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Gap Theorems for Hypersurfaces in R^{N}

By Kunio SUGAHARA
(Received September 3, 1984)

Introduction

It is an interesting problem in global differential geometry to determine
the Riemannian manifolds which are close to some typical space. The
Riemannian manifolds which are close to the standard sphere are dealt with
in the famous sphere theorem. Recently Greene and Wu [2] proved the
following gap theorem for the complete metrics on R^{n}(n\geqq 3) which are
asymptotically flat, i . e. , close to the standard metric in some sense.

THE GAP THEOREM OF GREENE AND Wu. A Riemannian manifold M of
odd dimension n is isometric to R^{n} if (and only if) the following conditions
hold :
(i) There is a point 0 in M that is a pole, i. e. , \exp_{0} : T_{0}Marrow M is a

diffeomorphism.
(ii) The curvature of M is either everywhere nonpositive or everywhere

nonnegative.
(iii) \lim_{Sarrow+}\inf_{\infty}s^{2}k(s)=0 , where k(s)= \sup\{| scctional curvature at q| ; q\epsilon

M, dist_{M}(0, q)=s\} .
They also showed that the same conclusion holds for even dimension n\geqq

4 , with some additional assumptions.
The purpose of this paper is to prove gap theorems of this type for

asymptotically linear hypersurfaces in a euclidean space R^{N}(N\geqq 3) . Let
M be a hypersurface of R^{N} and \alpha(p) denote the second fundamental form of
M at a point p. Put \tilde{k}(s)=\sup\{||\alpha(p)||^{2} ; |p|=s\} , where |p| stands for the
euclidean norm of p\epsilon R^{N}

THEOREM 1. Let M be a noncompact properly imbedded convex hyp-

ersurfacc of R^{N} with \lim_{Sarrow+}\inf_{\infty}s^{2}\tilde{k}(s)=0 . Then M is a hyperplane.

We note that the theorem includes the case of 2-dimensional hypersurf-
aces.

Owing to the convexity condition of Sacksteder [4] combined with a
result of Hartman and Nirenberg [3], we also prove
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THEOREM 2. Let M be a noncompact properly imbedded hypersurface of
R^{N} with \lim_{sarrow+}\inf_{\infty}s^{2}\tilde{k}(s)=0 . Suppose that the Ricci curvature of M is
everywhere nonnegative. Then M is a hyperplane.

The author would like to thank Dr. A. Kasue for his helpful advice
and encouragement.

\S 1. The asymptotic cone of a convex domain and some
preliminary results.

Let D be a noncompact closed convex domain of R^{N} with smooth
boundary M=\partial D and p a point of D. Let V_{p} denote the union of all
half-lines which emanate from p and are contained in D. Then we clearly
have

LEMMA 1. 1. Let p and q be points in D. Then V_{q}=V_{p}+(q-p) , i. e. ,
V_{q} is the parallel translate of V_{p} from p to q.

DEFINITION 1. 2. We define the asymptotic cone of D at q by V_{q} . If q is
not contained in D, then define V_{q} :=V_{p}+(q-p) for some point p of D.

The asymptotic cone has the following properties.
LEMMA 1. 3.
(i) V_{q} is a closed convex cone.
(ii) Let j\iota p_{i} } be a sequence of points in D such that \lim_{iarrow+\infty}|p_{i}|=+\infty and

\lim\underline{p_{i}-q}=v . Then the half-line q+R^{+}v is contained in V_{q} . Conversely,
iarrow+\infty|p_{i}-q|

all half-lines in V_{q} are obtained in this manner.
Let S_{q}(s)=\{p\epsilon R^{N} ; |p-q|=s\} be the sphere of radius s and centered

at q . Put V_{q}(s)=S_{q}(s)\cap V_{q} and D_{q}(s)=S_{q}(s)\cap D.
LEMMA 1. 4. There is a positive number s_{0} such that S_{q}(s) intersects M

transversally for s>s_{0} . Especially, M\cap S_{q}(s) is a regular submanifold.
PROOF. Let n_{p} denote the outward unit normal vector of M at a point p

of M. Suppose that there is a sequence \{p_{i}\} of points of M such that
(i) i arrow\lim_{+\infty}|p_{i}-q|=+\infty ,

(ii) n_{p_{\iota}}= \pm\frac{p_{i}-q}{|p_{i}-q|} (i=1,2, \cdots) .

Here we may assume that the sequence of vectors \{\frac{p_{i}-q}{|p_{i}-q|}\} converges to a

unit vector v. Then Lemma 1. 3 says that the halfline q+R^{+}v is contained
in V_{q} . Since no points at infinity of V_{q} are in the n_{p},- side of T_{p_{l}}M , we may

assume n_{p_{1}}=- \frac{p_{i}-q}{|p_{i}-q|} . Then it follows from ( i ) , ( ii) and lim n_{p},=-v
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that \bigcap_{i=1}^{\infty} (the (-n_{p} , )-side of T_{p}
, M ) =\phi , which contradicts the fact that D is

in the (-n_{p}, )- side of T_{p}
, M for all i.

LEMMA 1. 5. If D contains no lines, then there is a positive number s_{0}

such that D_{q}(s) is contained in an open hemisphere of S_{q}(s) for s>s_{0} .
PROOF. Since V_{q} is a closed convex cone which contains no lines, V_{q}(1)

is contained in an open hemisphere of S_{q}(1) . Put f(s)= \sup\{\frac{1}{s}\rho(p, V_{q}(s)) ;

p\epsilon D_{q}(s)\} , where \rho denotes the spherical distance on S_{q}(s) . Then it

follows from (ii) of Lemma 1. 3 that \lim_{sarrow+\infty}f(s)=0 . Hence \frac{1}{s}(D_{q}(s)-q)+q

are uniformly contained in an open hemisphere of S_{q}(1) for large s.
LEMMA 1. 6. Let v be a unit vector which is the initial vector of a

half-line in V_{q} and \square :R^{N}arrow v^{\perp} denote the orthogonal projection. If D

contains no lines and if<v, p-q>>0 for any point p of D_{q}(s) , then II (D_{q}

(s)) is a convex bounded domain in v^{\perp}

PROOF. We assume that v is a vertical vector which points upward and
v^{\perp} is a horizontal hyperplane. Let n_{p} denote the outward unit normal vector
of M at a point p of M_{q}(s):=M\cap S_{q}(s) . Since no points at infinity of V_{q}

are in the n_{p}- side of T_{p}M, we have <n_{p}, v>\leqq 0 . Suppose that <n_{p},

v><0 . Then II (S_{q}(s)\cap T_{p}M) is a convex hypersurface in v^{\perp} and II (D_{q}(s))

is in the convex side of II (S_{q}(s)\cap T_{p}M) about II (p), because p is in the upper
hemisphere of S_{q}(s) and D_{q}(s) is in the upper side of T_{p}M. If <n_{p}, v>--
0 , then D is in one side of the vertical hyperplane T_{p}M. Therefore II (D_{q}(s))

is in one side of the hyperplane \Pi(T_{p}(M_{q}(s))) of v^{\perp} Hence \Pi(D_{q}(s)) is
convex in v^{\perp} .

LEMMA 1. 7. Let M_{1} be a compact convex hypersurface of R^{N} and M_{2}a

compact hypersurface. If M_{1} is inside of M_{2} , then the volume of M_{1} is not
greater than that of M_{2} .

PROOF. For each point p of M_{2} , let h(p) denote the point of M_{1} which
is the nearest to p. Since M_{1} is convex, the map h:M_{2}arrow M_{1} is distance
non-increasing, which implies the assertion.

\S 2. Proof of Theorem 1.

Let D be a noncompact closed convex domain of R^{N} with smooth
boundary M=\partial D. Let n_{p} denote the outward unit normal vector of M at a
point p.

Case 1: D contains a line l.
Let l_{p} denote the line which passes a point p of D and is parallel to l.

Since D is convex and closed, l_{p} is also contained in D. Hence there is a
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closed convex domain D’ of the orthogonal complement to l such that D–
D’\cross l. Thus M=\partial D’\cross l. Since lim inf s^{2}\tilde{k}(s)=0 , \partial D’ is a linear subspace
and so is M.

Case 2: D contains no lines.
It follows from Lemma 1. 5 that there are positive numbers s_{0} , \theta(0<\theta<

\pi/2) and a unit vector v in the asymptotic cone V_{0} at the origin 0 such that
4 (v, q)<\theta for q\epsilon D_{0}(s) , s>s_{0} , where 4 (v, q) denotes the angle which v

and q make. We assume the vector v is vertical and points upward. Let \Pi :
R^{N}arrow v^{\perp} denote the orthogonal projection. Let p’ be a point of M such
that< p’, v>=_{p\in M}< \min p, v> Here we may assume that <p’v><<q,

v> for q\epsilon D_{0}(s) , s>s_{0} . It follows from Lemma 1. 6 that there are two
points \overline{p}_{0} and \overline{p}_{1} in II (M_{0}(s)) such that outward unit normal vectors \overline{n}_{0} and \overline{n}_{1}

of \Pi(M_{0}(s)) at \overline{p}_{0} and \overline{p}_{1} are in opposite directions, where M_{0}(s):--M\cap S_{0}

(s) . Let p_{i} be points in M_{0}(s) such that II (p_{i})=\overline{p}_{i}(i=0,1) . Put n_{i}’=(<p_{i} ,

v>n_{p},-<n_{p},’ v>p_{i})/s, then n_{i}’\in R\overline{n}_{i} and |n_{i}’|\leqq 2 . Since D is convex,

we have <p_{i}-p’n_{p_{1}}>\geqq 0 which implies <p_{i} , n_{p_{\iota}}>\geqq<p_{5}’n_{p_{z}}>\geqq-|p’| .
Hence it follows from 0\leqq-<n_{p_{2}} , v>\leqq 1 that <n_{i}’/|n_{i}’|Jn_{p_{\iota}}>\geqq(s cos \theta-

|p’|)/2s . Therefore \overline{n}_{i}=n_{i}’/|n_{i}’| and <\overline{n}_{i} , n_{p_{l}}> is uniformly positive for,
large s, i . e. , we may assume that there is a positive constant C such that <
\overline{n}_{i} , n_{p}, >>C, s>s_{0} Hence we get

|n_{p},-n_{p_{0}}|\geqq|<n_{p_{1}}-n_{p_{0}},\overline{n}_{1}>|=|<n_{p_{1}},\overline{n}_{1}>+<n_{p_{0}},\overline{n}_{0}>|>2C.
On the other hand, since II (M_{0}(s)) is a convex hypersurface, there is a

2-plane \beta in v^{\perp} which passes ff_{0} and p_{1} and intersects \Pi(M_{0}(s)) transversally.
Then the intersection \beta\cap\Pi(M_{0}(s)) is an oval in \beta which is inside of a circle
of radius s sin \theta . It follows from Lemma 1. 7 that the length of \beta\cap\Pi(M_{0}(s))

is not greater than 2\pi s sin \theta . Hence there is a curve \overline{c}(t)(0\leqq t\leqq 1) in II (M_{0}

(s)) from p_{0} to \beta_{1} such that length(c\overline )\leqq \mbox{\boldmath $\pi$}s sin \theta . Let c be the lift of \overline{c} to M_{0}

(s) . Since the norm of the differential of the map \Pi|M_{0}(s) is not less than
cos \theta , we get length(c) \leqq\pi s tan \theta . Then we derive

0<2C<|n_{p_{1}}-n_{p_{0}}| \leqq\int_{0}^{1}|\frac{d}{dt}n_{c(t)}|dt

\leqq\int_{0}^{1}||\alpha(c(t))|||\frac{d}{dt}c(t)|dt\leqq\sqrt{k^{-}(s)}1ength(c)\leqq\sqrt{k^{-}(s)}\pi s tan \theta ,

which contradicts our assumption lim inf s^{2}\tilde{k}(s)=0 .

\S 3. The convexity and curvature.

The following condition for a hypersurface ofR^{N} to be convex is known.
THEOREM 3. 1. (Sacksteder [4]). Let M be a properly imbedded

hypersurface of R^{N} If its sectional curvature is nonnegative and not
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identically zero, then M is convex, i. e. , M is the boundary of a convex
domain.

We note that the condition for sectional curvature can be replaced by the
condition for Ricci curvature.

LEMMA 3. 2. Let M be a hypersurface of R^{N} and p a point of M. Then
the following (i), (ii) and (iii) are equivalent.
(i) The sectional curvature of M is nonnegative alp.
(ii) The Ricci curvature of M is nonnegative alp.
(iii) The second fundamental form of M is semi-definite at p.
PROOF. It follows from Gauss equation that (i) and (iii) are

equivalent. And (i) clearly implies (ii). Therefore it suffices to show that
(ii) implies (iii). Let \lambda_{1} , \cdots \lambda_{N-1}(\lambda_{1}\leqq\cdots\leqq\lambda_{N-1}) be the eigen values of
the second fundamental form at p and v_{1} , \cdots-v_{N-1}\in T_{p}M the corresponding
eigen vectors. It follows from (ii) that Ricci (v_{1})--\lambda_{1}(\lambda_{2}+\cdots+\lambda_{N-1})\geqq 0

and Ricci (v_{N-1})=(\lambda_{1}+\cdots+\lambda_{N-(7)})\lambda_{N-1}\geqq 0 . Suppose that the second
fundamental form is not semi-definite at p, i . e. , \lambda_{1}<0<\lambda_{N-1} Then we get
0\leqq\lambda_{1}+\cdots+\lambda_{N-2} and \lambda_{2}+\cdots+\lambda_{N-1}\leqq 0 , which together with \lambda_{1}\leqq\cdots\leqq\lambda_{N-1}

derive \lambda_{1}=\cdots=\lambda_{N-1}=0 . It contradicts \lambda_{1}<0<\lambda_{N-1} . Hence (iii) follows
from (ii).

REMARK 3. 3. By a similar argument, we can show that the sectional
curvature of M is zero at p if and only if the Ricci curvature of M is zero at
p.

Owing to Lemma 3. 2, we get
COROLLARY 3. 4. Let M be a properly imbeddcd hypersurface of R^{N} If

its Ricci curvature is nonnegative and not dientically zero, then M is convex.

\S 4. Proof of Theorem 2.

Case 1 : Ricci \equiv 0 .
It follows from Remark 3. 3 that the sectional curvature is identically

zero. Then the following theorem of Hartman and Nirenberg [3] says that
M is a hypercylinder, i . e. , M–R^{N-2}\cross a plane curve.

THEOREM 4. 1. (Hartman and Nirenberg) Let M be a properly
imbeddcd hypersurface of R^{N}\wedge If its sectional curvature is identically zero,
then M is a hypercylinder.
Since lim inf s^{2}\tilde{k}(s)=0 , the plane curve must be a line and M is a hyperplane.

Case 2: Ricci \geqq 0, \not\equiv 0 .
In this case Corollary 3. 4 implies that M is convex. Hence it follows

from Theorem 1 that M is a hyperplane.
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