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0. Introduction. Throughout this paper every ring will be associa-
tive and have the identity 1, and every subring of it will contain 1. Further,
every module over a ring will be unital. All terminologies and notations are
the same as those in [6] and [7].

In the case where A is an algebra over a commutative ring R, A in an
H -separable extension of R if and only if A is central separable over C and
C\otimes_{R}C\cong C by the map \pi such that \pi(a\otimes b)=ab, for a, b\in C (See Proposi-

tion 1.1 [4] ) . The aim of this paper is to generalize this result to the case
of non commutative ring extensions. We will show that in the case where A

is an H -separable extension of a subring B and flat as left B -module we have
V_{A}(V_{A}(B))\cong B_{(\mathfrak{F})} , where \mathfrak{F} is the Gabriel topology on B consisting of the
right ideals 0 of B such that (lA=A and B_{(\mathfrak{F})}= \lim_{arrow}Hom(tl_{R}, B_{R}) (Theorem

2). Theorem 2 will induce an interesting result that if A is an H-separable
extension of a regular ring B then B=V_{A}(V_{A}(B)) (Theorem 3). The rest
of this paper will be devoted to the study on H -separable extension of a

\overline{r}egular ring. We will give the complete improvement of Theorems 2 and 3
[9] concerning with H -separable extensions of full linear rings (Theorem 4).

1. Let R be a ring and M a flat left R -module. A right ideal 0 of R
satisfies [1 M=M if and only if R/t1\otimes_{R}M=0 . Denote the class of all right
ideals of R which satisfy this condition by \mathfrak{F} . \mathfrak{F} is a Gabriel topology on R,

namely, \mathfrak{F} satisfies the following four conditions (see page 156 [6]).
(G. 1) If 0\in \mathfrak{F} and b is a right ideal of R containing t1 , then b\in \mathfrak{F} .
(G. 2) If o, b\in \mathfrak{F} , then 0\cap b\in \mathfrak{F} .
(G. 3) If 0\in \mathfrak{F} , then (\mathfrak{a} : a)\in \mathfrak{F} for any a\in R,

where (\mathfrak{a} : a)=\{r\in R|ar\in 0\} .
(G. 4) If {l is a right ideal of R, and if there exists b\in \mathfrak{F} such that

(\mathfrak{a} : b)\in \mathfrak{F} for any b\in b , then o \in \mathfrak{F} .
Now for any Gabriel topology \mathfrak{F} on R, we can construct rings R_{(_{(}\tau)}=

\lim_{arrow}Hom(\{1_{R} , ^{R_{R}}) and R_{\mathfrak{F}}= \lim_{arrow}Hom(\mathfrak{a}_{R}, R/t(R)_{R}) , where 0 runs over \mathfrak{F} , and
t(R) is the \mathfrak{F} -torsion submodule of R , which is an ideal of R. A left
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R -module N is said to be \mathfrak{F}-divisible if \mathfrak{a}N =N holds for each 0 in \mathfrak{F} . Now
let N be any \mathfrak{F}-divisible flat left R-module. We can give N a left R_{(\mathfrak{F})}

-module structure as follows;
Let x\in R_{(\mathfrak{F})} , n\in N, and let \xi\in Hom(t1_{R} , R_{R}) with 0\in \mathfrak{F} represent x.

Since ()N =N , we have n= \sum a_{i}n_{i} with a_{i}\in t1 and n_{i}\in N. Now put xn= \sum\xi

(a_{i})n_{i} . If x is represented by \eta\in Hom(b_{R}, R_{R}) with b\in \mathfrak{F} , too, then there
exists c \in \mathfrak{F} such that c\subset 0\cap b and \xi|c =\eta|c . Here \xi|c means the restriction
of \xi on c . Now we have in R\otimes_{R}N1\otimes n=\Sigma a_{i}\otimes n_{i}=\Sigma b_{j}\otimes m_{j}=\Sigma c_{k}\otimes p_{k}

with a_{t}\in 0 , b_{j}\in b , c_{k}\in c and m_{j} , n_{i} , p_{k}\in N, and consequently, \Sigma\xi(a_{i})\otimes

n_{i}=\Sigma\xi(c_{k})\otimes p_{k}=\Sigma\eta(c_{k})\otimes p_{k}=\Sigma\eta(b_{j})\otimes m_{j} . Then \Sigma\xi(a_{i})n_{i}=\Sigma\eta(b_{j})m_{j} ,

which implies that xn does not depend on the choice of the representation of
x nor a_{i}\in \mathfrak{a} , n_{i}\in N with \sum a_{i}n_{t}=n . Thus this multiplication is well defined,
and it is easy to see that this gives N an R_{(\mathfrak{F})} -module structure which is
compatible with the original R -module structure of N. The formulae (xy)

n=x(yn) , for x, y\in R_{(\mathfrak{F})} , n\in N, follows from Lemma IX 1. 1 [6].

For any right R -module X denote the canonical R-homomorphism of X
to X_{(\mathfrak{F})} by \varphi_{X} . Then Lemma IX 1.4 [6] shows that if n in X_{(\mathfrak{F})} is repre-
sented by \xi\in Hom(\mathfrak{a}_{R}, X_{R}) with 0\in \mathfrak{F} , then \varphi_{X}\xi(a)=na for each a\in \mathfrak{a} .

Now let x\in R_{(\mathfrak{F})\}} , and suppose that x is represented by \xi\in Hom(t1_{R}, R_{R})

whth t1\in \mathfrak{F} . For any n\in N, let n=\Sigma a_{i}n_{i} with a_{i}\in 0 , n_{i}\in N. Then in R_{(\mathfrak{F})}\otimes

RN we have 1\otimes xn=\Sigma 1\otimes\xi(a_{i})n_{i}=\Sigma\varphi_{R}\xi(a_{i})\otimes n_{i}=\Sigma m_{i}\otimes n_{i}=x\otimes\Sigma a_{i}n_{i}=x

\otimes n . This means that R_{(\mathfrak{F})}\otimes_{R}N\cong N by x\otimes n-arrow xn. By this isomorphism we
have Hom(_{R}NRN\gamma=Hom(_{R_{(\mathfrak{F})}}N,N\gamma R_{(\mathfrak{F})} for any left R_{(\mathfrak{F})} -module N’ Next
suppose that xN=0. Then for any a\in \mathfrak{a} we see that 0=x(aN)=\xi(a)N.
Thus we have \xi\in Hom((x_{R}, Ann(_{R}N)_{R}) , and we can easily see that Ann(_{R_{(\mathfrak{F})}}

N)=(Ann(_{R}N))_{(\mathfrak{F})} .
Now since t(R)\subset Ann(_{R}N) , N is also a left R/t(R) -module. Then by

the same method as the above argument we can give N a left R_{\mathfrak{F}} -module
structure, and have R_{\mathfrak{F}}\otimes_{R}N\cong N, Hom(RN,N\gamma R=Hom(_{R_{\mathfrak{F}}}N,N’)R_{\mathfrak{F}} for any
left R_{\mathfrak{F}} -module N’ and Ann(_{R_{\mathfrak{F}}}N)=(Ann(_{R}N))_{\mathfrak{F}} . If t(R)=Ann(_{R}N) , R_{\mathfrak{F}}

can be regarded as a subring of Bicom(_{R}N) .
Now we can obtain a little more explicite proof of Theorems 1.4 and 1.6

[5].

THEOREM 1. \mathfrak{F}=\{\mathfrak{a}_{R}\subset R_{R}|\{lM=M\} is a Gabriel topology, and M is a

flat and faithful left R_{\mathfrak{F}} -module such that R_{\mathfrak{F}}\otimes_{R}M\cong M and Hom (\text{\^{a}}, RM)=

Hom(_{R_{\mathfrak{F}}}M,M)R_{\mathfrak{F}} . Thus R_{\mathfrak{F}} can be regarded as a subring of Bicom(_{R}M)

(See Theorem 1.4 and Theorem 1.6 [5]).
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PROOF. Since M is R -flat, we have 0=Ann(_{R}M)M=Ann(_{R}M)\otimes_{R}M.
Then Ann(_{R}M)\subset t(R) (See page 156 [6]). Hence we have Ann(_{R}M)=t

(R) . Then the proof of this Theorem is immediate from the above
argument.

2. Now we will consider the case where A is a ring and B is a subring
of A such that A is left B -flat. Let \mathfrak{F} be the Gabriel topology on B consisting
of right ideals o of B such that {)A=A. Note that the functor L of Mod-B
to Mod- B_{(\tilde{y},)} defined by L(N)=N_{(\mathfrak{F})} for each N_{B} is left exact (see page 199
[6] ) . Thus we can regard B_{(\mathfrak{F})} as a subring of A by virtue of the next
lemma, which has already been proved by Y. Kurata in [4].

LEMMA 1. A is an \mathfrak{F} -closed right B-module.

PROOF. Let 0\in \mathfrak{F} . Since oA=A and BA is flat, the map \pi_{o} of 0\otimes_{B} A to
A defined by \pi_{0}(a\otimes x)=ax, for a\in() , x\in A , is an isomorphism. Let 1= \sum a_{i}

x_{i} with a_{i}\in 0 , x_{l}\cdot\in A . Then a \otimes 1=\sum a_{i}\otimes x_{i}a for each a\in 0 . Hence for any \xi

\in Hom(0_{B}, A_{B}) we have \xi(a)=\Sigma\xi(a_{i})x_{?}\cdot a . This means that A is \mathfrak{F} -injec-
tive. On the other hand if \chi t1=0 for x\in A and t1\in \mathfrak{F} , then we have x\mathfrak{a}A=xA=

0 and x=0. Thus A is \mathfrak{F}-torsion free.
Now \varphi_{A} is an isomorphism, and B_{(\mathfrak{F})} can be identified with the subring

{\rm Im}(\varphi_{A}^{-1}L(i)) , where i is the inclusion map of B to A and L is the functor
introduced above. Put B^{*}={\rm Im}(\varphi_{A}^{-1}L(i)) . Now we will investigate the
structure of B^{*} . Note that B_{(\mathfrak{F})} and A_{(\mathfrak{F})} can be identified with B_{\tilde{ft}} and A\tilde{,}, ,

respectively, since B and A are \mathfrak{F} -torsion free.

LEMMA 2. Let y\in A_{\mathfrak{F}} be represented by \xi\in Hom(0_{B}, A_{B}) with 0\in \mathfrak{F} .
Then \varphi_{A}^{-1}(y)=\Sigma\xi(a_{i})x_{i} , where a_{i}\in \mathfrak{a} , x_{i}\in A with \Sigma a_{i}x_{i}=1 .

PROOF. By Lemma IX 1. 4 [6] we have \varphi_{A}\xi(a)=ya for each a\in 0 .
Let \Sigma a_{i}x_{i}=1 with a_{i}\in 0 , x_{i}\in A . Then \xi(a)=\Sigma\xi(a_{i})x_{i}a for each a\in 0 as is
shown in the proof of Lemma 1. Then ya= \varphi_{A}\xi(a)=\varphi_{A}(\sum\xi(a_{i})x_{i})a, and we
have (\varphi_{A}(\Sigma\xi(a_{i})x_{\dot{\tau}})-y)0=0 . But A_{\mathfrak{F}} is \mathfrak{F}-closed by Proposition IX 1. 8 [6].

Hence we have y= \varphi_{A}(\sum\xi(a_{i})x_{i}) .

PROPOSITION 1. B^{*}(=Im( \varphi_{A}^{-1}L(i)))=\{\sum\xi(a_{i})x_{i}|(l\in \mathfrak{F}, \xi\in Hom(\{)B ,

B_{B})\Sigma a_{i}x_{i}=1 , a_{i}\in \mathfrak{a} , x_{i}\in A\}\subset V_{A}(V_{A}(B)) . B^{*}\otimes_{B}A\cong A , and A is left B^{*}

-flat.
PROOF. If \xi\in Hom(0_{B}, B_{B}) with 0\in \mathfrak{F} and \Sigma a_{i}x_{i}=1 with a_{i}\in 0 , x_{i}\in A ,

then we have \varphi_{A}(\Sigma\xi(a_{i})x_{i})=\Sigma L(i)(\varphi_{B}\xi(a_{i}))\varphi_{A}(x_{i})=\Sigma L(i)(ya_{i})\varphi_{A}(x_{i})=L
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(i) (y)\varphi_{A}(\Sigma a_{i}x_{i})=L(i)(y) where y is the element of B_{i5} represented by \xi .
Hence \sum\xi(a_{i})x_{i}\in{\rm Im}(\varphi_{A}^{-1}L(i)) . Conversely if x\in{\rm Im}(L(i)) , x is represen-
ted by i\xi for some \xi\in Hom((1_{B}, B_{B}), 0\in \mathfrak{F}. Therefore the converse inclu-
sion is immediate by Lemma 2. Next, let \Sigma a_{i}x_{i}=1 with a_{i}\in \mathfrak{a}\in \mathfrak{F} , x_{i}\in A and
\xi\in Hom(0_{B}, B_{B}) , and put D=V_{A}(B) . Then we have \Sigma a_{i}\otimes dx_{i}=\Sigma a_{i}\otimes x_{i}d

in 0 \otimes_{B} A for each d\in D, because both are mapped to d by the isomorphism
\pi_{0} : t1\otimes_{B}Aarrow A . Then \Sigma\xi(a_{i})x_{i}d=\Sigma\xi(a_{i})dx_{i}=d\Sigma\xi(a_{i})x_{i} . This means
that B^{*}\subseteq V_{A}(D) .

Let C be the center of A, and denote D=V_{A}(B) and B’=V_{A}(V_{A}(B)) .
A is an H-separable extension of B if and only if D is C-finitely generated
projective and the map \eta of A\otimes_{B}A to Hom (cD,A)c defined by \eta(x\otimes y)

(d)=xdy, for x, y\in A , d\in D, is an isomorphism.

THEOREM 2 If A is an H-separable extension of B and left B-fiat, then
we have B^{*}=B’

PROOF. Let b\in B’=V_{A}(D) , and consider the isomorphism \eta of A\otimes_{B}A

to Hom(cD,A)c introduced above. Clearly \eta(b\otimes 1)=\eta(1\otimes b) , and we
have b\otimes 1=1\otimes b in A\otimes_{B}A . Then since BA is flat, b\otimes 1=1\otimes b holds in B’\otimes

BA, too, for each b\in B’ This implies B’\otimes_{B}A\cong A by \pi_{B’}(\pi_{B’}(b\otimes x)=bx, b

\in B’x\in A) . Then (B’/B)\otimes_{B}A=0 , and we see that B’/B is \mathfrak{F} -torsion (see

page 156 [6] ) . Thus if b\in B’ . there exists ()\in \mathfrak{F} such that b\mathfrak{a}\subset B, and we
see that the left multiplication b^{(l)} of b on o yields a right 5-h0m0m0rphism
of 0 to B. Then for a_{i}\in \mathfrak{a} and x_{i}\in A with \Sigma a_{i}x_{i}=1 , we have b=\Sigma(b^{(t)}a_{i})

x_{i}\in B^{*} . Thus we have B’\subset B^{*} . The converse inclusion has been shown
in Proposition 1.

Let \mathfrak{F}’ denote the class of right ideals t1 of B such that \mathfrak{a}B_{\mathfrak{F}}=B_{\mathfrak{F}} .
Obviously we have \mathfrak{F}’\subset \mathfrak{F} in the present situation. Now the problem whether
or not B’ is a right perfect localization of B in this case comes out. This is
affirmative if oB’=B’ holds for each o \in \mathfrak{F} by Theorem IX 2. 1 [6]. Thus we
have

PROPOSITION 2. Let A be an H-separble extension of B, and suppose that
A is left B-fiat and B’ is a left B-direct summand of A. Then B’ is a perfect
right localization of B.

PROOF. We can prove this without using Theorem XI 2. 1 [6]. In the
proof of Theorem 2 we have shown that b\otimes 1=1\otimes b holds in B’\otimes_{B}A for each
b\in B’ But now B’\otimes_{B}B’ is a direct summand of B’\otimes_{B}A . Hence for each
b\in B’ . b\otimes 1=1\otimes b holds in B’\otimes_{B}B’ This implies B’\otimes_{B}B’\cong B’ Of course,
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B’ is also left 5-fllat.
3. In this section we will deal with H-separable extensions of von

Neumann regular ring. First applying Theorem 2 we obtain

THEOREM 3. If B is a regular ring, and A is an H-separable extension
of B, then we have B=V_{A}(V_{A}(B)) .

PROOF. First, A is left B-flat, since B is a regular ring. Next let 0\in

\mathfrak{F} . There exist finite a_{i}\in{) and x_{i}\in A such that \Sigma a_{i}x_{i}=1 . Put b=\Sigma a_{i}B.
Then b is also in \mathfrak{F} and generated by an idempotent e in B, since B is regular.
Then A=bA=eA, and we see that e=1 . Thus b=I1=B, and we see that \mathfrak{F}=

\{B\} , which implies that B’=B^{*}=B.

REMARK. It is already known that A is also a regular ring under the
assumption of Theorem 3 (See [3] Proposition 5. 4).

Lemma 3. Let B be a regular ring and A an H-separable extension of
B. Then if A is fifinitely generated as left B-module, A is left B-fifinitely
generated projcctive. In partiqular if B is a right B-direct summand of A,

A is left B-fifinitely generated projective.

PROOF. By assumption we see that A is left B flat and A\otimes_{B}A is left
A-projective. Thus, if A is left B finitely generated, A is left B-projective
by Proposition I 11. 6 [6]. If B is right B-direct summand of A, A is left
B-finitely generated by (2. 2) [8]. Hence A is left B-projective.

PROPOSITION 3. Let B be an indecomposable regular ring, and A an
H-scparable extension of B. If A is left B-fifinitely generated, then A is an
indecomposable regular ring and D is a simple artinian ring.

PROOF. Let Z be the center of B. Then Z is a field, and we have C\subset

Z=the center of D, because B=V_{A}(V_{A}(B)) by Theorem 3. Thus A is an
indecomposable regular ring, and C is a field. On the other hand we have a
ring isomorphism D\otimes_{R}A^{0}\cong Hom(_{BB}A,A) (See e.g . (1. 5) [8]). Now,

Hom(_{BB}A,A) is regular, since B is regular and A is left B-finitely generated

projective by Lemma 3. Then D has no nilpotent ideal, and we see that D

is semisimple artinian, because [D:C]<\infty . Then D is simple, since its
center Z is a field.

A ring A is a left full linear ring if there exist a division ring K and a left
K-vector space V such that A=Hom(_{K}V, KV) . This is indecomposable

regular and left self injective. In [9] left full linear ring is called right
closed irreducible ring, and sometimes was called right closed primitive ring.
Now by Lemma 3 we can improve Theorem 3 [8] as follows;
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THEOREM 4. Let B be a left full linear ring. Then A is an H-separable
extension of B if and only if following three conditions are satisfified:

(1) A is also a left full linear ring
(2) V_{A}(V_{A}(B))=B

(3) D(=V_{A}(B)) is a simple C-algebra with [D:C]<\infty .
If these conditions are satisfified, A is a free Frobenius extension of B having
a left (or right) free basis over B consisting of [D:C] elements.

PROOF. Now we can give a proof of the “ only if ” part different from
the one given in [9]. Suppose that A is an H-separable extension of B.
Then by Proposition 3 we have already (2) and (3). Also we can see that
A is an indecomposable regular ring and right B-finitely generated projective.
Furthermore, A is left A-injective by (2. 3) [8], since B is left 5-injective.
It is already well known that the left socle of B coincides with the right socle
of B and is contained in every two sided ideal of B (See e. g. , Theorem 15.
1 [1] ) . In addition, we have \mathfrak{A}=A(B\cap \mathfrak{A}) for every two sided ideal \mathfrak{A} of A
by (2. 2) [8], since B is a left B-direct summand of A . Thus ASA is
contained in every two sided ideal of A, where S is the socle of B. Then,
since A has the Jacobson radical 0, there exists a maximal right ideal I of A
such that ASA\not\subset I. Put M=A/I. If M is not faithful, we have I\supset Ann

(AM)Z)ASA, a contradiction. Thus M is a faithful simple right A-module.
On the other hand, B has a faithful minimal left ideal {. Then since \mathfrak{l}M\neq 0 ,
there exists an x in M such that 0\neq \mathfrak{l}x\cong 1 . This isomorphism is extended to
a left B-homomorphism of M to B, since B is left B-injective. Thus we
have 0\neq Hom(_{BB}M,A)\supset Hom(_{BB}M,B) . Then since A is an H-separable
extension of B, for an A-A-module X Hom(BM, CA) we have Hom(_{B}M,

BA)=X^{B}\cong D\otimes_{c}X^{A} (See (1. 3) [8]). Thus we have X^{A}=Hom(BM, AA)\neq 0 .
This means that A has a faithful minimal left ideal isomorphic to M. Then
by Theorem 15. 3 [1] A has also a faithful minimal right ideal \Upsilon . Set L=
Hom(\iota_{A}., \iota_{A}.) and A^{*}=Hom(_{L^{1}L^{1)}}.,\cdot . Clearly A\subset A_{\Gamma}^{*}

, and we can easily see
that r is also a faithful minimal right ideal of A^{*}r While, we have A^{*}=A

\oplus N for some left A -submodule N of A^{*} . since A is left A -injective. Then
r =\iota\cdot A^{*}=\iota\cdot\oplus\iota\cdot N, and we have r N=0. Hence N=0, and A=A^{*} Thus we
have (1), and have finished the proof of the “ only if ” part. Conversely,
suppose that A and B satisfy the conditions (1), (2) and (3). Let [ D :
C]=n. Now we will show that A has a right V_{A}(D) -free basis consisting
of n elements. This assertion has already been shown in Theorem 36. 2 [1]
by a little bit different proof. By (1) there exist division ring K and a left
K-module ttl such that A=End(_{K}\iota\iota\iota) . As usual we regard K\iota \mathfrak{n}_{A} as a left K\otimes
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cD^{0} module, Now K\otimes_{c}D^{0} is a simple artinian ring, since C coincides with
the center of K and [K\otimes_{c}D^{0} : K]=n<\infty . Hence \uparrow\eta is a direct sum of
simple K\otimes_{c}D^{0} -submodules \{ I_{\alpha}\}_{a\in\Lambda} , which are mutually isomorphic and
finite dimensional over K, where \Lambda is an index set. Let I be one of \{ I_{a}^{\iota}/

chosen arbitrarily, and set L=End(_{K}I_{D}) , S=End(_{K}I) . Then A=End(_{K}\mathfrak{s}\mathfrak{n})

is isomorphic to M_{\Lambda}(S) , the ring of \Lambda\cross\Lambda -row finite matrices over S, and V_{A}

(D)=End(_{K}\iota \mathfrak{n}_{D}) is isomorphic to M_{\Lambda}(L) . On the other hand, since K\otimes

cD^{0}=I_{1}\oplus I_{2}\oplus\ldots\oplus I_{r} with I\cong I_{j}(1\leqq j\leqq n) as left K\otimes_{c}D^{0} module, we have K
\otimes_{c}End(_{C}D^{0})\cong End(_{K}K\otimes_{C}D^{0})\cong M_{r}(S) and K\otimes_{c}D^{0}\cong End(_{K\otimes_{c}D^{0}}K\otimes_{C}D^{0})\cong

M_{r}(L) . Here, K\otimes_{C}End(_{C}D^{0}) is a right K\otimes cD^{0} -free module (See PropO-
sition 3. 4 [10] ) , and its rank is [K\otimes_{C}End(_{C}D) : K]/[K\otimes_{C}D : K]=n .
Hence S must be a right L-free module of rank n, and we see that M_{\Lambda}(S)

has a right M_{\Lambda}(L) -free basis consisting of n elements. Thus we have the
conclusion. Note that the above proof shows that this assertion holds
for any left full linear ring A and any simple C-subalgebra S of A with [ S :
C]<\infty(Theorem36.2[1]) . As for the rest of the proof, see Theorem 2
and Theorem 3 [9].
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