Remarks on L2-well-posed mixed problems for
hyperbolic equations of second order

By Rentaro AGEMmI

§ 1. Introduction and results

We shall start this paper with a general situation which clarifies our
problem.

In the open half space R:"'={zx=(2, z,); ' =(x, 21, "+, Zu_1)ER", ,>0)}
with boundary x,=0, we consider a boundary value problem (P, B;):

Plx, D)u=f in R%™,
B;(x', D)u=g, (j=1,---,1) on R”.

Here D=(D,,---, D,), D;=—1 Eaﬁ, P=P(x, D) is strictly x,-hyperbolic opera-
Ly

tor of order m, B;=B,;(x, D) is a boundary differential operator of order
m;<m and m;#m,; if j#k. Furthermore the hyperplane z,=0 is non-
characteristic for P and B;. The coefficients of P and B, are C*-functions
and constant outside a compact set of R"*.

In this paper we use the functional spaces H, ,(R%*") and H, ,(R") with
non zero real parameter 7 as follows:

H, ,(R™)

I

{u ; e e H* (Ri“)} (k=0: integer),
H, .(R") = {u; e My e H*(R”)} (s: real),
with norms defined by

J+lal=k

w2, = 3 Snﬂle’%?’jD“u(x)de,

(e =S le~ = Mu(x') |2 dx’

R’n

respectively, where
Loula!) = (2;;)-715 F i (1, 8, o) ile, o) dido ,
Rn
12(1_, 0.) =S e«z'rxo—z‘omuu(x/)dxl ,
Rn

AT, 8, 0) = e+ o)) = (e[t + ot - +a2_ ),
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. i)
r=&—1il', o' =aqx,+ - +0,.1x,_, T =(x,2"),
ge R* !,

Remark that the norm ()2, is equivalent to

5 le ™1 D' u(x")|*dx’
J+la’| =k JR"
where D= D' Din=Dg...-Di»7' Din.

In this paper we use the following

DEFINITION. A boundary value problem (P, B;) is L’~well-posed if and
only if there exist positive constants C and T, such that for every T1=7,,
feH, (R and g,e H (R™) (P, B)) has a unique solution uc H,, ,(R%*")

m mj+%ﬁ
which satisfies

1) P, SCIA IR+ 5 0y,

m—Mj—’%,r

This definition is equivalent to one in and, in the case of constant
coefficients, is also equivalent to one in [2]. In fact, it is proved in that
an L’-well-posed problem (P, B;,) has a unique solution « with zero initial
data on x;=0 provided f=0 and ¢,=0 in 2,<0.

Let P° and Bj be the principal parts of P and B, respectively. Let
(P°, Bj), be the constant coefficient problem resulting from freezing the coeffi-
cients at a boundary point (y’,0). Then we obtain the following

THEOREM 1. If a wariable coefficient problem (P, B;) is L*-well-posed,
then each constant coefficient problem (P°, B%;), is also L*-well-posed.
We shall consider the following

PROBLEM A. Is the converse of true?

When P is of second order and the coefficients of B® are real valued,
Problem A'is affirmatively solved by a slight modification of [I}. For a class
of L’-well-posed problems (P°, B)),. with uniform Lopatinskii condition, the
problem is solved affirmatively in [6], [9], [10]

The aim of this paper is to give an affirmative answer to the problem
in a certain second order case where B° is non-real.

Let

(1. 2) Pla, D)= —TR+2 ;z a,(2)DyD;+ 3 a, (@) D,D,
=1 k=

J 1

+(lower order term), (a,,=1, a;, = a;;),

(1. 3) B(x', D)=D,— 7fZ:]lbj(x’)Dj—c(ac')Do-i—(lower order term). |
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Lopatinskii determinant R(x/, r, ) for (P°, B’ is defined as follows:
R(&, 7, 0) = B(z', 7,0, 2, 0, 7, 0)),
= (@, 0,7, 0)— X by(#)o, (@),
=1

r=&6—ir, 120, oceR™,

where Im 2*>0 and Im 27<0 if 7>0 and P'(z, 7, 0,2)=1—2"(z, 7, o)(A—
A (z,7,0). When 1%(x,0,¢, 0) is simple, R(x, r,0) is written by the fol-
lowing form: '

R(&, 7, 0) = Ry(&', & 0)+TR,(Z, &, 0)+ T’ Ro(2, &, 0, 7)
Let assume the following conditions:
(I) R(, €& 0)#0 if 2¥(2,0,& 0)=2(2,0,& 0)
(II) Re Ry(z', & o)R,(x', &, 6)=0 in a neighbourhood of a point (x3, &, o)
where R(x;, &, d,)=0.

Then we obtain the following

THEOREM 2. Let the conditions (I) and (II) be fulfilled®. Then Problem
A is affirmatively solved.

To prove we use the following

THEOREM 3. Under the same assumption as in Theorem 2, if each
constant coefficient problem (P, B),, is L*~well-posed then there exist positive
constants C and 7, such that it holds for every 1=7, and ucH, (R}

(1. 4) Pllull, < C([Pullt,+ (Bu ) -

We shall finally remark on semigroup estimates of L’-well-posed prob-
lems. For two cases mentioned above where Problem A was affirmatively
solved, the semigroup estimate, i.e., the energy inequality with non-zero
initial date, holds ([I], [I0]. However, it is in general an open problem
whether the semigroup estimate holds for an L’-well-posed problem, even

for the following simple example satisfying the assumption of
§5):

P _ aZ _ aZ _ aZ ’
o oyt o’
0 5 0 i
B= —1b , 0<lplk1 (b: real).
0x oy

The author wishes to express his heartly thanks to Professor T. Shirota

1) see Added in proof.
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for his kind criticisms. The author also thanks Mr. K. Kubota for the
valuable discussions.

§ 2. Proof of Theorem 1

Let P* be the formal adjoint of P. Then by the assumptions on P and
B; there exist boundary differential operators C,, Bf and C. (j=1,---,,k
=[+1,--,m) such that

(Pu, v)—(u, P*v) = 3 (Bju, Cod+ 31 (Ciu, Biv),,
=1 Py
u, ve Gy (R,
where both {B,, C#} and {C,, Bf} are Dirichlet sets and (-, -) and (-, -) are
the inner products in L*(R*"') and L*(R") respectively. We denote the order
of Bf by mj}. '
The following lemma is proved in and 2.

Lemma 2.1, Suppose that (P, By) is L*-well-posed. Then there exist
constants C*, C{ and 15 such that for every 721y, f*eH, ,(R%*") and
gi€eH x 41 7(R") the dual boundary value problem (P*, Bf) has a unique

m-my +3,—

solution ve H,, _.(R%*") which satisfies
ol SCH(IL -+ 3 CarY ),
kE=1+1 K2 T

Pl <C (R4 B o, ).

m—mk+%,ﬁ7'

Furthermore the solution u of (P, B,) satisfies, in addition to (1.1),

Pl SC R+ B0, L) 02T,

m—mj+—%,r
where C, and 1,27, are constants.
i) The existence of a solution of (P°, BY),..

LemMma 2. 2. Suppose that (P, B;) is L-well-posed. Then for every
©>0, feH, ,(R:") and g,€H (R™) each constant coefficient problem

m-—mj+%,p
(P°, Bj),, has a solution ue H, ,(R™") which satisfies

el = CILAR .+ jZ <<oj>>i_m,_%,)

where the constant C is the same as one in (1.1).

ProoF. . We use a similar method in [3] Let p>0 be arbitrary but
fixed. Let '
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@)= (e —y), ),
05.(2) = e g, (2 — )

where ¢>0, feH, (Rt and ¢,6 H (R”).

m—mj+%.,u

Then we see that f,,EHL L, (BY™) and g;.€H (R™. In fact,

m+—12'

J

2 "T‘yo —2m4n~—1 2
2, = e e £,

and since
o - U S G A L L ;
ds. (8=, )= G i, o),

we have

-2 2 m—m g+
(03 jry, 0 = 6m+g {(i) +&+ 1012} "
JTe % n e
g;(e€—ip, eo|’dtdo

= e“““ g )

”n— mj+% u’

Let e<pr;’. Then by [Lemma 2 1 there exists a unique solution v, €
 H_ , (R7%) of the problem:

2.1) P(x, D)v, =f, in R7,
' B,(x,D)jv,=g;.  (j=1,-,0) on R

such that

22 (Al SOt 50y ),

2.3) ( : ) o, o S G(Ifl, e+ 500y a)-

Put u.(x)=v.(y'+ex, ex,). Using relations
(2. 4) Dro,(y' +ex’, ex,) = e "' Dru,(x),

it follows from (2. 3) and changes of variables that

el S Gl 11+ z:<<gj>>m wyebn)

Hence there exists a weak limit u, ;~ule;~0) in H, (RY™) so that
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% = G (£ 12+ z, (s p) -

The same argument gives from (2.2)

-, <C(IF I3+ >: (o,

mydn)
From (2.1) and (2.4) we obtain
Py’ +ex’, ex,, e 'D)u,(x) = ¢ ™ f(x) in R%*,
B;(y'+ex', e 'D)u,(z', 0)=e™ig,(z', 0)  (j=1,---,]) on R"
Hence, if e—0 in the equations, then the « satisfies
P(y', 0, D\u=f in R,
Bj(y', D)u=g, (j=1,--,0) on R
ii) The uniqueness of solutions of (P°, BY), .
In virture of Lemma 2.1 and the proof of Lemma 2.2 we see that each
dual constant coefficient problem (P*°, B}, has a solution veH,, ,(R%")

(¢<0). Therefore the uniqueness of solutions of (P°, Bj),. follows immedi-
ately from Green’s formula

(P°u, v)—(u, P**0) = j}l: (Blu, Cvd+ 3. {(Ci'u, B'v).
=1 k=I+1

§ 3. Lemmas

In this section we shall state the properties of pseudo-differential opera-
tors with positive parameter 7 ([4], [5], [8]) and the facts derived from a
characterization of L?*well-posed problems with constant coefficients ([2]).

Let a(x' &, 0,7) be a C=-function in '€ R", ée R, se R*'. That a(x’
g 0,7) belongs to a symbol class S (k: real) means that for every o', a”, j
it holds with a positive constant C, . ;

(3.1) | DEDIDE (@, & 0,T)| S Cu a7+ 8+ o) &-3-17D7

for any 7>0, (2, & a)e R”. When a(x/, z,,¢, 6,7) has a compact support in
xz, and (3.1) holds uniformly in z,, we say that a belongs to S%. For
acSt and ue H, ,(R”) we define a pseudo-differential operator a(z’, D',7) by

a(x', D', u(x') = a(x', D, D", ")u(x')
— 2n) eS gt o (21 & o 7V ar, o)dede ,
Dj=(D,+ir), t=§&—ir.
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The well-known basic properties for ordinary pseudo-differential opera-
tors hold analogously for pseudo-differential operators with positive parameter
7. In particular, a sharp form of Garding inequality plays an important role.

LemMa 3.1. Let a(z,& 0,7)€S) and Rea(x, & 6,7)20. Then there
exist a positive constant C such that for any ueH, (R") and 1=7,>0

Re Ca(z, D', 1)u, upo, 2 —C{u)’ 1 , .
Lo

CoRrOLLARY 3.1. Let a(x,& 0,7)€S) and Rea(x', &, 0,7)=c>0. Then
there exist positive constants C and 1, such that for any 121, and ue H, ,( R")

Re <a (x” D,’ T)us u>0,rgc<<u>>(2>,r .

COROLLARY 3.2. Let a(2,& 0,7)€S} and Rea(x, & 0,7)=cr, ¢>0.
Then there exist positive constants C and Ty such that for any =7, and
ucH, ,(R"

Re {a(x!, D', 1 u, uy, ,=Cr{u)s, .

Furthermore we enumerate the facts obtained by applying results in
and to our second order problem.

Rewrite simply the characteristic polynomials corresponding to (1.2) and
(1. 3) as follows:

(3.1) Pz, 7,0,0)=2—ay(x, 7', ) dA+ ay(z, T/, 0') L
= (2 — iz, 7', a')A) (2—2“(.26, 7, o")/l) ,
(3.2) B2, t,0,2)=2—p, ", )4,

where A=(|z|*+ |o|?), t'=& —il'=74"", ¢'=04"", a; and a, are real valued
for 77=0. Then Lopatinskii determinant R and the reflection coefficient Q/R
are written as

R(z', 7" ¢")=2*(2', 0, 7', ¢')—B(2', 7', &),

Q) _ A (x,0,7,d)—p(x, 7, d)

Rz, 7, ¢ R(Z, 7', o)

where |o'|>+ |6'|?’=1, o'=& —il", I'=0. Hereafter we denote the normalized

variables by (7, ¢').

From [11], we have the following

LemMmA 3. 2. Suppose that a constant coefficient problem (P°, B),, is
L’-well-posed. Then R(y',t,0)#0 if either >0 or 1=0 and 2*(v', 0, ¢, 9)
is a real simple root.

LEmMmA 3.3. Suppose that a constant coefficient problem (P, B), is
0
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L*-well-posed. Then for every point (&, ;) satisfying Im i*(ys, 0, &, a5)#0
and R(ys, &, 0;)=0 there exist a constant C(&, ;) and a neighbourhood
U(&, a) in 7'>0 such that

3.3 _Q_M)_ < ' o)
&2 lRmaﬂ%ﬁ&”r
for any (', ') U(&, ;).

Proor. Applying Fourier transform to a constant coefficient problem
(P, B°)y,, we obtain a boundary value problem for ordinary differential equa-
0

tions with parameters (z, g):
P(y;,0,7,0,D,)a(c, 0, x,)= flr,0,2,) in x,>0,
B(ys, 7, 0, D,)d(r,0,0)=0 on x,=0.

If R(ys, 7, 6)#0, then the compensating function G(y,, 7, 0, X, 2,) is defined
by the equation

©  ltnl 72‘*(1_’0 2) g
. ’ 2
—® Po(y(,), T, 0, '2)

+ SMG(?/(;’ Ty, Oy Ty, zn) j?(T, g, zn) dzn) )

0

awmmm=i“
2

where
G(ys, 75 0, T, 2,)

_ e¢z+(z/6,o.r,a)a:n S BO(y(/)’ T, g, Z) e‘“zndz
R(y(l)y T, 0) rPo(?J(;, Oa 7, 0, 2)

and I' denotes a closed Jordan curve in the lower half i-plane enclosing
A" (ys, 0, 7, @).

Form Lemma 3.2, we see that R(y;,r,0)#0 if Int=—7<0. Then
Theorem 4.1, shows that, (P° B’) , is L*well-posed if and only if for

Y
every (&, a5) with R(ys, &, 6;)=0 there exist a constant C(&;, ¢;) and a neigh-
bourhood U(&;, a5) in 7">0 such that

(3. 4) “DfnG(yS, v, 0, z,, zn)”i(Lz(zn>0),L2(zn>0)) = —Q%,WLO) (=0, 1)
for any (7', ¢")€ U(&;, a5), where ||-|| ¢z, >0, 2, >0y denotes the operator norm
from L*(z,>0) to L*(x,>0)."

Since Im A (yq, 0, &, 60)#0, the coefficients of P° are real and P° is of
second order, we see that Im A (yg, 0, &, ¢')#0. Hence we have by the
Residue formula



222 R. Agemi
e’z(#z‘*_rz")Q(yé, ‘L", 0.:) .
(aAP)(y(I)a 03 T’y 0')R(y{,, T,, 0")

in a neighbourhood of (&, ;) in 7'>0, where i*=21*(y;, 0, &' ¢'). It follows
from the simplicity of A* and the definition of the operator norm that

G(y(;’ T’: 0’, T, , zn) = -

Qlys, 7', ")
R(ys, 7', o')
Squ (E(,), o.(’))lle(il+xn-l_zn)G(y"), TI, 0,, Ty zn)”L"'(zn>0,zn>0)

éCI(E(’), U(I))HG(y(/)’ TI, 0’3 L, z’n)” ,‘f(L’(zn>0),L2(xn>0))

(3. 5)

in a neighbourhood of (&, g¢).Therefore (3.3) follows immediately from (3. 5).

§4. Proofs of Theorem 2 aﬁd 3

Proor oF THEOREM 3. We reduce formally a problem (P, B) to a
boundary value problem for a first order system.
Let us put for ueH, ,(R%")

Y| 1, 1
oo ool 2 ot
D,u A U,
Then it follows from (3. 1) and (3. 2) that (P, B) becomes to
LU=D,U—-KAU+(l.o.¢) in R,

4.1
41 Bu=(R,QU+(lo.t.) on R”
where
AT, 0 0
of; o v
0, 2° "
Put
-
M= ,
0, m, |
where m,=c¢ or did™, m,=c, or dy A respectively

and c;, d; (j=1,2) are positive constants determined later on. Then the
integration by parts gives formally that

(4. 2) 2 Tm (LU, MU, | .
— (U, MUY, ,+2 Im (U, MKAU), ,+R(U, U),

where R(U, U) is the sesquilinear form which satisfies

IR(U, U =CIUIE, or Clwld, +77|dullz).
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Remark that

o Im i, - 0
(4. 3) ImMK=(m‘ m 4, )

0“ y My Im A~

Since the coefficients of P and B is constant outside a compact set of
R™*' and the normalized space {(¢/, ¢'); |7'|*+ |¢’|*=1, T"20} is compact, there
exists a finite partition of the unity such that

12(1', a, xn) = Z ¢j(z-, o)ng(xMDo(éC,,)ﬁ(T,}G', xn)
(1 —0(2)) 2(z, 0, 24)

where the ¢, ¢, have compact supports, g,=1 in 0<x, <34, ¢, =1 for |z|—>o0,
¢5(z’, o') has a compact support in the normalized space and ¢,(z, ¢)=¢}(z47,
oA™eS). From a priori estimate for a strictly hyperbolic operator P, we
have for any 7>0

(4. 4) - soo)ulll < ClP1— $00>u”0 re

A

Therefore considering # as ¢,p,0:%, we may assume that the support of 2
is contained in a neighbourhood of a point (x, 0, 7o, 6,). Hereafter (3, 7}, o)
is arbltrary but fixed and by IC denote posmve constants depending on
(x4, To, G0)-

We derive a priori estimate in each of the following four cases:

i) Case where 7{>>0. Since P is of second order and strictly hyper-
bolic, 2% (x5, 0, 73, ay) are simple and

(4. 5) Im 2*(z, 7, ¢")| = C (r'>0)

in a neighbourhood of (x;, 0, 7{, ;). We may assume from the simploicity of
i* that 1*(z, 7, ¢'), R(z,7',d'), Q(«, 7, '), belong to S¢ or S?. By
we have

(4. 6) IR(z', 7', ") = C (r'>0)

in a neighbourhood of (3, 75, ;). Using Corollary 3.1 it follows from (4. 3),
(4.5) and (4.6) that for r=7,>0

(4.7) (Ru i, = CLun)i,; ,
(4.8) Im (U, MKAU)OT-CII/IZUIIor2CTHUHor,

where m; (j=1, 2) are taken as constants ¢;. The relations (4.1) and (4.7)
gives

<<u2>>(2),r + <(Bu>>(2),r + (( U»Z—l,r g C«ul»g,r ’
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which implies for 727,
U, MU, = —ca{ui, + ¢ ()i,

a+1 2 2 _a 2 _ O 2
g(cz— : )<<u2>>o,,+<<u1>>o,, E (U, =2 (B,

Let ,C>c,+1. Then it follows from this, (4. 2) and (4. 8) that for 7=7,2T7,
and ¢>0

%|lLUll%,r+eTHUllﬁ,,+<<Bu>>%,,zC(<<U>>3,,+THUH%,,>-

Hence this shows that for 7=7,
(4.-9) rllali?, + 1 ()i, + (Duds ) S C(|Pully 47 {Bu)i ,) -

ii) Case where 7;=0 and 2*(x;, 0, &, g¢) is a real simple root. Since
P is strictly hyperbolic we have

|Im A% (z, 7, 6’| = C1’ (r'>0)
in a neighbourhood of (x5,0, s, 05). Moreover we have from 2
|IR(z', ', d'| = C (r'>0)

in a neighbourhood of (xj, 7, 6;). Therefore the same argument as in (i)
gives a priori estimate (4.9), because (4.7) and (4.8) also hold by Corollary
3.1 and 3.2. , :
iti) Case where 7;=0 and 1" (x, 0, &, a;) = 27 (x3, 0, &, 00). In this case
2%, R,--- does not belong to our symbol classes. However, a priori estimate
(4.9) has been proved in [6], [9], because of the condition (I)
 iv) Case where 7;=0 and Im A% (x5, 0, &,00)#0. By the simplicity of
it, we see that 1%, R, Q,--- belong to §2 or S} and

(4. 10) Im 2%(z, 7', o')|ZC  (7">0)

in a neighbourhood of (x5, 0, &, g¢). If R(x, &, 05)#0 then a priori estimate
(4.9) is proved as in (i). Hence we may assume R(x, &, 0,)=0. By the
definitions of R and Q, the simplicity of A* implies that Q(xs, &, 60)#0 if
R(z;, &, 05)=0. Therefore it follows from that

|R(xq, ', 6’)] = CT’ (r'>0)

in a neighbourhood of (&, g;). Hence R,(x, &, 05)#0, where R(Z/, 7', 6")=
Ry, &, d)+T'R\(x, &, o')+T"Ry(x, &, o', 7"). In fact, if R,(x1, a5, &)=0 then
R(x}, &—1il",00) = 1"*Ry(xy, &3, 00, 7').  Since Re RR,=0 (Condition (II)) and
0<7'<d, we have
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AR Re R,R R
R = O 47477 Re 222 >7—1Co=>Cr.
“R IR, J? R =TS

Using [Corollary 3.2 and Schwarz inequality we see that for ve H, (R")
and 7_2_T1>0

(4. 11) << /;QR v>>o = Cr{v),, -

1

Put v=4"*x Then it follows form (4.1) and (4. 11) that for 7=7,>7,
(4.12) (A ), S CUA BN, + (bt + (U ).

Let us put m,=d,7" and m,=d,7"~', where 7"=74"" and d, (j=1, 2) are positive
constants. Then, using (4.12), the boundary integral of (4.2) becomes to

U, MU ),,, = —d{I"u,, Do, + o T My, s,
27 (4", + - (4 1) C) (A,

— C (4Buyi,— E Uy, .
r r &
Let d,—(d,+1)C>0. Then we have for 7>7,=7,.
(4.13) U, MU, 2 == (Bup;,

Consider the volume integral of (4.2). It follows from (4. 2) and (4. 13) that
for =7, and ¢>0 "

1) LU, eI MUY, + S (B,
= 2 Im (g, —m2* Auwy)y , + 2 Im (e, mod~Aus),
— Ol + sl ).
On the other hand, we have by the choice of M
(4. 15) MUY, = € laale, +— il ).

Using Corollary 3.1 and 3.2, it follows from (4.10) and the choice of M
that

(4. 16) , Im (u,, —ma*Auwy),, = Cr |2, ,
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Im (45, M2~ Ay, = c% w2,

for 1=7,27;. Hence it follows from. (4.14), (4.15) and (4.16) that for a
small fixed ¢>0 and any 727527, v

- (4.17) Plluli, = ClPullt;+ (B ) -

2
1.7

Using the finite partition of the unity a pfiori estimate (1. 4) follows directly
from (4.4), (4.9) and (4.17), ' ‘

ProoF oF THEOREM 2. Let
Pz, D)=P*(—2x,, x", x,, —Dy, D", D,),
BIO(xI, D) = B*o(_xo, SC”, _D07 DH) Dn) .

From Lemma 2.1 we see that if (P°,B"),, is L*-well-posed then (P”, B"), is
so. Hence the statements of and 3.3 are valid for (P, B®).

From Green formula

S“’ P, 0, 7, 0, D) ulz) 0@ dz,
0

—S:u(xn)P° W 0,7, 0, Do) dx,

= B'(y, 7, 0)u(0)v(0) = #(0)B*(ys, 7, 0, D) v(0) -

!
iz,3 " (94,0,7,0)

Let u(x,)=e

12,3 (7,0,7,0)
and v(x,)=e¢ "~ ° " Then

B (y(’,, 7, 0. 27 (v, 0, 7, a)) = B*° ((y(), z,a, 2 (Yo, 0, 7, a)).

Hence

B*0<y(,)a -7, 0, 2—@/([), 03 ) 0)) = R(\“"yo, ?/(,)/, -7, 0) .

Since the left hand side of the above equality is Lopatinski determinant for -
(P, B"), the assumption in is also valid for the problem (P’, B').

By the above considerations we can apply to (P, B'). There-
fore there exist positive constants C* and 7 such that it holds for any
r=7¥ and veH, _(R:™)

(4.18) 7|l - = C*(I1P*ol§. -+ (B*0)} ) -

A priori estimates (1. 4) and (4. 18) assure the existence of solutions of (P, B)

([7D-
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§ 5. Examples

~ In this section we preseht some examples of L:-well-posed mixed prob-
lems which satisfy the condition (I) and (II).

Let P(D)=—D*+D*+D? and let B(D)=D,—bD,—cD,, where (¢, vy, x)
= (&, Z1,x,) and b,c are complex constants. In this case, 1*(§,0)=F
sgn EJE—g (8>d%), 12, 0)=0 (&=¢) and 1*(§ 0)=Lifo*—& (#>8).
Apply the results in and to our case. Then it can be proved by a
similar argument as in the proof of that (P, B) is L*-well-posed

if and only if the following conditions are fulfilled:
(i) R(z,0)#0 for Imrz=—-7<0,
(ii) R(&0)#0 for &>,
(i) if R(&, 00)=0  for some (&, o) (&=0s%), then there exist a

positive constant C(&, o;) and a neighbourhood U(&, o;) such that

l Q(, o)

R(7, o)
= C&, g

2

5.1 ‘
6. 1) ) Im 2*(<’, ¢")||Im 2~ (', &")| | D, P(7’, o', 27)(z’, &')|?

7'’

for any (7', ¢")eU(&, ao) N {I' >0},

(iv) if R(&, a5)=0 for some (&, a5) (62>&%), then there exist a positive
constant C(&, g,) and a neighbourhood U(&, g5) such that |R(z, o’)| =
C(&, ao)7'! for any (¢, ¢")eU(&, as)N {r'>0}. Here (7', ¢’) denotes the

normalized variable.

ExampLE 1. Let B(t,y, D)=D,—ib(t,y)D, (b: real). Then we see
from (5.1) that (P, B),,,,) is L*-well-posed if and only if |b(%, )| <1. The
condition (I) is not satisfied if b(¢, 1,)=0. If 0<|b(¢, y|<1 then (P, B) satis-
fies the conditions (I) and (II). In fact, the condition (I) follows from the
fact that #b(¢, y)¢’ is pure imaginary, because R(t vy, &, o' )=ib(t, y)o'. To
verify the condition (II) we remark that for every (¢ y) there exists a point
(00, &) (62>8&2) where R(t, v, &, 6,)=0. In a neighbourhood of (g, &),

R(t, y,7,0)=1 <402_$2 —b(t, y)o‘) _T<1/0'2$—§2 >+O(2’2)

= Ry+7TR,+7T°R,.

Hence we obtain Re R,R,=0.
ExampLE 2. Let B(¢ y, D)=D,—b(t, y)D,—D,, where b(t, y)=0b.(t, )
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+ib,(t, y). Then it follows from (5.1) that (P, B),, ,,) is L*-well-posed if
and only if |b(#, ¥)|<1. The condition (I) is not satisfied if b,(z), y,)=0
and b,(¢,, yo)= 1. If |b(¢, v)|<1 then (P, B) satisfies the uniform Lopatinski
condition. If |b(¢, y)|=1 and |b;(t, y)| >0 then (P, B) satisfies the conditions
(I) and (II). In fact, the condition (I) follows from &,(¢ y)#0. To verify
the condition (II) we note that for every (¢ y) there exists a point (&, o)
(62 >€%) where R(t, v, &, 00)=0. More precisely, R(, y, &, 0,)=0 is equivalent
that o

(5- 2) a;>&, bz(t, y)0'0>0 and 61(t, ?1)0'0“'50 =0.
In a neighbourhood of (g, &) with (5.2), we expaned R(¢ v, 7,0) in 7>0:
R(t, y,7,0)= i (Vo@—& —by(t, v)o) — (bu(t, v)o +8)

+T(— _¢ +i)+0(72).

Vo' —§

Hence we have

Re RORI = ngs—-sz (bl<t, y)a+5> + (Q/ 0’2_82 _bz(t, y)) .

Let f(& ¢6)=4*—& Re R,R, for a fixed (¢, ¥). Then, at a point (&, g,) with
(5.2), the following relations hold: ’

of of Pf o
5.3 =O’ '—=0: ___.__-:O, PSR T
(6.3) f il 0¢ od*  bi
f — —&u90 and ﬁz]i — & )
g0 Bat & B

Under the condition &+¢°=1 we may show that f;O in a neighbourhood
of (&, a,). Let g(6)=f(¢&, 6(¢). Then we have

dg _ of | of oo
(5. 4) dsg 0t * oo o’

dyg _ of +92 *f oo 4 d‘f [ oo >2+ of oo
dg og 0%3s 8¢ 0o® \ 88 oo 08

o
point (&, a,) with (5. 2),

Note that —g—g«=———-$—.“‘ Then it follows from (5. 3) and (5.4) that, at a

ig—=0 and d2g= 1

=0,
J dz a2 il

>0.
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This means the condition (II).

ExaMPLE 3. We consider the problem for symmetric system of first

order:
o (w\ [0 1) P (ul) (—1 0) P (ul)
9 — 0 K 0),
ot (u2> (1 ol o lw T\ 0 1oz le) &0

U,
(1,—b)( )20 (x=0)

U,

where b=b,+1b, is constant. This problem is dissipative if and only if
|6|<1. In particular, if |6|=1 then it is conservative. Furthermore Lopatin-
skii determinant and the reflection coefficient for this problem are the same
ones as in example 2. However, it is unknown whether semigroup estimates
hold for problems in example 2 (|b|=1, b,0).

Department of Mathematics
Hokkaido University
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ADDED IN PROOF: We can remove the condition (II) in [Theorem 2
as follows: Since dR/or(xq, &, 05)#0 where R(xq, &, 05)=0, there exists
a C>-function a(x’,¢') in U(xs, og) such that R(x’, &, ¢"\=S(z',&,d") (z'—
a(x', ") and S#0. Then Im a=0 follows from that R(zx’, <, ¢)#0 if
Imz'<0. This was pointed out by T. Shirota. Hence we have from
Corollary 3.2

(S RABYor 2T (B, — (o,

where f=¢,¢,;¢, and u€ H, ,(R"). This is a key point in §4 (see (4. 11)).
Moreover, in (i)-(iv) of §4, we omitted such error terms as —c{u}),, by
considering # as Bu, because terms arising from such ones are absorbed in
the left hand side of (1.4), taking 7 large.

(June 6, 1973)
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