On blocks of twisted group algebras

By G. KARPILOVSKY (Received January 7, 1985)

0. Introduction. Let G be a finite group, let F be a field and let $\alpha : G \times G \rightarrow F^*$ be a cocycle. Denote by $F^{\alpha}G$ the corresponding twisted group algebra of G over F. The algebra $F^{\alpha}G$ has an F-basis $\{\bar{g} | g \in G\}$ and the multiplication in $F^{\alpha}G$ is determined by

 $\overline{x}\overline{y} = \alpha(x, y)\overline{xy}$ for all $x, y \in G$

Observe that $F^{\alpha}G$ is isomorphic to the ordinary group algebra FG if and only if α is a coboundary. By an α -representation of G over F (or simply projective representation of G over F. if α is not pertinent to the discussion), one understands any map $\rho: G \rightarrow GL(n, F)$ (for some $n \ge 1$) with $\rho(1) = 1$ and $\rho(x)\rho(y) = \alpha(x, y)\rho(xy)$ for all $x, y \in G$. Two α -representations $\rho_i: G \rightarrow GL(n, F)$, i=1, 2, are said to be *linearly equivalent* if there exists $M \in GL(n, F)$ such that

$$\rho_2(q) = M^{-1} \rho_1(q) M \qquad \text{for all } g \in G$$

The modular α -representation theory of G is concerned with the study of blocks of $F^{\alpha}G$, for the isomorphism classes of $F_{\alpha}G$ -modules correspond bijectively, in a well-known manner, with the linear equivalent classes of α -representations of G over F.

The intention of the present paper is to apply Külshammer's theorem [4] in order to provide ring-theoretic information on the structure of blocks of $F^{\alpha}G$ whose defect groups are central. The corresponding result for ordinary group algebras is due to Külshammer [3]. Because it costs us no effort, we shall prove our result under slightly more general circumstances. Namely, we shall consider those blocks B of $F^{\alpha}G$ for which $G = DC_G(D)$ where D is a defect group of B. Our result is as follows

THEOREM. Let B be a block of the twisted group algebra $F^{\alpha}G$ of a finite group G over the field F of characteristic p>0. Assume that $G=DC_G(D)$ where D is a defect group of B and that the values of α on $D \times D$ belong to a perfect subfield of F. Then

(i) $B \cong B/J(B) \underset{F}{\otimes} FD$, where J(B) is the Jacobson radical of B. In particular, B has a unique irreducible $F \,^{\alpha}G$ -module.

 $(ii) \quad dim_F J(B) = (1 - |D|^{-1}) \quad (dim_F B)$

(iii) If F is algebraically closed, and n is the dimension of the

irreducible $F \,^{\alpha}G$ -module of B, then B is isomorphic to a full matrix algebra $M_n(FD)$ with entries in the group algebra FD.

1. Notation and terminology.

Throughout this paper, F denotes a field of characteristic p>0, G a finite group and α an element of $Z^2(G, F^*)$. An element $g \in G$ is said to be α -regular if $\alpha(x, g) = \alpha(g, x)$ for all $x \in C_G(g)$. If \cdot is α -regular, then so is any conjugate of G and therefore we may speak about α -regular classes of G. Given $x = \sum x_g \bar{g} \in F^{\alpha}G$, the support of x, written Suppx, is defined by

$$\operatorname{Supp} x = \{g \in G \mid x_g \neq 0\}$$

Let e be a block idempotent of $F \,{}^{\alpha}G$ and write

$$\operatorname{Supp} e = C_1 \cup \cdots \cup C_t$$

for some α -regular classes C_1 , \cdots , C_t of G. Then the largest of the defect groups of C_i , $1 \le i \le t$, is called a defect group of e (or of the block B(e)containing e). As in the ordinary case, it can be shown that a defect group of e is uniquely determined up to conjugacy in G. If p^d is the order of defect groups of e, then d is called the defect of e (or of B(e)). Let H be a subgroup of G. In order to prevent our expressions from becoming too cumbersome, we shall use the same symbol α for an element of $Z^2(G, F^*)$ and its restriction in $Z^2(H, F^*)$. With this convention, $F^{\alpha}H$ is just the F-linear span of the elements \bar{h} , $h \in H$.

2. An F-basis for $Z^{\alpha}(G:H)$.

Throughout this section, H denotes a subgroup of G and $Z^{\alpha}(G:H)$ the centralizer of $F^{\alpha}H$ in $F^{\alpha}G$, i. e.

$$Z^{\alpha}(G:H) = \{x \in F^{\alpha}G | xy = yx \text{ for all } y \in F^{\alpha}H\}$$

Our aim here is to exhibit an *F*-basis for $Z^{\alpha}(G:H)$. The following terminology is due to Reynolds [6].

By a monomial space over F we mean a triple (V, S, V_s) where V is a vector space over F, S is a finite set and (V_s) is a family of one-dimensional subspaces of V indexed by S such that $V = \bigoplus_{s \in S} V_s$.

By a monomial representation of G on $(V, S, (V_s))$ we mean a homomorphism:

$$\Gamma: G \rightarrow GL(V)$$

such that for each $g \in G$, $\Gamma(g)$ permutes the V_s , $s \in S$. It follows that Γ determines a homomorphism γ from G to the permutation group of the set S, where for all $g \in G$ and x, $y \in S$

 $\gamma(g)x = y$ if and only if $\Gamma(g) V_x = V_y$ For each $s \in S$, let G(s) be the *stabilizer* of s, i. e.

$$G(s) = \{g \in G \mid \gamma(g)s = s\}$$

We say that an element s of S is Γ -regular if for all $g \in G(s)$, $\Gamma(g)$ is the identity mapping on V_s . We shall refer to a G-orbit of S as being Γ -regular if each element of this orbit is Γ -regular. By the *fixed-point space* of Γ we understand the set of those $v \in V$ for which $\Gamma(g)v = v$ for all $g \in G$.

Next we generalize the notion of α -regularity. Two elements $x, y \in G$ are called *H*-conjugate if $y = hxh^{-1}$ for some $h \in H$. It is clear that the *H*-conjugacy is an equivalence relation and so *G* is a union of *H*-conjugacy classes. For a given $g \in G$, let $C_H(g)$ denote the centralizer of *g* in *H*, i. e. $C_H(g) = \{h \in H \setminus hg = gh\}$. We say that an element $g \in G$ is (α, H) -regular if for all $h \in C_H(g)$, $\alpha(h, g) = \alpha(g, h)$. Thus *g* is α -regular if and only if *g* is (α, G) -regular. It follows from the definition of (α, H) -regularity that if *g* is (α, H) -regular, then so is any *H*-conjugate of *g* and so we may speak about (α, H) -regular *H*-conjugacy classes of *G*.

LEMMA 1. Let $(V, S, (V_s))$ be a monomial space over an arbitrary field F, and let $\Gamma: G \rightarrow GL(V)$ be a monomial representation of G on $(V, S, (V_s))$. Let X be a set of all representatives for the Γ -regular orbits of S, and for each $x \in X$, let w_x be a nonzero element of V_x . Set

$$v_x = \sum_{g \in T_x} \Gamma(g) w_x$$

where T_x is a left transversal for G(x) in G. Then $\{v_x | x \in X\}$ is an F-basis for the fixed-point space of Γ .

PROOF. Let Y denote a set of all representatives for the nonregular orbits of S, let Z = XUY and, for each $z \in Z$, let U_z be the sum of one dimensional subspaces of V indexed by the elements of the orbit containing z. Then $V = \bigoplus_{z \in Z} U_z$ is a decomposition of V into direct sum of invariant subspaces. It follows that if W is the fixed-point space of Γ and $W_z = W \cap U_z$, $z \in Z$

then $W = \bigoplus_{z \in Z} W_z$. Let $v = \sum_{s \in S} \lambda_s v_s$, $\lambda_s \in F$, $0 \neq v_s \in V_s$, belong to W and suppose that there is an $s \in S$ such that $\lambda_s \neq 0$. Then, for a given $g \in G(s)$, $\Gamma(g)v_s = \mu_s v_s$ for some $\mu_s \in F$,

and hence the equality $\Gamma(g)v = v$ forces $\lambda_s = \lambda_s \mu_s$. It follows that $\mu_s = 1$, so s is Γ -regular and hence $W = \bigoplus_{x \in X} W_s$.

Fix $x \in X$ and, for each $g \in T_x$, set $v_{g,x} = \Gamma(g) w_x$. Then the elements $\{v_{g,x} | g \in T_x\}$ form an *F*-basis of U_x and hence an arbitrary element $v \in W_x$ can be uniquely written in the form

$$v = \sum_{g \in T_x} \lambda_{g, x} v_{g, x}$$

Since for all $y \in G$, $\Gamma(y)$ permutes the $v_{g,x}$, $g \in T_x$, it follows that $v_x \in W_x$

G. Karpilovsky

and that all the coefficients $\lambda_{g,x}$ of v are equal. So the lemma is true.

LEMMA 2. Let X be a set of representatives for the (α, H) -regular H-conjugacy classes of G, and for each $x \in X$, let

$$v_x = \sum_{h \in T_x} \bar{h} \bar{x} \bar{h}^{-1},$$

where T_x is a left transversal for $C_H(x)$ in H. Then the elements v_x , $x \in X$, constitute an F-basis for the F-algebra $Z^{\alpha}(G:H)$.

PROOF. Let $V = F \,{}^{\alpha}G$ and, for each $g \in G$, let $V_g = \{\lambda \bar{g} | \lambda \in F\}$. Then $(V, G, (V_g))$ is a monomial space over F. Moreover, the mapping $\Gamma: H \rightarrow GL(V)$

defined by

$$\Gamma(h)v = \bar{h}\bar{v}\bar{h}^{-1}$$

for all
$$v \in V$$
, $h \in H$

is easily seen to be a monomial representation of H on $(V, G, (V_h))$. The homomorphism γ from H to the permutation group of the set G determined by Γ is given by

 $\gamma(h)g = hgh^{-1}$ for all $h \in H$, $g \in G$ and hence $G(g) = C_H(g)$ for all $g \in G$. It therefore follows that $g \in G$ is Γ -regular if and only if for all $g \in C_H(g)$, $h\bar{g} = \bar{g}h$. Thus $g \in G$ is Γ -regular if and only if g is (α, H) -regular. Hence a typical Γ -regular H-orbit of G is an (α, H) -regular H-conjugacy class of G. Since $Z^{\alpha}(G:H)$ is the fixedpoint space of Γ , the result follows by virtue of Lemma 1.

As an immediate consequence of Lemma 1, we derive

COROLLARY 3. Let X be a set of all representatives for the α -regular classes of G. For each $x \in X$, put $k_x = \sum_{g \in T_x} \bar{g}\bar{x}\bar{g}^{-1}$, where T_x is a left transversal for $C_G(x)$ in G. Then

(i) $\{k_x | x \in X\}$ is an F-basis for the centre $Z(F^{\alpha}G)$ of $F^{\alpha}G$

(ii) For each $x \in Z(F^{\alpha}G)$, Suppx is a union of a certain number of α -regular classes of G.

3. Subsiduary results.

In this section we establish some subsiduary results required for the proof of the Theorem.

Let *P* be a *p*-subgroup of *G* and let C_1, \dots, C_r be all α -regular classes of *G* whose defect groups are conjugate to subgroups of *P*. Owing to Corollary 3, for each $i \in \{1, \dots, r\}$, we may choose $z_i \in Z(F^{\alpha}G)$ with $\operatorname{Supp} z_i = C_i$. We denote by $Z^{\alpha}(P)$ the *F*-linear span of z_1, \dots, z_r . It follows from the definition of $Z^{\alpha}(P)$ that $Z^{\alpha}(P)$ consists of all central elements *x* in $F^{\alpha}G$ with $\operatorname{Supp} x \subseteq C_1 U \cdots UC_r$. Note that every block idempotent of $F^{\alpha}G$ with *P* as a defect group is contained in $Z^{\alpha}(P)$ (see Karpilovsky [2]).

LEMMA 4. Let $S \subseteq H$ be subgroups of G and let X be a left transversal for S in H. For each $z \in \mathbb{Z}^{\alpha}(G:S)$, put

$$T_{H:S}(z) = \sum_{x \in X} \bar{x} z \bar{x}^{-1}$$

Then the following properties hold :

(i) $T_{H:S}$ is an F-linear map from $Z^{\alpha}(G:S)$ to $Z^{\alpha}(G:H)$ which is independent of the choice of X

(ii) For all $y \in Z^{\alpha}(G:H)$ and $z \in Z^{\alpha}(G:S)$. $T_{H+S}(yz) = y \quad T_{H+S}(z)$ and $T_{H+S}(zy) = T_{H+S}(z)y$

(iii) If D is a subgroup of S, then for all
$$z \in Z^{\alpha}(G:D)$$
,
 $T_{H:D}(z) = T_{H:S}(T_{S:D}(z))$

(iv) If P is a p-subgroup of G, then for any $z \in Z^{\alpha}(P)$ there exists $w \in Z^{\alpha}(G:P)$ such that $z = T_{G:P}(w)$.

PROOF (i). If y = xs for some $x \in X$ and $s \in S$ then $\overline{yzy}^{-1} = \overline{xszxs}^{-1} = \alpha^{-1}(x, s)\overline{xsz\alpha}(x, s)\overline{s}^{-1}\overline{x}^{-1} = \overline{xzx}^{-1}$

proving that $T_{H:S}(z)$ is independent of the choice of X. To prove that $T_{H:S}(z) \in Z^{\alpha}(G:H)$, it suffices to verify that $T_{H:S}(z)$ commutes with all \bar{h} , $h \in H$. Since hX is another transversal for S in H, we have:

$$\bar{h}T_{H:S}(z)\bar{h}^{-1} = \sum_{x \in X} \bar{h}\bar{x}z\bar{x}^{-1}\bar{h}^{-1} = \sum_{x \in X} \bar{h}xz\bar{h}x^{-1} = T_{H:S}(z),$$

as required. The fact that $T_{H:S}$ is *F*-linear being obvious the assertion follows.

(ii) For all $x \in X$, we have $y\bar{x} = \bar{x}y$ and hence

$$T_{H:S}(yz) = \sum_{x \in X} \bar{x}yz\bar{x}^{-1} = y \sum_{x \in X} \bar{x}z\bar{x}^{-1} = yT_{H:S}(z)$$

The second equality is proved similarly.

(iii) Let Y be a left transversal for D in S. Then XY is a left transversal for D in H. Hence

$$\begin{split} T_{H:D}(z) &= \sum_{\substack{x \in X \\ y \in Y}} \overline{xy} \ z \ \overline{xy}^{-1} = \sum_{x \in X} \left(\sum_{y \in Y} \overline{x} \ \overline{y} \ z \ \overline{y}^{-1} \overline{x}^{-1} \right) \\ &= \sum_{x \in X} \overline{x} \left(\sum_{y \in Y} \overline{y} \ z \ \overline{y}^{-1} \right) \overline{x}^{-1} \\ &= T_{H:S}(T_{S:D}(z)), \end{split}$$

as required.

(iv) We may harmlessly assume that $\operatorname{Supp} z = C$ where *C* is an α -regular class of *G*. Fix $g \in C$, set $L = C_G(g)$ and *Q* a Sylow *p*-subgroup of *L*. Since $z \in Z^{\alpha}(P)$ we may assume that $Q \subseteq P$. Because *g* is α -reqular, $\overline{g} \in Z^{\alpha}(G:Q)$. Owing to Corollary 3, $T_{G:L}(\overline{g}) = \lambda z$ for some $\lambda \in F$. Hence, we may also assume that $z = T_{G:L}(\overline{g})$. Using (iii) to compute $T_{G:Q}(\overline{g})$ in two different ways, we find

G. Karpilovsky

(*)
$$T_{G:L}(T_{L:Q}(\bar{g}) = T_{G:P}(T_{P:Q}(\bar{g}))$$

Because $T_{L:Q}(\bar{g}) = (L:Q)\bar{g}$ and (L:Q) is prime to p, we may define $W = (L:Q)^{-1}T_{P:Q}(\bar{g})$

Then $w \in Z^{\alpha}(G:P)$ and, by (*), $T_{G:P}(w) = z$, as asserted.

LEMMA 5. Let B = B(e) be a block of $F^{\alpha}G$ with D as a defect group. Then $F^{\alpha}De \cong F^{\alpha}D$ as F-algebras.

PROOF. The map $F \,{}^{\alpha}D \to F \,{}^{\alpha}De$ defined by $x \to xe$, $x \in F \,{}^{\alpha}D$, is obviously a surjective homomorphism of *F*-algebras. Since $|D| = \dim_{F} F \,{}^{\alpha}D$, it therefore suffices to verify that the set $\{e\bar{d} | d \in D\}$ is linearly independent over *F*. The result being trivial for D=1, assume that |D| > 1. Suppose that $\sum_{d \in D} \lambda_{d} e \bar{d} = 0$ for some $\lambda_{d} \in F$. Because *D* is a group, we may harmlessly assume that $\lambda_{1} = -1$ if not all $\lambda_{d} = 0$. Hence

$$e = \sum \lambda_d e \bar{d}, \\ d \in D - \{1\}$$

so writing $e = \sum_{q \in G} e_q \bar{q}$, it follows that

$$\sum_{g \in G} e_g \bar{g} = \sum_{\substack{d \in D - \{1\} \\ e \in G}} \lambda_d \Big| \sum_{\substack{g \in G}} e_g \bar{g} \bar{d} \Big|$$
$$= \sum_{\substack{d \in D - \{1\} \\ e \in G}} \lambda_d e_g \bar{g} \bar{d}$$
$$= \sum_{\substack{d \in D - \{1\} \\ g \in G}} \lambda_g e_g \alpha(g, d) \overline{gd}$$

Thus, for every $x \in \text{Supp}e$, there exists $y \in \text{Supp}e$ and $d \in D - \{1\}$ such that x = yd. Since *D* is a defect group of *B*, $\text{Supp}e \cap C_G(D) \neq \phi$, for otherwise the image of *e* under the Brauer homomorphism

$$Z(F \,{}^{\alpha}G) \rightarrow Z(F \,{}^{\alpha}N_G(D))$$

would be zero, a contradiction. Hence, we may assume that $x \in G_G(D)$, in which case $y = xd^{-1} = d^{-1}x$. Owing to Passman [5], both x and y are p'-elements and so d = 1, a contradiction. So the lemma is true.

LEMMA 6. Let H be a subgroup of G and let $\pi: F^{\alpha}G \rightarrow F^{\alpha}H$ be the natural projection. Then π is a homomorphism of (left and right) F $^{\alpha}H$ -modules.

PROOF. Let *T* be a right transversal for *H* in *G* containing 1. Then *F* ${}^{\alpha}G$ is a free left $F {}^{\alpha}H$ -module with the elements $\{\bar{t} | t \in T\}$ as a basis. Hence the mapping $\bar{1} \rightarrow \bar{1}, \bar{t} \rightarrow 0, 1 \neq t$, extends to an $F {}^{\alpha}H$ -homomorphism $\psi : F {}^{\alpha}G \rightarrow F {}^{\alpha}H$. Fix $g \in G$ and write g = ht for some $h \in H$, $t \in T$. If $t \neq 1$, then

$$\psi(\bar{g}) = \psi(\alpha^{-1}(h, t)\bar{h}\bar{t})$$
$$= \alpha^{-1}(h, t)\bar{h}\psi(\bar{t})$$
$$= 0$$

On the other hand, if t=1, then $\psi(\bar{g})=\bar{g}\psi(\bar{1})=\bar{g}$ and hence $\pi=\psi$. A similar argument shows that π is a homomorphism of right $F^{\alpha}H$ -modules, as required.

4. Proof of the Theorem.

Suppose that the isomorphism

 $(i) \quad B \cong B/J(B) \underset{F}{\otimes} FD$

is true. Then taking the *F*-dimensions of both sides of (1) yields (ii) Since *B* is indecomposable, it follows from (1) the B/J(B) must be simple and therefore *B* has a unique irreducible $F \,{}^{\alpha}G$ -module. In particular, if *F* is algebraically closed, then $B/J(B) \cong M_n(F)$ where *n* is the dimension of the irreducible $F \,{}^{\alpha}G$ -module of *B*. Hence

$$B \cong M_n(F) \overset{\otimes}{_{F}} FD \cong M_n(FD),$$

proving (iii). We are therefore left to verify (1). Set $A = F \,{}^{\alpha}G$ and $A' = F \,{}^{\alpha}D$ so that B = Ae and that, by Lemma 5, $A'e = F \,{}^{\alpha}De \cong F \,{}^{\alpha}D$

Let *E* be a perfect subfield of *F* with $\alpha(x, y) \in E$ for all *x*, $y \in D$. Since *E* is perfect, we have $E^{\alpha}D \cong ED$ (see Conlon [1]) and therefore

$$A'e \cong F \stackrel{\alpha}{=} D \cong F \stackrel{\otimes}{=} E \stackrel{\alpha}{=} D \cong F \stackrel{\otimes}{=} ED \cong FD$$

Let $\psi: F^{\alpha}G \rightarrow F^{\alpha}D$ be the natural projection. Then, by Lemma 6,

(2) ψ is a homomorphism of $(F \alpha D, F \alpha D)$ -bimodules

Let $\{g_1, \dots, g_n\}$ be a left transversal for D in G. Because $F \, {}^{\alpha}G$ is a free right $F \, {}^{\alpha}D$ -module with the elements $\bar{g}_1, \dots, \bar{g}_n$ as a basis, each $a \in F \, {}^{\alpha}G$ can be uniquely written in the form

$$a = \sum_{i=1}^{n} \bar{g}_i x_i$$

with $x_i \in F^{\alpha}D$. For any $k \in \{1, \dots, n\}$, we have

$$\bar{g}_{k}^{-1}a = x_{k} + \sum_{\substack{i=1\\i\neq k}}^{n} \bar{g}_{k}^{-1} \bar{g}_{i}x_{i}$$

Since for $k \neq i$, $\psi(\bar{g}_k^{-1}\bar{g}_i) = 0$, we deduce that $x_k = \psi(\bar{g}_k^{-1}a)$ and hence that

(3)
$$a = \sum_{i=1}^{n} \bar{g}_{i} \psi(\bar{g}_{i}^{-1}a) \qquad \text{for all } a \in A$$

A similar argument shows that

(4)
$$a = \sum_{i=1}^{n} \psi(a\bar{g}_i)\bar{g}_i^{-1}$$
 for all $a \in A$

By Lemma 4. 4(iv), we have that (5) $e = T_{G:D}(w)$

for some $w \in Z^{\alpha}(G:D)$

Because $F^{\alpha}D \cong FD$, we also have that

(6)
$$\dim_{F}(F^{\alpha}D/J(F^{\alpha}D))=1.$$

Invoking (2)-(6) together with Külshammer's theorem (Külshammer [4]), we are left to verify that

(7) $F^{\alpha}G = F^{\alpha}D. Z^{\alpha}(G:D)$

To prove (7), we need only show that $\bar{g} \in F^{\alpha}D$. $Z^{\alpha}(G:D)$ for all $g \in G$. Fix $g \in G$ and write g in the form g = xy with $x \in D$ and $y \in C_G(D)$.

Then

$$\bar{g} = (\boldsymbol{\alpha}^{-1}(\boldsymbol{x}, \boldsymbol{y})\bar{\boldsymbol{x}})\bar{\boldsymbol{y}}$$

and $\bar{y} \in Z^{\alpha}(G:D)$ since any *p*-element of *G* is *\alpha*-regular (see Conlon [1]). So the theorem is true.

References.

- [1] S. B. CONLON, Twisted group algebras and their representations, J Austral. Math. Soc. 4 (1964), 152-173.
- [2] G. KARPILOVSKY, Projective representations of finite groups, Marcel Dekker, 1985, Volume 94, New York and Basel.
- [3] B. KÜLSHAMMER, On the structure of block ideals in group algebras of finite groups, Comm. Algebra 8 (1980), 1867–1872.
- [4] B. KÜLSHAMMER, On blocks with central defect groups, Arch. Math., Vol. 41 (1983), 117–120.
- [5] D. S. PASSMAN Central idempotents in group rings, Proc. Amer. Math. Soc. 22 (1969), 555–556.
- [6] W. F. REYNOLDS, Twisted group algebras over arbitrary fields, Illinois J Math. 15 (1971), 91-103.

Department of Mathematics University of the Witwatersrand 1 Jan Smuts Avenue Johannesburg 2001 South Africa