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On blocks of twisted group algebras
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0. Introduction. Let G be a finite group, let F be a field and let \alpha : G\cross

Garrow F^{*} be a cocycle. Denote by F^{a}G the corresponding twisted group

algebra of G over F. The algebra F^{a}G has an F-basis \{\overline{g}|g\in G\} and the

multiplication in F^{a}G is determined by
\overline{x}\overline{y}=\alpha(x, y)\overline{xy} for all x, y\in G

Observe that F^{a}G is isomorphic to the ordinary group algebra FG if and
only if \alpha is a coboundary. By an \alpha -representation of G over F (or simply
projective representation of G over F. if \alpha is not pertinent to the discussion),

one understands any map \rho : Garrow GL(n, F) (for some n\geq 1 ) with \rho(1)=1

and \rho(x)\rho(y)=\alpha(x, y)\rho(xy) for all x, y\in G. Two \alpha -representations \rho_{i} : G
arrow GL(n, F) , i=1,2 , are said to be linearly equivalent if there exists M\in

GLQn,F) such that
\rho_{2}(g)=M^{-1}\rho_{1}(g)M for all g\in G

The modular \alpha -representation theory of G is concerned with the study of
blocks of F^{a}G, for the isomorphism classes of F_{a}G-modules correspond

bijectively, in a well-known manner, with the linear equivalent classes of
\alpha -representations of G over F.

The intention of the present paper is to apply K\"ulshammer’s theorem [4]
in order to provide ring-theoretic information on the structure of blocks of F
aG whose defect groups are central. The corresponding result for ordinary
group algebras is due to K\"ulshammer [3]. Because it costs us no effort, we
shall prove our result under slightly more general circumstances. Namely,
we shall consider those blocks B of F^{a}G for which G=DC_{G}(D) where D is
a defect group of B. Our result is as follows

THEOREM. Let B be a block of the twisted group algebra F^{a}G of a fifinite
group G over the fifietd F of characteristic p>0 . Assume that G=DC_{G}(D)

where D is a defect group of B and that the values of \alpha on D\cross D belong to
a perfect subfifietd of F. Then

(i) B \cong B/J(B)\bigotimes_{F}FD, where J(B) is the Jacobson radical of B. In
particular, B has a unique irreducible F^{a}G-module.

(ii) dim_{F}J(B)=(1-|D|^{-1}) (dim_{F}B)

(iii) If F is algebraically closed, and n is the dimension of the
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irreducible F^{a}G-module of B, then B is isomorphic to a full matrix algebra
M_{n}(FD) ivith entries in the group algebra FD.

1. Notation and terminology.

Throughout this paper, F denotes a field of characteristic p>0 , G a
finite group and \alpha an element of Z^{2}(G, F^{*}) . An element g\in G is said to be
\alpha -regular if \alpha(x, g)=\alpha(g, x) for all x\in C_{G}(g) . If is \alpha -regular, then so is
any conjugate of G and therefore we may speak about \alpha -regular classes of G.
Given x= \sum x_{g}\overline{g}\in F^{a}G, the support of x, written Suppx, is defined by

Supp\# ’ \{g\in G|x_{g}\neq 0\}

Let e be a block idempotent of F^{a}G and write
Supp#, = C_{1}\cup\cdots\cup C_{t}

for some \alpha -regular classes C_{1}\wedge\cdots . C_{t} of G. Then the largest of the defect
groups of C_{i} , 1\leq i\leq t, is called a defect group of e (or of the block B(e)
containing e). As in the ordinary case, it can be shown that a defect group
of e is uniquely determined up to conjugacy in G. If p^{d} is the order of defect
groups of e, then d is called the defect of e (or of B(e) ). Let H be a
subgroup of G. In order to prevent our expressions from becoming too
cumbersome, we shall use the same symbol \alpha for an element of Z^{2}(G, F^{*})

and its restriction in Z^{2}(H, F^{*}) . With this convention, F^{a}H is just the
F-linear span of the elements \overline{h}, h\in H.

2. An F-basis for Z^{a}(G:H) .
Throughout this section, H denotes a subgroup of G and Z^{a}(G:H) the

centralizer of F^{a}H in F^{a}G, i . e .
Z^{a}(G:H)= { x\in F^{a}G|xy=yx for all y\in F^{a}H }

Our aim here is to exhibit an F-basis for Z^{a}(G:H) . The following
terminology is due to Reynolds [6].

By a monomial space over F we mean a triple ( V, S, V_{s}) where V is a
vector space over F, S is a finite set and ( V_{s}) is a family of one-dimensional
subspaces of V indexed by S such that V= \bigoplus_{s\in S}V_{s} .

By a monomial representation of G on ( V, s, ( V_{s})) we mean
homomorphism :

\Gamma : Garrow GL(V)

such that for each g\in G, \Gamma(g) permutes the V_{s} s\in S. It follows that \Gamma

determines a homomorphism \gamma from G to the permutation group of the set S,

where for all g\in G and x, y\in S

\gamma(g)x=y if and only if \Gamma(g)V_{x}=V_{y}

For each s\in S, let G(s) be the stabilizer of s, i . e .
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G(s)=\{g\in G|\gamma(g)s=s\}

We say that an element s of S is \Gamma -regular if for all g\in G(s) , \Gamma(g) is the
identity mapping on V_{s} We shall refer to a G-0rbit of S as being \Gamma -regular
if each element of this orbit is \Gamma -regular. By the fifixed-point space of \Gamma we
understand the set of those v\in V for which \Gamma(g)v=v for all g\in G .

Next we generalize the notion of \alpha -regularity. Two elements x, y\in G

are called H-conjugate if y=hxh^{-1} for some h\in H. It is clear that the
H-conjugacy is an equivalence relation and so G is a union of H-conjugacy
classes. For a given g\in G, let C_{H}(g) denote the centralizer of g in H, i . e .
C_{H}(g)=\{h\in H|hg=gh\} . We say that an element g\in G is (\alpha, H) -regular
if for all h\in C_{H}(g) , \alpha(h, g)=\alpha(g, h) . Thus g is \alpha -regular if and only if g
is (\alpha, G) -regular. It follows from the definition of (\alpha, H) -regularity that
if g is (\alpha, H) -regular, then so is any H-conjugate of g and so we may speak
about (\alpha, H) -regular H-conjugacy classes of G.

LEMMA 1. Let ( V, s, ( V_{s})) be a monomial space over an arbitrary
fifietd F, and let \Gamma : Garrow GL(V) be a monomial representation of G on ( V, S,
(V_{s})) . Let X be a set of all representatives for the \Gamma -regular orbits of S,

and for each x\in X, let w_{x} be a nonzero element of V_{x} Set
v_{x^{=}} \sum_{g\in T_{\chi}}\Gamma(g)w_{x}

where T_{x} is a left transversal for G(x) in G. Then \{ v_{x}|x\in X\} is an F-basis
for the fifixed-point space of \Gamma .

PROOF. Let Y denote a set of all representatives for the nonregular
orbits of S, let Z=XUY and, for each z\in Z, let U_{z} be the sum of one
dimensional subspaces of V indexed by the elements of the orbit containing
z. Then V=\oplus U_{z}z\in Z is a decomposition of V into direct sum of invariant
subspaces. It follows that if W is the fixed-point space of \Gamma and

W_{z}=W\cap U_{z} . z\in Z

then W= \bigoplus_{z\in Z}W_{z} . Let v= \sum_{s\in S}\lambda_{s}v_{s} , \lambda_{s}\in F, 0\neq v_{s}\in V_{Sf} belong to W and
suppose that there is an s\in S such that \lambda_{s}\neq 0 . Then, for a given g\in G(s) ,

\Gamma(g)v_{s}=\mu_{s}v_{s} for some \mu_{s}\in F,

and hence the equality \Gamma(g)v=v forces \lambda_{s}=\lambda_{s}\mu_{s} . It follows that \mu_{s}=1 , so
s is \Gamma -regular and hence W= \bigoplus_{x\in X}W_{s} .
Fix x\in X and, for each g\in T_{X} , set v_{g.x}=\Gamma(g)w_{x} Then the elements \{ v_{g,x}

|g\in T_{x}\} form an F-basis of U_{x} and hence an arbitrary element v\in W_{x} can be
uniquely written in the form

v^{\sum_{g\in T_{X}}}=\lambda_{g,x}v_{g.x}

Since for all y\in G, \Gamma(y) permutes the v_{g,x} . g\in T_{x} , it follows that v_{x}\in W_{x}
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and that all the coefficients \lambda_{g.x} of v are equal. So the lemma is true.
LEMMA 2. Let X be a set of representatives for the (\alpha, H) -regular

H-conjugacy classes of G, and for each x\in X, let
v_{x^{=}}^{\sum_{h\in T_{X}}}\overline{h}\overline{x}\overline{h}^{-1}

where T_{x} is a left transversal for C_{H}(x) in H. Then the elements v_{x}, x\in X,

constitute an F-basis for the F-algcbra Z^{a}(G:H) .
PROOF. Let V=F^{a}G and, for each g\in G, let V_{g}=\{\lambda\overline{g}|\lambda\in F\} .

Then ( V, G, ( V_{g})) is a monomial space over F. Moreover, the mapping
\Gamma : Harrow GL(V)

defined by
\Gamma(h)v=\overline{h}\overline{v}\overline{h}^{-1} for all v\in V, h\in H

is easily seen to be a monomial representation of H on ( V, G, ( V_{h})) . The
homomorphism \gamma from H to the permutation group of the set G determined
by \Gamma is given by

\gamma(h)g=hgh^{-1} for all h\in H, g\in G

and hence G(g)=C_{H}(g) for all g\in G. It therefore follows that g\in G is
\Gamma -regular if and only if for all g\in C_{H}(g),\overline{h}\overline{g}=\overline{g}\overline{h}. Thus g\in G is \Gamma -regular if

and only if g is (\alpha, H) -regular. Hence a typical \Gamma -regular H-0rbit of G is
an (\alpha, H) -regular H-conjugacy class of G. Since Z^{a}(G:H) is the fixed-
point space of \Gamma . the result follows by virtue of Lemma 1.

As an immediate consequence of Lemma 1, we derive
COROLLARY 3. Let X be a set of all representatives for the \alpha-regular

classes of G. For each x\in X, put k_{x}^{\sum_{g\in T_{X}}}=g^{-}\overline{\overline{w}}^{-1} where T_{x} is a left from

sversal for C_{G}(x) in G. Then
(i) \{ k_{x}|x\in X\} is an F-basis for the centre Z(F^{a}G) of F^{a}G

(ii) For each x\in Z(F^{a}G) , Suppx is a union of a certain number of
\alpha-regular classes of G.

3. Subsiduary results.

In this section we establish some subsiduary results required for the
proof of the Theorem.

Let P be a p subgroup of G and let C_{1} \ldots C_{r} be all \alpha -regular classes of
G whose defect groups are conjugate to subgroups of P. Owing to Corollary

3, for each i\in\{1, \cdots-r\} , we may choose z_{i}\in Z(F^{a}G) with Suppz_{i}=C_{i}

We denote by Z^{a}(P) the F-linear span of z_{1} \ldots z_{r} . It follows from the
definition of Z^{a}(P) that Z^{a}(P) consists of all central elements x in F^{a}G

with Suppx C_{1}U\cdots UC_{r} . Note that every block idempotent of F^{r}G with P

as a defect group is contained in Z^{a}(P) (see Karpilovsky [2]).
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LEMMA 4. LelS\subseteq H be subgroups of G and let X be a left tramversal
for S in H. For each z\in Z^{a}(G:S) , put

T_{H}s^{(Z)=} \sum_{x\in x^{\overline{X}Z\overline{X}}}-1

Then the following properties hold:
(i) T_{H}s is an F-linear map from Z^{a}(G:S) to Z^{a}(G:H) which is

independent of the choice of X
(ii) For all y\in Z^{a}(G:H) and z\in Z^{a}(G:S) .

T_{H}s(yz)=yT_{H}s(z) and T_{H}s(zy)=T_{H}s(z)y

(iii) If D is a subgroup of S, then for all z\in Z^{a}(G:D) ,

T_{H}D(z)=T_{H}s^{(T_{S}}D(z))

(iv) If P is a p-subgroup of G, then for any z\in Z^{a}(P) there exists w\in

Z^{a} (G : P) such that z=T_{G}P(w) .
PROOF ( i ) . If y=xs for some x\in X and s\in S then

\overline{y}z\overline{y}^{-1}=\overline{xs}z\overline{xs}^{-1}=\alpha^{-1}(x, s)\overline{x}\overline{s}z\alpha(x, s)\overline{s}^{-1}\overline{x}^{-1}=\overline{x}z\overline{x}^{-1}

proving that T_{H}s(z) is independent of the choice of X. To prove that
T_{H}s(z)\in Z^{a}(G:H) , it suffices to verify that T_{H}s(z) commutes with all \overline{h},

h\in H. Since hX is another transversal for S in H, we have:
\overline{h}T_{H}s(z)\overline{h}^{-1}=\sum_{x\in X}\overline{h}\overline{x}z\overline{x}^{-1^{-1}}\overline{h}=\sum_{x\in X}\overline{hx}z\overline{hx}^{-1}=T_{H}s(z) ,

as required. The fact that T_{H}s is F-linear being obvious the assertion
follows.

(ii) For all x\in X, we have y\overline{x}=\overline{x}y and hence
T_{H}s(yz)^{\sum_{x\in X}}=\overline{x}yz\overline{x}^{-1}=y_{x\in X}^{\Sigma}\overline{x}z\overline{x}^{-1}=yT_{H}s(z)

The second equality is proved similarly.
(iii) Let Y be a left transversal for D in S. Then XY is a left

transversal for D in H. Hence

T_{H}D(Z)=_{x\in x\overline{xy}z\overline{xy}^{-1}=} \sum_{y\in Y}\sum_{x\in X}(\sum_{y\in Y}\overline{x}\overline{y}z\overline{y}^{-1}\overline{x}^{-1})

= \sum_{x\in x^{\overline{X}(}}\sum_{y\in Y}\overline{y}z\overline{y}^{-1})\overline{x}^{-1}

=T_{H}s^{(T_{S}}D(z)) ,

as required.
(iv) We may harmlessly assume that Suppz =C where C is an

\alpha -regular class of G. Fix g\in C, set L=C_{G}(g) and Q a Sylow p subgroup of
L. Since z\in Z^{a}(P) we may assume that Q\subseteq P. Because g is \alpha -reqular, \overline{g}

\in Z^{a}(G:Q) . Owing to Corollary 3, T_{G}L(\overline{g})=\lambda z for some \lambda\in F. Hence,

we may also assume that z=T_{G}L(\overline{g}) . Using (iii) to compute T_{G}Q(\overline{g}) in
two different ways, we find
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(^{*}) T_{G}L(T_{L.Q}(\overline{g})=T_{G}P(T_{P}Q(\overline{g}))

Because T_{L}Q(\overline{g})=(L:Q)\overline{g} and (L:Q) is prime to p, we may define
W=(L:Q)^{-1}T_{P}Q(\overline{g})

Then w\in Z^{a}(G:P) and, by (^{*}) , T_{G}P(w)=z, as asserted.
LEMMA 5. Let B=B(e) be a block of F^{a}G with D as a defect group.

Then F^{a}De \cong F^{a}D as F-algebras.
PROOF. The map F^{a}D- F^{a}De defined by xarrow xe, x\in F^{a}D, is obviously

a surjective homomorphism of F-algebras. Since |D|=\dim_{F} F^{a}D, it

therefore suffices to verify that the set \{ e\overline{d}|d\in D\} is linearly independent

over F. The result being trivial for D=1 , assume that |D|>1 . Suppose

that \sum_{d\in D}\lambda_{d}e\overline{d}=0 for some \lambda_{d}\in F. Because D is a group, we may harmlessly

assume that \lambda_{1}=-1 if not all \lambda_{d}=0 . Hence
e= \sum\lambda_{d}e\overline{d},

d\in D-\{1\}

so writing e= \sum_{g\in G}e_{g}g^{-}, it follows that

\sum_{g\in G}e_{g}g^{-}=\sum_{d\in D-\{1^{(}}\lambda_{(}d/\sum_{g\in c^{e_{g}g^{-}\overline{d}}})

=_{d\in D-\{1} \sum_{\in G}\lambda {}_{d}C_{g}\overline{g}\overline{d}

=_{d\in D-\{1} \sum_{g\in G}\lambda_{g}e_{g}\alpha(g, d)\overline{gd}

Thus, for every x\in Suppe , there exists y\in Suppe and d\in D-\{1\} such
that x-yd. Since D is a defect group of B, Suppe \cap C_{G}(D)\neq\phi , for

otherwise the image of e under the Brauer homomorphism
Z(F^{a}G)arrow Z(F^{a}N_{G}(D))

would be zero, a contradiction. Hence, we may assume that x\in G_{G}(D) , in

which case y=xd^{-1}=d^{-1}x. Owing to Passman [5], both x and y are
p’-elements and so d=1 , a contradiction. So the lemma is true.

LEMMA 6. Let H be a subgroup of G and tet\pi:F^{a}G-F^{a}H be the

natural projection. Then \pi is a homomorphism of (left and right) F
aH-modules.

PROOF. Let T be a right transversal for H in G containing 1. Then F
aG is a free left F^{a}H-module with the elements \{ \overline{t}|t\in T\} as a basis. Hence

the mapping \overline{1}arrow\overline{1},\overline{t}arrow 0,1\neq t, extends to an F^{a}H homomorphism \psi:F^{a}G-

F^{a}H. Fix g\in G and write g=ht for some h\in H, t\in T If t\neq 1 , then
\psi(\overline{g})=\psi(\alpha^{-1}(h, t)\overline{h}t)

=\alpha^{-1}(h, t)\overline{h}\psi(t)

=0
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On the other hand, if t=1 , then \psi(\overline{g})=\overline{g}\psi(\overline{1})=\overline{g} and hence \pi=\psi . A

similar argument shows that \pi is a homomorphism of right F^{a}H-modules, as
required.

4. Proof of the Theorem.

Suppose that the isomorphism

(i) B\cong B/J(B)^{\bigotimes_{F}}FD

is true. Then taking the F-dimensions of both sides of (1) yields (ii)

Since B is indecomposable, it follows from (1) the B/J(B) must be simple

and therefore B has a unique irreducible F^{a}G-module. In particular, if F is
algebraically closed, then B/J(B)\cong M_{n}(F) where n is the dimension of the

irreducible F^{a}G-module of B. Hence
B\cong M_{n}(F)^{\bigotimes_{F}}FD\cong M_{n}(FD) ,

proving (iii). We are therefore left to verify (1).

Set A=F^{a}G and A’=F^{a}D so that B=Ae and that, by Lemma 5,
A’e=F^{a}De\cong F^{a}D

Let E be a perfect subfield of F with \alpha(x, y)\in E for all x, y\in D. Since E

is perfect, we have E^{a}D\cong ED (see Conlon [1]) and therefore
A’e\cong F^{a}D\cong F_{E}^{\otimes}E^{a}D\cong F_{E}^{\otimes}ED\cong FD

Let \psi : F^{a}G-F^{a}D be the natural projection. Then, by Lemma 6,

(2) \psi is a homomorphism of (F^{a}D, F^{a}D) -bimodules
Let { g_{1g_{n}\}} \ldots be a left transversal for D in G. Because F^{a}G is a free right

F^{a}D-module with the elements \overline{g}_{1-}\cdots,\overline{g}_{n} as a basis, each a\in F^{a}G can be

uniquely written in the form
a= \sum_{i=1}^{n}\overline{g}_{i}x_{i}

with x_{i}\in F^{a}D. For any k\in\{1, \cdots n\} , we have

\overline{g}_{k}^{-1}a=x_{k}+_{i=1}\sum_{i\neq k}^{n}\overline{g}_{k}^{-1}\overline{g}_{i}x_{i}

Since for k\neq i, \psi(\overline{g}_{k}^{-1}\overline{g}_{i})=0 , we deduce that x_{k}=\psi(\overline{g}_{k}^{-1}a) and hence that

(3) a= \sum_{i=1}^{n}\overline{g}_{i}\psi(\overline{g}_{i}^{-1}a) for all a\in A

A similar argument shows that

(4) a= \sum_{i=1}^{n}\psi(a\overline{g}_{i})\overline{g}_{i}^{-1}

By Lemma 4. 4(iv), we have that
(5) e=T_{G}D(w)

Because f\# D \cong FD, we also have that

for all a\in A

for some w\in Z^{a}(G:D)
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(6) \dim_{F}(F^{a}D/J(F^{a}D))=1 .
Invoking (2)-(6) together with K\"ulshammer’s theorem (K\"ulshammer [4]),
we are left to verify that

(7) F^{a}G=F^{a}D. Z^{a}(G:D)

To prove (7), we need only show that \overline{g}\in F^{a}D. Z^{a}(G:D) for all g\in G.
Fix g\in G and write g in the form g=xy with x\in D and y\in C_{G}(D) .

Then
\overline{g}=(\alpha^{-1}(x, y)\overline{x})\overline{y}

and \overline{y}\in Z^{a}(G:D) since any p-element of G is \alpha -regular (see Conlon [1]).
So the theorem is true.
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