
Hokkaido Mathematical Journal Vol. 11 (1982) p. 3Ol-327

Infinitesimal automorphisms of \mathfrak{g}-structures
and certain intransitive infinite Lie

algebra sheaves

By Kazuhiro KISO
(Received January 19, 1982)

Introduction

Let \mathscr{L} be an intransitive infinite Lie algebra sheaf on a manifold M
and \rho:Marrow N be the fibered manifold of invariants of \mathscr{L} . For t\in N we
denote by \mathscr{L}(t) the transitive Lie algebra sheaf on the fiber \rho^{-1}(t) induced
by \mathscr{L} . In [1] we determined \mathscr{L} under the condition that for certain 0\in N
\mathscr{A}=\mathscr{L}(0) is “simple”

On the other hand T. Morimoto [2] determined the intransitive formal
Lie algebras over C whose transitive parts are primitive. In this paper we
consider everything in the framework of the C^{\infty}-category and consider such
\mathscr{L} that for certain 0\in N\mathscr{A}=\mathscr{L}(0) is one of the following Lie algebra
sheaves :

(1) \mathscr{L}_{gl(R^{r}),sl(R^{r})^{(1}} , ; the Lie algebra sheaf of all vector fields with con-
stant divergence.

(2) \mathscr{L}_{\iota sp(R^{r})} ; the Lie algebra sheaf of all vector fields which preserve
a symplectic form up to constant factors.

In (2) r is assumed to be even, \mathscr{A} is primitive and is not simple. Notice
that besides the above \mathscr{A} there are four primitive Lie algebra sheaves which
are not simple. (See [3]). These cases will be treated in a future paper.

Let \Omega be the volume element or the symplectic form on R^{r} . Let N
be a manifold. Let X be a local vector field on N\cross R^{r} tangent to the
fibers of the fibering N\cross R^{r}arrow N. Let Q_{k_{0}}\subset J_{k_{0}}(N\cross R) be a formally integra-
ble and integrable homogeneous linear differential equation on N, where
J_{k_{0}}(N\cross R) means the bundle of k_{0}-jets of cross sections of the trivial vector
bundle N\cross R- N. Let \mathscr{A}[N;Q_{k_{0}}] denote the sheaf of germs of all vector
fields X satisfying the following condition; there exists a local solution f_{X}

of Q_{k_{0}} such that L_{X}\Omega--f_{X}\Omega, where L_{X} means the Lie derivative along the
fibers.

Then we will prove under certain conditions the following (Theorem 2):
Let \mathscr{L} be an intransitive Lie algebra sheaf whose parameter space is N.
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Suppose that for certain 0\in N\mathscr{A}=\mathscr{L}(0) is one of the Lie algebra sheaves
(1) and (2). Then there exists a formally integrable and integrable hom0-
geneous linear differential equation Q_{k_{0}} , and \mathscr{L} is locally equivalent to \mathscr{A}[N ;
Q_{k_{0}}] .

In \S 1 we review the fundamental facts on \mathfrak{g} -structures and in \S 2 we
consider the infinitesimal automorphisms of \mathfrak{g} -structures. In \S 3 we give
the definition of continuous Lie lagebra sheaves and state the main theorem.
\S 4\sim \S 7 are devoted to the proof of the main theorem.

\S 1. \mathfrak{g}-structures

In the following we always assume the differentiability of class C^{\infty}

unless otherwise stated.
In this section we will review the fundamental facts on \mathfrak{g}-structures and

their structure functions. For the details we refer to [1].

A fibered manifold means a triple (M, N, \rho) of differentiate manifolds
M, N and a different map \rho:Marrow N whose rank is equal to the dimen-
sion of N at any point. Let (M, N, \rho) be a fibered manifold and let m=
dim M, n=\dim N. Let V=R^{m} and W=R^{m-n}(\subset V) . Let h be a Lie algebra
and \mathfrak{g} be a subbundle of the trivial vector bundle N\cross h-N. Set

\mathfrak{g}(t)=\{A\in h|(t, A)\in \mathfrak{g}\}l

Then \mathfrak{g} is called an N subalgebra of h if \mathfrak{g}(t) is a subalgebra of h for all t\in N.
For a manifold M, TM (resp. T^{*}M) denotes the tangent bundle (resp.

the cotangent bundle) of M. We denote by F(M) the frame bundle of M,

which is a principal \dot{b}^{n_{h}}u^{\lambda}\eta_{\psi}ndle with structure group GL(V) over M. Let
\pi:F(M)arrow M be the natural projection. A\in gl(V) defines a vertical vector

field A^{*} on F(M) induced from the right action of GL(V) on F(M) . A
local transformation \phi of M induces local transformation \tilde{\phi} of F(M) defined
by \tilde{\phi}(p)(v)=\phi_{*}p(v) , where p\in F(M) and v\in V. Hence a local vector field
X on M defines a local vector field on F(M) . We denote it by X. Let
\rho:Marrow N be a fibered manifold. Then, V and W being as above, we set

F(M, N)=\{p\in F(M)|\rho_{*}p(W)=0\}

Let \mathfrak{g} be an N subalgebra of W\otimes V^{*} .

DEFINITION 1. 1. A submanifold P of F(M, N) is called a g-structure

if it satisfifies the following conditions:
(1) \pi:Parrow M is a fifibered manifold.
(2) For p\in P and A\in gl(V) , A_{p}^{*}\in T_{p}P if and only if A\in \mathfrak{g}(t) , where
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t=\rho\circ\pi(p) .
Let P\subset F(M, N) be a \mathfrak{g} -structure.

DEFINITION 1. 2. A ZocaZ vector fifield X on M is called an infifinitesimal
automorphism of P if and only if \rho_{*}X=0 and X is tangent to P.

Let \theta be the fundamental form of F(M), i . e. , \theta is a V-valued form
on F(M) defined by

\theta_{p}(X)=p^{-1}\pi_{*}X

where p\in F(M) and X\in T_{p}F(M) .
Let P\subset F(M, N) be a \mathfrak{g} -structure. For p\in P with \rho\circ\pi(p)=t , define

\tilde{\rho}(p):Varrow T_{t}N by \rho\sim(p)v=\rho_{*}p(v) for v\in V. \tilde{\rho} is called the structure function
of the first kind of P.

Let p\in P. An m-dimentional subsapce H\subset T_{p}P is called a horizontal
subspace if \theta|_{H} : Harrow V is isomorphic. For a horizontal subspace H there
exists a unique v_{H}\in H for v\in V such that \theta(v_{H})=v . Then define c_{H}\in V\otimes

\wedge^{2}V^{*} by

c_{H}(v, w)=d\theta(v_{H}, w_{H}) ,

where v, w\in V. The equivalence class c(p)=[c_{H}] in V\otimes\wedge^{2}V^{*}/\delta(\mathfrak{g}(t)\otimes V^{*})

is independent of the choice of H, where t=\rho\circ\pi(p) . c is called the structure
function of the second kind of P. Note that \mathfrak{g}(t) acts naturally on V\otimes\wedge^{2}V^{*},
i . e. , for A\in \mathfrak{g}(t) and S\in V\otimes\wedge^{2}V^{*}A\cdot S is defined by

(A\cdot S)(v, w)=A(S(v, w))-S(Av, w)-S(v, Aw)1

This induces an action of \mathfrak{g}(t) on V\otimes\wedge^{2}V^{*}/\delta(\mathfrak{g}(t)\otimes V^{*}) .
\tilde{\rho} (resp. c) is called N-constant if for p, q\in P such that \rho\circ\pi(p)=\rho\circ\pi(q) ,

\tilde{\rho}(p)=\tilde{\rho}(q) (resp. c(p)=c(q) ) holds. In the following we consider only P
whose structure functions are N-constant. For t\in N the common value of
\tilde{\rho} (resp. c) on (\rho\circ\pi)^{-1}(t) is denoted by \tilde{\rho}_{t} (resp. c(t) ).

Recall that \{\mathfrak{g}(t)\}_{t\in N} is a family of Lie subalgebras of W\otimes V^{*} . We can
define its infinitesimal deformation as follows: Let A\in \mathfrak{g}(t) and take a cross
section \sigma of \mathfrak{g} such that \sigma(t)=A . Then for v\in V define \tau_{v} : \mathfrak{g}(t)arrow W\otimes

V^{*}/\mathfrak{g}(t) by

\tau_{v}(A)\equiv\tilde{\rho}_{t}(v)\sigma mod \mathfrak{g}(t)

where right hand means the derivative of the W\otimes V^{*} -valued function \sigma

by the vector \tilde{\rho}_{t}(v)\in T_{t}N.
Let \underline{c} be the V\otimes\wedge^{2}V^{*} -valued function on N such that [\underline{c}(t)]=c(t) .

Define \sigma(\underline{c})\in V\otimes\wedge^{2}V^{*} by
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\sigma(\underline{c})(v_{1}, v_{2}, v_{3})=\sum_{S}\underline{c}(\underline{c}(v_{1}, v_{2}), v_{3})

where v_{t}\in V and \sum_{S} means the cyclic sum. Further define \underline{\tilde{\gamma}}\in V\otimes\wedge^{3}V^{*} by

\underline{\tilde{\gamma}}(v_{1}, v_{2}, v_{3})=\sum_{S}\tilde{\rho}(vJ(\underline{c}(v_{2}, v_{3}))

Then we have the following structure equations. (See [1])

(1. 1) A\cdot c-\delta\tau(A)=0 .

(1. 2) \sigma(\underline{c})+\underline{\tilde{\gamma}}=\delta T ,

where T is a \mathfrak{g}\otimes\wedge^{2}V^{*} -valued function on N.
Next we will consider the second order structue. Let P\subset F(M, N) be

\mathfrak{g} structure whose structure functions \rho\sim and c are N-constant. Let g be the

standard vector space over R whose dimension is equal to dim \mathfrak{g}(t) . Take
a trivialization \lambda:N\cross garrow \mathfrak{g} of the vector bundle \mathfrak{g} . Since we consider only

local properties of P, we assume the existence of such a trivialization. Let
\lambda_{t} : garrow \mathfrak{g}(t) be the restriction of \lambda to the fiber over t\in N.

Let \pi_{1} : F(P)arrow P be the frame bundle of P. Denote by F(P;M, N) the

subbundle of F(P) consisting of the frames z such that the following hold:

(1. 3) z(A)=[\lambda_{t}(A)]_{n_{1}(z)}^{*} for A\in g .

(1. 4) \theta(z(v))=v for v\in V

The Lie algebra of the structure group of F(P;M, N) is g\otimes V^{*} . Let \mathfrak{g}_{1} be

an N-subalgebra of g\otimes V^{*}(\subset gl(V+g)) . Set

\overline{\mathfrak{g}}_{1}(t)=(\lambda_{t}\otimes id)\mathfrak{g}_{1}(t)

where id means the identity map of V^{*} . \overline{\mathfrak{g}}_{1}(t) is a subspace of W\otimes V^{*}\otimes V^{*} .
We denote by \overline{\mathfrak{g}}_{1} the vector bundle over N whose fiber over t\in N is \overline{\mathfrak{g}}_{1}(t) .

Suppose \overline{\mathfrak{g}}_{1}(t)\subset \mathfrak{g}(t)^{(1)} , where \mathfrak{g}(t)^{(1)} means the first prolongation of \mathfrak{g}(t) .
Let P_{1}\subset F(P;M, N) be a\mathfrak{g}_{1}- structure . Set \rho_{1}=\rho\circ\pi and let \tilde{\rho}_{1} be the

structure function of the first kind of P_{1} . By (1. 4) we have \rho_{1*}z(v)=\rho_{*}p(v)

for v\in V, where z\in P_{1} and p=\pi_{1}(z) . Note that \tilde{\rho}(w)=0 for w\in W and
\tilde{\rho}_{1}(w)=0 for w\in W+g . Since V/W\cong(V+g)/(W+g) , we can identify \tilde{\rho}_{1}

with \tilde{\rho} .
Let \theta_{1} be the fundamental form of F(P) and c_{1} be the structure function

of the second kind of P_{1} . c_{1} is a function on P_{1} having its values in the
space

(V+g)\otimes\wedge^{2}(V+g)^{*}/\delta(\mathfrak{g}_{1}\otimes(V+g)^{*})
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In the following we assume that c_{1} is N-constant. Then the structure
equations (1. 1) and (1. 2) applied to P_{1} are satisfied. Finally, recalling \mathfrak{g}_{1}(t)\subset

g\otimes V^{*} , we denote by \alpha_{1} (resp. \beta_{1}) the g\otimes\wedge^{2}(V+g)^{*}/\delta(\mathfrak{g}_{1}\otimes(V+g)^{*}) -component
(resp. V\otimes\wedge^{2}(V+g)^{*} -component) of c_{1} .

Let z\in P_{1} and \pi_{1}(z)=p . Then for X\in T_{f}P_{1} , we have

\theta_{1}(X)=z^{-1}(\pi_{1*}X)

\equiv p^{-1}\pi_{*}\pi_{1*}X mod g (by (1. 4))

=(\pi_{1}^{*}\theta)(X) .
That is, the V-component of \theta_{1} is \pi_{1}^{*}\theta . Note that H_{z}=z(V) is a horizontal
subspace at p.

PROPOSITION 1. 1. (cf. [3]) Let z\in P_{1} , \pi_{1}(z)=p and \rho\circ\pi(p)=t . then
the following hold:

(1) \beta_{1}(t)(v, w)=C_{H_{z}}(v, w) for v, w\in V.
(2) \beta_{1}(t)(A, v)=-\lambda_{t}(A)v for A\in g and v\in V.
(3) \alpha_{1}(t)(A, B)=-\lambda_{\overline{\iota}}1([\lambda_{t}(A), \lambda_{l}(B)]) for A, B\in g .

PROOF. Let H be a horiznotal space at z. For v\in V and A\in g, we
have \pi_{1*}v_{H}=v_{H_{z}} and \pi_{1*}A_{H}=\lambda_{t}(A)^{*} . Hence we have

\beta_{1}(z)(v, w)=d(\pi_{1}^{*}\theta)(v_{H}, w_{H})

=d\theta(v_{H_{z}}, w_{H_{z}})

=c_{H_{z}}(v, w)

This proves (1). (2) is shown as follows. Let \sigma be a cross section of \mathfrak{g}

such that \sigma(t)=\lambda_{t}(A) . Then we have

\beta_{1}(t)(A, v)=d(\pi_{1}^{*}\theta)(A_{H}, v_{H})

=d\theta(\lambda_{t}(A)^{*}, v_{H_{z}})

=(L_{\sigma^{*}}\theta)(v_{H_{l}})-d(\theta(\sigma^{*}))(v_{H_{l}})

=-\lambda_{t}(A)\theta(v_{H_{z}})

=-\lambda_{t}(A\rangle v_{:}

where L_{\sigma}. means the Lie derivative. Similarly (3) follows from (1. 3).
q. e . d .

We can also consider higher order structures as follows. Let l be a
positive integer and \{d_{k}\}_{0\leqq k\leqq l} be a sequence of positive integers. For 0\leqq k\leqq l

let g_{k} be the standard vector space over R of dimension d_{k} . For k=-1
set g_{-1}=W. Let \mathfrak{g}_{k} be an N-subalgebra of g_{k-1}\otimes V^{*} whose fiver dimension
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is d_{k} . Let \lambda_{k} : g_{k}\cross Narrow \mathfrak{g}_{k} be a trivialization of the vector bundle \mathfrak{g}_{k} . We
have an injection

’
\lambda_{k-1}\otimes id:\mathfrak{g}_{k}-\mathfrak{g}_{k-1}\otimes V^{*}

Set
\overline{\mathfrak{g}}_{k}=(\lambda_{0}\otimes id_{k})\circ(\lambda_{1}\otimes id_{k-1})\circ\cdots\circ(\lambda_{k-1}\otimes id)\mathfrak{g}_{k}

where id_{j} means the identity map of \otimes^{j}V^{*} . \overline{\mathfrak{g}}_{k} is an iV-subalgebra of
W\otimes(\otimes V^{*})k .

DEFINITION 1. 2. \mathscr{G}=\{(\mathfrak{g}_{k}, \lambda_{k})\}_{l\geqq k\geqq 0} is called an l-sequence of N-subalge-
bras if for k\geqq 1\overline{\mathfrak{g}}_{k} is a subbundle of (’\overline{\mathfrak{g}}_{k-1})^{(1)} .

Let \backslash \mathscr{G}=\{(\mathfrak{g}_{k}, \lambda_{k})\}_{l\geqq k\geqq-1} be an l-sequence of N-subalgebras. Let

\mathscr{P} : P_{l}P_{l-1}\underline{\pi_{l}}\underline{\pi_{l-1}} \ldots-P_{0}M\underline{\pi_{0}}

be a sequence of fibered manifolds such that each P_{k} is a subbundle of
the frame bundle of P_{k-1} with fiber dimension d_{k} . Then an element p_{k} of
P_{k} can be considered as a linear isomorphism from V_{k-1}=V+g_{0}+\cdots+g_{k-1}

to T_{p_{k-1}}P_{k-1} , where p_{k-1}=\pi_{k}(p_{k}) . Let \theta_{k} denote the fundamental form of P_{k} .

DEFINITIOY 1. 3. The sequence of fifibered manifold \mathscr{P} is called a\mathscr{G} -

structure if the following conditions are satisfified:
(1) \pi_{k} : P_{k}arrow P_{k-1} is a\mathfrak{g}_{k}-structure.
(2) Let p_{k}\in P_{k} with \pi_{k}(p_{k})=p_{k-1} . Then for v\in V_{k-2},

\theta_{k-1}(p_{k}(v))=v

(3) Let p_{k}\in P_{k} and (\rho\circ\pi_{0}\circ\cdots\circ\pi_{k})(p_{k})=t . Then for A\in g_{k-1}

p_{k}(A)=[\lambda_{k-1}(t)(A)]_{p_{k-1}}^{*}
.

{Recall that \lambda_{k-1}(t)(A) is an element of g_{k-2}\otimes V^{*}\subset GL(V_{k-2})) .

Let X be a local vector field on M. Suppose that X is an infinitesimal
automorphism of P_{0} . Then X is tangent to P_{0} . The prolongation of X to
F(P_{0}) is denoted by X^{(1)} . Then X is called an infinitseimal automorphism
of P_{1} if X^{(1)} is tangent to P_{1} . Inductively, X is called an infinitesimal aut0-
morphism of P_{k} if X is an infinitesimal automorphism of P_{k-1} and \tilde{X}^{(k)} , the
prolongation of \tilde{X}^{(k-1)} to F(P_{k-}j) , is tangent to P_{k} . An infinitesimal aut0-
morphism of P_{l} is called an infinitesimal automorphism of \mathscr{P} .
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\S 2. Infinitesimal automorphisms of \mathfrak{g}-structures

Let \rho : Marrow N be a fibered manifold and \mathfrak{g} be an N-subalgebra of
W\otimes V^{*} . Let P\subset F(M, N) be a \mathfrak{g} -structure. Let D be a distribution on
P such that for all p\in PD_{p}\subset T_{p}P is a horizontal subspace at p. We call
such D a connection. The we have a direct sum decomposition

T_{p}P=D_{p}\oplus Ker(\pi_{*})_{p}

For X\in T_{p}P with (\rho\circ\pi)(p)=t , let X_{D} be the horizontal component of X
and let X-X_{D}=A_{p}^{*} , where A\in \mathfrak{g}(t) . Define a \mathfrak{g}-valued 1-form \omega on P
by \omega(X)=A . Then we have

d\theta=c_{D}(\theta\wedge\theta)-\omega\wedge\theta

where c_{D} is a V\otimes\wedge^{2}V^{*} -valued function on P such that c_{D}(p)=c_{D_{p}} and
c_{D}(\theta\wedge\theta) , \omega\wedge\theta are V-valued 2-forms defined by

c_{D}(\theta\wedge\theta)(X, Y)=c_{D}(\theta(X), \theta(Y))

and
(\omega\wedge\theta)(X, Y)=\omega(X)\theta(Y)-\omega(Y)\theta(X)

Let us take a cross section j:Marrow P of the fibered manifold \pi:Parrow M.
Let A be a \mathfrak{g} -valued function on M. Then A\cdot(j^{*}\theta) denotes the V-valued
form defined by

A\cdot(j^{*}\theta)(X)=A(j^{*}\theta)(X))

for X\in TM. We have

PROPOSITION 2. 1. A local vector fifield X on Msali\backslash sfying\rho_{*}^{J}X=0 is
an infifinitesimal automorphism of P if and onl_{\sim}\prime v if there exists a \mathfrak{g} -valued

function A on M such that the following equation holds;

L_{X}(j^{*}\theta)=A\cdot(j^{*}\theta)t

PROOF. Let \{v_{1}, \cdots, v_{m}\} be a basis of V. Let X_{i} be a vector fifie’ ld on
M defined by (X_{i})_{x}=j(x)(v_{i}) for x\in M. Then X is an infinitesimal auto-

morphism of P if and only if there exists a \mathfrak{g} -valued function A=(A_{if}) such
that

(2. 1) L_{X}X_{i}= \sum_{j=1}^{n}A_{ij}X_{j}

On the other hand we have
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(L_{X}j^{*}\theta)(X_{i})=X(j^{*}\theta(X_{i}))-j^{*}\theta(L_{X}X_{i})

=-j^{*}\theta(L_{X}X_{i})’.
because j^{*}\theta(X_{i})=v_{i} . Combined with (2. 1), this proves our assertion.

q. e. d.
Let P be a \mathfrak{g} -structure. Notations being the same as in \S 1, let \mathfrak{g}_{1} be

an N-subalgebra of g\otimes V^{*} and P_{1} be a grstructure on P. We assume that
the structure functions of P and P_{1} are N-constant. Take a cross section

j_{1} : Parrow P_{1} of the fibered manifold \pi_{1} : P_{1}arrow P. For p\in PD_{p}=j_{1}(p)(V)1 is
a horizontal space at p. Hence D=\cup D_{p} is a connection on P. The

p\in P

V\otimes\wedge^{2}V^{*} -valued function c_{D} does not depend on the choice of j and is denoted
by c(P_{1}) . Moreover

(DJ_{j_{1}(p)}=(jJ_{*}(T_{p}P)

is a horizontal space of the fibered manifold \pi_{1} : P_{1}arrow P at j_{1}(p) . Let us
denote by c_{1}(j_{1}) the representative of c_{1} on j_{1}(P_{1}^{\backslash } determined by the horizontal
spaces \bigcup_{p\epsilon P}(D_{1})_{j_{1}(p)} . c_{1}(j_{1}) is a (V+g)\otimes\wedge^{2}(V+g)^{*} -valued function on j_{1}(P) .
Let \omega be the \mathfrak{g} -valued from on P determined by D. Let \overline{\omega} be the g-valued
form defined by \overline{\omega}(X)=\lambda^{-1}(\omega(X)) for X\in TP. Then the following identities
are immediately shown by the definitions.

(2. 2) d\theta=c(P_{1})(\theta\wedge\theta)-\omega\wedge\theta 1

(2. 3) d(j_{1}^{*}\theta J=c_{1}(j_{1})(i_{1}^{*}\theta_{1}\wedge j_{1}^{*}\theta_{1})

(2. 4) j_{1}^{*}\theta_{1}=\theta+\overline{\omega}1

PROPOSITION 2. 2. Let \phi be a local transformation of P. Assume that
\phi^{*}\theta=\theta and (\rho\circ\pi)\circ\phi=\rho\circ\pi . Then there exists a\mathfrak{g}^{t1)} -valued function A on P
such that the following identity holds:

\phi^{*}\omega=A\cdot\theta+\omega t

PROOF. For p\in P with \rho\circ\pi(p)=t let \emptyset(p)=q, D_{p}=H and D_{q}=H .
By (1) of Proposition 1. 1 and the fact that c_{1} is N-constant, we have c_{H}=

c_{H’} . On the other hand it follows from \phi^{*}\theta=\theta that c_{H}=c,r^{H}.
As before, for v\in Vv_{H} denotes the vector in H such that \theta(v_{B})=v .

Then there exists a unique A(p)\in \mathfrak{g}(t)\otimes V^{*} such that

v_{lH}=v_{H’}+(*A(p)_{v})^{*}

Hence we have c_{l*H}=c_{H’}+\delta A(p) . Combined with the fact c_{H}=c,=c_{H’}rH ’

this proves \delta A(p)=0 . That is, A(p) is in \mathfrak{g}(t)^{(1)} . We have
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(2. 5) (\phi^{*}\omega)(v_{H})=\omega(v_{\phi_{*}H})=A(p)_{v}=(A(p)\cdot\theta)(v_{H}) .

Note that \phi^{*}\theta=\theta implies that there exists a local transformation \psi of
M such that locally \phi=\tilde{\psi} . Hence we know that for B\in \mathfrak{g} \phi_{*}B^{*}=B^{*} .
Therefore we have

(\phi^{*}\omega)(B^{*})=\omega(B^{*})

Combined with (2. 5), this completes the proof. q. e . d .
As an infinitesimal version of this proposition, we have

PROPOSITION 2. 3. Let X be a local vector fifield on P such that (\rho\circ\pi)_{*}X

=0 and L_{X}\theta=0 . Then there exists a\mathfrak{g}^{(1)} -valued function A on P such
that the following identity holds:

L_{X}\omega=A\cdot\theta .

Let X be a local vector field on P such that (\rho\circ\pi)_{*}X=0 . By PropO-
sition 2. 1 and (2. 4) we know that X is an infinitesimal automorphism of
P_{1} if and only if there exists a \mathfrak{g}_{1} -valued function A such that

L_{X}(\theta+\overline{\omega})=A\cdot(\theta+\overline{\omega})

Since A\cdot\overline{\omega}=0 and A\cdot\theta is a g-valued form, we have L_{X}\theta=0 and L_{X}\overline{\omega}=A\cdot\theta .
This proves

THEOREM 1. A local vector fifield X on P satisfying (\rho\circ\pi)_{*}X=0 is an
infifinitesimal automorphism of P_{1} if and only if the following hold:

(1) L_{X}\theta=0 .
(2) There exists a\mathfrak{g}_{1} -valued function A on P such that L_{X}\overline{\omega}=A\cdot\theta .

\S 3. Continuous Lie algebra sheaves

Let \mathscr{L} be a subsheaf of the sheaf of germs of all vector fields on M.
The stalk of \mathscr{L} over x\in M is denoted by \mathscr{L}_{x} . For a vector field X we
denote by j_{x}^{k}(X) the k-jet of X at x and by J_{k}(TM) the bundle of &-jets
of all vector fields. Set

R_{k,x}=\{j_{x}^{k}(X)|X\in \mathscr{L}_{x}\} and R_{k}= \bigcup_{x\in M}R_{k,x} .

DEFINITION 3. 1. \mathscr{L} is called a continuous Lie algebra sheaf (CLAS)

if the following conditions are satisfified:
(1) \mathscr{L}_{x} is a Lie algebra with respect to the natural bracket operation

for all x.
(2) There exists a fifibered manifold \rho:Marrow N such that the equality

R_{0}=\{v\in TM|\rho_{*}v=0\} holds.
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(3) R_{k} is a vector bundle over Mfor all k.
(4) There is an integer k_{0} such that the following holds; a local

vector fifield X is a local section of \mathscr{L} if and only if j_{x^{0}}^{k}(X)\in R_{k_{0},x} for all x.
It is shown in [1] that for a CLAS \mathscr{L} there exists a k_{0}-sequence of

N-subalgebras \mathscr{G}=\{(\mathfrak{g}_{k}, \lambda_{k})\}_{k\leqq k_{0}} and \mathscr{G} -structure
\mathscr{P} : P_{k_{0}}-P_{k_{0}-1}-\cdots-P_{1}-P-M

such that a local vector fifield X on M is a section of \mathscr{L} if and only if X
is an infinitesimal automorphism of \mathscr{P} .

Since the sections of \mathscr{L} are tangent to the fiber |o^{-1}(t) , \mathscr{L} induces a
transitive Lie algebra sheaf on \rho^{-1}(t) , which is denoted by \mathscr{L}(t) . Suppose
that for a point 0\in N\mathscr{A}=\mathscr{L}(0) is one of the following Lie algebra sheaves:

I. \mathscr{L}_{gl(W),sl(W)^{(1}} ’ ; the sheaf of germs of all vector fields with constant
divergence.

II . \mathscr{L}_{csp(W)} ; the sheaf of germs of all vector fields which preserve a
symplectic structure up to constant factors.

Let N\cross R- N be the trivial vector bundle over N. Let Q_{l}\subset J_{l}(N\cross R)

be a linear differential equation. Q_{l} is called formally integrable if for any
k\geqq 1 the k-th prolongation Q_{l}^{(k)} of Q_{l} is asubbundle of J_{l+k}(N\cross R) and
Q_{l}^{(k)}arrow Q_{l}^{(k-1)} is surjective. Moreover Q_{l} is called integrable if for any r\in Q_{l}

there exists a local solution of Q_{l} passing through r. For k\leqq k’ let \varpi_{k}^{k’} :
J_{k’}(N\cross R)arrow J_{k}(N\cross R) be the natural projection. We assume the following
condition :
(C. 1) For k<l the image of Q_{l} under \varpi_{k}^{l} is a subbundle of J_{k}(N\cross R) .

Let \mathscr{A} be one of the Lie algebra sheavesI and II. Let \Omega denote the
standard volume on R^{m-n} in case I and the symplectic form in case II, where
m=\dim M and n=\dim N. For a formally integrable and integrable hom0-
geneous linear differential equation Q_{l} satisfying (C. 1), let \mathscr{A}[N;Q_{l}] be the
CLAS consisting of germs of all vector fifields X on N\cross R^{m-n} satisfying the
following conditions :

(1) X is tangent to the fibers of the fibered manifold N\cross R^{m-n}arrow N.
(2) There exists a solution f of Q_{l} such that L_{X}\Omega=f\Omega .
Let \mathscr{L} be a CLAS and \mathscr{G}=\{(\mathfrak{g}_{k}, \lambda_{k})\}_{k\leqq k_{0}} be the k_{0}-sequence of N-subal-

gebras defined by \mathscr{L} . Recall that \mathfrak{g}(t)=\mathfrak{g}_{0}(t) is a subalgebra of W\otimes V^{*} .
Let \mathfrak{h}(t) (resp. a(t) ) be the image (resp. kernel) of \mathfrak{g}(t) under the natural
projection W\otimes V^{*}arrow W\otimes W^{*} . We assume the following conditions :
(C. 2) dim \mathfrak{h}(t) is constant.

(C. 3) \{v\in V|A(v)=0 , A\in \mathfrak{a}(t)\}=W
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After these preparations we can state the main theorem.

THEOREM 2. Let \mathscr{L} be a CLAS. Assume the conditions (C. 2), (C. 3)
and moreover assume that \mathscr{A}=\mathscr{L}(0) is one of the Lie algebra sheaves I
and II . Then there exists a formally integrable and integrable homogeneous
linear differential equation Q_{k_{0}} satisfying (C. 1) and \mathscr{L} is locally equivalent
to \mathscr{A}[N;Q_{k_{0}}] .

The proof will be given in the following sections. In the rest of this
section we will note some facts.

Let \mathscr{G}=\{(\mathfrak{g}_{k}, \lambda_{k})\}_{k\leqq k_{0}} be the k_{0}-sequence of N-subalgebras and

\mathscr{P} : P_{k_{0}}P_{k_{0}-1^{-\cdots-}}P_{1}P_{0}M\underline{\pi_{k_{0}}}\underline{\pi_{1}}\underline{\pi_{0}}

be a \mathscr{G} -structure determined by \mathscr{L} . Let h=gl(W) or csp(W) . It follows
from (C. 2) that \{\mathfrak{h}(t)\}_{t\in N} is a deformation of h . Hence we can assume
\mathfrak{h}(t)=h by a suitable choice of P_{0} . This is trivial in case I. In case II this
follows from H^{1}(csp(W), gl(W)/csp(W))=0 . Set h’=sl(W) when h=gl(W)
and h’=sp(W) when h=csp(W) . Take a complement U of W in V. Let
I denote the identity matrix in gl(W) . Let \overline{\mathfrak{g}}_{k} be the N-subalgebra of
W\otimes(\otimes V^{*})k+1 induced by \mathfrak{g}_{k} . Then by results of [2] and [3] we know

\overline{\mathfrak{g}}_{k}(t)=h^{\prime(k)}+h^{\prime(k-1)}CU^{*}+\cdots+h’PU^{*}

+\{I\}Cb_{k}(t)+W\otimes A\mathfrak{R}^{+1}U^{*}.,

where b_{0}=R and b_{k}(t) is a subspace of S^{k}U^{*} such that the following holds:
Let u\in U and b\in b_{k} . Then

u\lrcorner b\in b_{k-1}

Set U_{1}^{*}(t)=b_{1}(t) . Then b_{k}(t) is a subspace of S^{k}U_{1}^{*}(t) . Set

U_{2}(t)=\{u\in U|\alpha(u)=0 , \alpha\in U_{1}^{*}(t)\}

First note that, by taking a suitable \mathscr{P} , we can assume that U_{1}^{*}(t) and
hence U_{2}(t) are independent of t . In fact this is shown as follows. Let \sigma

be a GL(V) -valued function on N such that \sigma(w)=w for w\in W. Then
P_{0}’=R_{\sigma}P_{0} is a g0-structure, where \mathfrak{g}_{0}=h+W\otimes U^{*} . R_{\sigma} induces a bundle map
\tilde{R}_{\sigma} from the frame bundle F(P_{0}) of P_{0} to the frame bundle F(P_{0}’) of P_{0}’ .
Then \tilde{R}_{\sigma}(P_{1}) is obviously a \mathfrak{g}_{1} -structure on P_{0}’ , but it is not contained in
F(P_{0}’ ; M, N) . Hence, denoting by \mu the GL(V+\mathfrak{g}_{0}) -valued function on N
such that \mu=\sigma on V and \mu=id on \mathfrak{g}_{0} , let P_{1}’=R_{\mu}\tilde{R}_{\sigma}(P_{1}) . Then P_{1}’ is an
Ad(\mu)\mathfrak{g}_{1} -structure contained in F(P_{0}’ ; M, N) . P_{1} is clearly a structure deter-
mined by the CLAS which is the prolongation of \mathscr{L} to P_{0}’ . Let U_{2} be a
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subspace of U such that dim U_{2}=\dim U_{2}(t) . If we take \sigma such that \sigma_{t}(U_{2}(t))

=U_{2} , then we have

Ad(\mu)\mathfrak{g}_{1}=h^{\prime(1)}+h’U^{*}+\{I\}U_{1}^{*}+W\otimes S^{2}U^{*} ,

where U_{1}^{*}=\{\alpha\in U^{*}|\alpha(u)=0, u\in U_{2}\} . This proves our assertion. In the
following we fix a complement U_{1} of U_{2} in U.

Let g_{k} be the standard vector space over R whose dimension is \dim\overline{\mathfrak{g}}_{k}(t) .
Set

g_{k}’=h^{\prime(k)}+\cdots+h’Cffi U^{*}+W\otimes A\mathfrak{R}^{+1}U^{*}

and
\overline{\mathfrak{g}}_{k}’(t)=\{I\}b_{k}(t)

Recall the bundle isomorphism

(3. 1)
g_{k}\cross N\mathfrak{g}_{k}\overline{\mathfrak{g}}_{k}\underline{\lambda_{k}}\underline{(\lambda_{0}\otimes id_{k})\cdots(\lambda_{k-1}}\underline{\otimes id)}

Since g_{k}’ is independent of t, we can consider that g_{k}’ is a subspace of g_{k} .
Moreover we can assume that there exists a subspace g_{k}’ of g_{k} which cor-
respond to \overline{\mathfrak{g}}_{k}’(t) in (3. 1). In the following sections we often identify g_{k}’

with \overline{\mathfrak{g}}_{k}’(t) . For example, in a equation similar to (2) or (3) of Proposition
1. 1 we often omit the trivialization \lambda .

We put as follows :

W_{k}=W+g_{0}+\cdots+g_{k}t

W_{k}’=W+g_{0}’+\cdots+g_{k}’ .
V_{k}=W_{k}+U

V_{k}’=W_{k}’+U

Let c_{k} be the structure function of P_{k} . c_{k} is a function on N having its
value in the space

V_{k-1}\otimes\wedge^{2}V_{k-1}^{*}/\delta(\mathfrak{g}_{k}\otimes V_{k-1}^{*})1

Note that by Proposition 2. 2 of [1] we have
\underline{c}_{k}(v, w)\in W_{k-1}

for v\in V_{k-1} and w\in W_{k-1} , where \underline{c}_{k} is a representative of c_{k} .
Finally let \alpha_{k} denote the

g_{k-1}\otimes\wedge^{2}V_{k-1}^{*}/\delta(\mathfrak{g}_{k}\otimes V_{k-1}^{*})

component of c_{k} . Similarly we denote by \alpha_{k}’ (resp. \alpha_{k}’) the
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g_{k-1}’\otimes\wedge^{2}V_{k-1}^{*}/\delta(\mathfrak{g}_{k}\otimes V_{k-1}^{*}) (resp. g_{k-1}’\otimes\wedge^{2}V_{k-1}^{*}/\delta(\mathfrak{g}_{k}\otimes V_{k-1}^{*})

component of \alpha_{k} .

\S 4. The infinitesimal automorphisms of P_{1}

Let the notations be the same in \S 3. We assume that \mathscr{P} has been
taken as in \S 3. First we have, for u, v\in U_{2} ,

(4. 1) \underline{c}_{0}(u, v)\in W+U_{2} ,

where \underline{c}_{0} is a representative of the structure function c_{0} of P_{0} . In fact, let
A\in\{I\}U_{1}^{*} . Then by (1. 1) applied to P_{1} we have A\underline{c}_{1}(u, v)=(\delta T)(u, v) ,

where T\in \mathfrak{g}_{1}\otimes V_{\dot{0}}^{*} . This implies that the U_{1} component of \underline{c}_{1}(u, v) is 0.
Hence by (1) of Proposition 1. 1 we have (4. 1). (4. 1) means that the distribu-
tion E on N defined by

E_{t}=\{\tilde{\rho}_{t}(u)|u\in U_{2}\}

for t\in N is completely integrable. (Recall [\tilde{\rho}(u),\tilde{\rho}(v)]=-\tilde{\rho}(\underline{c}_{0}(u, v)) for
u, v\in U.)

The proof of the following proposition will be given in \S 5.

PROPOSITION 4. 1. We can choose the bundle P_{1} so that the following
hold:

(1) \underline{c}_{1}(v, w)\in W_{0}’ for v, w\in W_{0} .
(2) \underline{c}_{1}(w, u)\in W_{0}’ for w\in W_{0}’ and u_{c}^{=}U_{2} .
(3) \underline{c}_{1}(u, v)\in W_{0}’+U_{2} for u, v\in U_{2} .

Now assuming the above proposition, we will consider the infinitesimal
automorphisms of P_{1} . As in \S 2, take a cross section j_{1} : P_{0}arrow P_{1} . Let D
be the connection determined by j_{1} and \omega be the g_{0}-valued form associated
with D. (Note that \mathfrak{g}_{0}(t) is independent of t , and hence we can consider
that \mathfrak{g}_{0}(t)=g_{0}.) We denote by \omega’ the g_{0}’ component of \omega . Let \theta (resp. \theta_{1})
denote the fundamental form of P_{0} (resp. P_{1}). Then (2. \underline{9})\sim(2.4) hold. We
denote by \theta_{U_{1}} (resp. \theta_{U_{2}}) the U_{1} -component (resp. U_{2} component of \theta . Then
it is easy to see that the system of Pfaffian equations \theta_{U_{1}}=0 is completely
integrable.

By (2. 3) and (2. 4) we have

d\theta+d\omega=c_{1}(j_{1})((\theta+\omega)\wedge(\theta+\omega))

=c_{1}(j_{1})(\theta\wedge\theta)+c_{1}(j_{1})(\theta\wedge\omega)+c_{1}(j_{1})(\omega\wedge\omega)

It follows from Proposition 4. 1 that
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(4. 2) d\omega’=\alpha_{1}^{\prime j}(j_{1})(\theta\wedge\theta_{U_{1}})+\alpha_{1}’(j_{1})(\theta_{U_{1}}\wedge\omega)+\alpha_{1}’(j_{1})(\theta_{U_{2}}\wedge\omega’) ,

where \alpha_{1}’(j_{1}) is the g_{0}’\otimes\wedge^{2}V_{0}^{*} -component of c_{1}(j_{1}) . Hence we know that the
system of Pfaffian equations \omega’=\theta_{U_{1}}=0 is completely integrable. This is
interpreted as follows. Define a distribution F on P_{0} by

F_{p}=\{p_{1}(v)+A^{*}|v\in W+U_{2}, A\in g_{0}’\}

where p_{1}\in P_{1} with \pi_{1}(p_{1})=p . Then the above means that F is completely
integrable.

Let X be a local vector field on P_{0} satisfying L_{X}\theta=0 and (\rho\circ\pi)_{*}X=0 .
Then there exists a local vector field Y on M such that X=\tilde{Y}. Recall
that X is an infinitesimal automorphism of P_{1} if and only if there exists a

\mathfrak{g}_{1} -valued function A on P_{0} such that
L_{X}\omega=A\cdot\theta\tau

Since g_{1}’=g_{0^{(1)}}’ , this holds if and only if there exists a \{ I\}\otimes U_{1}^{*}.-valued function
B such that
(4. 3) L_{x\omega=}’B\cdot\theta\tau

On the other hand, by Proposition 2. 3, (4. 3) holds provided that B is a
\{I\}\otimes U^{*} -valued function. It follows that L_{x\omega}’ is a linear combination of

\theta_{U_{1}} and \theta_{U_{z}} . We have

(4. 4) L_{X}\omega’=di(X)\omega’+i(X)d\omega’

By (4. 2) i(X)d\omega’ is a linear combination of \theta_{U_{1}} and \theta_{U_{2}} . Therefore we
know that \omega’(X) is a function on N. Set \omega’(X)=\phi I, where \phi is a function
on N. Define a U_{2}^{*} -valued function f on N by

\alpha_{1}’(j_{1})(Lu)=f(u)I

where u\in U_{2} . Then, since (4. 3) holds if and only if the \theta_{U_{2}} -component of
L_{X}\omega

\prime\prime is 0, it follows from (4. 4) that X is an infinitesimal automorphism of
P_{1} if and only if

(4. 5) \tilde{\rho}(u)\phi+f(u)\phi=0

where u\in U_{2} . Define \tilde{f}\in\Gamma(E^{*}) by \tilde{f}(\tilde{\rho}(u))=f(u) . Recalling that the dis-
tribution E on N is completely integrable, we denote by d’ the exterior
differentiation with respect to E. Then (4. 5) means
(4. 6) d’\phi+\phi\tilde{f}=0 .
Moreover, it is not difficult to see that dd\omega’=0 implies
(4. 7) d’\tilde{f}=0
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(cf. \S 5) (4. 7) is the integrability condition of (4. 6). We note that by the
theory of partial defferential equations of the first order, (4. 6) satisfying
(4. 7) is the general form of the formally integrable and integral homogeneous

linear differential equation of the first order.
Recall that the distribution F on P_{0} is completely integral. We will

denote by .\mathscr{I}_{p} the integral manifold of F passing through p\in P. Let N’

be a submanifold of N transversal to the distribution E. Let \dot{p} : N’arrow P_{0}

be a map satisfying (\rho\circ\pi)\dot{P}(t)=t . Set
. \mathscr{I}=\bigcup_{l\in N}\mathscr{I}_{p(t)}

.

Then, by the definition of F, .\mathscr{I} is a g_{0}’-structure on M. Therefore \mathscr{I}

determines a volume element or a symplectic form \Omega(t) on each fiber \rho^{-1}(t)

corresponding to h’=sl(W) or sp(W) . First we will consider the case
when h’=sl(W) . As before, let X=\tilde{Y} be an infinitesimal automorphism of
P_{1} . We can prove

(4. 8) L_{Y}\Omega=r\phi\Omega j

where r=m-n is the fiber dimension of the fibered manifold \rho:Marrow N

and \omega’(X)=\phi I. In fact this is shown as follows. Let \psi_{s} be the l-parameter

transformation generated by Y, where s moves in a neighborhood of 0 in R.
Let \Omega_{0} denote the standard volume element in W. For x\in M let \{Z_{1}, \cdots, Z_{r}\}

be a basis of the subspace of T_{x}M consisting of the vectors tangent to the
fiber. Then we have

(4. 9) (\psi_{s}^{*}\Omega)_{x}(Z_{1^{ }},\cdots, Z_{r})=\Omega_{\psi_{s^{(x)}}}(\psi_{s*}Z_{1^{ }},\cdots, \psi_{s*}Z_{r})

=\Omega_{0}(p_{s}^{-1}\psi_{s*}Z_{1^{ }},\cdots, p_{s}^{-1}\psi_{s*}Z_{r})

=\Omega_{0}(\{\tilde{\psi}_{-s}(p_{s})\}^{-1}Z_{1}, \cdots , \{\tilde{\psi}_{-s}(p_{s})\}^{-1}Z_{r})

where p_{s} is a curve in I such that \pi(p_{s})=\psi_{s}(x) . There exists a curve a_{s}

in GL(W) satisfying

(4. 10) \tilde{\psi}_{-s}(p_{s})=p_{0}a_{s}^{-1}

By (4. 9) we have

(4. 11) (\psi_{s}^{*}\Omega)_{x}=(\det a_{s})\Omega_{x} .

Let A= \frac{d}{ds}a_{s}|_{s=0} . Then differentiating (4. 11), we get

(4. 12) (L_{Y}\Omega)_{x}=(TrA)\Omega_{x} .

On the other hand (4. 10) implies p_{s}=\tilde{\psi}_{s}(p_{0})a_{s}^{-1} . Let X’= \frac{d}{ds}p_{s}|_{s=0}\in T_{p_{0}}I.
We have
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X’=X_{p_{0}}-A_{p_{0}}^{*} ,

and
A=\omega(A_{p_{0}}^{*})=\omega(X_{p_{0}})-\omega(X’) .

Since Tr (\omega(X’))=0 and Tr (\omega(X_{p_{0}}))=Tr(\omega’(X_{p_{0}}))=r\phi, we have Tr A=r\phi .
Combined with (4. 12), this proves (4. 8).

Similarly, in case h’=sp(W) , we can prove

(4. 13) L_{Y}\Omega=2\phi\Omega

Therefore we know that a local vector field Y on M is an infinitesimal
automorphism of P_{1} if and only if there exists a solution \phi of (4. 5) such
that L_{Y}\Omega=\phi\Omega . Hence Dalboux’s theorem implies that Theorem 2 holds
when k_{0}=1 .

\S 5. Proof of Proposition 4. 1.

First we prepare two lemmas on sp(W) and sl(W) . It is known that
sp(W)^{(k)}\cong S^{k+2}W* . This implies that every basis of W is a regular basis for
sp(W)^{(k)} . For w\in W we denote by i(w) the contraction k+1k\otimes W^{*}arrow\otimes W* .
Define an action of GL(W) on W\otimes S^{k}W^{*} by

(gT) (w_{1}, \cdots, w_{k})=gT(g^{-1}w_{1^{ }},\cdots, g^{-1}w_{k})

where g\in GL(W) , T\in W\otimes S^{k}W^{*} and w_{i}\in W. Then, since sl(W) is an ideal
of gl(W) , we know that sl(W)^{(k)} is invariant under this action of GL(W) .
Moreover it is easy to see that the following diagram is commutative :

(5. 1) sl(W)^{(k+1)}sl(W)^{(k-1)}\underline{g}

i(w)\downarrow \downarrow i(gw)

sl(W)^{(k)}
\overline{g}sl(W)^{(k)}

On the other hand it is known that sl(W) is involutive and hence generic
basis of W are regular for sl(W)^{(k)} . Combined with (5. 1) this implies that
every basis is regular for sl(W)(k) . In particular we have

Lemma 5. 1. Let h’=sl(W) or sp\{W). Let v, w be linearly independ-
ent vectors in W. Then the following two maps are surjective:

i(v) : h’(k+1)-h^{\prime(k)}

i(w) : \{A\in h^{\prime(k+1)}|i(v)A=0\}-\{A\in h^{\prime(k)}|i(v)A=0\}t

Lemma 5. 2. Let v, w be linearly independent vectors in W. Let A, B
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\in h’(k)+h^{\prime(k-1)}U^{*}+\cdots+h’S^{k}U^{*} . Assume A_{v}=B_{w} . Then there exists
X\in g_{k+1}’ such that X_{w}=A and X_{v}=B.

PROOF. First assume A, B\in h’(k) . By conditions there exists Y\in h’(k+1)

such that Y_{v}=B. Since
i(v)(A-Y_{w})=A_{v}-B_{w}=0 ,

there exists Z\in h^{\prime(k+1)} such that Z_{v}=0 and Z_{w}=A-Y_{w} . Then X=Y+Z
has the prescribed property. The other cases reduce to the above case.

q. e . d .
After these preparations we will prove Proposition 4. 1. First we have

(5. 2) \underline{c}_{1}(A, B)=-[A, B]\in g_{0}’

for A, B\in g_{0} . Let v, w\in W and X\in g_{1}’ . By (1. 1) applied to P_{1} we have
X\underline{c}_{1}(w, v)-\underline{c}_{1}(X_{w}, v)-\underline{c}_{1}(w, X_{v})=(\delta T)(w, v)

where T\in \mathfrak{g}_{1}\otimes\wedge^{2}V_{0}^{A_{1}} . Recall that \mathfrak{g}_{1}(t)\subset g_{0}\otimes V^{*}\subset gl(V+g_{0}) and X_{w}\in g_{0}’ for
X\in \mathfrak{g}_{1} , w\in W. Hence we have
(5. 3) \underline{\alpha}_{1}’(X_{w}, v)=\underline{\alpha}_{1}’(X_{v}, w)

:
where \underline{\alpha}_{1}’ is the g_{0}’\otimes\wedge^{2}V_{0}^{*} -component of \underline{c}_{1} . Define \sigma\in GL(V_{0}) by

\sigma=id on U+g_{0}

and
\sigma(w)=w+\underline{\alpha}_{1}’(v, A) for w\in W

where v(\in W) and A(\in g_{0}’) satisfy A_{v}=w . Suppose B_{u}=w for B\in g_{0}’ and
u\in W. Then, if v and u are linearly independent, there exists X\in g_{1}’ such
that X_{u}=A and X_{v}=B. Therefore (5. 3) implies

\underline{\alpha}_{1}’(A, v)=\underline{\alpha}_{1}’(B, u)

In case v and w are not linearly independent, we can similarly prove that
\underline{\alpha}_{1}’(v, A) does not depend on the choice of v and A. R_{\sigma} denoting the right
action of GL(V_{0}) on F(P_{0}) , let P_{1}’=R_{\sigma}P_{0} and c_{1}’ be the structure function
of P_{1}’ . Let w\in W and A\in g_{0}’ . Then, by (2. 8) of [1], we have

\underline{c}_{1}’(w, A)=\sigma^{-1}\underline{c}_{1}(\sigma w, \sigma A)

=\sigma^{-1}\underline{c}_{1}(w+\underline{\alpha}_{1}’(v, B), A)

=\sigma^{-1}\{A_{w}+\underline{\alpha}_{1}(w, A)\}

=A_{w}-\underline{\alpha}_{1}’(w, A)+\underline{\alpha}_{1}(w, A)

\equiv 0 mod W_{0}’
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where v\in W and B\in g_{0}’ satisfy B_{v}=w . If we denote by P_{1} the conjugate

bundle P_{1}^{j} , we have

(5. 4) \underline{c}_{1} : W\otimes g_{0^{-}}’W_{0}’

Next, ldt w\in W, A\in g_{0} and B\in g_{0}’ . By (1. 2) we have

\underline{c}_{1} ( \underline{c}_{1}(w, A) , B)+\underline{c}_{1}(\underline{c}_{1}(A, B), w)+\underline{c}_{1}(\underline{c}_{1}(B, w) , A)=(\delta T)(w, A, B)

where T\in \mathfrak{g}_{1}\otimes\wedge^{2}V_{0}^{*} . By (5. 4) the first term and the second term belong

to W_{0}’ . On the other hand the right hand is equal to T(A, B)w and in
W_{0}’ . Hence we have

\underline{c}_{1}(B_{w}, A)\equiv 0 mod W

This\Pi implies

(5. 5) \underline{c}_{1} : W\otimes g_{0^{-}}W_{0}’

To prove

(5. 6) \underline{c}_{1} : W\otimes W-W_{0}’

let v, w\in W and A\in g_{0} . Substituting v, w and A into (1. 2), we have

\underline{c}_{1}(A_{w}, v)-\underline{c}_{1}(A_{v}, w)\equiv 0 mod W_{0}’

If we put A=I in this equation, we have (5. 8) This completes the proof

of (1).

Let u\in U_{2} and A, B\in g_{0}’ . By (1. 2) we have

\underline{c}_{1} ( [A, B] , u)\equiv 0 mod W_{0}’

Combined with the fact [g_{0}’, g_{0}’]=g_{0}’ , this implies

(5. 7) \underline{c}_{1} : g_{0}’\otimes U_{2}-W_{0}’

Next, substituting u\in U_{2}, w\in W and A\in g_{0} again into (1. 2), we have

\underline{c}_{1}(A_{w}, u)-\underline{c}_{1}(A_{u}, w)\equiv 0 mod W_{0}’

Setting A=I in this equation, we have

(5. 8) \underline{c}_{1} : W\otimes U_{2}-W_{0}’

(5. 7) and (5. 8) prove (2).
Finally we will prove (3). For u\in U_{2} set \underline{\alpha}_{1}’(I, u)=f(u) I. f is a U_{2}^{*}-

valued function on N. Let c_{0}(P_{1}) be the representative of c_{0} uniquely deter-

mined by P_{1} (cf. Proposition 1. 1), and denote by \eta(u, v) the U_{2}-component of
c_{0}(P_{1})(u, v) for u, v\in U_{2} . Then, substituting u, v\in U_{2} and I into (1. 2), we have
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(5. 9) f(\eta(u, v))+\tilde{\rho}(u)f(v)-\tilde{\rho}(v)f(u)=0 .

Define \tilde{f}\in\Gamma(E^{*}) by \tilde{f}(\tilde{\rho}(u))=f(u) . As in \S 4, we will denote by d’ the
exterior differentiation with repsect to E. Then (5. 9) means
(5. 10) d’\tilde{f}=0

For u, v\in U_{2} set
\underline{\alpha}_{1}’(u, v)=h(u, v)I

h is a \wedge^{2}U_{2}^{*} -valued function on N. Let u_{i}\in U_{2} . (i=1,2,3.) By (1. 2) we have
(5. 11) \sum_{S}\{h(\eta(u_{1}, u_{2}), u_{3})+h(u_{1}, u_{2})f(u_{3})+\tilde{\rho}(u_{1})h(u_{2}, u_{8})\}=0l

Define \tilde{h}\in\Gamma(\wedge^{2}E^{*}) by \tilde{h}(\tilde{\rho}(u),\tilde{\rho}(v))=h(u, v) . Then (5. 11) means
(5. 12) d’\tilde{h}+\tilde{h}\wedge\tilde{f}=0 .
We assert that under the conditions (5. 10) and (5. 12), there exists a local
solution \tilde{\sigma}\in\Gamma(E^{*}) of the following differential equation:
(5. 13) d’\tilde{\sigma}-\tilde{\sigma}\wedge\tilde{f}-\tilde{h}=0 .
In fact this is shown as follows. First there exists a function a such that
\tilde{f}=d’a . Since

d’(e^{a}\tilde{h})=e^{a}(d’a\wedge\tilde{h}+d’\tilde{h})=0 ,

there exists \xi\in\Gamma(E^{*}) such that e^{a}\tilde{h}=d’\xi . Then for any function b,\tilde{\sigma}=e^{-a}

(\xi+d’b) satisfies (5. 13)
Let \tilde{\sigma} be a solution of (5. 13) and \sigma be the U_{2}^{*} -valued function determined

by \tilde{\sigma} . Define \mu\in GL(V_{0}) by

\mu=id on W+U_{1}+g_{0}

and
\mu(u)=u+\sigma(u) I for u\in U_{2} .

Set P_{1}’=R_{\mu}P_{1} . For u, v\in U_{2} we have

\underline{c}_{1}’(u, v)=\mu^{-1}\underline{c}_{1}(\mu(u), \mu(v))-\mu^{-1}\{\tilde{\rho}(u)\mu(v)\}+\mu^{-1}\{\tilde{\rho}(v)\mu(u)\}

\equiv\mu^{-1}\{\eta(u, v)+h(u, v)I+\sigma(u).f(v)I-\sigma(v)f(u)I\}

-(\tilde{\rho}(u)\sigma(v))I+(\tilde{\rho}(v)\sigma(u)) I mod W_{0}’

=\eta(u, v)+\{-\sigma(\eta(u, v))+h(u, v)+\sigma(u)f(v)-\sigma(v)f(u)

-\tilde{\rho}(u)\sigma(v)+\tilde{\rho}(v)\sigma(u)\}I

=\eta(u, v)(
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The last equality follows from (5. 13). Then, denoting by P_{1} the conjugate
bundle P_{1}’ , this prove (3).

\S 6. The higher order cases.

We will consider the higher order cases. Let the notation be the same
as in the previous sections. The proof of the following proposition will
be given in \S 7.

PROPOSITION 6. 1. We can choose the \mathscr{G} -structure \mathscr{P} so that the follow-
ing hold for 1\leqq k\leqq k_{0} :

(1) Let v, w\in W_{k-1} . Then \underline{c}_{k}(v, w)\in W_{k-1}’ .
(2) Ldt u\in U_{1} and v\in W_{k-1}’ . Then the g_{k-2}’-component of \underline{c}_{k}(u, v) is 0.
Assuming the Mbove proposition, we will prove Theorem 2. In the first

place let j_{k+1} : P_{k}arrow P_{k+1} be a cross section. Let D_{k} be the distribution on
P_{k} determined by j_{k+1} , i . e. , for p_{k}\in P_{k}

(D_{k})_{p_{k}}=j_{k+1}(p_{k})(V_{k-1})

D_{k} defines a \mathfrak{g}_{k}-valued form \omega_{k} on P_{k} . Set \overline{\omega}_{k}=\lambda_{k}^{-1}\cdot\omega_{k} , which is a g_{k}-valued
form. Let \theta_{k} be the fundamental form of P_{k} . Let c_{k}(P_{k+1}) be the representa-
tive of c_{k} uniquely determined by P_{k+1} , and let c_{k+1}(j_{k+1}) be the representa-
tive of c_{k+1} on j_{k+1}(P_{k}) determined by the horizontal space (j_{k+}J_{*}P_{k} . Then
by (2. 2)\sim(2.4) we have

(6. 1) d\theta_{*}=c_{k}(P_{k+}J(\theta_{k}\wedge\theta_{k})-\omega_{k}\wedge\theta_{k} .
(6. 2) d(j_{k+1}^{*}\theta_{k+}J=c_{k+1}(i_{k+}1(j_{k+1}^{*}\theta_{k+1}\wedge j_{k+1}^{*}\theta_{k+1})t

(6. 3) j_{k+1}^{*}\theta_{k+1}=\theta_{k}+\overline{\omega}_{k}r

Let X be a local vector field on M and suppose that X is an infinitesimal
automorphism of P_{k} . Set Y=X^{(k)} . By Proposition 2. 3 we have

L_{Y}\omega_{k}=T\cdot\theta_{k} ,

where T is a \mathfrak{g}_{k}^{(1)}- va1u^{1}ed function on P_{k} . (Note that \mathfrak{g}_{k}^{(1)}=(\mathfrak{g}_{k}\otimes V^{*}\cap g_{k-1}\otimes

S^{2}V^{*})\subset g_{k-1}\otimes V^{*}\otimes V^{*}.) Let \omega_{k}’ be the \mathfrak{g}_{k}’ -component of \omega_{k} and S be the
\mathfrak{g}_{k}^{\prime\prime(1)} -component of T Then we have

(6. 4) L_{Y}\omega_{k}’=S\cdot\theta_{k}=S\cdot\theta_{U_{1}}

where we identified the U_{1} -component of \theta_{k} with \theta_{U_{1}} . Let F_{k+1} : \mathfrak{g}_{k}’\otimes U_{1}^{*}arrow

g_{k}’\otimes U_{1}^{*}/\mathfrak{g}_{k+1}’ be the composition of the maps \lambda_{k}^{-1}\otimes id:\mathfrak{g}_{k}’\otimes U_{1}^{*}arrow g_{k}’\otimes U_{1}^{\star} and
g_{k}’\otimes U_{1}^{*}arrow g_{k}’\otimes U_{1}^{*}/\mathfrak{g}_{k+1}’ . Since g_{k+1}’=g_{k}^{\prime(1)} , we know that Y is an infinitesimal
automorphism of P_{k+1} if and only if
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F_{k+1}(S)=0

We will prove that \overline{\omega}_{k}’(Y) is a function on N. This is shown as follows.
First note that by (6. 4) L_{Y}\overline{\omega}_{k}’ is a linear combination of \theta_{U_{1}} . Let \alpha_{k+1}(j_{k+1})

be the g_{k}\otimes\wedge^{2}V_{k}^{*} -component of c_{k+1}(j_{k+1}) and \alpha_{k+1}’(j_{k+1}) be the g_{k}’\otimes\wedge^{2}V_{k}^{*}-

component of \alpha_{k+1}(j_{k+1}) . Then we have

(6. 5) L_{Y}\overline{\omega}_{k}’=di(Y)\overline{\omega}_{k}’+i(Y)d\overline{\omega}_{k}’

and

(6. 6) d\overline{\omega}_{k}’=\alpha_{k+1}’(j_{k+1})((\theta_{k}+\overline{\omega}_{k})\wedge(\theta_{k}+\overline{\omega}_{k}))

by (6. 2). Since (\theta_{k}+\overline{\omega}_{k}) ( Y)\in W_{k} , Proposition 6. 1 implies that i( Y)d\overline{\omega}_{k}’ is
a linear combination of \theta_{U_{1}} and \theta_{U_{2}} . Therefore we know that d\overline{\omega}_{k}’(Y) is
a linear combination of \theta_{U_{1}} and \theta_{U_{2}} , and hence \overline{\omega}(Y) is a function on N.

As in \S 4, let \overline{\omega}_{0}’(\tilde{X}^{(0)})=\phi I, where \phi is a function on N. We prove

LEMMA 6. 2. There exists a linear differential operator \Psi_{k} of order k

on N such that \overline{\omega}_{k}’(Y)=\Psi_{k}(\phi) .
PROOF. Suppose that for l<k there exists a linear differential operator

of order l such that \overline{\omega}_{l}’(X^{(l)})=\Psi_{l}(\phi) . Let p, q\in P_{k} with \pi_{k-1}(p)=\pi_{k-1}(q)=p’

and \backslash \rho\circ\pi_{0}\circ/\ldots\circ\pi_{k-2}) (p’)=t. Let G_{k}\subset GL(V_{k-1}) be the connected Lie group
whose Lie algebra is \mathfrak{g}_{k}(t)(\subset g_{k-1}\otimes V^{*}\subset GL(V_{k-}J) . Then there exists a\in G_{k}

satisfying q=pa. We have

(6. 7) (\theta_{k})_{q}(Y_{q})=q^{-1}(\tilde{X}_{p}^{(k-1)},)=a^{-1}\{(\theta_{k})_{p}(Y_{p})\}\tau

On the other hand, since the V-component of \theta_{k}(Y) is in W, we know that

a^{-1}\{(\theta_{k})_{p}(Y_{p})\}\equiv(\theta_{k})_{p}(Y_{p}) mod g_{k-1}’

Combined with (6. 7), this means that the g_{k-1}’ -component of \theta_{k}(Y) is constant
on the fibers of the fibered mainfold \pi_{k-1} : P_{k}arrow P_{k-1} . Let us denote by \zeta_{k}’

the g_{k-1}’-component of \theta_{k} . Then we have
\zeta_{k}’(Y)=\zeta_{k}’(j_{k*}X^{(k-1)})=\overline{\omega}_{k-1}’(\tilde{X}^{(k-1)})=\Psi_{k-1}(\phi)

By similar considerations we can prove that for l<k
the g_{l}’ -component of \theta_{k}( Y)=\overline{\omega}_{l}’(X^{(l)})=\Psi_{l}(\phi) .

Let \theta_{k}’ be the V_{k-1}’-component of \theta_{k} and \theta_{k}’=\theta_{k}-\theta_{k}’ be the (g_{0}’+\cdots+g_{k-1}’)

-component of \theta_{k} . Then it follows that

\theta_{k}’(Y)=\sum_{l=0}^{k-1}\Psi_{l}(\phi) .

For u\in U_{1} , let u_{D_{k}} be the cross section of D_{k} satisfying \theta_{k}(u_{D_{k}})=u .
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Since L_{Y}\theta_{k}=0 , we have
d\theta_{k}(Y, u_{D_{k}})=(i(Y)d\theta_{k})(u_{D_{k}})

=-d(\theta_{k}(Y))(u_{D_{k}})

In particular, we have
d\zeta_{k}’(Y, u_{D_{k}})=-\tilde{\rho}(u)\Psi_{k-1}(\phi)

Let us substitute Y, u_{D_{k}} into (6. 1) and consider its g_{k-1}’ -component. By
Proposition 1. 1 and Proposition 6. 1 in which k is replaced by k+1 , we
know

\alpha_{k}’(P_{k+1})(\theta_{k}’(Y), u)=0 .

Hence it follows from above arguments that

(6. 8) -\tilde{\rho}(u)\Psi_{k-1}(\phi)=\alpha_{k}’(P_{k+}J(\theta_{k}’(Y), u)-\omega_{k}’(Y)u

= \sum_{l=0}^{k-1}\alpha_{k}’(P_{k+}j(\Psi_{i}(\phi), u)-\omega_{k}’(Y)u\tau

Let \{u_{i}\} be a basis of U_{1} and \{u_{i}^{*}\} be its dual basis of U_{1}^{\star} . Define A_{i}\in

g_{k-1}’ by

(6. 9) A_{i}= \tilde{\rho}(u_{i})\Psi_{k-1}(\phi)+\sum_{l=0}^{k-1}\alpha_{k}’(P_{k+1})(\Psi_{i}(\phi), u_{i})

Then we have

(6. 10) \omega_{k}’(Y)=\sum_{i}A_{i}\otimes u_{i}^{*}

Recall that \overline{\omega}_{k}’(Y) is a function on N. It follows from (6. 8) that \alpha_{k}’(P_{k+1})

is a function on N. Therefore the right hand of (6. 9) defines a k-th order
linear differential operator acting on \phi . Then (6. 10) and the definition of
\overline{\omega}_{k}’ imply our assertion. q. e . d .

After these preparations we will prove Theorem 2. First note that
Proposition 6. 1 in which k is replaced by k+2 implies that the g_{k}’\otimes W_{k}^{\prime*}\otimes

U_{1}^{*}/\delta(\mathfrak{g}_{k+1}’\otimes W_{k}^{\prime*}) -component of c_{k+1} is 0. Hence we have

\alpha_{k+1}’(j_{k+1})(\theta_{k}’(Y)+\overline{\omega}_{k}’(Y), u)=T_{\theta_{\acute{k}}(Y)+\overline{\omega}_{\acute{k}^{(Y)}}}u

where T\in \mathfrak{g}_{k+1}’\otimes W_{k}^{\prime*} . By (6. 6) we have

d\overline{\omega}_{k}’(Y, u_{D_{k}})=T_{\theta_{\acute{k}}(Y)+\overline{\omega}_{k^{(Y)}}’}u+\alpha_{k+1}’(j_{k+1})(\theta_{k}’(Y)+\overline{\omega}_{k}’(Y), u)

=T_{\theta_{\acute{k}}(Y)+\overline{\omega}_{\acute{k}^{(Y)}}}u+ \sum_{l=0}^{k}\alpha_{k+1}’(j_{k+1})(\Psi_{l}(\phi), u)

Define S_{k+1}’(\phi)_{i}\in g_{k}’ by
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(6. 11) S_{k+1}’( \phi)_{i}=\tilde{\rho}(u_{i})\Psi_{k}(\phi)+\sum_{l=0}^{k}\alpha_{k+1}’(j_{k+1})(\Psi_{l}(\phi), u_{i})

and set

S_{k+1}’( \phi)=\sum_{i}\lambda_{k}((S_{k+1}’(\phi)_{i})\otimes u_{i}^{*}

Then by (6. 5) and the above arguments we know that

S\equiv S_{k+1}’(\phi) mod \mathfrak{g}_{k+1}’ ,

where S is the \mathfrak{g}_{k}^{\prime\prime(1)} -valued function satisfying (6. 4). This proves that Y is
an infinitesimal automorphism of P_{k+1} if and only if

(6. 12) F_{k+1}(S_{k+1}’(\phi)=01

By (6. 11) this is a (k+1) -th order differential equation with respect to \phi.
From the above arguments it follows that a local vector field X on M

is an infinitesimal automorphism of P_{k+1} if and only of

(6. 13) F_{1}(^{J}S_{1}’(\phi))=F_{2}(S_{2}’(\phi))=\cdots=F_{k+1}(S_{k+1}’(\phi))=0\tau

Let Q_{k+1}\subset J_{k+1}(N\cross R) be the differential equation defined by (6. 13) and
q_{k+1} be the symbol of Q_{k+1} . It is not difficult to see that q_{k+1} can be identified
with b_{k+1} . For p_{k}\in P_{k} , let

\mathscr{L}_{p_{k}}=\{X\in \mathscr{L}|(X^{(k)})_{p_{k}}=0\}

Let \overline{\omega}_{0}’(\tilde{X})=\phi I. Then we have a surjective map

\mathscr{L}_{p_{k}}\ni X-j_{t}^{k+1}(\phi)\in(q_{k+1})_{t}

where t=(\rho\circ\pi_{0}\circ\cdots\circ\pi_{k})(p_{k}) . These show that for any k, Q_{k} is a subbundle
of J_{k}(N\cross R) and moreover Q_{k} is integrable. This completely proves the
theorem.

\S 7. Proof of Proposition 6. 1.

We will prove Proposition 6. 1 by induction. By Proposition 4. 1, (1)

of Proposition 6. 1 holds for k=1 . (2) is trivial. Assume that we can choose
the sequence of bundles

P_{k-1}-P_{k-2}-\cdots-P_{1}-P_{0}-M

so that Proposition 6. 1 holds. For - 1\leqq i\leqq k-1 consider the following

statement:

(7. 1)_{i} (1) Let A\in g_{i} and w\in W_{k-1} . Then

\underline{c}_{k}(A, w)\in W_{k-1}’
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(2) Let A\in g_{i}’ and u\in U_{1} . Then the g_{2}-component of \underline{c}_{k}(u, A)

is 0.

We will prove (7. 1)_{i} by induction on i. The proof will be devided into
several steps.

7. 1. Let X\in \mathfrak{g}_{k}’ , w\in W and A\in g_{0}+g_{1}+\cdots+g_{k-1} . By (1. 1) applied to
P_{k} , we have

X\underline{c}_{k}(w, A)-\underline{c}_{k}(X_{w}, A)=T_{A}w ,

where T\in \mathfrak{g}_{k}\otimes V_{k-1}^{*} . Since Xck(w, A) and T_{A}w are in g_{k-1}’ , this implies
\underline{c}_{k}(X_{w}, A)\in g_{k-1}’

Hence we know that

(7. 2) \underline{c}_{k} : g_{k-1}’\otimes(g_{0}+\cdots+g_{k-1})-W_{k-1}’

Similarly substituting v, w\in W and X\in g_{k}’ into (1. 1), we have
(7. 3) \underline{\alpha}_{k}’(X_{w}, v)=\underline{\alpha}_{k}’(X_{v}, w)

Define \sigma\in GL(V_{k-1}) by

\sigma=id on V+g_{0}+\cdots+g_{k-3}+g_{k-2}’+g_{k-1}

and
\sigma(A)=A+\underline{\alpha}_{k}’(w, B) for A\in g_{k-2}’ ,

where w\in W and B\in g_{k-1}’ satisfy B_{w}=A . Suppose that v\in W and C\in g_{k-1}’

also satisfy C_{v}=A . Then by Lemma 5. 2 there exists X\in g_{k}’ such that X_{w}=C

and X_{v}=B. It follows from (7. 3) that
\underline{\alpha}_{k}’(v, C)=\underline{\alpha}_{k}’(w, B) .

Therefore \sigma is well-defined. Let P_{k}’=R_{\sigma}P_{k} and c_{k}’ be the structure function
of P_{k}’ . For w\in W and A\in g_{k-1}’ we have

\underline{c}_{k}’(w, A)=\sigma^{-1}\underline{c}_{k}(\sigma w, \sigma A)

=\sigma^{-1}\underline{c}_{k}(w, A)

=\sigma^{-1}\{A_{w}+\alpha_{k}(w, A)\}

=A_{w}-\alpha_{k}’(w, A)+\alpha_{k}(w, A)

\equiv 0 mod W_{k-1}’ .
Denoting by P_{k} the conjugate bundle P_{k}’ , we have
(7. 4) \underline{c}_{k} : g_{k-1}’\otimes W-W_{k-1}’

Secondly let u\in U_{1} , A\in g_{0}’+\cdots+g_{k-1}’ and B\in g_{k-1}’ . By (1. 2) we have
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(7. 5) \underline{c}_{k}(\underline{c}_{k}(u, A), B)+\underline{c}_{k}(.\underline{c}_{k}(A, B) , u)+\underline{c}_{k}(\underline{c}_{k}(B, u) , A)

+\tilde{\rho}(u)\underline{c}_{k}(A, B)=T(A, B)uj

where T\in \mathfrak{g}_{k}\otimes\wedge^{2}V_{k-1}^{*} . Let us consider the g_{k-2}’-component of (7. 5). Recal-
ling g_{0}’=\{I\} , we have

\underline{c}_{k}(u, A)\in g_{0}+\cdots+g_{k-1}

Hence the first term contains no element in g_{k-2}’ . (Recall (2) of Proposition

1. 1.) The g_{k-2}’-component of the second term is \underline{\alpha}_{k}’(A, B)u . Using the

induction assumption, we know that the g_{k-2}’-component of the third term

is 0. Similarly the fourth term and the right hand contain no element in
g_{k-2}’ . Hence we have \underline{\alpha}_{k}’(A, B)u=0 . This implies

(7. 6) \underline{c}_{k} : g_{k-1}’\otimes(g_{0}’+\cdots+g_{k-}’j_{1}-W_{k-1}’

Therefore we have proved (1) of (7. 1)_{k-1} . (2) of (7. 1)_{k-1} is trivial.
7. 2. Let l\geqq 0 . Suppose that for i\geqq l+1(7.1)_{i} holds. We will prove

(7. 1)_{l} .
First note that for A\in g_{i} and B\in g_{j}(i,j\neq-1) we have

\underline{c}_{k}(A, B)\in g_{\max\{i,j\}}+\cdots+g_{k-1} .

Then, substituting w\in W, A\in g_{0}+\cdots+g_{k-1} and B\in g_{l+1}’ into (1. 2), we can
prove

\underline{\alpha}_{k}’(B_{w}, A)=0 .
This implies

(7. 7) \underline{c}_{k} : g_{l}’\otimes(g+\cdots+g_{k-1})-W_{k-1}’ .

Secondly, substituting v, w\in W and A\in g_{l+1}’ into again (1. 2), we have

(_{\backslash }7.8) \underline{\alpha}_{k}’(A_{w}, v)=\underline{\alpha}_{k}’(A_{v}, w) .

Define \sigma\in GL(V_{k-1}) by

\sigma=id on V+\cdots+g_{l-2}+g_{l-1}’+g_{l}+\cdots+g_{k-1}

and for A\in g_{l-1}’

\sigma(A)=A+\underline{\alpha}_{k}’(w, B) ,

where w\in W and B\in g_{l}’ satisfy B_{w}=A . Then by (7. 8) and Lemma 5. 2

we can prove that \sigma is well-defined. Let P_{k}’=R_{\sigma}P_{k} . For w\in W and A\in g_{l}’ ,

let S be the (g_{1}+\cdots+g_{k-2}) -component of \underline{c}_{k}(w, A) . By induction assumption

S belongs to g_{l}’+\cdots+g_{k-2}’ and we have
\underline{c}_{k}(w, A)=A_{w}+S+\underline{\alpha}_{k}(w, A)
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Then, denoting by c_{k}’ the structure function of P_{k}’ , we have
\underline{c}_{k}’(w, A)=\sigma^{-1}\underline{c}_{k}(\sigma w, \sigma A)

=\sigma^{-1}\{A_{w}+S+\underline{\alpha}_{k}(w, A)\}

=A_{w}-\underline{\alpha}_{k}’(w, A)+S+\underline{\alpha}_{k}(w, A)

\equiv 0 mod W_{k-1}’ .
Therefore, denoting by P_{k} the conjugate bundle P_{k}’ , we have
(7. 9) \underline{c}_{k} : g_{l}’\otimes W-W_{k-1}’

It follows from (7. 7) and (7. 9) that
(7. 10) \underline{c}_{k} : g_{l}’\otimes W_{k-1}-W_{k-1}’ .

Next we will prove (2) of (7. 1)_{l} . Let w\in W, u\in U_{1} and A\in g_{l+1}’ . By
(1. 2) we have

\underline{c}_{k} ( \underline{c}_{k}(w, u) , A)+\underline{c}_{k}(_{\backslash }\underline{c}_{k}(u, A), w)+\underline{c}_{k}(\underline{c}_{k}(A, w) , u)

+\tilde{\rho}(u)\underline{c}_{k}(A, w)=(\delta T)(w, u, A)

where T\in \mathfrak{g}_{k}\otimes\wedge^{2}V_{k-1}^{*} . The first term is in W_{k-1}’ . Since
\underline{c}_{k}(u, A)\in g_{l}’+g_{l+1}+\cdots+g_{k-1} ,

the second term is in W_{k-1}’ by (7. 10) and the induction assumption. Simi-
larly the fourth term is in W_{k-1}’ . On the other hand the g_{k-2}’-component
of the third term is the same as the g_{k-2}’-component of - \underline{c}_{k}(A_{w}, u) and
the right hand contains no element in g_{k-2}’ . This proves (2) of (7. 1)_{l} .

Finally we will prove

(7. 11) \underline{c}_{k} : g_{l}’\otimes W_{k-1}-W_{k-1}’1

Substituting u\in U_{1} , A\in g_{l}’ and B\in W_{k-1} into (1. 2), we have
\underline{c}_{k} ( \underline{c}_{k}(u, A) , B)+\underline{c}_{k}(\underline{c}_{k}(A, B), u)+\underline{c}_{k}(\underline{c}_{k}(B, u) , A)

+\tilde{\rho}(u)\underline{c}_{k}(A, B)=(\delta T)(u, A, B)

where T\in \mathfrak{g}_{k}\otimes\wedge^{2}V_{k-1}^{*} . Using the induction assumption, we know that the
g_{k-2}’-component of the first term and the third term are 0. Since

\underline{c}_{k}(A, B)\in g_{l}’+\cdots+g_{k-2}’+g_{k-1}

by induction assumption, the g_{k-2}’-component of the second term is \underline{\alpha}_{k}’(A, B)u .
The fourth term and the right hand have no element in g_{k-2}’ . Hence we
have \underline{\alpha}_{k}’(A, B)u=0 , and so \underline{\alpha}_{k}’(A, B)=0 . This proves (7. 11).
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7. 3. Finally we will show (7. 1)_{-1} . It is sufficient to prove (2) of (7. 1)_{-1}

and

(7. 12) \underline{c}_{k} : W\otimes W-W_{k-1}’ .
Let v, w\in W and A\in g_{0} . Then by (1. 1) we can prove

\underline{\alpha}_{k}’(A_{w}, v)=\underline{\alpha}_{k}’(A_{v}, w) .
In particular, if we put A=I, we have \underline{\alpha}_{k}’(w, v)=0 . This prove (7. 12).

(-) of (7. 1)_{-1} can be proved by the similar method as the proof of (2) of
(7. 1)_{l} . This completes the proof of Proposition 6. 1.

References

[1] K. KISO: Local properties of intransitive infinite Lie algebra sheaves, Japan.

J. Math. Vol. 5 (1979), 101-155.
[2] T. MORIMOTO: On the intransitive Lie algebras whose transitive parts are

infinite and primitive, J. Math. Soc. Japan 29 (1977), 35-65.
[3] I. M. SINGER and S. STERNBERG: On the infinite group of Lie and Cartan,

J. Analyse Math. 15 (1965), 1-114.

Department of Mathematics
Faculty of General Education

Ehime University


	Introduction
	\S 1. \mathfrak{g} -structures
	\S 2. Infinitesimal automorphisms ...
	THEOREM 1. ...

	\S 3. Continuous Lie algebra ...
	THEOREM 2. ...

	\S 4. The infinitesimal ...
	\S 5. Proof of Proposition ...
	\S 6. The higher order ...
	\S 7. Proof of Proposition ...
	References

