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On positive solutions of quasi-linear
elliptic equations

J. CHABROWSKI
(Received May 6, 1987)

ABSTRACT. In this note we prove the existence of positive solutions of
the Dirichlet problem for a quasi-linear elliptic equation. Our boundary data
belongs to L? and a corresponding solution is in a weighted Sobolev space.

1. Introduction.

Let QC R, be a bounded domain with the boundary 9@ of class C2.
In @ we consider the Dirichlet problem
(1) Lu=— 3} Dias(x, )Da) +a()u=F(x w) in Q

i
2 ulx)=¢(x) on 2Q,

where ¢ is a non-negative function in L?(9@).
Throughout this paper we make the following assumptions
(A) There is a positive constant y such that

yHEP< iéldij(x’ u) &&<vy|&f

for all £€R, and (x, W) EQXR; a;(x, u)=a;(x, u) (4, 7=1,...,n) for all
(x, )=Q X R. Moreover, we assume that a;(+, )€C(QXR) (1, j=1,...,
n) and for each u€R, a;(-, v)eC(Q) (i, j=1,..., n) and that there exist
functions A, C'(Q) such that

lim a;(x, u)=A;(x) and |lilm Dya;(x, wy=D,A ;(x) (4, 7=1,...,

|u|—o0

n)

uniformly on Q. Finally, the coefficient @ (x) is non-negative and belongs
to L=(Q).

(B) The nonlinearity f: @ X R—R satisfies the Carathéodory condi-
tions, 1. e.

(i) for each &R, the function x—f (x, #) is measurable in @,

(i) for each x€Q(a. e.), the function u—f (x, #) is continuous on R.

Further assumptions on f will be formulated later on.

In this note we use the notion of a generalized (weak) solution of (1)
involving the Sobolev spaces WLi(Q), W' (Q) and W'(Q) (for the
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definitions of these spaces see [10]).
A function u is said to be a generalized (weak) solution of (1) if u&
W L2(€) and satisfies

3 len‘,ﬂ[ai,-(x, u)Du Djv+ay(x)u v] dx:fof(x, uv dx

for each ve W2(Q) with compact support, provided f (-, u(+))EL%.(Q).

There is an extensive literature on positive solutions for semi-linear
elliptic equations (see survey articles and [8]). Most of these results
are concerned with solutions with zero or smooth boundary data for semi-
linear elliptic equations. Terefore solutions belong to the usual Sobolev
space W2(Q) or to the Hoslder space C*¢(Q), depending on the regularity
of coefficients. The results of this paper are related to those of [7], where
some existence theorems of positive solutions in C%*(Q) for quasi-linear
elliptic equations were obtained.

In this paper we assume that ¢ =L2(8@Q) and consequently we cannot
expect to find a solution in the Sobolev space W2(@Q). On the other hand,
the boundary condition (2) requires a proper formulation due to the fact
that not every function in L?2(9Q) is a trace of an element from W2(Q).

To describe our approach to the problem (1), (2) we need some termi-
nology. It follows from the regularity of the boundary 9@ that there exists
a number & >0 such that, for §&(0, &), the domain Q,=QN{x; ryréla% |l —

y|> ¢} with the bonudary 9@, possesses the property that to each x%& 0@
there exists a unique point x;(x%) € 06 such that x;(x) =x%— v (%), where v
(%) is the outward normal to 9@ at x,. The above relation gives a one-to-
one mapping, of class C!, 9Q onto 9Qs.

According to Lemma 14. 16 in (p. 355), the distance function
r(x)=dist (x, 9Q) belongs to C2(@Q—Qs,) if & is sufficiently small. We
denote by p(x) the extension of the function »(x) into @ satisfying the

following properties: p(x)=7(x) for x€Q—Qs,, p=C(Q), p(x) 23T§° in

@5,y YI' v(X)<px)<y 7(x) in Q for some positive constant y,.

Guided by the results of [3], and [5], we adopt the following
approach to the Dirichlet problem (1), (2).

Let ¢=L%(0Q). A weak solution ue Wi(Q) of (1) is a solution of
the Dirichlet problem with the boundary conditin (2) if

lim [ [uxs () — ¢ (0)]%dS,=0.

It follows from [4], that if the problem (1), (2) admits a solution «
such that f (-, u(+))eL*(Q), then uc W? where W(Q) is a weighted
Sobolev space defined by
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W) ={u; uc WiZ(Q) and/QIDu(x)|27’(x)dx+fou(x)zdx<oo}

and equipped with the norm

T - /Q |\ Du ()7 (x) du+ [Q w(x)? d.

To proceed further we set for every ve L?*(Q)
L=~ 3! Di(a(x v(x) Dan) +ao(x)u

5,J=

and consider the eigenvalue problem in WI’Z(Q)

(EVP) Li=Am(x)u in Q,
#(x)=0 on 0Q,

where me L*(Q) and m(x) >0 on some subset of @ of positive measure.
By virtue of Theorem 1.13 in the first positive eigenvalue A,(m, v) is
simple and the corresponding eigenfunction can be taken positive on €. Set

Fi(m)=inf A, (m, v)
veL?(Q)

Combining the argument of the proof of Proposition 1. 11 in with the
variational characterization of eigenvalues (Proposition 1.10 in [8]), it is
easy to check that #,(m)>0. Let g(m) be the first eigenvalue associated
with the eigenvalue problem in W2(Q)

(EVP), {_i,,é_lDf<Aff<x>Dju>+ao(x>u=1m<x>u in Q
u(x)=0 on 3Q.

It is obvious that# ,(m) <g(m). One can give examples of quasilinear
elliptic operators for which cases gz(m)=#,(m) and #,(m)<a(m) occur
(for more details see [6]).

2. Main result.

To establish our main theorem we need some modification of results
contained in papers and [6] for the Dirichlet problem

4 Lu=pm(x)u+h(x) in Q.

B) ux)=¢(x) on aQ,

where he L?(Q) and u >0 is a parameter.

LEMMA, 1. Let 0<u<H (m) and s4(m)<a(m). Then for each ¢
eCH(oQ) there exists at least ome solution uc Wh2(Q) of the problem (4),
(5), which is non-negative if ¢ >0 on 2Q and h=0 on Q.
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PrROOF. If u<#,(m) the result is an immediate consequence of the
Schauder fixed point theorem. To show that this continues to hold for u =
#1(m), we consider for each integer %2>1 the Dirichlet problem for the
equation

(4k) Lu:(l—%) F(m) mu+h(x) in Q

with the boundary condition (5). Since ¢ can be extended to an element @
eC'(Q) by means of the transformation »—®, the problem (4k), (5) can
be reduced to the Dirichlet problem in W'?(Q). By the previous case, for
each k there exists a solution u,& W*(Q). It is sufficient to show that {u,}
is bounded in W'?(Q). Then a suitable subsequence is convergent weakly
in W'(Q) and strongly in L?2(Q) to a solution of (4), (5) with x=2(m).
If we assume, contrary to the assertion, that {,} is unbounded in W2(Q),
then we may assume that |#|w::—00 as k—oo and consequently v,=
| ue]|w2 contains a subsequence convergent to a function v, weakly in
W2 () and strongly in L?(Q). Using the fact that a;(x, t)—>A;(x) and
Dya;; (x, t)—> D A;;(x) as |t|—oo uniformly on @, we show that v satisfies
the equation

- Z_J,2=1Di<Aij(x>Djv> =F (m)ym(x)v
and moreover that v,—v strongly in Vf/l’z(Q). Therefore |v||w:.=1 and this
contradicts the fact that #,(m) <gz(m). Details of the proof are similar to
the argument used un [5]. If ¢ >00n 2@ and 2>0 on Q, then the maximum
principle implies that #>0 on @ in the case when u <#,(m). If u=5(m),
then the solutions %, of (4,), (5) are non-negative and hence #>0 on Q.

LEMMA, 2.  Suppose that #,(m)<jg(m), 0<u< <% (m) and $<=L*
(8Q). Let {u} be a sequence of solutions of (4), (5) in WY(Q) with ¢ =
b and ¢,.=C1(8Q). If Lim d=¢ n L*(0Q), then a subsequence of {uy}

converges in WYA(Q) to a function u satisfying (4), (5).

To prove our assertion it is sufficient to show that {«,} is bounded in
Wt2(Q). The proof is similar to the argument used in the proof of Lemma
1. Again the assumption that lim g;(x, t)=A;(x) and |lilm Dya;(x, )=

t]|—o0

|¢]|—so00
D,A;;(x) (4, j=1,..., n) uniformly on @ is essential in the proof, as well as
the compactness of the imbedding of W'2(Q) in L?(Q) (Theorem 4.11 in
[1II]D. All details can be found in or [6] (Theorem 6).
We are now in a position to establish our main existence result.

THEOREM 1.  suppose that the nonlinearity f(x, u) satisfies the follow-
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ing two conditions
(a) f(x0)=0o0n @
(b) there exist functions geL=(Q) and c=L*(Q) such that

flx s)<gx)s+c(x)

for all s>0 and x=Q ; moreover ¢c(x)=>0 in Q and #,(g)=>1.

If #.(g)<u(g), ¢=L*(0Q) and ¢=+0 on 9Q, then the Dirichlet prob-
lem (1), (2) admits at least ome positive solution us W2(Q).

ProoF. Let {¢.} be a sequence of non-nnegative C'— functions on 3¢
such that lim ¢,=¢ in L?(9Q).

k—oo

By Lemma 1, for each 2>1 the Dirichlet problem

6) Lu=gx)u+c(x) in

(2e) u(x)=¢r(x) on 9Q
admits a non-negative solution #,& Wh2(Q). It follows from the assump-
tion (b) that #, is a supersolution of the problem (1), (2,). Since, by the
assumption (a), ,=0 on Q is a subsolution of (1), (2,), the results of [9]
(p.51) yield the existence of a solution u,& W2(Q) of (1), (2,) such that
0<u,(x)<#,(x) on @ for each k. It follows from LEMMA 2 that a subse-
quence of {#,} converges strongly in Wt2(Q) to a function # satisfying (6),
(2). We now show that there exists a constant C >0 such that

D [2IDuk(x)Pr(x)dxéC[ﬁoqﬂk(x)zde-%fQuk(x)zdx]

k=1, 2,..., To establish this estimate we take as test functions in (3)
0, (x) = [%k (X)) (p(x)—9) for x=Q;,
" 0 for x€Q—Qs,

where 0<d8< ¢, Letting 0—0 we obtain
® [ 33 @uCx, u) DanDauwodr+ [ 3% ay(x, ) Dt Dol

L=

+ fQ ay(x) ubpdx = fo f (%, uy) uppdx.
Integrating by parts we obtain

@ [ 3 4,05 udDanauDpds= [ 33 Dl [“as(x, $)ds) Dyods

i,7=1 0

1 n % B _L n " ) | |
_7'[; i,,-2=1,/0‘ D.a;(x, s)dsD;pdx= 5 «/30 i,jz-—-l ./(; a;;(x, $)dsD;pD;pdSy

1 « i 1 n i
_7/‘; i,JZ:I'/O‘ aij<x; 3> dSDijpdx_7 0 ,-,j2=1,/o- Didi,-(x, S)dSDjpdx_

The estimate (7) readily follows from (8), (9) and (b) and the el-
lipticity condition in(A). Since 0<u,<1i,, the estimate (7) implies that
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the sequence {,} is bounded in W'2(Q). By Theorem 4.11 in [9], W
(@) is compactly imbedded in L%(Q). Therefore we may assume that u,
converges weakly in W2(Q) and strongly in L2(Q) to a function #. It is
easy to check that « is a solution of (1). By in there exists
a function §€ L?(9Q) such that u(x,)—¢ in L2(8Q) as 6—0. Repeating the
argument from Theorem 3 in [4], we show that é=¢ a. e. on 8Q. Finally
we notice that #(x)<#(x) on Q.

We mention here that for semi-linear elliptic equations in the case of
C?*?-solutions, the result of this type is essentially due to Amann [1].

We also observe that if g(x)<0 on Q, then the assumption #,(g)>1
should be dropped.

To obtain the existence result when #,(¢) =i (g) we replace the in-
equality #,(g) =1 in (b) by #,(g) >1.

THEOREM 2.  Suppose that the nonlinearity f(x, u) satisifies (a) and
(b) with #,(g)>1. If #.(¢9)=a(g), L*(3Q) and ¢=0, then the
problem (1), (2) admits at least one positive solution.

The proof is based on modifications of LEMMAS 1 and 2 which continue
to hold in the case #,(m) =i (m) provided u <#,(m).

It is worthwhile to notice that in the case ¢ =0 on 9Q, the assumption
(a) must be replaced by the stronger condition

g(x, s)=go(x)s for 0<s<s,
for some $>0, with #,(g,) <1, where #,(g,) = SBI()@M(UD ¢). Here 21,(v,
vEL2

g) denotes the first eigenvalue of (EVP) with m=g, (see [7]. Then
according to and [7], for each » >0 there exists a positive eigenfunction
w, with |w|..:=7, of the problem Lu=21g,(x)# in @, #(x)=0 on 9Q for
some #1(gy) <A <H#,(gy). It turns out that w, with » sufficiently small, is a
suitable subsolution of the problem (1), (2). This also requires some stron-
ger assumptions on a;;, ¢ and g, to ensure that the outward normal derivative

id%)— is negative on 9. Since w>0 on @, the corresponding non-nogative

solution of (1), (2) is non-trivial (for details see [7]).
Examples of functions f : @ X R— R satisfying the conditions (a) and

(b) can be found in and [8].
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