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On blocks of twisted group algebras

By G. KARPILOVSKY
(Received January 7, 1985)

0. Introduction. Let G be a finite group, let F be a field and let « : G X
G—F* be a cocycle. Denote by F “G the corresponding twisted group
algebra of G over F. The algebra F «G has an F-basis {g|geG) and the
multiplication in F G is determined by
=a(x, y)xy for all x, yv&eG
Observe that F “G is isomorphic to the ordinary group algebra FG if and
only if « is a coboundary. By an a-representation of G over F (or simply
projective representation of G over F. if « is not pertinent to the discussion),
one understands any map p: G—>GL(n, F) (for some n=1) with p(1)=1
and p()pW)=a(x, y)p(xy) forall x, yEG. Two a-representations p,: G
—GL(n, F), i=1, 2, are said to be linearly equivalent if there exists M &
GL(n, F) such that
pg)=M"p()M for all g€G
The modular a-representation theory of G is concerned with the study of
blocks of F “G, for the isomorphism classes of FeG-modules correspond

bijectively, in a well-known manner, with the linear equivalent classes of
a-representations of G over F.
The intention of the present paper is to apply Kiilshammer’s theorem
in order to provide ring-theoretic information on the structure of blocks of F’
%(; whose defect groups are central. The corresponding result for ordinary
group algebras is due to Kiilshammer [3]. Because it costs us no effort, we
shall prove our result under slightly more general circumstances. Namely,
we shall consider those blocks B of F *G for which G=DC;(D) where D is
a defect group of B. Our result is as follows
THEOREM. Let B be a block of the twisted group algebra F “G of a finite
group G over the field F of characteristic p>0. Assume that G=DC.(D)
where D s a defect group of B and that the values of « on D XD belong to
a perfect subfield of F. Then

(i) B=B/J(B) ‘% ED, wheve J (B) is the Jacobson radical of B. In

particular, B has a unique irrveducible F “G-module.
(i) dimeJ(B)=A—|D|™") (dimp B)
Gii) If F is algebraically closed, and n is the dimension of the
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irveducible F *G-module of B, then B is isomorphic to a full matrix algebra
M,(FD) with entries in the group algebra FD.

1. Notation and terminology.

Throughout this paper, F denotes a field of characteristic p>0, G a
finite group and « an element of Z?(G, F*). An element g&G is said to be
a-regular if a(x, ¢g)=a(g, x) forallx&C,(g). If - is @-regular, then so is
any conjugate of G and therefore we may speak about a-regular classes of G.
Given x =Xxg<F *G, the support of x, written Suppx, is defined by

Suppx={g&EG|x,#0}
Let ¢ be a block idempotent of F “G and write

Suppe=CU---UC,
for some a-regular classes C,, -+, C, of G. Then the largest of the defect
groups of C;, 1<i<t is called a defect group of ¢ (or of the block B(e)
containing ¢). As in the ordinary case, it can be shown that a defect group
of ¢ is uniquely determined up to conjugacy in G. If p?is the order of defect
groups of ¢, then d is called the defect of ¢ (or of B(e)). Let H be a
subgroup of G. In order to prevent our expressions from becoming too
cumbersome, we shall use the same symbol a for an element of Z?(G, F*)
and its restriction in Z*(H, F*). With this convention, F “H is just the
F-linear span of the elements %, hEH.

2. An F-basis for Z*(G: H).

Throughout this section, H denotes a subgroup of G and Z*(G: H) the

centralizer of F “H in F “G, i. e.
Z(G:H)={xeF*G|xy=yx for all yeF*H |}

Our aim here is to exhibit an F-basis for Z*(G: H). The following
terminology is due to Reynolds [6].

By a monomial space over F we mean a triple (V, S, Vs) where V isa
vector space over F, S is a finite set and (V) is a family of one-dimensional
subspaces of V indexed by S such that V:sgs Vs.

By a monomial vepresentation of G on (V, S, (Vs)) we mean a
homomorphism :

I': G—>GL(V)
such that for each g&G, I'(¢) permutes the Vs, s&S. It follows that T"
determines a homomorphism y from G to the permutation group of the set S,
where for all g&G and x, yES
v(gx=y if and only if T'(g) V=V,
For each s€S, let G(s) be the stabilizer of s, 1. e.
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G(s)={geCGly(gs=s}

We say that an element s of S is I'-regular if for all g&G(s), T'(g) is the
identity mapping on V. We shall refer to a G-orbit of S as being I'-regular
if each element of this orbit is I'-regular. By the fixed-point space of T" we
understand the set of those v &V for which I'(g)v=v for all g&G.

Next we generalize the notion of a-regularity. Two elements x, y&G
are called H-conjugate if y=hxh™ for some heH. It is clear that the
H-conjugacy is an equivalence relation and so G is a union of H-conjugacy
classes. For a given g&G, let C,;(g) denote the centralizer of g in H, i. e.
Cy(g)={h€H\hg=gh}. We say that an element g&G is (a, H)-regular
if for all h€Cy,(g), a(h, g)=a(g, h). Thus g is a-regular if and only if ¢
is (a, G)-regular. It follows from the definition of (&, H)-regularity that
if gis (a, H)-regular, then so is any H-conjugate of ¢ and so we may speak
about (a, H)-regular H-comjugacy classes of G.

LEmMma 1. Let (V, S, (Vs)) be a monomial space over an arbitrary
field F, and let T': G>GL(V) be a monomial representation of G on (V, S,
(Vo). Let X be a set of all representatives for the T -regular orbits of S,
and for each xEX, let w, be a nonzero element of V.. Set

ve= 2 T'(g) wy

g&€Ty

wheve Ty is a left transversal for G(x) in G. Then {vi|xEX} is an F-basis
for the fixed-point space of T.

Proor. Let Y denote a set of all representatives for the nonregular
orbits of S, let Z=XUY and, for each z&Z let U, be the sum of one
dimensional subspaces of V indexed by the elements of the orbit containing

z. Then szgZUz is a decomposition of V into direct sum of invariant

subspaces. It follows that if W is the fixed-point space of I" and
W.=wnu,, z€Z

then W:ZGEBZ W,. Let v:sgslsvs, As€F, 0+xv,eVy, belong to W and

suppose that there is an s&S such that A;#0. Then, for a given g&G(s),

['(g) vs= usvs for some u,EF,
and hence the equality I'(¢)v=v forces A;=2Asus. It follows that u;=1, so

s is T-regular and hence W = @ W, .
Fix x€X and, for each g& 7T, set v,,=T"(¢g)w,. Then the elements {vg .

lg€ T} form an F-basis of U, and hence an arbitrary element v € W, can be
uniquely written in the form

v :gg’nlg, xUg, x

Since for all yeG, I'(y) permutes the v, ., g Ty, it follows that v, €W,
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and that all the coefficients A, . of v are equal. So the lemma is true.
LEMMA 2. Let X be a set of representatives for the (a, H)-regular
H-conjugacy classes of G, and for each x&X, let
V= hg'Tﬁfﬁ 41,
wherve T is a left transversal for Cy(x) in H. Then the elements vy, xEX,
constitute an F-basis for the F-algebva Z°(G : H).

PROOF. Let V=F*G and, for each g&€G, let V ={Ag|AEF}.
Then (V, G, (V,)) is a monomial space over F. Moreover, the mapping
r':H->GL(V)

defined by »
I'(h)v=hoh forall veV, heH
is easily seen to be a monomial representation of H on (V, G, (V). The
homomorphism y from H to the permutation group of the set G determined
by I' is given by
y(h)g=hgh™ for all heH, geG
and hence G(g)=C,(g) for all g&G. It therefore follows that ¢gEG is
[-regular if and only if for all g€C,,(¢), hg=gh. Thus g=G is I'-regular if
and only if g is (@, H)-regular. Hence a typical I"-regular H-orbit of G is
an (a, H)-regular H-conjugacy class of G. Since Z*(G: H) is the fixed-
point space of T, the result follows by virtue of Lemma 1.
As an immediate consequence of [Lemma 1|, we derive
COROLLARY 3. Let X be a set of all representatives for the a-vegular
classes of G. For each x&X, put kx:gezng‘fg’ ' where Ty is a left tran-
sversal for C.(x) in G. Then
(i) {k|x€EX} is an F-basis for the centre Z(F *G) of F°G
(i) For each x€Z(F *G), Suppx is a union of a certain number of
a-regular classes of G.

3. Subsiduary results.

In this section we establish some subsiduary results required for the
proof of the

Let P be a p-subgroup of G and let C, , -+, C, be all a-regular classes of
G whose defect groups are conjugate to subgroups of P. Owing to
3, for each i€{1,---,»}, we may choose z,€Z(F“G) with Suppz;=C;.
We denote by Z*(P) the F-linear span of z,, -+, z. It follows from the
definition of Z*(P) that Z“(P) consists of all central elements x in F“G
with SuppxC C.U --- UC,. Note that every block idempotent of F*G with P
as a defect group is contained in Z*(P) (see Karpilovsky [2]).
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Lemma 4. Let SCH be subgroups of G and let X be a left transversal
for S in H.  For each z€Z*(G:S), put
Ty, s(2)= 2B %k
Then the following properties hold :
(1) Ty.s1ts an F-linear map from Z*(G:S) to Z*(G: H) which is
independent of the choice of X
(ii) For all yeZ*(G-H) and z€Z*(G:S).
Ty.s)=y Ty.s(z) and Ty (zy)=Ty.(2)y
Gii) If D is a subgroup of S, then for all z€Z*(G: D),
Ty .p(2) =Ty (Ts.,(2))
(iv) If P is a p-subgroup of G, then for any zZ*(P) there exists wE
Z(G:P) such that z=T,. p(w).
Proor (1). If Y =x8 flor some x&X and SES then
yzy =i =at(x, $)xsza(x, $)S £ =ik
proving that T, .s(z) is independent of the choice of X. To prove that
T,.s(z2)EZ*(G: H), it suffices to verify that T},. (z) commutes with all 4,
heH. Since hX is another transversal for S in H, we have:
WTy. ok =D dies h = B s =Ty (),
as required. The fact that 7. is F-linear being obvious the assertion
follows.
(ii) For all x€X, we have yx=xy and hence

-1

Ty .s(y2) ngxfyzf_lzyngfzfq:yTH .s(2)
The second equality is proved similarly.

(iii) Let Y be a left transversal for D in S. Then XY is a left
transversal for D in H. Hence

TH:DCZ):xEXTyZTy__l: b ( yz xyzy x

yEY xeX =%
_ —1 _-1
_ng ( y§Yy 2y ) x

=Ty .s(Ts. p(2)),
as required.

(iv) We may harmlessly assume that Suppz=C where C is an
a-regular class of G. Fix g&C, set L=C.(g) and Q a Sylow p-subgroup of
L. Since z&Z*(P) we may assume that QCP. Because g is a-reqular, g
eZ*(G: Q). Owing to [Corollary 3, 7.,(g)=2z for some A €F. Hence,
we may also assume that z=7.,(g). Using (iii) to compute T.,(g) in
two different ways, we find
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) To. . (T, . o@=T5.p(Tp . (@)
Because T;.,(g)=(L:@)g and (L: Q) is prime to p, we may define
W=(L:Q Tp.o@

Then weZ#(G: P) and, by (*), T,.,(w)=2, as asserted.

LEMMA 5. Let B=B(e) be a block of F*G with D as a defect group.
Then F*De=F “D as F-algebras.

PRrOOF. The map F *D— F “De defined by x—xe, x&F “D, is obviously
a surjective homomorphism of F-algebras. Since |D|=dim; F“D, it
therefore suffices to verify that the set {ed|d €D} is linearly independent
over F. The result being trivial for D=1, assume that |D|>1. Suppose

that dé‘bldec?: 0 for some A,F. Because D is a group, we may harmlessly

assume that 1,=—1 if not all 1,=0. Hence
e=Aqed,
deD—{1}

so writing e:gZ-'Gegg‘, it follows that
. [ 3
ggcegg_de§<1;ld( ggceggd
Zdegmld@gg_j
&

:del)z—{l;llgeg(l'(g’ d>ﬁ

geG
Thus, for every x =Suppe, there exists y&Suppe and d €D —{1} such
that x=yd. Since D is a defect group of B, Suppe NCs(D)#¢, for
otherwise the image of ¢ under the Brauer homomorphism
Z(F*G)—>Z(F*N.(D))
would be zero, a contradiction. Hence, we may assume that x&G;(D), in
which case y=xd'=d 'x. Owing to Passman [5], both x and y are
p’-elements and so d=1, a contradiction. So the lemma is true.
LEMMA 6. Let H be a subgroup of G and let n:F*G—F“H be the

natural projection. Then = is a homomorphism of (left and right) F
*H-modules.

PROOF. Let T be a right transversal for H in G containing 1. Then F
(3 is a free left F “H-module with the elements {#{|tET} asa basis. Hence
the mapping 1>1, 70, 1#¢ extends to an F “H-homomorphism ¢ : F “G—
F*H. Fix g&G and write g=ht for some h€H, t€T. If t+1, then

Y@ =v(a"Ch DRD
=a'(h, Oy (D
=0
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On the other hand, if =1, then ¥ (g) =gy (1)=g and hence z=1. A
similar argument shows that z is a homomorphism of right F *H-modules, as
required.

4. Proof of the Theorem.

Suppose that the isomorphism
(i) B=B/J(BY®FD
is true. Then taking the F-dimensions of both sides of (1) yields (ii)
Since B is indecomposable, it follows from (1) the B/J(B) must be simple
and therefore B has a unique irreducible F *G-module. In particular, if Fis
algebraically closed, then B/J(B)=M,(F) where # is the dimension of the
irreducible F *G-module of B. Hence
B EM,(F)% FD=M,(FD),
proving (iii). We are therefore left to verify (D).
Set A=F *G and A’=F “D so that B=Ae and that, by Lemma 5,
Ae=F®De=F*D
Let E be a perfect subfield of F with a(x, y)€E for all x, yeD. Since E
is perfect, we have E*D=ED (see Conlon [1]D and therefore
Ae=F*D=F®E*D=F%ED=FD
Let v : F “G—F “D be the natural projection. Then, by Lemma 6,
(2) 4 is a homomorphism of (F*D, F «D)-bimodules
Let {g:, - gn} bea left transversal for D in G. Because F “G is a free right

F “D-.module with the elements g, , -, §» as a basis, each a€F “G can be
uniquely written in the form

n
a=2gix
=1

, N},

with x,€F *D. For any k&{], - we have

gra=xxt Zlézléixi

1=

Since for k+1i, ¥ (gz'g:) =0, we deducelitlilat x,= ¥ (g%'a) and hence that
(3 a=354 (') for all a€A

A similar argument shows that
(4) a:élw(agi)gzl for all a€A

By [Lemma 4. 4(iv), we have that
(5) e=T..p(w) for some weZ*(G: D)

Because F*D =FD, we also have that
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(6) dim.(F*D/J(F*D))=1.
Invoking (2)-(6) together with Kiilshammer’s theorem (Kiilshammer [4]),
we are left to verify that

(7 FeG=F*D. Z*(G:D)
To prove (7), we need only show that geF*D. Z<(G: D) for all g&G.
Fix g&G and write g in the form g=xy with x&D and yeC,(D).
Then
g=(a'(x, YDy
and y&Z “(G : D) since any p-element of G is a-regular (see Conlon [I]).
So the theorem is true.
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