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Introduction

Let = be an intransitive infinite Lie algebra sheaf on a manifold M
and p: M—N be the fibered manifold of invariants of <. For t=N we
denote by £(z) the transitive Lie algebra sheaf on the fiber o~ *(¢) induced
by <. In [1] we determined . under the condition that for certain o &N
& =£(0) is “simple”.

On the other hand T. Morimoto [2] [2] determined the intransitive formal
Lie algebras over C whose transitive parts are primitive. In this paper we
consider everything in the framework of the C*-category and consider such
<« that for certain o&N = #(0) is one of the following Lie algebra
sheaves : _

(1) Zamn,aenho ; the Lie algebra sheaf of all vector fields with con-
stant divergence. ’

(2) Zespwn ; the Lie algebra sheaf of all vector fields which preserve
a symplectic form up to constant factors.

In (2) r is assumed to be even. . is primitive and is not simple. Notice
that besides the above .« there are four primitive Lie algebra sheaves which
are not simple. (See [3]). These cases will be treated in a future paper.

Let 2 be the volume element or the symplectic form on R”. Let N
be a manifold. Let X be a local vector field on N XR” tangent to the
fibers of the fibering N xR"—N. Let Qr, CJx, (N XR) be a formally integra-
ble and integrable homogeneous linear dlfferentlal equation on N, where
Jx, (N XR) means the bundle of k-jets of cross sections of the trivial vector
bundle NXR—N. Let &/ [N; Qx,] denote the sheaf of germs of all vector
fields X satisfying the following condition ; there exists a local solution fy
of Q such that LyQ2=fz2, where Ly means the Lie derivative along the
fibers.

Then we will prove under certain conditions the following (Theorem 2) :
Let =z be an intransitive Lie algebra sheaf whose parameter space is N.
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Suppose that for certain 0EN & =~£(0) is one of the Lie algebra sheaves
(1) and (2). Then there exists a formally integrable and integrable homo-
geneous linear differential equation Q, and = is locally equivalent to &/ [N;
Qk,)- ' ' |

In §1 we review the fundamental facts on g-structures and in §2 we
consider the infinitesimal automorphisms of g-structures. In §3 we give
the definition of continuous Lie lagebra sheaves and state the main theorem. |
§4~8§ 7 are devoted to the proof of the main theorem.

§ 1. g-structures

In the following we always assume the differentiability of class C%
unless otherwise stated.

In this section we will review the fundamental facts on g-structures and
their structure functions. For the details we refer to [1].

A fibered manifold means a triple (M, N, p) of differentiable manifolds
M, N and a differentable map o: M—N whose rank is equal to the dimen-
sion of N at any point. Let (M, N, o) be a fibered manifold and let m=
dim M, n=dim N. Let V=R™ and W=R™" (CV). Let h be a Lie algebra
and g be a subbundle of the trivial vector bundle NXxh—N. Set

g(t) ={Ach|t, A)eg} .

Then g is called an N-subalgebra of % if g(z) is a subalgebra of % for all zEN.

For a manifold M, TM (resp. T*M) denotes the tangent bundle (resp.
the cotangent bundle) of M. We denote by F(M) the frame bundle of M,
which is a principal bundle with structure group GL(V) over M. Let
z: F(M)—M be the natural projection. A&gl(V) defines a vertical vector
field A* on F(M) induced from the right action of GL(V) on F(M). A
local transformation ¢ of M induces local transformation ¢ of F(M) defined
by @(p) (v)=¢sp(v), where pF(M) and veV. Hence a local vector field
X on M defines a local vector field on F(M). We denote it by X. Let
0: M—N be a fibered manifold. Then, V and W being as above, we set

F(M, N)={pF(M)|oxp(W) =0} .

Let g be an N-subalgebra of W V*.

DEFINITION 1.1. A submanifold P of F(M, N) is called a g-structure
if it satisfies the following conditions :

(1) z: P>M is a fibered manifold.

(2) For peP and Acgl(V), A3 T,P if and only if AEg(?), where
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t=pozx(p).
Let PCF(M, N) be a g-structure.

DEFINITION 1.2. A local vector field X on M is called an infinitesimal
automorphism of P if and only if p4X=0 and X is tangent to P.

Let ¢ be the fundamental form of F(M), i.e., 6 is a V-valued form
on F(M) defined by

0(X) =p7'ms X

where pe F(M) and Xe&T,F(M).

Let PCF(M, N) be a g-structure. For p=P with poz(p)=¢, define
B(p): V=T,N by p(p) v=pxp(v) for veV. @ is called the structure function
of the first kind of P,

Let p€P. An m-dimentional subsapce HCT,P is called a horizontal
subspace if §|y: H—V is isomorphic. For a horizontal subspace H there
exists a unique vg& H for v&V such that f(vg)=v. Then define cxc V&
N2 V* by .

cu(v, w) = df(vg, wx) ,

where v, wE€V. The equivalence class c(p)=[cg] in VRN V*/6(g(t)Q V*)
is independent of the choice of H, where t=pox(p). c is called the structure
function of the second kind of P. Note that g(f) acts naturally on VRAEV*,
l.e, for A€g(t) and S€V@AV* A.S is defined by

(A-S) (v, w) = A(S(v, w)) —S(Av, w)—S(v, Aw).

This induces an action of g(z) on V(A V*/6(g(t)Q V™).

p (resp. ¢) is called N-constant if for p, g=P such that por(p)=por(q),
p(p)=p(q) (resp. c(p)=c(qg)) holds. In the following we consider only P
whose structure functions are N-constant. For &N the common value of
g (resp. ¢) on (porm)~'(¢) is denoted by 5, (resp. c(2)).

Recall that {g(z)},cny is a family of Lie subalgebras of WXRV*. We can
define its infinitesimal deformation as follows: Let A&g(f) and take a cross
section ¢ of g such that ¢(#) =A. Then for v&V define 7,: gl>WR
V*/g(t) by

5(A) = 6,(v) @ mod g(z)

where right hand means the derivative of the W(X)V*-valued function ¢
by the vector g,(v)eT,N.

Let ¢ be the V(®A2V*-valued function on N such that [c(8)] =c(2).
Define o(c)e VA2 V* by
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o(0) (vy, vy, vg) = ZsQ(Q('Uh Va), 'Us>

where v,€V and Yg means the cyclic sum. Further define f& VXA V* by

701, va, vg) = 215P (V) (g(v,, “Us)) .
Then we have the following structure equations. (See [I])
(1. 1) Awc—8r(A)=0.
(1.2) olo)+f=0T,

where T is a g®A?V*-valued function on N. |

Next we will consider the second order structue. Let PCF(M, N) be
g-structure whose structure functions g and ¢ are N-constant. Let ¢ be the
standard vector space over R whose dimension is equal to dim g(¢). Take
a trivialization 1: N Xg—g of the vector bundle g. Since we consider only
local properties of P, we assume the existence of such a trivialization. Let
A : g—q(?) be the restriction of 2 to the fiber over t=N.

Let r,: F(P)—P be the frame bundle of P. Denote by F (P; M, N) the
subbundle of F(P) consisting of the frames z such that the following hold :
(1.3) 2(4) =[4(A)]: for Aeg.

r, (2)

(1. 4) 0(z(v)> =v for veV.

The Lie algebra of the structure group of F(P; M, N) is gRV*. Let g, be
an N-subalgebra of g®V*(cgl(V+g)). Set

6:(2) = (AQid) :(2)

where id means the identity map of V*. §,(¢) is a subspace of WQV*QV*.
We denote by g, the vector bundle over N whose fiber over tEN is a:(2).

Suppose () Cg(t)®, where g()® means the first prolongation of a().
Let P,CF(P; M,N) be a g,-structure. Set p;=por and let § be the
structure function of the first kind of P.. By (1.4) we have P1x2(0) = p3p (V)
for vV, where 2P, and p =m(2). Note that §(w)=0 for weW and
p1(w)=0 for weW+4g. Since VIW=(V+9)/(W+yg), we can identify
with g.

Let 6, be the fundamental form of F(P) and ¢; be the structure function

of the second kind of P,. ¢ is a function on P, having its values in the
space

(V4@ (V+6)*/5(8: RV +0)*)
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In the following we assume that ¢, is N-constant. Then the structure
equations (1. 1) and (1. 2) applied to P, are satisfied. Finally, recalling g,()C
gXV*, we denote by a; (resp. ;) the gQRA}(V+9)*/5(g,X(V + g)*)-component
(resp. VRA2(V +g)*-component) of ¢,.
Let 2P, and =,(2)=p. Then for X&T,P,, we have
61(X) = 27} (mx X)
=plnymx X  modg (by (1.4))
=(a0) (X) .
That is, the V-component of #, is 6. Note that H,==2(V) is a horizontal
subspace at p.

ProrposiTiON 1.1. (cf. [3]) Let z€P,, m(2)=p and pon(p)=t. then
the following hold .

( 1 ) lgl(t) (‘(), w) :CHZ (‘U, w) fOT‘ v, we V
(2) B (A, v)=—42(A)v for Aeg and veV.
(3) ai(t)(A, B)=—24[4(A), 4(B)]) for A, Beg.

Proor. Let H be a horiznotal space at 2. For v&V and Aeg, we
have myvg=vg, and mx Ap=4(A)*. Hence we have

Bi(2) (v, w) = d(n}0) (ve, wx)
= dﬂ(sz, ‘ZUHz)
=cg,(v, w) .

This proves (1). (2) is shown as follows. Let ¢ be a cross section of g
such that ¢(¢)=4(A). Then we have

Bi(t) (A, v) = _d(ﬂ'iko) (Az, va)
= dj(1(A)*, vx,)

= (L,+6) (va)—d(6(c*) (vz)
= —4(4) 0(vs)
= —A(A) v,

where L, means the Lie derivative. Similarly (3) follows from (1. 3).
’ g.e.d.

We can also consider higher order structures as follows. Let I be a
positive integer and {di}o<k<: be a sequence of positive integers. For 0=k=!
let g; be the standard vector space over R of dimension d,. For k= —1
set g_,=W. Let g; be an N-subalgebra of g;_,QV* whose fiver dimension
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is dy. Let A: gpxX N—g; be a trivialization of the vector bundle g.,. We
have an injection

ey ®id s G QV*.
Set
B = (W®ide)o(A®ide_1)o-+olhy 1D id]) g
where id;, means the identity map of QV*. g is an N-subalgebra of
WR(R V).

DEeFINITION 1. 2. % ={(@u &)} im0 Is called an l-sequence of N-subalge-
bras if for k=1 g is a subbundle of (ge_)®.

Let ¢ ={(gi, &)} i2k=—1 be an [-sequence of N-subalgebras. Let

1y Ty o

P Pl ;Pl—l > oo ;Po >M

be a sequence of fibered manifolds such that each P, is a subbundle of
the frame bundle of P;_, with fiber dimension d;. Then an element p; of
P, can be considered as a linear isomorphism from Vi =V 4+go+ - +0x_s
to T'p _ Pi_i, where pi_ =mny(ps). Let 6y denote the fundamental form of F.

DeriNiTIOY 1.3. The sequence of jfibered manifold & is called a %-
structure if the following conditions are satisfied :
(1) mp: Py—Py_y is a Qe-structure.

(2) Let pp=Py with m(pr)=pi_1. Then for veV;_,,

Ok -1 (Pk("’)) =v.
(3) Let pp=Py and (pomgo---omy) (pr)=t. Then for Acg;_,

£e(A) =@ (A)];
(Recall that 2,_,(t) (A) is an element of ¢y QV*CGL(Vi_y)).

Let X be a local vector field on M. Suppose that X is an infinitesimal
automorphism of P,, Then X is tangent to P,, The prolongation of X to
F(P,) is denoted by X®. Then X is called an infinitseimal automorphism
of P, if X is tangent to P,. Inductively, X is called an infinitesimal auto-
morphism of P, if X is an infinitesimal automorphism of P,_, and X®, the
prolongation of X® 0 to F(P,_), is tangent to P;. An infinitesimal auto-
morphism of P, is called an infinitesimal automorphism of .
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§ 2. Infinitesimal automorphisms of g-structures

Let p: M—N be a fibered manifold and g be an N-subalgebra of
WRXV*. Let PCF(M,N) be a g-structure. Let D be a distribution on
P such that for all peP D,CT,P is a horizontal subspace at p. We call
such D a connection. The we have a direct sum decomposition

T,P = D,®PKer (), -

For XeT,P with (por)(p)=t, let Xp be the horizontal component of X
and let X—Xp,=A}, where Acg(t). Define a g-valued 1l-form o on P
by w(X)=A. Then we have

where ¢p is a V®A2V*-valued function on P such that cp(p)=cp, and
cp(@NE), o N\O are V-valued 2-forms defined by

cr(BA0) (X, Y) = cn(6(X), 6(Y))
and
(wAB) (X, Y)=w(X)0(Y)—o(Y)0(X).

Let us take a cross section j: M—P of the fibered manifold =: P—M.
Let A be a g-valued function on M. Then A-«(j*¢) denotes the V-valued
form defined by

A-(j%6) (X) = A(j*6) (X))
for XeTM. We have _
PROPOSITION 2.1. A local vector field X on M satisfying pxX=0 is

an infinitesimal automorphism of P if and only if there exists a g-valued
Function A on M such that the following equation holds ;
Lx(j*6) = A+(j*0) .

Proor. Let {v, -+, vy} be a basis of V. Let X; be a vector field on
M defined by (X).=j(x)(v,) for x&M. Then X is an infinitesimal auto-
morphism of P if and only if there exists a g-valued function A=(A;;) such
that

(2.1) LiXi=D AyX;.
Jj=1

On the other hand we have
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(Lxj*6) (X) = X(j*6(X)) —*0(Lx X)
= —j*0(Lx X)),

because j*6(X;)=wv;. Combined with (2. 1), this proves our assertion.
g.e.d.

Let P be a g-structure. Notations being the same as in §1, let g, be
an N-subalgebra of g®QV* and P, be a g;-structure on P. We assume that
the structure functions of P and P; are N-constant. Take a cross section
ji: P—P; of the fibered manifold #,: P,—P. For peP D,=j(p) (V) is

a horizontal space at p. Hence D= U D, is a connection on P. The
peP

V®AEV*-valued function ¢p, does not depend on the choice of j and is denoted
by ¢(P). Moreover

(D)s, 0 = (j0x(TpP)

is a horizontal space of the fibered manifold =,: Pi—P at j(p). Let us
denote by ¢;(j;) the representative of ¢, on j;(P) determined by the horizontal
spaces U (Dpjm- ai(fy) is a (V+9) @AV +g)*-valued function on ji(P).
Let @ lf::Pthe g-valued from on P determined by D. Let @ be the g-valued
form defined by @(X)=24"w(X)) for X&TP. Then the following identities
are immediately shown by the definitions.

(2. 2) df=c(P)(@NO)—oNE .
(2. 3) d(j36) = c1(7) (0N j6)) -
(2. 4) Ji0=0+a.
ProrosiTiON 2.2. Let ¢ be a local transformation of P. Assume that

¢*0=0 and (pom)op=por. Then there exists a §°-valued function A on P
such that the following identity holds:

Fo=A04w.

Proor. For p=P with pon(p)=t let ¢(p)=¢, D,=H and D,=H.
By (1) of [Proposition 1.1] and the fact that ¢; is N-constant, we have cg=
cz. On the other hand it follows from ¢*#=6@ that cg=c;n

As before, for vEV vy denotes the vector in H such that 6(vs)=v.
Then there exists a unique A(p)Eg(E)@V* such that

*

Vs m = VUpr +<A(P)v> :

Hence we have c;z=cyp+0A(p). Combined with the fact cx=c4r=cnm,
this proves dA(p)=0. That is, A(p) is in g(#)*. We have
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(2.5) (%) (vi) = 0(Vsm) = A(p)o = (A(£)+0) (vm).

Note that ¢*§=@ implies that there exists a local transformation ¢ of
M such that locally ¢=¢. Hence we know that for Beg ¢4«B*=DB*
Therefore we have

(¢*0) (B¥) = 0(B¥) .
Combined with (2. 5), this completes the proof. q. e. d.

As an infinitesimal version of this proposition, we have

ProPOSITION 2.3. Let X be a local vector field on P such that (porm)x X
=0 and Lx0=0. Then there exists a §°-valued functzon A on P such
that the following identity holds :

Lx(l) :A'0 .

Let X be a local vector field on P such that (por)xX=0. By Propo-
sition 2.1 and (2.4) we know that X is an infinitesimal automorphism of
P, if and only if there exists a g;-valued function A such that

Ly(0+a)=A- (ﬁ-l—w)

Since A*@=0 and A+f is a g-valued form, we have Lxﬁ 0 and Lya=A-0.
This proves

TuEOREM 1. A local vector field X on P satisfying (por)xX=0 is an
infinitesimal automorphism of P, if and only if the following hold:

(1) Lx6=0.

(2) There exists a §;-valued function A on P such that Lyxd=A-0.

§3. Continuous Lie algebra sheaves

Let =# be a subsheaf of the sheaf of germs of all vector fields on M.
The stalk of &£ over &M is denoted by £,. For a vector field X we
denote by j%(X) the k-jet of X at x and by Ji(T'M) the bundle of k-jets
of all vector fields. Set

R..={j4(X)|Xe2,} and Re=URi,.
xeM

DEFINITION 3.1. £ is called a continuous Lie algebra sheaf (CLAS)
if the following conditions are satisfied :

(1) £, is a Lie algebra with respect to the natural bracket operation
for all x.

(2) There exists a fibered manifold p: M—N such that the equality
Ry={veTM)| pyv=0} holds.
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(3) Ry is a vector bundle over M for all k.
(4) There is an integer k, such that the following holds; a local
vector field X is a local section of < if and only if ji(X)ER, , for all x.

It is shown in that for a CLAS . there exists a kysequence of
N-subalgebras & = {(@x, 4)}r<r, and ¥-structure

P Pko Plco—l "'_‘*‘—’P1 P. — M

such that a local vector field X on M is a section of - if and only if X
is an infinitesimal automorphism of Z.

Since the sections of £ are tangent to the fiber p~!(f), = induces a
transitive Lie algebra sheaf on p~'(¢), which is denoted by £(). Suppose
that for a point 0EN «of =~(0) is one of the following Lie algebra sheaves :

. ZLum amo; the sheaf of germs of all vector fields with constant
divergence.

I. Lespom ; the sheaf of germs of all vector fields which preserve a
symplectic structure up to constant factors.

Let NXR—N be the trivial vector bundle over N. Let Q,CJ,(N x R)
be a linear differential equation. Q, is called formally integrable if for any
k=1 the k-th prolongation Qf* of Q, is a subbundle of J, ,(NXxR) and
QP—Qi*"? is surjective. Moreover Q; is called integrable if for any re(Q,
there exists a local solution of Q; passing through r. For k<K let @ :
Ji (NXR)—J,(NXR) be the natural projection. We assume the following
condition :

(C.1) For k<! the image of Q, under @Y, is a subbundle of J,(N x R).

Let &/ be one of the Lie algebra sheaves I and II. Let 2 denote the
standard volume on R™™™ in case I and the symplectic form in case II, where
m=dim M and n=dim N. For a formally integrable and integrable homo-
geneous linear differential equation Q; satisfying (C. 1), let &/ [N; Q,] be the
CLAS consisting of germs of all vector fields X on NXR”™ satisfying the
following conditions :

(1) X is tangent to the fibers of the fibered manifold Nx R™»—N.

(2) There exists a solution f of Q; such that LzQ=f0.

Let &« be a CLAS and % =({(gx, &)}x<:, be the ky-sequence of N-subal-
gebras defined by . Recall that g(t)=g,(z) is a subalgebra of WXRV*.
Let b(t) (resp. a(t)) be the image (resp. kernel) of g(¢) under the natural
projection WRV*—->WEW*. We assume the following conditions :

(C. 2 dim §(¢) is constant,
(C. 3) {veV]|A@) =0, Aca(r)

Il

w.



Infinitesimal automorphisms of g-structures 311

After these preparations we can state the main theorem.

THEOREM 2. Let £ be a CLAS. Assume the conditions (C. 2), (C. 3)
and moreover assume that of =<£(0) is one of the Lie algebra sheaves 1
and II.  Then there exists a formally integrable and integrable homogeneous
linear differential equation Qy, satisfying (C.1) and < is locally equivalent
to o [N; Ql-

The proof will be given in the following sections. In the rest of this
section we will note some facts.

Let 4 ={(@w 4)}r<k, be the ky-sequence of N-subalgebras and

T To

:Pko—l Pl 'PO M

7'L'k0

P P

be a @-structure determined by £. Let hA=gl(W) or csp(W). It follows
from (C. 2) that {§(¢)},enx is a deformation of h. Hence we can assume
H(¢)=h by a suitable choice of P, This is trivial in case I. In case II this
follows from H(csp(W), gl(W)/csp(W))=0. Set K =sl(W) when h=gl(W)
and A =sp(W) when h =csp(W). Take a complement U of Win V. Let
I denote the identity matrix in gl(W). Let g; be the N-subalgebra of

W®(’CQ<51V*) induced by g;. Then by results of ‘and we know
qu(t) = H® R EDQUs+ -+ K O U* |
+{I} ©b )+ WRSH1 U,

where by=R and b,(¢) is a subspace of S*U* such that the following holds:
Let «u=U and b&b;,. Then

u_] bEbk_l .
Set Ui () =b,(t). Then b(¢) is a subspace of S*Uf(#). Set

Un(t) = {ucUla(w) =0, ac U ()} .

First note that, by taking a suitable &, we can assume that Uy(f) and
hence U,(t) are independent of ¢. In fact this is shown as follows. Let ¢
be a GL(V)-valued function on N such that o(w)=w for w&W. Then
P,=R,P, is a g,-structure, where go=h+WQXU*. R, induces a bundle map
R, from the frame bundle F(P,) of P, to the frame bundle F(P;) of P
Then R,(P,) is obviously a g;-structure on P4, but it is not contained in
F(Py; M, N). Hence, denoting by px the GL(V+g,)-valued function on N
such that g#=¢ on V and p=id on g, let P{:RFR,(PI). Then P/ is an
Ad(p) gy-structure contained in F(Pj; M, N). P is clearly a structure deter-
mined by the CLAS which is the prolongation of &£ to Pj. Let U, be a
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subspace of U such that dim U,=dim U,(¢). If we take ¢ such that ¢,(U,(t))

=U,, then we have
Ad(p g =P+ OQU*+{I[} O Ui + WRS2U*,

where Uf = {ac€U*|a(u) =0, u=U,}. This proves our assertion. In the
following we fix a complement U; of U, in U.
Let gy be the standard vector space over R whose dimension is dim g (2).

Set
g =K ® 4+ KOS U+ WRSH U*
and
gy (&) = {1} Obx(?) .
Recall the bundle isomorphism

2 ARidy) (A Rid) _
(3.1) g x N i %gk( iRidy) - (e &)t ),g,c.

Since ¢} is independent of #, we can consider that ¢ is a subspace of g;.
Moreover we can assume that there exists a subspace ¢/ of ¢, which cor-
respond to g/(¢) in (3.1). In the following sections we often identify g}
with g/(¢). For example, in a equation similar to (2) or (3) of Proposition
1.1 we often omit the trivialization A.

We put as follows :

Wi=WHgo+-+0s -
Wi=W+git+-+0.
Vi=WitU.
Vi=Wi+U.

Let ¢; be the structure function of P;. ¢; is a function on N having its
value in the space

Vs @M VE/0(@Q Ve .
Note that by [Proposition 2.2 of we have

ce(v, w) EWyy

for veV,_, and weW;_,, where ¢; is a representative of c.
Finally let a; denote the

Jr-1 QN V21 /0(8 X Vi)

component of ¢;. Similarly we denote by a} (resp. af) the
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T QN Vii/0(@R Vi) (resp. i QN ViLi/0(@QVily)

component of ay.

§ 4. The infinitesimal automorphisms of P,

Let the notations be the same in §3. We assume that & has been
taken as in §3. First we have, for u, vel,,

(4.1) colu, v)EW4 U,

where ¢, is a representative of the structure function ¢, of P, In fact, let
Ac{I}®Uf. Then by (1.1) applied to P, we have Ac¢ (u, v)=(0T) (u, v),
where T€g,®Vy. This implies that the U;-component of ¢ («, v) is O.
Hence by (1) of Proposition 1.1 we have (4.1). (4.1) means that the distribu-
tion E on N defined by

E, :{ﬁt(u)|u€£ U2}

for t N is completely integrable. (Recall [p(w), (v)] = —p(co(us, v)) for
u,vel)
The proof of the following proposition will be given in §5.

ProposITION 4.1. We can choose the bundle P, so that the following
hold -

(1) ¢lv, weW] for v, weW,

(2) olw,uyeW| for weW{ and ucUs,.

(3) ¢lu, v)y)eWi+U, for wu,vel,.

Now assuming the above proposition, we will consider the infinitesimal
automorphisms of P,. As in §2, take a cross section j;: P—P;. Let D
be the connection determined by j, and  be the gy-valued form associated
with D. (Note that go(¢) is independent of ¢, and hence we can consider
that go(f)=¢,) We denote by «”’ the ¢}-component of w. Let & (resp. 6
denote the fundamental form of P, (resp. P,). Then (2.2)~(2.4) hold. We
denote by 6y (resp. 0y) the U;-component (resp. U;-component) of 4. Then
it is easy to see that the system of Pfaffian equations 6y =0 is completely
integrable.

By (2.3) and (2.4) we have

di+do=a(j) ((0+a) A0+ a))
=c;(j) (ONO) +c:(jy) (0N o)+ e1(Jy) (@A ) .
It follows from Proposition 4.1 that
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(4.2) do’" = o/ (ji) (0 \b,) +a' (j1) (Ou, N @) +ai (7) (05, A o),

where af'(j,) is the ¢//QA2V§-component of ¢;(j,). Hence we know that the
system of Pfaffan equations &’ =6, =0 is completely integrable. This is
interpreted as follows. Define a distribution F on P, by

Fp:{pl(v)—i—A*IvEW-l- U, Aegg}

where p,&P; with m,(p)=p. Then the above means that F is completely
integrable. |

Let X be a local vector field on P, satisfying Lyf=0 and (por)xX=0.
Then there exists a local vector field Y on M such that X=Y¥. Recall

that X is an infinitesimal automorphism of P, if and only if there exists a
g;-valued function A on P, such that

Lx(l):A’ﬁ.

Since ¢ =¢;, this holds if and only if there exists a {I}QU:-valued function
B such that

(4. 3) Lyo’ =B-0.
On the other hand, by [Proposition 2.3, (4.3) holds provided that B is a

{I}@U*-valued function. It follows that Ly’ is a linear combination of
0y, and 6;. We have

(4. 4) Lyo' =di(X)o' +1(X)do' .

By (4.2) i(X)d«" is a linear combination of 6y, and 6;. Therefore we
know that «”(X) is a function on N. Set «’(X)=¢I, where ¢ is a function
on N. Define a Uj-valued function f on N by

o (j) (L w) =fw) [

where u€U,. Then, since (4.3) holds if and only if the 6, -component of

Lyo"” is 0, it follows from (4.4) that X is an infinitesimal automorphism of
P, if and only if

(4.5) p(u) o+f(w) $=0
where u=U, Define fel'(E*) by f(ﬁ(u)):f(u) Recalling that the dis-

tribution E on N is completely integrable, we denote by & the exterior
differentiation with respect to E. Then (4.5) means

(4. 6) d ¢+of=0.
Moreover, it is not difficult to see that ddw”’ =0 implies

4.7 df=0.
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(cf. §5) (4.7) is the integrability condition of (4.6). We note that by the
theory of partial defferential equations of the first order, (4.6) satisfying
(4.7) is the general form of the formally integrable and integral homogeneous
linear differential equation of the first order.

Recall that the distribution F on P, is completely integral. We will
denote by .#, the integral manifold of F passing through pEP. Let N
be a submanifold of N transversal to the distribution E. Let p: N'—F
be a map satisfying (poxn) p(t)=¢. Set

I =U .
LEN

Then, by the definition of F, .# is a g{-structure on M. Therefore ¥
determines a volume element or a symplectic form 2(t) on each fiber p7'(?)
corresponding to K =sl(W) or sp(W). First we will consider the case

when 7 =sl(W). As before, let X=Y be an infinitesimal automorphism of
P,. We can prove '

(4. 8) LyQ=réQ,

where 7r=m—n is the fiber dimension of the fibered manifold p: M—N
and o’ (X)=¢I In fact this is shown as follows. Let ¢, be the 1-parameter
transformation generated by Y, where s moves in a neighborhood of 0 in R.
Let 2, denote the standard volume element in W. For z&eM let {Z, -+, Z,}

be a basis of the subspace of T, M consisting of the vectors tangent to the
fiber. Then we have

4.9 (D (Zo s Z) = Ly (o Zar 5 ot )
— ‘QO(Ps—lsbs* le M) Ps_l gbs* Z")
= O({F-p) " 20 - { Pl 20} Z)

where p, is a curve in I such that z(p)=¢s(x). There exists a curve a,
in GL(W) satisfying

(4.10) $_s(ps) = poa;’ .

By (4.9) we have

(4.11) (0FQ), = (det a) 2,.

Let A:%asiszo. Then differentiating (4. 11), we get

(4.12) (Ly2),=(Tr A) 2,.

On the other hand (4.10) implies p, = ¢s(py) a7 Let X’:%pslszoe T, L
We have
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X = Xpo "A;o ’
and
A=w(A})=0(Xp)—o(X').
Since Tr (0(X'))=0 and Tr (0(X,))=Tr(«"(X,))=r¢, we have Tr A=r¢.
Combined with (4. 12), this proves (4. 8).
Similarly, in case A =sp(W), we can prove

(4.13) Ly2=24Q .

Therefore we know that a local vector field Y on M is an infinitesimal
automorphism of P, if and only if there exists a solution ¢ of (4.5) such

that LyQ2=¢fQ. Hence Dalboux’s theorem implies that holds

when ky=1.

§ 5. Proof of Proposition 4. 1.

First we prepare two lemmas on sp(W) and s/(W). It is known that
sp(W)® =S¥2W*_ This implies that every basis of W is a regular basis for

k+1 k

sp(W)®.  For weW we denote by i(w) the contraction X) Wk— X)W,
Define an action of GL(W) on WX.S* W* by
(gT) (wb T wk) = gT(g—l Wy, *0y g_l wk)

where g€ GL(W), TeWRS*W* and w;&W. Then, since s{(W) is an ideal
of gl(W), we know that s{(W)® is invariant under this action of GL(W).
Moreover it is easy to see that the following diagram is commutative :

(5.1) sl(W)<’°+1>___g_,sl(W)<k~1>
1(w) l l i(gw)

SUW)® sl (W)@
g

On the other hand it is known that s/(W) is involutive and hence generic
basis of W are regular for sZ(W)®. Combined with (5. 1) this implies that
every basis is regular for s{(W)®,  In particular we have "

LemMMa 5.1. Let W =sl(W) or sp(W). Let v, w be linearly independ-
ent vectors in W. Then the following two maps are surjective :

i(v): W&o @
i(w): {ASk *2|i(v) A= 0}———»{Aeh"’°’|z‘(v) A=0}.

LEMMA 5.2. Let v, w be linearly independent vectors in W. Let A, B
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EN® L HEPOQU* 4 ... + HOSEU*. Assume A,=B,. Then there exists
XEgi41 such that X,=A and X,=B.

Proor. First assume A, BEA'®. By conditions there exists Y&h ®+0
such that Y,=B. Since

i(v)(A-Y,)=A,—B,=0,

there exists Zeh **? such that Z,=0 and Z,=A—Y, Then X=Y+Z
has the prescribed property. The other cases reduce to the above case.
g.e. d.
After these preparations we will prove [Proposition 4. 1. First we have

(5.2) a(A, B)= —[A, Bleg;
for A, Beg, Let v,wsW and X<cg{. By (1.1) applied to P, we have
Xgl(w’ ‘U) _QI(Xw’ 7-)) —Q1<w’ Xv) = (BT) (w’ v) :

where Teg®A V5. Recall that g,(t) Cg®@V*Cgl(V+g,) and X,E¢; for
Xeg, weW. Hence we have |

(5. 3) ! (X ©) = o (X, w) \
where @i’ is the gy/@A?Vi-component of ¢;. Define e=GL(V,) by
o=1id on U+g,

and
o(w) = w+a! (v, A) for weW

where v(€W) and A(€¢)) satisfy A,=w. Suppose B,=w for Beg] and
ucW. Then, if v and u are linearly independent, there exists Xeg{ such
that X,=A and X,=B. Therefore (5.3) implies

ai' (A, v) =o' (B, u).

In case v and w are not linearly independent, we can similarly prove that
a' (v, A) does not depend on the choice of v and A. R, denoting the right
action of GL(Vy) on F(P), let P=R,P, and ¢, be the structure function
of Pl. Let weW and A=g]. Then, by (2.8) of [1], we have

cl(w, A) = 07'¢ (0w, cA)

=o7'¢,(w+a!' (v, B), A)

=0 { Ay, +a,(w, A)}

= A,—al (w, A)+a,(w, A)
=0 mod W/
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where vEW apd Beg! satisfy B,=w. If we denote by P; the conjugate
bundle P, we have

5.4 o WReH——WS.
Next lét weW, Aeg, and Beg). By (1.2) we have
¢ (ci(w, A), B)+a(a(A, B w)+a(alB, w), A)=0T)(w 4, B

where Teg XN Vy. By (5.4) the first term and the second term belong
to W,. On the other hand the right hand is equal to T(A, B)w and in

W{!. Hence we have
¢i(Byy A)=0  mod W.
This implies
(5. 5) ¢ WRg— W7 .
To prove
(5. 6) ¢: WRQW—— W/
let v, weW and AEg, Substituting v, w and A into (1.2), we have
c1(Aw V) —C1(Ap, w) =0 mod W{ .

If we put A=I in this equation, we have (5. 6).k This completes the proof
of (1).

Let ucU, and A, BEg). By (1.2) we have
g1<[A, B],u>’£0 mod WJ .

Combined with the fact [g, gi] =94, this implies

(5.7 ¢ QRQU— Wy .

Next, substituting v U,, weW and A€y, again into (1. 2), we have
c1(Aws 1) —1(Ay, w) =0 mod W{ .

Setting A=1I in this equation, we have

(5. 8) ¢ : WRU,——W;.

(5.7) and (5. 8) prove (2).

Finally we will prove (3). For u€U, set & (Lu=fwlIl fisa Us-
valued function on N. Let co(P) be the representative of ¢, uniquely deter-
mined by P, (cf. [Proposition I.1), and denote by 7(x, v) the U,-component of
co(Py) (u,v) for u,veU, Then, substituting %, v U, and I into (1.2), we have
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(5.9) S, ©)+pl) f2)— p(0) flu) = 0.

Define fel'(E¥) by f(pu)) =f(w). As in §4, we will denote by & the
exterior differentiation with repsect to E. Then (5. 9) means

(5. 10) df=0.
For u, ve U, set
' (u,v) =hu,v) I.
h is a \*Uj-valued function on N. Let w;€U, (i=1,2,3.) By (1. 2) we have

(5. 11) s{ (e, ), ts) - ats, ) flt)+ 0 oty )} =0 .
Define heI'(\2E*) by h(p(w), p(v))=h(u, v). Then (5.11) means
(5.12) dh+hAf=0.

We assert that under the conditions (5. 10) and (5.12), there exists a local
solution §&I'(E*) of the following differential equation :

(5.13) do—aNf—h=0.
In fact this is shown as follows. First there exists a function a such that
f=d a. Since

d(e*h)=e(d anh+d k) =
there exists £I'(E¥) such that e*A=d ¢. Then for any function b, §=¢¢
(6+d' b) satisfies (5. 13).

Let & be a solution of (5.13) and ¢ be the Uj-valued function determined
by & Define uesGL(V,) by

p=1d on W+U+g¢,
and |
pw) =u+ow) I  for uecU,.
Set PiI=R,P,. For u,veU, we have

cl(w, ) = (), 1(0) — () po)}+o{p(0) ple)
= 1 {plus ©)+h(a, v) I4+o(a) £(2) T—o(0) fl2) 1
— (8w o(v) I+(p(v) o)) I mod W{
= 7(, v)+{=0(9(w, v) +hw, v)+0(w) fv)— a(v) )

~plu) 6(0)+5(v) o)} T
=9(u, v).
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The last e‘quality follows from (5.13). Then, denoting by P; the conjugate.
bundle P, “this prove (3).

§ 6. The higher order cases.

We will consider the higher order cases. Let the notation be the same
as in the previous sections. The proof of the following proposition will
be given in §7.

PROPOSITION 6.1. We can choose the é-structure & so that the follow-
ing hold for 1<k=k,:

(1) Let v, wEWi_y. Then ci(v, w)EWj_,.

(2) Let ucU, and veW/_;. Then the gi_s-component of cx(u, v) is 0.

Assuming the #bove proposition, we will prove [Theorem 2. In the first
place let ji41: Pr—>Piy be a cross section. Let D be the distribution on
P, determined by ji.1, i.e., for pyEP;

(Dk)pk = jesr(Pr) (Vi) .

D, defines a g;-valued form w; on Pp. Set @;=4;'*w, which is a g,-valued
form. Let 6, be the fundamental form of P,. Let c;(Ps,,) be the representa-
tive of ¢, uniquely determined by P,;, and let cxs(ju+1) be the representa-
tive of cxpq On Jjry1(Pr) determined by the horizontal space (ji+dsP: Then
by (2.2)~(2.4) we have

(6 1) dalc = C (Pk+vl) (0k/\0k> — wk_/\ 0}0 .
(6.2) d(Jit10k+1) = Cor1(Jrrr) (k1041 Ji510k40) -
(6. 3) Jii10k1 = Ox Ty .

Let X be a local vector field on M and suppose that X is an infinitesimal
automorphism of P,. Set Y=X®. By [Proposition 2.3 we have

Lya)k - T'-0k ,

where T is a g{-valued function on P, (Note that g{’=(g:&V*N g1&
SV C g RQV*RV*) Let o be the g/-component of @ and S be the
g/®.component of 7. Then we have

(6. 4) Lya) =8+6,= S5,

where we identified the U,-component of 6, with 6. Let Fyy: giQUS—
g/ QUs /gl be the composition of the maps 4'®id: iU —gi U and
Y RQUF—g! QU (gl Since ¢4y =01, we know that Y is an infinitesimal
automorphism of P, if and only if
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Fra(S)=0.

We will prove that @/ (Y) is a function on N. This is shown as follows.
First note that by (6.4) Ly@} is a linear combination of 8;. Let apy1(jr+1)
be the ¢iXA?VF-component of cii(jryr) and apii(Jzyr) be the gY@A:Vi-
component of ay,1(jx41). Then we have

(6. 5) Lya}! =di(Y) &/ +i(Y) da}
and
(6.6)  day = aa(jurd) (Ot @) A(Outa0)

by (6.2). Since (6,4 @) (Y)=W,, Proposition 6.1 implies that i(Y)da} is

a linear combination of 0, and @,. Therefore we know that day/(Y) is

a linear combination of #; and 6, and hence @(Y) is a function on N.
As in §4, let @) (X®)=¢l, where ¢ is a function on N. We prove

LEMMA 6.2. There exists a linear differential operator ¥y of order k
on N such that &}[(Y)=¥(¢).

Proor. Suppose that for [<k there exists a linear differential operator
of order [ such that @) (X®)=V,(4). Let p, g Py with m_(p)=mi_1(qQ)=¢
and {pomgo---omp_y) (p')=t. Let G,CGL(V,_,) be the connected Lie group
whose Lie algebra is g;(¢) (C 0z i@ V*CGL(Vi_)). Then there exists ac=Gy

satisfying g=pa. We have

6.7 (BY) =g (XE) = a {0, Y5)} -

On the other hand, since the V-component of 6,(Y) is in W, we know that
a{(0),(Yp)} = (0,(Y,)  mod giy.

Combined with (6. 7), this means that the ¢g;_,-component of 6;(Y) is constant
on the fibers of the fibered mainfold x,_,: Pk—>Pk . Let us denote by
the g;_;-component of ;. Then we have

C(Y) = G (aox X*0) = @1 (R) = ¥ 1(8) -

By similar considerations we can prove that for [<k
the g//-component of 6,(Y)=a!(X®)=¥,(®).
Let 6, be the V% _;-component of 6, and 6/ =0k——0’ be the (g +---4+ g1y
-component of #;,. Then it follows that

oY) =5 0).

For ucU, let up, be the cross section of D satisfying Or(up,) =u.
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Since Ly0,=0, we have

do,(Y, up,) = (i(Y) dby) (u,)
= —d(6:(Y)) (us,) .

In particular, we have
dci(y, uDk) —0(w) Uy (@) .

Let us substitute Y, up, into (6.1) and consider its g;/_;-component. By
Proposition 1.1 and [Proposition 6.1 in which % is replaced by k41, we
know

! (Pesa) (84(Y), u) =0.

Hence it follows from above arguments that
(6.8 —3() Ter(9) = af (Pus) (67(Y), ) =}/ (Y) u

=3 o (Pon) (Vg w) ~ (V) .

Let {u;} be a basis of U; and {u}} be its dual basis of Uf. Define A;=
gi-1 by
k—1

(6.9) As= p(u) Tesl )+ 2, & (Perd) (Talg), ) -

Then we have
(6. 10) ol (Y)= 2 AQuf .

Recall that @/(Y) is a function on N. It follows from (6. 8) that &} (P
is a function on N. Therefore the right hand of (6.9) defines a k-th order

linear differential of)erator acting on ¢. Then (6.10) and the definition of

@) imply our assertion. g.e.d.

After these preparations we Wlll prove [Theorem 2 First note that
Proposition 6.1 in which % is replaced by k42 implies that the ¢/Q@W/*®
Ut/o (@i QW/*)-component of ci,; is 0. Hence we have

ols1(asd) (B1(V)+@L(Y), ) = Ty sapan
where Teg/,,QW/*. By (6.6) we have
da}{(Y, un) = Tyn raynutaless) (07 (Y)+ 0 (Y), )

k
= Lo m+apm U+ l§a2’+1(jlc+1) (wz(@, u>
Define S}.41(¢)s=gy by
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6.11)  Stulde=plu) Veld)+ Saknlien) (V1(9), v
and set
er1(8) = 5 (St (9)) @t
Then by (6.5) and the above arguments we know that
S=Su(@)  mod g,

where S is the g/®-valued function satisfying (6.4). This proves that Y is
an infinitesimal automorphism of P,, if and only if

(6.12) Fi11(Sisa(9) =0

By (6.11) this is a (k+1)-th order differential equation with respect to ¢.
From the above arguments it follows that a local vector field X on M

is an infinitesimal automorphism of P, if and only of

6.13)  Fi(S(d) = Fa(SHd) = - = Fens(Siua(9) = 0.

Let Qu41C Jer(NXR) be the differential equation defined by (6.13) and
@us1 be the symbol of Qy,,. It is not difficult to see that g.,; can be identified
with bg,. For p,e Py, let

Lo ={XE2|X®),, = 0}.
Let @/(X)=¢l. Then we have a surjective map
ipkBX 75 H@) E(qre)e

where t=(pomo-++oms) (px). These show that for any k, Q. is a subbundle
of J.(NxR) and moreover Q; is integrable. This completely proves the
theorem.

§ 7. Proof of Proposition 6. 1.

We will prove Proposition 6.1 by induction. By Proposition 4.1, (1)
of [Proposition 6. 1 holds for k=1. (2) is trivial. Assume that we can choose

the sequence of bundles
Py, —Py_, P, — P, —M

so that [Proposition 6.1 holds. For —1=<i<k—1 consider the following
statement :

(7. 1); (1) Let Acg; and weW,_;. Then
Qk(A, w) EWI/C—-I .
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(2) Let A=g, and «cU,. Then the g,-component of ¢;(«, A)
is 0.

We will prove (7.1); by induction on 7. The proof will be devided into
several steps. / '

7.1. Let Xeg,, weW and Asgy+9;,+-+0isr. By (1.1) applied to
P,, we have

Xew(w, A) —ci( X A) =T 4w,
where Teg:X V%, Since Xci(w, A) and T,w are in g}_y, this implies
ci{ Xy A)EGi—1 -
Hence we know that

(7.2) it Tre1XNGo+ -+ +Gr—)— Wi 4

Similarly substituting v, weW and Xeg; into (1. 1), we have
(7. 3) ai (Xu v) = af (Xo w) .

Define s GL(V;_,) by
c=1id on VH4goy+-+grs+ 920

and

0(A)=A+ai(w, B) for Aegi,,

where weW and Beg,_, satisfy B,=A. Suppose that veW and Ceg),_,
also satisfy C,=A. Then by Lemma 5. 2 there exists X Egk such that X,=C
and X,=B. It follows from ( 3) that

a/(v, C) = (w, B).

Therefore ¢ is well-defined. Let P,=R,P; and ¢, be the structure function
of P,. For weW and Aeg;_; we have

ci(w, A) =6 1¢y(ow, cA)

=0 'ci(w, A)
= { Ayt ax(w, A))

= Aw_a;c,(w, A)+alc(w’ A)
=0 mod W/ _,.

Denoting by P the conjugate bundle P,, we have
(7. 4) ! Qi QW——W( .
Secondly let ucU,, Aegl/+---+¢g/_, and Beg/_,. By (1.2) we have
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7.5 clclu, A), B)+a{cA, B) u)+elce(B, ). A)
+5(u) ci(A, B)=T(A, B u,

where T8RN VE,. Let us consider the gi_,-component of (7.5). Recal-
ling g/ ={I}, we have

crlu, A)egot -+ k-1

Hence the first term contains no element in ¢;_,. (Recall (2) of Proposition
1.1) The g} ,-component of the second term is a/(A, Byu. Using the
induction assumption, we know that the ¢}_,-component of the third term
is 0. Similarly the fourth term and the right hand contain no element in
g, Hence we have (A, B)u=0. This implies

(7. 6) Crt Pi- @G+ +gi) Wi

Therefore we have proved (1) of (7. 1), (2) of (7. 1) Is trivial.

7.2. Let [=0. Suppoee that for i=I+1 (7.1); holds. We will prove
(7. 1). |

First note that for A=g; and B&g; (i, j3 —1) we have

(A, B EGmaxi, o+ TGk -

Then, substituting weW, A&g,+-- -+ and BEg;y, into (1. 2), we can
prove

ay (Bw, A) =
This implies

(7.7) cu: iRAg+-- +Qk—1)-“_'*W1€71 .

Secondly, substituting v, weW and AEg,,, into again (1.2), we have

(7. 8) &/ (Auy v) = & (A w)
Define ¢=GL(V,_,) by
o=id on V44 t9+o+ T 0ra
and for Aeg,_,
o(A) = A+a(w, B),

where weW and Beg, satisfy B,=A. Then by (7.8) and Lemma 5.2
we can prove that ¢ is well-defined. Let P,=R,Px. For weW and A€y,
let .S be the (g1+ -+ +gx_s)-component of ¢ci(w, A). By induction assumption
S belongs to ¢,+---+¢_» and we have

Qk(w’ A) = Aw+S+Qk(w’ A) .

PN
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Then, denoting by ¢} the structure function of P}, we have
ci(w, A) = o7 ¢;(ow, dA)
{AutS+au(w, A))

g
Aw—QlZ/<w, A) +S+‘_xlc(w’ A)
0 mod W/ _, .

I

Therefore, denoting by P, the conjugate bundle P,, we have
(7.9) Gt GIROW Wi,

It follows from (7.7) and (7. 9) that

(7.10) Co: OQW—W/_,.

Next we will prove (2) of (7.1), Let weW, uclU; and Aeg),,. By
(1. 2) we have

ce(ci(w, ), A)+ce(culu, A), w) + el A, w), u)
+6(u) co(4, w) = (6T) (w, u, A)
where Teg:QA2V,*,. The first term is in W/_,. " Since
- aulu, A)EG+ Gt F Gy,

the second term is in W/_, by (7.10) and the induction assumption. Simi-

larly the fourth term is in W/_,. On the other hand the gi_s-component

of the third term is the same as the ¢/ ,-component of —cu(Ay u) and

the right hand contains no element in ¢7_,  This proves (2) of (7. 1),.
Finally we will prove

(7.1)  co: YQWi—WI_, .
Substituting ucU,, A€g/ and B&€W,_, into (1. 2), we have
Ck (gk(u, A), B) +cx (gk(A, B), u> +cx <€k(B; u), A)
+6(w) (A, B)=(6T) (u, A, B)

where T=g,QA?V,*,. Using the induction assumption, we know that the
gi-:-component of the first term and the third term are 0. Since

ax(A, Beg)+ - + 0k 2+ 0iy

by induction assumption, the g}_,-component of the second term is a (A, B)u.
The fourth term and the right hand have no element in g7/_.. Hence we
have a}/(A, B)u=0, and so a/(A, B)=0. This proves (7.11).
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7.3. Finally we will show (7.1)_,. It is sufficient to prove (2) of (7.1)_,
and

14

(7.12) s WRW: ot -
Let v, weW and A=g, Then by (1.1) we can prove
ai (Aw, v) = o/ (Ao, w) .

In particular, if we put A=I, we have a}(w,v)=0. This prove (7.12).
(2) of (7.1)_, can be proved by the similar method as the proof of (2) of
(7.1),. This completes the proof of [Proposition 6. 1.
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