, (1) implies ¢! is in L® and there exists a &
in H' such that |1—&/(¢W)|.<1. Hence

11— (ke*=%) /(16| We )]l <1.

Since || We? is in L', keS * is in H'. By [Corollary 2, |¢| We® is in (HS)
and hence We® is in (HS). Conversely, (2) implies |¢|We® is in (HS).
By [Corollary 2, there exists a % in H' such that [|1—4/(|¢| We®)|-<1.

Hence
11— ke /(¢ W)ll-<1.
By Theorem 2, this implies (1). This completes the proof.

COROLLARY 5. Suppose ¢ is in L™ and W is a weight. Suppose the
argument of ¢ is in L' and it’s harmonic conjugate function is n L~
(This condition is satisfied if ¢ is invertible in H”, or the avgument of
¢ is Dini continuous.) Then the following conditions (1) and (2) are
equivalent.

(1) Ss.w) is left invertible.
(2) ¢ is in L=, and W is in (HS).
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PROOF.  There exists a real function s in L' such that ¢=e*|¢| and
§ isin L*. Hence We® is in L'. By [Corollary 4, ¢ and W satisfy (1) if
and only if ¢~ is in L*, and We? is in (HS). Since ef is invertible in L~
We* is in (HS) if and only if W is in (HS). This completes the proof.

§ 3. Invertibility.

When P; is continuous in the norm of L?(W), Rochberg solved
the invertibility problem of the Toeplitz operator on the weighted Hardy
space H?(W). When Syw) has a bounded inverse operator, we shall say
Se.w) 1s invertible.

Prof. T. Nakazi privately communicated me the equivalence of simple
conditions (1) and (2) in Theorem 3. We shall prove using
Theorem 2. In [Theorem 3, we shall give the form of the inverse to Sy (w).

THEOREM 3.  Suppose ¢ is in L™ and W is a weight. Then the
following conditions on ¢ and W are mutually equivalent.
(1) Ss.w) is invertible.
(2) ¢7'is in L=, and there exists a veal comstant ¢ and a real function
V in L' such that We" is in (HS), and

¢/l¢|:ei(c—17).

(3) ¢7'is in L*, and there exist outer fumctions @, B such that |a|*W,
|BPW are in (HS), and ¢=B/a.
(4) ¢'is in L™, and there exists an outer function k in H' such that

I1=&/ (W)l <1.

Suppose Ss,w) is invertible. Let T be the operator defined in
with @=1. Then Se,w)'=J'T. For all g in ¢A+ A,

Se.m 'g=(aP:+ BP-)(g/B).

PROOF. We shall show that (1) implies (2). Since Sy w) is inverti-
ble, by [Theorem 2, there exists an inner function @ and a real function V
in L' such that We" is in (HS), and ¢/|¢|=Qe . Since S, w) is inverti-
ble, there exists an f in L*((W)) such that Ss,w) f=1. Hence there exists
an fi in H¥(W) and an f; in H¥W) such that ¢fi+£=1. Then,

QA= e " V=[1—-£f W/(|¢| We") 20.

Since ¢ is invertible in L* and We" is in (HS), (|¢|We")™ is in L'. Since
foin HE(W), [1—£PW is in L'. Hence the left hand side is a non-nega-
tive function in H'?. By the Neuwirth-Newman theorem, Q=¢%* for
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some real constant ¢. Hence ¢/|¢|=e"“~". This implies (2). By Theo-
rem 2 and it’s proof with @=¢%, (2) implies (3). We shall show that (3)
implies (1). By Lemma 1 and Lemma 2, it is sufficient to show that Rsw
is right invertible. Let T be the operator defined in with Q=1.
By (3), log W isin L'. Hence there exists an outer function % in H* such
that W=|Aa>. Since |B*W is in (HS), (|8*W)? is also in (HS) for some
p, p>1. Hence (|BPW)?isin L. For all f in LA W),

’/r‘lf/ﬁ—lzp/(P+l) dm
é{/;|fl2 W dm}P/(P+1){'/T(|B|2 W)—P dm}ll(p+l)<00_

Since 2p/(p+1)>1, by the Riesz theorem (cf.[13, p.132]), P.(f/B) is in
H#'®+D  Since |a?W is in (HS), by the Helson-Szegtd theorem, there
exists a constant 7 such that for all f in LA W),

[lahP.(IB) dm= [ |P.(AIBlal W dm
<y [11BF\al W dm= g~ [|fF W dm<oo.

Hence ahP.(f/B) is in H? Similarly, 3#P-(f/8) is in Hi. By the Beur-
ling theorem (cf.[13, p.110]), there exists a sequence g» in A such that
hg. converges to ahP:(f/8) in the norm of L?. Hence g. converges to
aP.(f/3) in the norm of LA W). This implies aP.(f/B) is in HXW).
Similarly, BP-(f/8) is in H{(W). Hence

Rs.wTf=Ro.waP:(f]B), BP-(f]B)>
:¢0’P+(f/g)+ BP—(f/E):B(P++P—)(f/,§):f-

Hence T=R,w ' We shall show that (2) implies (4). By (2), there
exist %, v in L® and a real constant ¢ such that |v]-<7/2, We"=e*"? and
$/14l=e"<""). Hence there exists a real constant ¢’ such that

¢/| ¢| — ei{c’-f— V—(u—log W)‘}.

Put k=i («-leW)-iu=loe W) then k is an outer function. Since |k|=We™,
kis in H'. Put e=(cos|v|s)/||¢pe?=, then €>0, since |v|.<z/2. Put y=
I(¢e*) !, then

e<(cos v)/(|¢le*)=Re{k/(sW)}
<I|kl/|pW|=|pe*| ' < 7.

This implies (let the reader make a diagram)
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|7 le— kI (6 W)= (y/e)(y* — M2
Put £'=(e/y*)k, then £’ is an outer function in H' such that
1=k [(@W)|={1—(e/y)?}*<1.

This implies (4). We shall show that (4) implies (2). By (4), k/(¢W) is
invertible in L”. Since log|k| is in L', log W is in L'. Since ¢~'is in L=,
k/W is invertible in L*. Put g=(k/W)e ‘="  then g is invertible in H™.
Hence there exists a real function # in L™ and a real constant ¢ such that
g=e* @) Since

11(g/p)e = " o=I1—k/ (g W)l <1,

there exists a real function v in L* such that |v[«< /2, and (g/¢)eilz"r =
lg/ple™™. Put V=0—wu—log W, then We"=e? * Hence We' is in
(HS), and there exists a real constant ¢’ such that ¢/|¢|=e“~"). This
completes the proof.

REMARK. (a) Rochberg showed that if We' and We" are in
(HS), and " "=e"V then V-V’ is a constant.
(b) If |aPW, |BPW, &' "W and |81*W are in (HS) and Bla=R'la’,
then theve exists a comnstant ¢ such that «’=ca and B =¢eB, since a'la,
B'IB and their complex cownjugate functions ave in H', and hence they
are constants.
(¢) If Wis in L' and Seqw) is invertible, then Sew and S-sw have a
dense range, and there exists a positive constant & such that for all f in
A+ Ao,

Ol A lw=min{l Sefllw, IIS-ofllw}.

COROLLARY 6. Suppose ¢ is in L* and W is a weight such that
W=ids in L'. Then, Sew) is invertible if and only if Sew) and Sz
are left invertible.

PROOF.  Suppose Sy, (w) and Sgw- are left invertible. By
2, there exist inner functions @, @ and real ft_mcfions V, Vi in L' such
that We", W™'e" are in (HS), and ¢/|¢|=Qe ", ¢/|¢|=Q e~"V. Hence

QQ e*(Vﬁ' V) —i(V+ V’)*ze—(V+V’) >0,

Since W™e™", We™" are in L', e "*""? is in L'. By the Neuwirth-New-
man theorem, @ and @ are constants. By [Theorem 3, Ss.(w) is invertible.
Suppose Se,w) is invertible. By [Theorem 3, there exists a real constant ¢
and a real function V in L' such that We" is in (HS), and ¢/|¢|=ei "7,
Hence W™'e™" is in (HS), and ¢/|p|=eil-c=") By [MTheorem 2, this
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implies Sgw~ is left invertible. This completes the proof.

Acknowledgement. We are very grateful to the referee, who im-

proved the exposition in the first draft of this paper.
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