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Introduction

Let M be an n-dimensional (n\geqq 2) manifold with a projective structure.
It is well known that there exists a unique projective normal Cartan connec-
tion which induces the original projective structure. E. Cartan proved this
fact locally by his method of moving frames ([1], [2]), and later it was
settled in the rigorous form using principal fibre bundles by Tanaka, Kobaya-
shi and Nagano ([5], [6], [11]).

In this paper we shall study, as an application of the theory of Cartan
connections, invariant flat projective structures (which we abbreviate IFPS)
on a homogeneous space M=L/K. Our first main result is that there exists
a natural one-t0-0ne correspondence between the set of IFPS on M=L/K
and the set of projective equivalence classes of Lie algebra homomorphisms
f:\mathfrak{l}arrow \mathfrak{s}\mathfrak{l}(n+1, R) ( \mathfrak{l} is a Lie algebra of L) satisfying certain conditions (TheO-
rem 2. 12). This is a natural generalization of the classical theory concerning
invariant affine connections on M=L/K (cf. Vol. II [7]). Using this cor-
respondence we can determine the existence or non-existence of IFPS on
many real simple Lie groups and irreducible Riemannian symmetric spaces.
It will be proved that, among them, M=SO(3) , SL(m, R)(m\geqq 2) , SU^{*}(2m)

(m\geqq 2) , SL(m, R)/SO(m)(m\geqq\underline{9}) and SU^{*}(2m)/Sp(m)(m\geqq 2) admit an IFPS.
We determine the number of IFPS on these spaces (Theorem 5. 3, 5. 11,
7. 1 and 8. 5). For example M=SL(m, R)/SO(m)(m\geqq 3) admits two projec-
tively flat invariant affine connections and neither of them is the canonical
(Riemannian) connection.

In [5] and [6] a projective structure on M is defined by a reduction of
structure group of P^{2}(M) , the bundle of 2-jet frames over M, to a certain
subgroup of G^{2}(n) . But for the later convenience we take the standpoint
of Tanaka [12], not using the jet theory. For this reason, in \S 1 we review
the theory of projective Cartan connections and fix our notations, following
[12]. In \S 2 we prove the first main result in this paper (Theorem 2. 12).
Let M=L/K be an n-dimensional homogeneous space with an invariant
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projective structure and let (P, \omega) be the corresponding projective normal
Cartan connection. Then a natural bundle mapj: Larrow P is constructed and
an 6\mathfrak{l}(n+1, R) -valued 1-form j^{*}\omega on L is left invariant. If the projective
structure on M is flat, j^{*}\omega:\mathfrak{l}arrow 8\mathfrak{l}(n+1, R) is a Lie algebra homomorphism
and thus we obtain a homomorphism corresponding to the original projective
structure. In \S 3 we study the case where an IFPS on M=L/K admits
an invariant affine connection. We prove that there is a one-t0-0ne cor-
respondence between the set of projectively flat invariant affine connections
on M=L/K and the set of Lie algebra homomorphisms f:\mathfrak{l}arrow\S \mathfrak{l}(n+1, R)

satisfying certain conditions (Theorem 3. 5) and that a projectively flat invari-
ant affine connection on M is affinely flat if and only if the corresponding
homomorphism is \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued. (Note that \mathfrak{g}=6\mathfrak{l}(n+1, R) has a graded Lie
algebra structure : \mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1} and \mathfrak{g}_{-1}+\mathfrak{g}_{0} is isomorphic to the affine Lie
algebra a(n, R) . See \S 1.) In \S 4 we show that for each projective equivalence
class of Lie algebra homomorphisms there exists a unique normalized one
(which we call an (N)-homomorphism). As an application it will be proved
that an IFPS on a reductive homogeneous space admits an invariant affine
connection. Furthermore we give an algorism to obtain all (N) -homomor-
phisms for M=L/K (Proposition 4. 8). Since we know all the real irreducible
representations for each real simple Lie algebra, we can determine the
existence or non-existence of an IFPS on many homogeneous spaces M=L/K
where L is real simple. In \S 5, 6 and 7 we treat the case where M=L
is a Lie group and in \S 8 the case where M=L/K is an irreducible Rie-
mannian symmetric space of the classical type.

The author expresses his sincere thanks to Dr. K. Yamaguchi who
kindly read through the manuscript and gave valuable advices during the
preparation of this paper.

Preliminary remarks

Throughout this paper we always assume the differentiability of class
C^{\infty} . We denote by \mathfrak{X}(M) the set of all vector fields on a manifold M and

\mathfrak{g}^{c} , fl the complexification of a real Lie algebra \mathfrak{g} and a real Lie algebra
homomorphism f respectively. We assume that the dimension of M is
always not less than two.

\S 1. Projective Cartan connections

In this section we shall review the theory of projective Cartan connections
and fix our notations and terminology, following Tanaka [12]. For the proof
of some known facts, see [12].
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1. 1. Let M be a manifold of dimension n(\geqq 2) and let \nabla , \nabla’ be two
torsionfree affine connections on M. We say that \nabla and \nabla’ are projectively
equivalent (which we denote by \nabla\sim\nabla’ ) if there exists a 1-form \phi on M
such that

\nabla_{X}Y-\nabla_{X}’Y=\phi(X)Y+\phi(Y)X

for all X, Y\in \mathfrak{X}(M) . Obviously \sim is an equivalence relation and an equi-
valence class [\nabla] containing \nabla is called a projective structure on M.

Let M (resp. M’) be a manifold of dimension n and [\nabla] (resp. [\nabla’] ) be
a projective structure on M (resp. M’). A diffeomorphism f:Marrow M’ is
said to be a projective isomorphism if f^{*}\nabla’\sim\nabla where f^{*}\nabla’ is an affine con-
nection on M defined by (f^{*}\nabla’)_{X}Y=f_{*}^{-1}(\nabla_{f_{*}X}’f_{*}Y) for X, Y\in \mathfrak{X}(M) .

Let \nabla_{0} be the standard affine connection on R^{n} defined by \nabla_{0X_{i}}X_{j}=0

(X_{i}=\partial/\partial x_{i}) , for i, j=1 , \cdots , n . A projective structure [\nabla] on M is said to
be projectively flat if for each point p of M there exists a neighborhood
U of p and a diffeomorphism f from U to an open subset of R^{n} such that

f^{*}\nabla_{0}-\nabla on U.

REMARK 1. 1. Let (M, g) be a pseud0-Riemannian manifold. It is well
known that a projective structure on M defined by the Levi-Civita connec-
tion of (M, g) is projectively flat if and only if (M, g) is a space of constant
curvature (cf. \S 34 [3]).

There exists a standard projective structure on an n-dimensional real
projective space P^{n}(R) defined by a constant curvature metric.

1. 2. Let G be a projective transformation group of P^{n}(R) and G’ be
an isotropy subgroup at the point 0=[0, \cdots, 0,1]\in P^{n}(R) .

G=PGL\{n ,R)=GL(n+1, R)/center ,

G’=\{a\in G|a\cdot 0=0\}

Since G acts transitively on P^{n}(R) , we regard G/G’=P^{n}(R) . The Lie
algebra \mathfrak{g} of G is isomorphic to @1 (n+1, R) and has a graded Lie algebra
structure \mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1} given by

\mathfrak{g}_{-1}=/_{1} (\begin{array}{ll}0 v0 0\end{array}) |v is a column n- vector_{1}^{1} ,

\mathfrak{g}_{0}=\{ (\begin{array}{lll}A 0 0 -Tr A\end{array}) |A\in \mathfrak{g}\mathfrak{l}(n, R)\}-

\mathfrak{g}_{1}=\{ (\begin{array}{ll}0 0\xi 0\end{array}) |\xi is a row n- vector\}
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Let V be the n-dimensional real vector space of column n-vectors and
V^{*} be the dual space of V consisting of row n-vectors. Then \mathfrak{g} may be
identified with the Lie algebra V+\mathfrak{g}\mathfrak{l}(V)+V^{*} under the correspondence;

\mathfrak{g}_{-1}\ni(\begin{array}{ll}0 v0 0\end{array}) -v\in V-,

\mathfrak{g}_{0}\ni(\begin{array}{lll}A 0 0 -Tr A\end{array}) -A+TrA\cdot I_{n}\in \mathfrak{g}\mathfrak{l}(V) ,

\mathfrak{g}_{1}\ni(\begin{array}{ll}0 0\xi 0\end{array}) -\xi\in V^{*}

(For the bracket operation of V+\mathfrak{g}\mathfrak{l}(V)+V^{*} , see p. 133 [5]). In particular
a subalgebra \mathfrak{g}_{0} is isomorphic to \mathfrak{g}\mathfrak{l}(V) and the Lie algebra \mathfrak{g}’ of G’ is
\mathfrak{g}_{0}+\mathfrak{g}_{1} . Since G/G’=P^{n}(R) , the tangent space of P^{n}(R) at 0 may be identified
with the vector space \mathfrak{g}_{-1}=V. The linear isotropy representation \rho : G’arrow

GL(V) of P^{n}(R)=G/G’ is given by

\rho
(\begin{array}{ll}A 0\xi a\end{array})=\frac{1}{a}A\in GL(V) for (\begin{array}{ll}A 0\xi a\end{array})\in G’

and is a surjective homomorphism. (We express the equivalence class of
B\in GL(n+1, R) by the same letter B\in G .) Let G’ be the kernel of \rho and
G be a general linear group of V. The group G’/G’ is naturally isomorphic
to G and the Lie algebra of G’ is \mathfrak{g}_{1} . The induced Lie algebra hom0-
morphism \mathfrak{g}’=\mathfrak{g}_{0}+\mathfrak{g}_{1}arrow \mathfrak{g}_{0} of \rho : G’arrow\tilde{G} is a natural projection and we denote
it by the same letter \rho . We define an injective homomorphism \iota : Garrow G’ by

\iota(A)=(\begin{array}{ll}A 00 1\end{array}) for A\in\tilde{G}

\iota satisfies \rho\circ\iota=id and the induced Lie algebra homomorphism \iota:\mathfrak{g}_{0}arrow \mathfrak{g}’=

\mathfrak{g}_{0}+\mathfrak{g}_{1} is a natural inclusion. It is known that an element g of G’ is uniquely
expressed in the form g=\iota(\tilde{g})\cdot\exp\xi where \tilde{g}\in\tilde{G}, \xi\in \mathfrak{g}_{1} and exp is the
exponential map of G’ (p. 109 [12]). In particular G’/\iota(\tilde{G}) is diffeomorphic
to R^{n} . The group G=GL(V) acts naturally on \mathfrak{g}_{-1}=V (resp. \mathfrak{g}_{1}=V^{*}) on
the left (resp. on the right).

The principal fibre bundle Garrow G/G’=P^{n}(R) and the Maurer-Cartan
form \omega on G give the prototype of the (flat) projective Cartan connection
described below.

Let M be an n-dimensional manifold and \tilde{P} be the frame bundle of
M. The structure group of \tilde{\pi} : \tilde{P}arrow M is \tilde{G}=GL(V) . We denote by \theta
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the canonical form of \tilde{P}. \theta is a \mathfrak{g}_{-1} -valued 1-form on \tilde{P}. For later use
we give an equivalent definition of projective equivalence of two torsionfree
affine connections in terms of connection 1-forms on \tilde{P}. Let \chi and \chi’ be
two connection 1-forms on \tilde{P}. We say that \chi and \chi’ are projectively equi-
valent if there exists a \mathfrak{g}_{1} grvalued function F on \tilde{P} such that \chi’-\chi=[\theta, F]

(cf. [8], p. 128 [12]). It is easy to see that F satisfies the equality:
(1. 1) F(z\cdot a)=F(z)\cdot a for all z\in\tilde{P}, a\in G

Note that [\theta, F] is a \mathfrak{g}_{0}-valued 1-form on P since [\mathfrak{g}_{-1}, \mathfrak{g}_{1}]\subset \mathfrak{g}_{0} . An equivalence
class containing \chi is denoted by [\chi] and a pair (\tilde{P}, [\chi]) is called a projective
structure on M. Let \tilde{P} (resp. \tilde{P}’ ) be the frame bundle of M (resp. M’) and
\theta (resp. \theta’ ) be the canonical form of \tilde{P} (resp. \tilde{P}’ ) and let (\tilde{P}, [\chi]) (resp. (P’ , [\chi’] ))
be a projective structure on M (resp. M’). A bundle isomorphism \tilde{\phi}:Parrow P’

is said to be a projective isomorphism of (P, [\chi]) onto (P’, [\chi’]) if
\tilde{\phi}^{*}\theta’=\theta ,

[\tilde{\phi}^{*}\chi’]=[\chi] ,

where \tilde{p}*\chi’ is a connection 1-form on P induced by \tilde{\phi} .
1. 3. Under the above notations we shall review the theory of p_{I}ojec-

tive Cartan connections.
Let P be a principal G’ bundle over an n-dimensional manifold M. Let

\omega be a \mathfrak{g} -valued 1-form on P. Then we say that the pair (P, \omega) is a pr0-
jective Cartan connection if

1) R_{a}^{*}\omega=Ada^{-1}\cdot\omega for a\in G’ ,
2) \omega(A^{*})=A for A\in \mathfrak{g}’ ,

where A^{*} is the fundamental vector field corresponding to A.
3) Let X be a tangent vector to P. If \omega(X)=0 , then X=0.
Let (P, \omega) (resp. (P’ , \omega’ )) be a projective Cartan connection on M(resp. M’) .

A bundle isomorphism \phi:Parrow P’ is called an isomorphism of (P, \omega) onto
(P’, \omega)’ if \phi^{*}\omega’=\omega . We define a \mathfrak{g} -valued 2-form \Omega on P by

(1. 2) \Omega=d\omega+\frac{1}{2}[\omega, \omega] .

and we call \Omega the curvature form of (P, \omega) . The equation (1.2) is called
the structure equation. If \Omega is identically zero on P, we say that (P, \omega) is
a flat projective Cartan connection. We denote by \omega_{p} (resp. \Omega_{p}) the \mathfrak{g}_{p}

-

component of \omega (resp. \Omega).

REMARK 1. 2. \omega_{u} is a linear isomorphism of T_{u}P onto \mathfrak{g} for all u\in P.
Hence for any X\in \mathfrak{g} , we can define a vector field \check{\omega}(X) by \omega(\check{\omega}(X))=X.
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Conversely a linear map \check{\omega} : \mathfrak{g}arrow \mathfrak{X}(P) satisfying some conditions defines a
projective Cartan connection \omega (see p. 135 [13]). In Tanaka [12], the vector
field corresponding to \xi\in \mathfrak{g}_{-1} is denoted by C(\xi) and a (projective) Cartan
connection is called “a connection of type (L)’.

1. 4. Let (P, \omega) be a projective Cartan connection and \tilde{P} be a factor
manifold P/G’ where G’ is the kernel of \rho:G’arrow G . \tilde{P} is a principal fibre
bundle over M and the structure group of \tilde{P} is G’/G’=G (see \S 1. 2). We
denote the projection Parrow\tilde{P} by the same letter \rho . \rho:Parrow\tilde{P} is a bundle map
corresponding to the homomorphism \rho : G’arrow\tilde{G} . The following lemma is
easy to verify (cf. p. 136 [13]).

Lemma 1. 3. Let (P, \omega) be a projective Cartan connection on M. Then
there exists a unique \mathfrak{g}_{-1} -valued 1-form \theta on \tilde{P} satisfying the following
conditions :

1) R_{a}^{*}\theta=a^{-1}\cdot\theta for a\in\tilde{G},

2) Let X be a tangent vector to P. Then \theta(X)=0 if and only if
X is a vertical vector.

3) \rho^{*}\theta=\omega_{-1} .
By this lemma the factor manifold \tilde{P} may be regarded as a frame

bundle of M having the above \theta as a canonical form.
Let (P, \omega) be a projective Cartan connection on M satisfying \Omega_{-1}=0 .

Then (P, \omega) naturally induces a projective structure on M as follows. Since
G’/\iota(G) is diffeomorphic to R^{n} , there exists a bundle map h : \tilde{P}arrow P cor-
responding to \iota : Garrow G’ and satisfies \rho\circ h=id, where \rho : Parrow\tilde{P}=P/G’ is a
projection. Since \rho^{*}\theta=\omega_{-1} , we have h^{*}\omega_{-1}=\theta and we can easily check that
\mathfrak{g}_{0}-valued 1-form h^{*}\omega_{0} on \tilde{P} satisfies the usual conditions of a connection
1-form. Pulling back the \mathfrak{g}_{-1} -component of the structure equation (1. 2) by
h, we have

d\theta+[h^{*}\omega_{0}, \theta]=h^{*}\Omega_{-1}=0 ,

i . e. , h^{*}\omega_{0} is a torsionfree connection. Let h’ : Parrow P be any bundle map
corresponding to \iota : Garrow G’ and satisfies \rho\circ h’=id. Then there exists a unique
\mathfrak{g}_{1} grvalued function F on P which satisfies (1. 1) and the equality:

(1. 3) h’(z)=h(z)\cdot\exp F(z) for z\in\tilde{P}_{r}

where exp is the exponential map of G (exp F(z)\in G’ ). It is easy to see
that if h and h’ are related by (1. 3), the equality

(1. 4) h’*\omega_{0}-h^{*}\omega_{0}=[\theta, F]’.
holds on \tilde{P} (cf. p. 126 [12]). Therefore a projective structure is induced on
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M independent of the choice of h . This projective structure is called a
projective structure induced by (P, \omega) .

1. 5. Conversely every projective structure on M is induced by a unique
projective Cartan connection satisfying certain curvature conditions.

Let \{e_{i}^{-}\} be a base of \mathfrak{g}_{-1} and let \{e_{i}^{+}\} be the base of \mathfrak{g}_{1} such that
B(e_{i}^{-}, e_{j}^{+})=\delta_{ij} where B is the Killing form of \mathfrak{g} . Let (P, \omega) be a projective
Cartan connection on M. For any X\in \mathfrak{g} , we define a vector field \check{\omega}(X)

on P by \omega(\check{\omega}(X))=X. A \mathfrak{g}’ -valued 1-form \Omega^{*} on P defined by

(1. 5) \Omega_{u}^{*}(X)=\sum_{i}[e_{i}^{+}, \Omega(\check{\omega}(e_{i}^{-}), X)] for u\in P, X\in T_{u}P_{\mathcal{F}}

is called a * curvature of (P, \omega) . \Omega^{*} does not depend on the choice of \{e_{i}^{-}\} .
A projective Cartan connection (P, \omega) is called normal if \Omega^{*}=0 . Clearly
a flat projective Cartan connection is normal. If (P, \omega) is normal, the \mathfrak{g}_{-1}

-

component of 12 is zero since \Omega_{0}^{*}=0 .

THEOREM A ([12]). (1) Let (P, \omega) be a projective normal Cartan con-
nection on M. Then (P, \omega) induces a projective structure (\tilde{P}, [\chi]) on M.
Conversely if (\tilde{P}, [\chi]) is a projective structure on M, there is a projective
normal Cartan connection which induces the given (\tilde{P}, [\chi]) .

(2) Let (P, \omega) (resp. (P’, \omega )) be a projective normal Cartan connection
on M (resp. M’) and (\tilde{P}, [\chi]) (resp. ( \tilde{P}’ , [\chi’] )) be an induced projective structure.
Then every isomorphism \phi:(P, \omega)arrow(P’, \omega\acute{)} induces a projective isomorphism
\tilde{\phi}:(\tilde{P}, [\chi])- (\tilde{P}’. [\chi’]) such that \tilde{\phi}\circ\rho=\rho’\circ\phi where \rho (resp. \rho’ ) is the projection
Parrow\tilde{P} (resp. P’arrow P’). Conversely for every projective isomorphism \tilde{\phi}:(\tilde{P}, [\chi])arrow

(P’, [\chi’]) there is a unique isomorphism \phi:(P, \omega)arrow(P’, \omega\acute{)} such that \tilde{\phi}\circ\rho=\rho’\circ\phi .
(3) A projective normal Cartan connection (P, \omega) is flat if and only

if the induced projective structure on M is projectively flat.
For the proof of this theorem, see [11], [12] (cf. [6]).

REMARK 1. 4. (1) In Tanaka [12], the \mathfrak{g}_{0} (resp. \mathfrak{g}_{1})-component of the
* -curvature is denoted by S^{*} (resp. W^{*}).

(2) We may regard the principal G’ bundle Parrow M as the extended
bundle of \tilde{P}arrow M by the injective homomorphism \iota:Garrow G’ (see p. 119, 129
[12] ) . In particular the construction of the principal bundle Parrow M is inde-
pendent of the projective structure on M. The treatment in [5], [6] is
somewhat different from ours, namely in [5], [6] a subbundle Q of P^{2}(M)

with structure group \dot{G}’ is called a projective structure on M, where P^{2}(M)

is the bundle of 2-jet frames over M. Using the canonical form on P^{2}(M) ,

a projective normal Cartan connection is constructed on Q uniquely. But
once a projective structure (in our sense) on M is given, there exists a
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unique bundle isomorphism \phi:Parrow O\vee which preserves the projective normal
Cartan connection. For later convenience we adopt the former standpoint.

In the proof of Theorem A (Theorem 9. 1 in [12]) the following fact
is proved. It plays an important role in our argument.

PROPOSITION B. Let \tilde{P} be the frame bundle of M, P be a principal
G’ bundle on M and let h:\tilde{P}arrow P be a bundle map corresponding to
\iota:Garrow G’ . Then for each torsionfree connection \chi on \tilde{P}, there exists a
unique projective normal Cartan connection (P, \omega) satisfying the following
conditions:

h^{*}\omega_{0}=\chi ,
(1. 6)

h^{*}\omega_{-1}=\theta .

where \theta is the canonical form of \tilde{P}.

\S 2. Invariant flat projective structures on L/K and the main
theorem

In this section we shall prove the first main theorem (Theorem 2. 12)
of this paper.

Let L be a Lie group and K be a connected closed subgroup of L and
we set M=L/K (dim M=n). Let \mathfrak{l} (resp. f) be the Lie algebra of L (resp. K).

DEFINITION 2. 1. A projective structure on M=L/K is invariant if the
left action L_{a} : Marrow M of L is a projective transformation for any a\in L .

Let \tilde{P} be the frame bundle of M=L/K and h:\tilde{P}arrow P be an extension
of the principal bundle \tilde{P} by the injective homomorphism \iota:Garrow G’ and let
\rho:Parrow\tilde{P} be the bundle map corresponding to \rho:G’arrow G such that \rho\circ h=id.
In the standpoint of [5], [6], the map \rho:Parrow\tilde{P} corresponds to the restriction
of the canonical projection P^{2}(M)-P^{1}(M)=P to the subbundle P of P^{2}(M) .
We fix a linear frame \tilde{o} at the origin 0\in M throughout. Then there is
a natural bundle map \backslash \tilde{i}:Larrow\tilde{P} corresponding to the linear isotropy repre-
sentation \rho 0:Karrow G of M=L/K i . e. ,

.\tilde{j}(a)=(L_{a})_{*}(\tilde{o}) for a\in L

We set 0’=h(\tilde{o})\in P. The group L acts on \tilde{P} on the left and the map \tilde{j}

is compatible with this left action. We denote by \tilde{L}_{a} : \tilde{P}arrow\tilde{P} the left action
of a\in L on \tilde{P}.

Let [\chi] be an invariant projective structure on M=L/K and \chi be a
(not necessary invariant) connection belonging to [\chi] . We first construct
a linear map from \mathfrak{l} to \mathfrak{g}=@\mathfrak{l}(n+1, R) depending on the choice of \chi . By
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Proposition B, there is a unique projective normal Cartan connection \omega on
P such that h^{*}\omega_{0}=\chi and h^{*}\omega_{-1}=\theta . Since L_{a} : Marrow M is a projective trans-
formation for any a\in L , there is a unique bundle isomorphism L_{a}’ : Parrow P

such that L_{a}^{\prime*}\omega=\omega and \rho\circ L_{a}’=\tilde{L}_{a}\circ\rho (Theorem A). We define a map j :
Larrow P by j(a)=L_{a}’(0\acute{)} for a\in L . The equality L_{a}’\circ L_{b}’=L_{ab}’ holds for any
a, b\in L and L_{e}’=id where e is the unit element of L. Therefore \{L_{a}’\}

defines a left action of L on P and the map j:Larrow P is compatible with
this left action. For any a\in K, L_{a} : Marrow M fixes the origin 0\in M, and
hence j(a) and \acute{o} lie in the same fibre of P. We define a map \rho_{1} : Karrow G’

by 0’\cdot\rho_{1}(a)=j(a) for a\in K . The following two lemmas are easy to verify
and we omit the proofs.

Lemma 2. 2. \rho_{1} : Karrow G’ is a group homomorphism and the map j :
Larrow P is a bundle map corresponding to \rho_{1} .

Lemma 2. 3. The following diagram is commutative:

In particular \rho\circ\rho_{1}=\rho_{0} : Karrow\tilde{G} , where \rho:G’arrow\tilde{G} is the linear isotropy repre-
relation of P^{n}(R)=G/G’ .

For later use, we shall write down the homomorphism \rho_{1} explicitly.
Since L_{a} : Marrow M is a projective transformation for any a\in L , there exists
a \mathfrak{g}_{1} grvalued function F_{a} on \tilde{P} satisfying (1. 1) and the equality:

\tilde{L}_{a}^{*}\chi-\chi=[\theta, F_{a}]

Lemma 2. 4. For any a, b\in L, we have

(2. 1) F_{ab}=F_{b}+\tilde{L}_{b}^{*}F_{a} .

The proof is trivial.

Lemma 2. 5. \rho_{1}(a)=(\iota\circ\rho_{0})(a)\cdot\exp \{-F_{a}(\tilde{o})\} for a\in K.

PROOF. In the proof of Theorem 9. 2 in [12], it is shown that the
bundle map L_{a}’ : Parrow P satisfies the relation h\circ\tilde{L}_{a}=L_{a}’\circ h_{a} where h_{a} : Parrow P

is a bundle map defined by h_{a}(z)=h(z)\cdot\exp F_{a}(z) . Hence for \^a K, \acute{o}\cdot(\iota\circ\rho_{0})

(a)=h(\tilde{o}\cdot\rho_{0}(a))=(h\circ\tilde{L}_{a})(\tilde{o})=(L_{a}’\circ h_{a})(\tilde{o})L_{a}’ ( 0’ . exp F_{a}(\tilde{o}) ) =j(a)\cdot\exp F_{a}(\tilde{o})=0’\cdot \rho_{1}(a) .
exp F_{a}(\tilde{o}) . Therefore we have \rho_{1}(a)=(\iota\circ\rho_{0})(a)\cdot\exp \{-F_{a}(\tilde{o})\} . q . e . d .

COROLLARY 2. 6. If \chi is an invariant affiffiffine connection, we have
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\rho_{1}=\iota\circ\rho_{0} and h:\tilde{P}arrow P is compatible with the left action of L. In particular
j=h\circ\tilde{j}:Larrow P.

We consider the \mathfrak{g}=6\mathfrak{l}(n+1, R) -valued 1-form j^{*}\omega on L. Since the
map j is compatible with the left action of L and L_{a}^{\prime*}\omega=\omega for any a\in L,
j^{*}\omega is a \mathfrak{g} -valued left invariant form on L and defines a linear map j^{*}\omega :
\mathfrak{l}arrow \mathfrak{g} . Note that the map j^{*}\omega:\mathfrak{l}arrow \mathfrak{g} depends on the choice of \chi .

Lemma 2. 7. the projective structure defifined by \chi is projectively f or

if and only if j^{*}\omega is a Lie algebra homomorphism.

PROOF. If [\chi] is projectively flat, the corresponding projective normal

Cartan connection \omega is flat, i . e. , d \omega+\frac{1}{2}[\omega, \omega]=0 . Pulling back by j, we

have d(j^{*} \omega)+\frac{1}{2}[j^{*}\omega,j^{*}\omega]=0 on L. We put left invariant vector fields

X, Y on L in this equation and obtain the equality

-j^{*}\omega[X, Y]+[j^{*}\omega(X),j^{*}\omega(Y)]=0 ,

which implies that j^{*}\omega is a Lie algebra homomorphism. Conversely if j^{*}\omega

is a Lie algebra homomorphism, we have j^{*}(d \omega+\frac{1}{2}[\omega, \omega])=0 on L. Since

j_{*}(T_{a}L) contains a complement of the vertical subspace of T_{j(a)}P for any

a\in L, the equality d \omega+\frac{1}{2}[\omega, \omega]=0 holds on P, i . e. , the corresponding

projective normal Cartan connection is flat. q . e . d .
Now we define a linear map c:\mathfrak{l}arrow \mathfrak{g}_{-1}=R^{n} as follows. We consider

the frame \tilde{o}\in P as a linear isomorphism \tilde{o} : \mathfrak{g}_{-1}arrow T_{o}M. Then c is defined by

c(X)=\tilde{o}^{-1}(\pi_{*}X) for X\in \mathfrak{l}=T_{e}L ,

where \pi : Larrow M=L/K is the projection.

DEFINITION 2. 8. A Lie algebra homomorphism f:\mathfrak{l}arrow \mathfrak{g} satisfies condi-
tion (P) (which we say that f is a (P)-homomorphism) if

1) f_{-1}=c\cdot. \mathfrak{l}arrow \mathfrak{g}_{-1} ,
2) f(Y)\in \mathfrak{g}’=\mathfrak{g}_{0}+\mathfrak{g}_{1} for all Y\in f ,
3) f_{0}(Y)=\rho_{0}(Y) for Y\in f ,

where f_{p} is the \mathfrak{g}_{p}-component of f and \rho_{0} : farrow \mathfrak{g}_{0} is the homomorphism
induced by the linear isotropy representation \rho_{0} : Karrow G of M=L/K. Note
that \rho_{0}(Y) is expressed in the matrix form since we have fixed the frame
\tilde{o}\in P at 0\in M.

PROPOSITION 2. 9. Let \chi be a connection 1-form on \tilde{P} such that the
projective structure [\chi] defifined by \chi is invariant and flat. Then the cor-
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responding Lie algebra homomorphism j^{*}\omega:\mathfrak{l}arrow \mathfrak{g} satisfifies condition (P).

PROOF. We identify \mathfrak{l} with the tangent space of L at e. Then for X\in \mathfrak{l} ,

we have f_{-1}(X)=j^{*}\omega_{-1}(X)=(j^{*}\rho^{*}\theta)(X)=(\tilde{j}^{*}\theta)(X)=\theta_{\tilde{o}}(\tilde{j}_{*}X)=\tilde{o}^{-1}(\tilde{\pi}_{*}\tilde{j}_{*}X)=

\tilde{o}^{-1}(\pi_{*}X)=c(X) , where \tilde{\pi} : \tilde{P}arrow M is the projection. For Y\in f(\subset T_{e}L) we
have j(\exp tY)=0’\cdot\rho_{1} (exp tY) =0’\cdot\exp t\rho_{1}( Y) where \rho_{1} : farrow \mathfrak{g}’ is the induced
Lie algebra homomorphism of \rho_{1} : Karrow G’ . Differentiating the above equality
at t=0 we have j_{*}(Y)=\rho_{1}( Y)_{0’}^{*} and hence f(Y)=(j^{*}\omega) ( Y)=\rho_{1}(Y)\in t . 3) is
clear from the identity \rho\circ\rho_{1}=\rho_{0} : farrow \mathfrak{g}_{0} and the fact that the homomorphism
\rho:\mathfrak{g}’=\mathfrak{g}_{0}+\mathfrak{g}_{1}arrow \mathfrak{g}_{0} induced by \rho:G’arrow\tilde{G} is a natural projection. q . e . d .

Let \chi’ be a connection 1-form on \tilde{P} which is projectively equivalent to
\chi . Then the Lie algebra homomorphism satisfying condition (P) is con-
structed in the same manner. We shall study the difference between these
two homomorphisms.

DEFINITION 2. 10. Let f and f’ be (P)-homomorphisms. We say that

f is projectively equivalent to f’ (which we denote by f\sim f’ ) if there exists
\xi\in \mathfrak{g}_{1} such that

(2. 2) f_{0}’-f_{0}=[\xi,f_{-1}] : \mathfrak{l}arrow \mathfrak{g}_{0} ,

where f_{p} (resp. f_{p}’) is the \mathfrak{g}_{p} -component of f (resp. f’\grave{)} .
Clearly \sim is an equivalence relation.
PROPOSITION 2. 11. Let \chi and \chi’ be projectively equivalent connection

1-forms on \tilde{P} such that the projective structure defifined by \chi is invariant
and flat. Let f (resp. f’ ) be the (P)-homomorphism corresponding to \chi

(resp. \chi’ ). Then f is projectively equivalent to f’ .

PROOF. Let \omega (resp. \omega’ ) be the flat Cartan connection corresponding
to \chi (resp. \chi’ ). For any Z\in T_{o’}P, (\rho^{*}h^{*}\omega)(Z)=\omega(h_{*}\rho_{*}Z)=\omega(Z+Y^{*})=

\omega(Z)+Y, for some Y\in \mathfrak{g}_{1} . Hence \rho^{*\chi}=\rho^{*}h^{*}\omega_{0}=\omega_{0} at 0’\in P where \omega_{0} is
the \mathfrak{g}_{0} -component of \omega . Pulling back this equality by j, we have j^{*}\omega_{0}=

j^{*}\rho^{*\chi}=\tilde{j}^{*}\chi at e\in L, i . e. , f_{0}(X)=\chi(\tilde{j}_{*}X) for X\in \mathfrak{l}=T_{e}L . In the same way,
we have f_{0}’(X)=\chi’(\tilde{j}_{*}X) . Since \chi and \chi’ are projectively equivalent, there
exists a function F:\tilde{P}arrow \mathfrak{g}_{1} satisfying (1. 1) and \chi’-\chi=[\theta, F] . Then f_{0}’(X)-

f_{0}(X)=(\chi’-\chi)(\tilde{j}_{*}X)=[\theta(\hat{j}_{*}X), F(\tilde{o})]=[c(X), F(\tilde{o})] for X\in \mathfrak{l} . Setting \xi=-
F(\tilde{o})\in \mathfrak{g}_{1} . the equality (2. 2) holds on \mathfrak{l} . q . e . d .

By this proposition we obtain the following map :
\Phi : {an invariant flat projective structure on M=L/K } -\{f : \mathfrak{l}arrow \mathfrak{g}|f is a

(P)-homomorphisms.
The first main result in this paper is the following theorem.

THEOREM 2. 12. \Phi is a bijective map.
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REMARK 2. 13. It is well known that there is a one-t0-0ne correspond-
ence between the set of invariant (affinely) flat affine connections on P and
the set of Lie algebra homomorphisms f:\mathfrak{l}arrow \mathfrak{g}_{-1}+\mathfrak{g}_{0} satisfying certain con-
ditions (see Vol. II [7]). Theorem 2. 12 is a natural generalization of this
correspondence to the projective geometry (cf. Theorem 3. 7).

Proof of Theorem 2. 12. We first prove that \Phi is injective. For this
purpose we prepare several lemmas. Let \chi and \chi’ be connection l-forms
on P such that [\chi] and [\chi’] are IFPS (an abbreviation of invariant flat
projective structure). Let f (resp. f’) be the (P)-homomorphism corresponding
to \chi (resp. \chi’ ). We assume that f is projectively equivalent to f’,\cdot i . e. ,
f_{0}’-f_{0}=[\xi,f_{-1}] for some \xi\in \mathfrak{g}_{1} . We shall prove that \chi’ is projectively equiva-
lent to \chi . Since [\chi] and [\chi’] are invariant, there exist \mathfrak{g}_{1} -valued functions
F_{a} and F_{a}’ depending on a\in L which satisfy (1. 1) and

\tilde{L}_{a}^{*}\chi-\chi=[\theta, F_{a}] ,
(2. 3) for a\in L .

\tilde{L}_{a}^{*\chi’-\chi’}=[\theta, F_{a}’]

Note that F_{a} and F_{a}’ satisfy (2. 1).

Lemma 2. 14. If \eta\in \mathfrak{g}_{1} and if [\eta, v]=0 for all v\in \mathfrak{g}_{-1} , then \eta=0 .
The proof is easy.

Lemma 2. 15. \xi\cdot\rho_{0}(a)=\xi+F_{a}(\tilde{0})-F_{a}’(\tilde{0}) for a\in K.
PROOF. In the proof of Proposition 2. 11, we have already shown the

equations f_{0}(X)=\chi(\tilde{j}_{*}X) and f_{0}’(X)=\chi’(\tilde{j}_{*}X) for X\in \mathfrak{l}=T_{e}L . Hence we
have \chi(\tilde{j}_{*}X)-\chi’(\tilde{j}_{*}X)=f_{0}(X)-f_{0}’(X)=[f_{-1}(X), \xi]=[\theta(\tilde{j}_{*}X), \xi] at e\in L and
therefore \chi-\chi’=[\theta, \xi] at \tilde{o}\in\tilde{P}. Applying (2. 3), for a\in L , we have

\tilde{L}_{a}^{*}\chi-\tilde{L}_{a}^{*\chi’}=[\theta, \xi+F_{a}(\tilde{o})-F_{a}’(\tilde{o})] at \tilde{o}\in P .

For X\in T_{\tilde{\rho}}P and for a\in K, we have \tilde{L}_{a}^{\star}\chi(X)=Ad\rho_{0}(a)^{-1}\chi(R_{\rho_{0}^{(a)}}-1_{*\tilde{L}_{a^{*}}X)} .
Hence

\tilde{L}_{a}^{*}\chi(X)-\tilde{L}_{a}^{*}\chi’(X)=Ad\rho_{0}(a)^{-1}(\chi-\chi’)(R_{\rho_{0}^{(a)}}-1*\tilde{L}_{a^{*}}X)

=Ad\rho_{0}(a)^{-1}[\theta(R_{\rho_{0}^{(a)}}-1*\tilde{L}_{a^{*}}X), \xi]=Ad\rho_{0}(a)^{-1}[\rho_{0}(a)\cdot\theta(X) , \xi]

=[\theta(X), \xi\cdot\rho_{0}(a)]

for a\in K. Therefore [\theta, \xi\cdot\rho_{0}(a)]=[\theta, \xi+F_{a}(\tilde{o})-F_{a}’(\tilde{o})] at \tilde{o}\in\tilde{P}. The lemma
follows from Lemma 2. 14, since \theta:T_{\overline{o}}\tilde{P}arrow \mathfrak{g}_{-1} is a surjective map.

q. e . d .
Now we construct a \mathfrak{g}_{1} -valued function F on \tilde{P} as follows. Any point

z\in P is expressed in the form a\cdot\tilde{o}\cdot g where a\in L and g\in\tilde{G} . We set F(z)=
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\xi\cdot g+F_{a}(\tilde{0})\cdot g-F_{a}’(\tilde{o})\cdot g\in \mathfrak{g}_{1} . Then by Lemma 2. 4 and Lemma 2. 15, F is
well defined on \tilde{P} and satisfies (1. 1). It is easy to see that the equality
\chi-\chi’=[\theta, F] holds on \tilde{P} and thus \chi and \chi’ are projectively equivalent, i . e. ,
\Phi is injective.

Next we shall prove that \Phi is surjective. Let f:\mathfrak{l}arrow \mathfrak{g} be a (P) -hom0-
morphism. We shall construct a torsionfree affine connection \chi on \tilde{P} such
that [\chi] is an IFPS and the corresponding (P)-homomorphism is f. For
this purpose we shall prove two lemmas.

Lemma 2. 16. The notation being as above, there exists a unique Lie
group homomorphism \rho_{1} : Karrow G’ such that \rho\circ\rho_{1}=\rho_{0} : Karrow\tilde{G} and the dif-
ferential of \rho_{1} is the same as the restriction off to f.

PROOF. The uniqueness is evident since K is connected. We shall
prove the existence. First we show that for any a\in K, there exists a unique
\xi(a)\in \mathfrak{g}_{1} satisfying the equality:

(2. 4) Ad \rho_{0}(a)^{-1}\circ f_{0}\circ Ada-f_{0}=[f_{-1}, \xi(a)] : \mathfrak{l}arrow \mathfrak{g}_{0} .

Uniqueness of \xi(a) follows from Lemma 2. 14. For a\in K, which is expressed
in the form a=\exp Y ( Y\in f) , we set

\xi(a)=-\sum_{k=1}^{\infty}\frac{1}{(k+1)!}ad(-f_{0}(Y))^{k}.f_{1}(Y)(

Then \xi(a) satisfies the equality (2. 4) and it is well defined on exp f\subset K by
the uniqueness of \xi(a) . If \xi(a) and \xi(b)(a, b\in K) satisfy (2. 4), we set
(2. 5) \xi(ab)=\xi(b)+\xi(a)\cdot\rho_{0}(b) .

Then \xi(ab) also satisfies (2. 4) and thus we obtain the map \xi:Karrow \mathfrak{g}_{1} since
K is connected. Using \xi we define a map \rho_{1} : Karrow G’ by

\rho_{1}(a)=(\iota\circ\rho_{0})(a) . exp \{-\xi(a)\} for a\in K.

It is easily checked that \downarrow O_{1} is a group homomorphism and satisfies the
desired conditions. q. e . d .

Lemma 2. 17. The notations being as above, there exists a map j :
Larrow P satisfying the following condit ions :

1) j(z\cdot a)=j(z)\cdot\rho_{1}(a) for z\in L, a\in K,
2) \rho\circ j=\tilde{j}:Larrow\tilde{P},
3) j(e)=0’ .

PROOF. Let M=\cup U_{\alpha} be a locally finite open covering of M such
\alpha\in A

that the bundle \pi : Larrow M is trivial on U_{\alpha} and let \{f_{\alpha}\} be a partition of
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unity subordinating to \{U_{\alpha}\} . For each \alpha\in A , we fix a section \sigma_{\alpha} : U_{\alpha}arrow L

satisfying \sigma_{\alpha}(0)=e\in L if 0\in U_{\alpha} . We define a map j_{\alpha} : \pi^{-1}(U_{\alpha})-arrow P by j_{\alpha}(\sigma_{\alpha}(x)\cdot a)

=h\circ\tilde{i}\circ\sigma_{\alpha}(x)\cdot\rho_{1}(a) for x\in U_{\alpha} and a\in K . Obviously j_{\alpha} satisfies the conditions 1),
2) and 3) locally. If U_{\alpha}\cap U_{\beta}^{\underline{-+}}\phi , there exists a uniqu function \tau_{\alpha\beta} : \pi^{-1}(U_{\alpha}\cap U_{\beta})

arrow \mathfrak{g}_{1} such that j_{\alpha}(z)=j_{\beta}(z)\cdot\exp\tau_{\alpha\beta}(z) for z\in\pi^{-1}(U_{\alpha}\cap U_{\beta}) . \tau_{a\beta} satisfies the
equality \tau_{\alpha\beta}

(z\cdot a)=Ad\rho_{1}(a)^{-1}\cdot\tau_{\alpha\beta}(z) for z\in\pi^{-1}(U_{\alpha}\cap U_{\beta}) and a\in K, and if
U_{\alpha}\cap U_{\beta}\cap U_{\gamma}\neq\phi , then \tau_{\alpha\sim}=\tau_{\alpha\beta}+\tau_{\beta\gamma} . We define a map j:Larrow P by

j(z)=j_{\alpha}(z) \cdot\exp(-\sum_{\gamma}f_{\gamma}(\pi(z))\cdot\tau_{\alpha\gamma}(z)) for z\in\pi^{-1}(U_{\alpha})

It is easy to see that j is well defined on L and satisfies the conditions 1),

2) and 3). q. e . d .
Now we show that \Phi is surjective. Let j:Larrow P be the bundle map

constructed in Lemma 2. 17. First we define a flat projective Cartan connec-
tion \omega on P such that j^{*}\omega is the given (P)-homomorphism f. For any a\in L,

a tangent vector at j(a) can be expressed in the form j_{*}X+A^{*} where
X\in \mathfrak{l}=T_{a}L and A\in \mathfrak{g}’ We set \omega_{j(a)}(j_{*}X+A^{*})=f(X)+A\in \mathfrak{g} and extend
it to any point of P by \omega_{j(a)\cdot q}=Adg^{-1}\cdot R_{g^{-1}}^{\star}\omega_{j(a)} for a\in L and g\in G’ \omega

is well defined on P and satisfies the conditions of a flat Cartan connection.
It is easy to verify that h^{*}\omega_{-1}=\theta and h^{*}\omega_{0} is a torsionfree connection on
\tilde{P}. We show that the projective structure defined by \chi=h^{*}\omega_{0} is invariant.
Any point of P is expressed in the form j(z)\cdot g(z\in L, g\in G’) . For each
a\in L we define a map L_{a}’ : Parrow P by L_{a}’(j(z)\cdot g)=j(a\cdot z)\cdot g . Then L_{a}’ is

well defined and is a bundle isomorphism. \{L_{a}’\} defines a left action of L
on P and j is compatible with this action. L_{a}’ : Parrow P satisfies the equality
\rho\circ L_{a}’=\tilde{L}_{a}\circ\rho:Parrow\tilde{P} and preserves \omega , i . e. , L_{a}^{\prime*}\omega=\omega . Therefore, by Theorem
A,\tilde{L}_{a} : (\tilde{P}, [\chi])- (\tilde{P}, [\chi]) is a projective isomorphism for all a\in L and hence
[\chi] is an IFPS. It is easy to check that the homomorphism corresponding
to \chi is j^{*}\omega=f and therefore \Phi is surjective. q. e . d .

\S 3. The case where an IFPS admits invariant affine connections

Let [\chi] be an IFPS on a homogeneous space M=L/K. In general an
IFPS [\chi] does not admit an invariant affine connection. For example the
model space P^{n}(R)=G/G’ does not admit an invariant affine connection since
the dimension of G(=n^{2}+2n) exceeds the largest dimension n^{2}+n of the
affine transformation group. In this section we shall study the case where
an IFPS admits invariant affine connections. First we answer the question:
when does an IFPS on M=L/K admit an invariant affine connection (PrO-

position 3. 1) and next we show that there is a one-t0-0ne correspondence
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between the set of projectively flat invariant affine connections on \tilde{P} and the
set of homomorphism f:\mathfrak{l}arrow \mathfrak{g} which satisfy certain conditions (Theorem 3. 5).

Let \chi be an affine connection on M=L/K such that [\chi] is an IFPS
and let \rho_{1} : Karrow G’ be the corresponding homomorphism constructed in \S 2.
We have already shown in Corollary 2. 6 that if \chi is an invariant affine
connection, then \rho_{1}=\iota\circ\rho_{0} . Conversely we have

PROPOSITION 3. 1. If \rho_{1}=\iota\circ\rho_{0} , then there is a unique invariant connec-
tion \chi’ such that \chi’ is projectively equivalent to \chi and the (P)-homomorphism

f’ : \mathfrak{l}

-
\mathfrak{g} corresponding to \chi’ is the same as that of \chi .

COROLLARY 3. 2. If M is a Lie group, i. e. , K=\{e\} , every IFPS on
M admits an invariant affiffiffine connection.

First we prove the following lemma.
Lemma 3. 3. Let f andf’ be (P)-homomorphisms. Iff_{0}=f_{0}’, then f=f .
PROOF. For X_{1} , X_{2}\in \mathfrak{l} , we have

[f_{-1}(X_{1}),f_{1}(X_{2})]-[f_{-1}(X_{2}),f_{1}(X_{1})]=f_{0}[X_{1}, X_{2}]-[f_{0}(X_{1}),f_{0}(X_{2})]

=f_{0}’[X_{1}, X_{2}]-[f_{0}’(X_{1}),f_{0}’(X_{2})]

=[f_{-1}(X_{1}),f_{1}’(X_{2})]-[f_{-1}(X_{2}),f_{1}’(X_{1})] ,

i . e. ,

[f_{-1}(X_{1}) , (f_{1}-f_{1}’)(X_{2})]=[f_{-1}(X_{2}) , (f_{1}-f_{1}’)(X_{1})] .

Since f_{-1} : \mathfrak{l}arrow \mathfrak{g}_{-1} is surjective, the above equality implies that f_{1}=f_{1}’ on \mathfrak{l}

and hence f=f’ q. e . d .
Proof of Proposition 3. 1. We first show the uniqueness. Let \omega (resp.

\omega’) be the flat Cartan connection corresponding to \chi (resp.\chi’ ). We have
already proved that j^{*}\omega_{0}=\tilde{j}^{*}\chi and j’*\omega_{0}’=\tilde{j}^{*}\chi’ at e\in L . Therefore if f=f’ ,

we have \chi=\chi’ at \tilde{o}\in\tilde{P}. Since \chi’ is invariant, \chi’ is uniquely determined on
\tilde{P}. Now we show the existence. Let F_{a}(a\in L) be a \mathfrak{g}_{1} -valued function on
\tilde{P} defined by \tilde{L}_{a}^{*}\chi-\chi=[\theta, F_{a}] . Since \rho_{1}=\iota\circ\rho_{0} , we have F_{a}(\tilde{o}\cdot g)=0 for a\in K

and g\in\tilde{G} (Lemma 2. 6). We define a \mathfrak{g}_{0}-valued 1-form \chi’ on \tilde{P} by \chi_{a_{\tilde{0}}\cdot g}’.=

\tilde{L}_{a^{-1}}^{*}(\chi_{\overline{\sigma}\cdot g}) for a\in L and g\in\tilde{G} . Then \chi’ is a well defined connection l-form
on \tilde{P} and is invariant by the left action of L. We define a \mathfrak{g}_{1} -valued function
F on P by F(a\cdot\tilde{o}\cdot g)=F_{a^{-1}}(a\cdot\tilde{o}\cdot g) for a\in L and g\in\tilde{G} . F is well defined
and satisfies (1. 1) and the equality \chi’-\chi=[\theta, F] . Hence \chi’ is projectively
equivalent to \chi . Since \chi=\chi’ at \tilde{o}\in\tilde{P} and j^{*}\omega_{0}=\tilde{j}^{*\chi} , j’*\omega_{0}’=\tilde{j}^{*\chi’} at e\in L,
we have f_{0}=f_{0}’ . Therefore by Lemma 3. 3, we have f=f’- q. e . d .
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In \S 4, we shall show that every IFPS on a reductive homogeneous
space admits an invariant affine connection (Proposition 4. 5).

DEFINITION 3. 4. Let f:\mathfrak{l}arrow \mathfrak{g} be a Lie algebra homomorphism. We
say that f satisfies condition (A) (or f is an (A)-homomorphism) if

1) f_{-1}=c : \mathfrak{l}arrow \mathfrak{g}_{-1} ,
2) f(Y)=\rho_{0}( Y)\in \mathfrak{g}_{0} for all Y\in\not\in ,

where \rho_{0} is the linear isotropy representation of M=L/K.
It is obvious that an (A)-homomorphism is a (P)-homomorphism.
If \rho_{1}=\iota\circ\rho_{0} : Karrow G’ , then the induced Lie algebra homomorphism \rho_{1} :

farrow \mathfrak{g}’=\mathfrak{g}_{0}+\mathfrak{g}_{1} coincides with the linear isotropy representation \rho_{0} since \iota : \mathfrak{g}_{0}arrow \mathfrak{g}’

is a natural inclusion. If \chi is a projectively flat invariant affine connection,

then the corresponding (P)-homomorphism f:\mathfrak{l}arrow \mathfrak{g} satisfies condition (A)
(Corollary 2. 6). Thus we obtain the following map :

\Psi : {a projectively flat invariant affine connection \chi on M} arrow\{f:\mathfrak{l}arrow \mathfrak{g}|f

is an (A)-homomorphism).

THEOREM 3. 5. \Psi is a bijective map.
PROOF. We first prove that \Psi is injective. Let \chi and \chi’ be projectively

flat invariant affine connections on M and let f and f’ be the corresponding
(A)-homomorphisms. Since \chi and \chi’ are invariant, we have \tilde{L}_{a}^{*\chi=}\chi,\tilde{L}_{a}^{*}\chi’=

\chi’ for all a\in L and hence .\uparrow^{*}\chi and L\tilde{j}^{*}\chi’ are \mathfrak{g}_{0}-valued left invariant forms on
L. If f=f’ , then we have \tilde{j}^{*\chi}=j^{*}\omega_{0}=f_{0}=f_{0}’=j’*\omega_{0}’=\tilde{j}^{*\chi’} at e\in L where
\omega and \omega’ be the corresponding flat Cartan connections on P. Since \tilde{j}^{*\chi}

and \tilde{j}^{*}\chi’ are left invariant, we have \tilde{j}^{*}\chi=\tilde{j}^{*}\chi’ on L and hence \chi=\chi’ on \tilde{P}.
Next we prove that \Psi is surjective. Let f:\mathfrak{l}arrow \mathfrak{g} be an (A) -homomor-

phism. Then in the proof of Theorem 2. 12, we showed that there is an
affine connection \chi such that [\chi] is invariant and flat and the corresponding
homomorphism is f. Let \rho_{1} : Karrow G’ be the Lie group homomorphism
determined by \chi . Then the differential of \rho_{1} is the restriction of f to f

and hence we have \rho_{1}=\iota\circ\rho_{0} by the uniqueness in Lemma 2. 16. Thus by
Proposition 3. 1, there exists an invariant affine connection \chi’ such that
[\chi’]=[\chi] and the homomorphism corresponding to \chi’ is f, i . e. , \Psi(\chi’)=f.

q . e . d .
COROLLARY 3. 6. Let [\chi] be an IFPS on M. Then [\chi] admits an

invariant affiffiffine connection if and only if the projective equivalence class
\Phi([\chi]) contains an (A)-homomorphism.

The following theorem implies that the correspondence \Psi is a natural
generalization of the correspondence in the affine geometry explained in
Remark 2. 13 to the projective geometry.
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THEOREM 3. 7. Let \chi be a projectively flat invariant affiffiffine connection.

Then \chi is affiffiffinely flat (i. e. , d \chi+\frac{1}{2}[\chi, \chi]=0 and d\theta+[\chi, \theta]=0 on P) if
and only if the [A] -homomorphism \Psi(\chi):\mathfrak{l}arrow \mathfrak{g} is \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued.

PROOF. Let \omega be the corresponding flat Cartan connection on P. Then
by Corollary 2. 6, we have j^{*}\omega 0_{\sim}=\tilde{i}^{*}h^{*}\omega_{0}=.\tilde{j}^{*}\chi . If \Psi(\chi) is \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued,

j^{*}\omega_{1}=0 on L and hence 0=j^{*}(d \omega_{0}+\frac{1}{2}[\omega_{0}, \omega_{0}]+[\omega_{1}, \omega_{-1}])=j^{*}(d\omega_{0}+\frac{1}{2}[\omega_{0}, \omega_{0}])

= \tilde{j}^{*}(d\chi+\frac{1}{2}[\chi, \chi]) . Therefore we have d \chi+\frac{1}{2}[\chi, \chi]=0 on \tilde{P}. Conversely

if \chi is affinely flat, the linear map f’ : \mathfrak{l}arrow \mathfrak{g}_{-1}+\mathfrak{g}_{0} defined by f’(X)=\tilde{j}^{*}(\theta+\chi)(X)

(note that \tilde{j}^{*}\theta and \tilde{j}^{*}\chi are left invariant 1-forms on L) is a Lie algebra
homomorphism satisfying condition (A). Since \tilde{j}^{*\chi}=j^{*}\omega_{0} , the \mathfrak{g}_{-1}+\mathfrak{g}_{0}-com-
ponent of \Psi(\chi) coincides with f’ Thus by Lemma 3. 3, we have f’=f.
In particular f is \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued. q . e . d .

\S 4. A normalization of Lie algebra homomorphisms

In \S 2, we have proved that there is a natural one-t0-0ne correspondence
between the set of IFPS on M=L/K and the set of projective equivalence
classes of (P)-homomorphisms f:\mathfrak{l}arrow \mathfrak{g} . In this section we first show that
for each projective equivalence class of (P)-homomorphisms, there exists
a unique normalized homomorphism ((AO -homomorphism) which satisfies an
additional condition (Proposition 4. 2) and give the procedure to obtain all
(\^A)-homomorphisms for many classes of homogeneous spaces. As an applica-
tion of Proposition 4. 2, we show that any IFPS on a reductive homogeneous
space admits an invariant affine connection (Proposition 4. 5).

We fix, once for all, a complementary subspace nt of f in \mathfrak{l} :
\mathfrak{l}=f+\iota \mathfrak{n} (direct sum) (

Since we have fixed the frame 0\sim : R^{n}arrow T_{o}M at the origin 0\in M, there is
a base \{X_{1^{ }},\cdots, X_{n}\} of \mathfrak{m} such that c(X_{k})=e_{k}(k=1, \cdots, n) , where \{e_{1}, \cdots, e_{n}\}

is the standard base of \mathfrak{g}_{-1}=R^{n} . Note that if f is a (\^A)-homomorphisms
f_{-1}(X_{k})=e_{k} for k=1 , \cdots , n .

DEFINITION 4. 1. Let f be a -homomorphism. We say that f satisfies
condition (N) (or f is an (\^A)-homomorphisms if the (n+1, n+1) -component
of f(X) is zero fo1 all X\in \mathfrak{m} , namely, f(X_{k})a_{n+1}=a_{k} for k=1 , \cdots , n , where
\{a_{1}, \cdots, a_{n+1}\} is the standard base of R^{n+1} .

Then we have
PROPOSITION 4. 2. Let f be a(P) -homomorphism. Then there exists
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a unique (N)-homomorphism f’ such that f’ is projectively equivalent to f.

Combining with Theorem 2. 12, we have

COROLLARY 4. 3. There is a one-tO-One correspondence between the set

of IFPS on M=L/K and the set of {N) -homomorphisms.

We first prove the following lemma.

Lemma 4. 4. Let f be a(P) -homomorphism and let \xi be an element
of \mathfrak{g}_{1} . We define linear maps f_{-1}’ and f_{0}’ by

f_{-1}’=f_{-1} : \mathfrak{l}arrow \mathfrak{g}_{-1}

and f_{0}’=f_{0}+[\xi,f_{-1}] : \mathfrak{l}arrow \mathfrak{g}_{0} .

Then there exists a unique (P)-homomorphism f’ such that the \mathfrak{g}_{-1} {resp. \mathfrak{g}_{0}) -

component of f’ is f_{-1}’ {resp. f_{0}’). In particular there is a one-tO-One cor-
respondence between the elements of \mathfrak{g}_{1} and the set of (P)-homomorphisms f’
that are projectively equivalent to f.

PROOF. The uniqueness is clear from Lemma 3. 3. We prove the
existence. We define a linear map f_{1}’ : \mathfrak{l}arrow \mathfrak{g}_{1} by

f_{1}’(X)=f_{1}(X)+[ \xi,f_{0}(X)]+\frac{1}{2}[\xi, [\xi,f_{-1}(X)]]

for X\in \mathfrak{l} , and set f’=f_{-1}’+f_{0}’+f_{1}’ : \mathfrak{l}arrow \mathfrak{g} . Then direct calculations show that
f’ is a Lie algebra homomorphism and satisfies the desired conditions. By
Lemma 2. 14, it follows that the correspondence \xi\mapsto f’ is a bijective map from
\mathfrak{g}_{1} to the set of (P)-homomorphisms that are projectively equivalent to f.

q. e . d .
Proof of Proposition 4. 2. Let f be a (P)-homomorphism. We denote

by \xi^{k}(k=1, \cdots, n) the (n+1, n+1) -component of -f(X_{k}) and we set \xi=

(\xi^{1_{ }},\cdots, \xi^{n})\in \mathfrak{g}_{1} . Using f and \xi , we construct a (P)-homomorphism f’ as in
Lemma 4. 4. Then it is easy to check that the (n+1, n+1) -component of

f’(X_{k}) is zero for k=1 , \cdots , n , i . e. , f ’ is an (N)-homomorphism. The unique-
ness is evident. q. e . d .

As applications of Proposition 4. 2, we prove the following two prop0-

sitions.

PROPOSITION 4. 5. Every IFPS on reductive homogeneous space
admits an invariant affiffiffine connection.

PROOF. Since M=L/K is reductive, we can choose the complementary
subspace nt satisfying [f, \mathfrak{m}]\subset \mathfrak{m} . Let f be the (N)-homomorphism cor-
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responding to the given projective structure. For X\in \mathfrak{m} and Y\in f , the matrix
f(X) and f(Y) are expressed in the form:

f(X)=(\begin{array}{ll}f_{0}(X) f_{-1}(X)f_{1}(X) 0\end{array}) \}\}1n

and f(Y)=(\begin{array}{lll}h(Y) 0 g(Y) -Tr h(Y)\end{array})

By a direct calculation, the (n+1, n+1) -component of [f(Y),f(X)] is g(Y) .
f_{-1}(X) and the (n+1, n+1) -component of f [Y, X] is zero since [7, X]\in \mathfrak{m} .
Therefore g(Y)\cdot f_{-1}(X)=0 for all X\in \mathfrak{m} and Y\in f . Since f_{-1}(X) takes any
value of \mathfrak{g}_{-1} , we have g(Y)=0 for all Y\in f , i . e. , f satisfies condition (A).
Thus by Corollary 3. 6, M=L/K admits an invariant affine connection be-
longing to the given projective structure. q . e . d .

PROPOSITION 4. 6. Let M=L/K be a reductive homogeneous space and
let nt be a complementary subspace of f in \mathfrak{l} such that [\mathfrak{m}, f]\subset \mathfrak{m} . Suppose
that M satisfies the following conditions:

1) Tr\rho_{0}(Y)=0 for all Y\in f,
2) \mathfrak{m}=\{\Sigma\rho_{0}(Y)\cdot X|Y\in f, X\in \mathfrak{m}\} .

Then any {A) -homomorphism f is an {N) -homomorphism. In particular
every IFPS on M admits a unique invariant affme connection.

PROOF. The latter part of this proposition follows from the uniqueness
of an (AO -homomorphism in Proposition 4. 2. Let f be an (A)-homomorphism.
Then for X\in \mathfrak{m} and Y\in f , the matrix f(X) and f(Y) are expressed in the
form :

f(X)=(\begin{array}{lll}g(X) f_{-1}(X) f_{1}(X) -Tr g(X)\end{array}) \}\}n_{J}1-

f(Y)=(\begin{array}{ll}\rho_{0}(Y) 00 0\end{array})

The (n+1, n+1) -component of [f(Y),f(X)] is zero and hence the (n+1,
n+1) -component of f[Y, X] is zero. By condition 2), the elements of the
form [ Y, X] ( Y\in f, X\in \mathfrak{n}\tau) span \mathfrak{m} . Therefore the (n+1, n+*) -component of
f(X) is zero for X\in \mathfrak{m} , i . e. , f is an (AO -homomorphism. q . e . d .

Note that irreducible Riemannian symmetric spaces satisfy the coditions
in Proposition 4. 6. As an another application of Proposition 4. 2, we prove
the following theorem.

THEOREM 4. 7. Let M=L/K be a homogeneous space such that Tr
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\rho_{0}(Y)=0 for all Y\in f, and admits a projectively flat invariant affiffiffine con-
nection. Let f be the corrcsponding (A)-homomorphism. If f satisfifies
condition (N), the homogeneous space M\cross R^{1}=L\cross R^{1}/K\cross\{e\} (or M\cross S^{1}=

L\cross S^{1}/K\cross\{e\}) admits an invariant (affiffiffinely) flat affiffiffine connection.

PROOF. Let \mathfrak{l}\oplus R be the direct sum of two Lie algebras \mathfrak{l} and R and
let \{Z\} be a base of R. We have only to construct a \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued (A)-

homomorphism \tilde{f}:\mathfrak{l}\oplus Rarrow \mathfrak{g}=\mathfrak{s}\mathfrak{l}(n+2, R) (cf. Theorem 3. 7). Since f is an
{N) -homomorphism and Tr\rho_{0}(Y)=0 for Y\in f , the matrix f(X)(X\in \mathfrak{l}) is
expressed in the form:

f(X)=(\begin{array}{ll}f_{0}(X) f_{-1}(X)f_{1}(X) 0\end{array}) \}1\}n for X\in\downarrow .

We define a linear map \tilde{f}:\mathfrak{l}\oplus Rarrow 8\mathfrak{l}(n+2, R) by

\tilde{f}(X)=(\begin{array}{lll}f_{0}(X) f_{-1}(X) f_{-1}(X)f_{1}(X) 0 00 0 0\end{array})\}1 for X\in\downarrow .

and \tilde{f}(Z)=\{

\frac{1}{n+2,0},

I_{n}0 \frac{10}{n+2,0}, - \frac{n+1}{n+\sim 9})10

Then it is easily checked that \tilde{f} is a Lie algebra homomorphism satisfying
condition (A). Obviously \tilde{f} is \mathfrak{g}_{-1}+\mathfrak{g}_{0}-valued. q . e . d .

Note that if M is a Lie group (i. e., K=\{e\}) or satisfies the conditions
in Proposition 4. 6, then the conditions in Theorem 4. 7 are fulfilled.

In the rest of this section we assume that a homogeneous space M=L/K
satisfies one of the following conditions:

A) K=\{e\} , i . e. , M is a Lie group.
B) M=L/K is reductive and Tr\rho_{0}(Y)=0 for all Y\in\not\in .

(In this case we assume that a complementary space nt satisfies [\mathfrak{n}t, f]\subset \mathfrak{m} .)
Then by Corollary 3. 2 and Proposition 4. 5, every IFPS on M admits

an invariant affine connection and in the proof of Proposition 4. 5, we showed
that every (TV)-homomorphism is necessarily an (A)-homomorphism. In
particular the restriction of an (N)-homomorphism f to f is a direct sum
of the linear isotropy representation \rho_{0} of M=L/K and the l-dimensional
trivial representation, i . e. ,
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(4. 1) f(Y)=\rho_{0}(Y)=(\begin{array}{ll}\rho_{0}(Y) 00 0\end{array}) \}1\}n for Y\in ft

Let f be a representation of \mathfrak{l} with degree n+1 . We assume that fis 31 (n 1, iJ) -valued. The following proposition enables us to decide whether
the equivalence class of the Lie algebra representation f contains an (N)-
homomorphism.

PROPOSITION 4. 8. Let f:\mathfrak{l}arrow 6\mathfrak{l}(n+1, R) be a Lie algebra homomor-
phism such that the restriction of f to f is a direct sum of \rho_{0} and the 1-
dimensional trivial representation (i. e. , f(Y) is expressed in the form (4. 1)
for Y\in f).

(1) Let P be an element of GL\{n 1,R). If P^{-1}fP:\mathfrak{l}arrow \mathfrak{g} satisfifies
condition (N), there exists an element v of R^{n+1} such that P=(f(X_{1})v, \cdots ,
f(X_{n})v, v) and Pf(Y)=f(Y)P for all Y\in\not\in (Note that f(X_{k})v is a column
n-vector for k=1 , \cdots , n).

(2) For v\in R^{n+1}, we defifine an (n+1, n+1) -matrix P by P=(f(X_{1})v,
\ldots,f(X_{n})v, v) . If detP\neq 0 and Pf(Y)=f(Y)P for all Y\in f, then P^{-1}fP :

\mathfrak{l}arrow \mathfrak{g} satisfifies condition (N) (and hence satisfies condition (A)).

PROOF. (1) If P^{-1}fP:\mathfrak{l}arrow \mathfrak{g} is an ( N_{1}^{\backslash } -homomorphism, we have P^{-1}f

(X_{k})Pa_{n+1}=a_{k} for k=1 , \cdots , n . We set v=Pa_{n+1}\in R^{n+1} . Then we have
f(X_{k})v=Pa_{k} . Therefore P=(Pa_{1}, \cdots, Pa_{n}, Pa_{n+1})=(f(X_{1})v, \cdots, f\{Xn)v,v) .
Since P^{-1}fP is an (A)-homomorphism, we have P^{-1}f(Y)P=\rho_{0}(Y)=f(Y) for
Y\in\not\in and hence f(Y)P=Pf(Y) .

(2) Since Pf(Y)=f(Y)P for all Y\in f , we have P^{-1}f(Y)P=f(Y)=
\rho_{0}(Y) . For k=1 , \cdots , n , we have f(X_{k})Pa_{n+1}=f(X_{k})v=Pa_{k} and hence P^{-1}fP

is an (N)-homomorphism. q. e . d .
Using this proposition we can determine the number of (N) -homomor-

phisms for many classes of homogeneous spaces. We carry out this pr0-
cedure in \S 5, 6, 7 and 8.

PROPOSITION 4. 9. Let f:\mathfrak{l}-
\mathfrak{g} be an (N)-homomorphism. If the linear

isotropy representation \rho_{0} : farrow \mathfrak{g}_{0} of M=L/K does not contain a l-dir\eta ensional

trivial representation (i. e. , if \rho_{0}(Y)w=0 for all Y\in f, then w=0\in R^{n}), an
(N)-homomorphism which is equivalent to f (as a representation) is neces-
sarily identical to f.

PROOF. Let P be an element of GL(n+1, R) . If P^{-1}fP:\mathfrak{l}arrow \mathfrak{g} satisfies
condition (N), we have, by Proposition 4. 8, P=(f(X_{1})v, \cdots,f(X_{n})v, v) for
some v\in R^{n+1} . We write {}^{t}v=(^{t}x, y) where x\in R^{n} and y\in R^{1} . Since f(Y)
is expressed in the form (4. 1) for Y\in f , the n+1 -th column vector of
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f(Y)P is t(^{t}(\rho_{0}(Y)x), 0) and the n+1 -th column vector of Pf(Y) is zero.
Thus \rho_{0}(Y)x=0 for all Y\in f . Since \rho_{0} does not contain a l-dimensional
trivial representation, we have x=0 and hence v=^{\iota}(0, y) . Therefore P=
(f(X_{1})v, \cdots,f(X_{n})v, v)=y(f(X_{1})a_{n+1}, \cdots,f(X_{n})a_{n+1}, a_{n+1})=y\cdot I_{n+1} and we have
P^{-1}fP=f if det P\neq 0 . q . e . d .

\S 5. The case M=SO(3) and SL(2, R)

In the rest of this paper we shall determine the number of IFPS on
many classical simple Lie groups and on the classical irreducible Riemannian
symmetric spaces. In \S 5, 6 and 7 we shall treat the case where M is
a simple Lie group (i . e. , K=\{e\} and \mathfrak{l} is real simple).

The following proposition is already known.

PROPOSITION C (\backslash Matsushima -Okamoto [9]). Let L be a real semi-simple
Lie group. Then L does not admit a left invariant torsionfree {affinely)

f or affine connection.

For the proof of this proposition, see [9].

Let \mathfrak{l} be an n-dimensional real semi-simple Lie algebra. We fix a base
\{X_{1}, \cdots, X_{n}\} of \mathfrak{l} once for all. The following proposition and its corollary
play an important role in our argument.

PROPOSITION 5. 1. Let \mathfrak{l} be an n-dimensional real semi-simple Lie
algebra and let f:\mathfrak{l}arrow \mathfrak{g} be an (N)-homomorphism (i. e. , f(X_{k})a_{n+1}=a_{k} for
k=1 , \cdots , n) . We decompose the representation f to real irreducible com-
ponents f=f_{1}\oplus\cdots\oplus f_{k} . Then none of f_{i} is a 1-dimensinal {trivial) repre-
sentation.

PROOF. We assume that f contains a 1-dimensional trivial representa-
tion. We define invariant subspaces W_{1} and W_{2} by

W_{1}=\{v\in R^{n+1}|f(X)v=0 for all X\in \mathfrak{l}\} ,

W_{2}= \{\sum_{k}f(Z_{k})v_{k}|Z_{k}\in \mathfrak{l} , v_{k}\in R^{n\dagger 1}\}

Since \mathfrak{l} is semi-simple, we have R^{n\dagger 1}=W_{1}\oplus W_{2} (direct sum) and by the as-
sumption we have W_{1}\neq 0 . Since f is an (\^A)-homomorphism, W_{2} contains
the space \{a_{1^{ }},\cdots, a_{n}\} . Therefore we have W_{2}=\{a_{1}, \cdots, a_{n}\} and dim W_{1}=1 .
Since W_{2} is an invariant subspace of f, f(X_{k})a_{m}\in W_{2} for k, m=1 , \cdots , n,
i . e. , f(X_{k}) is expressed in the form

f(X_{k})=(\begin{array}{ll}* *0 0\end{array}) \}n\}1 for k=1, \cdots , n ,
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and Hence f is a \mathfrak{g}_{-1}+\mathfrak{g}_{0} valued (A)-homomorphism. Then by Theorem 3. 7,
a Lie group L with Lie algebra \mathfrak{l} admits an left invariant flat affine connec-
tion, which contradicts to Proposition C. q . e . d .

Since a 1-dimensional representation of \mathfrak{l} is a trivial representation, we
have

COROLLARY 5. 2. In the same situation as Proposition 5. 1, the com-
plexification f^{c} : \mathfrak{l}^{c}arrow \mathfrak{g}^{c}=@\mathfrak{l}(n+1, C) of f does not contain a l-dimensional
representation.

Using the above proposition we shall study the case L=SO(3) . We
fix the base \{X_{1}, X_{2}, X_{3}\} of \mathfrak{o}(3) by

X_{1}=(\begin{array}{lll}0 1 0-1 0 00 0 0\end{array}),\cdot X_{2}=(\begin{array}{lll}0 0 10 0 0-1 0 0\end{array}) and X_{3}=(\begin{array}{lll}0 0 00 0 10 -1 0\end{array})

We define a Riemannian metric g on SO(3) by g(X_{i}, X_{j})=\delta_{ij} . Then the
Riemannian connection determined by g is a bi -invariant connection \nabla_{X}Y=

\frac{1}{2}[X, Y] for X, Yarrow=\mathfrak{o}(3) and (SO (3) g) is a space of (positive) constant

curvature. Hence the left invariant projective structure defined by \nabla is
projectively flat. The Lie algebra homomorphism corresponding to this
bi -invariant connection is given by

f(X_{1})=\{\begin{array}{llll} 1 \frac{1}{2} -\frac{1}{2} -\frac{1}{4} \end{array})

,

(5. 1) f(X_{2})=\{\begin{array}{llll} -^{\frac{1}{2}} 1\frac{1}{2} -\frac{1}{4} \end{array})

,
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f(X_{3})=\{ - \frac{1}{2}\frac{1}{2}-\frac{1}{4}1]

Obviously f satisfies condition (N) and it is easily checked that f is a real
irreducible representation. We shall prove the following.theorem.

THEOREM 5. 3. Let f : \mathfrak{o} (3)arrow \mathfrak{g}=3\mathfrak{l}(4, R) be an (N)-homomorphism.

Then f is given by (5. 1). In particular M=SO(3) admits a unique IFPS.

To prove this theorem we shall review the theory of Cartan-Iwahori
concerning real irreducible representations of real semi-simple Lie algebras.

For the notations and the terminology which we use in the following, see
Iwahori [4].

The rank of \mathfrak{o}(3) is 1. Let \{\rho_{1}\} be the fundamental system of irreducible
representations of \mathfrak{o}(3) given by

(5. 2) \rho_{1}(X_{1})=\frac{1}{2} (-1 1)
,

\rho_{1}(X_{2})=\frac{\sqrt{-1}}{2} (-1 -1)
,

\rho_{1}(X_{3})=\frac{\sqrt{-1}}{2} (1 -1)

Let \Lambda be the highest weight of \rho_{1} and let \rho_{m} ( m is a non-negative integer)

be the irreducible complex representation with highest weight mA. Note
that the degree of \rho_{m} is m+1 . By an easy calculation \rho_{m} is self-conjugate
for all m and the index of \rho_{m} is (-1)^{m} . Hence if m is even, [\rho_{m}]\in C_{m+1}^{I}(\mathfrak{l})\cong

R_{m+1}^{I}(\mathfrak{l}) and if m is odd, [\rho_{m}]\in C_{m+1}^{II}(\mathfrak{l})=C_{m+1}^{II}(\mathfrak{l})\cong R_{2m+2}^{II}(\mathfrak{l}) . Therefore the degrees

of real irreducible representations of \mathfrak{o}(3) are given by 1, 3, 4, 5, 7, 8, \cdots . Ry
Proposition 5. 1, any homomorphism f’ : \mathfrak{o}(3)arrow 6\mathfrak{l}(4, R) which satisfifies con-
dition (N) is necessarily equivalent (as a representation) to the real irreducible
representation (5. 1). By an easy calculation we have

Lemma 5. 4. Let f be an (N)-homomorphism (5. 1) and let v be an
element of R^{4} . We defifine a (4, 4) -matrix P by P=(f(X_{1})v,f(X_{2})v,f(X_{3})v, v) .
Then f(X_{k})P=Pf(X_{k}) for k=1,2,3 .

Therefore by Proposition 4. 8, (5. 1) is the unique (N)-homomorphism

for \mathfrak{l}=\mathfrak{o}(3) and we complete the proof of Theorem 5. 3.
Next we shall study the case M=SL(2, R) . We fix the base \{X_{1}, X_{2}, X_{3}\}

of \mathfrak{l}=6\mathfrak{l}(2, R) by
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X_{1}=(\begin{array}{ll}1 00 -1\end{array}) : X_{2}= (\begin{array}{ll}0 10 0\end{array}) and X_{3}=(\begin{array}{ll}0 01 0\end{array})

We define a pseud0-Riemannian metric g by g(X, Y)=TrXY for X, Y\in

6\mathfrak{l}(2, R) . Then (SL(2, R), g) is a space of constant curvature and hence
the Levi-Civita connection \nabla_{X}Y=\frac{1}{2}[X, Y](X, Y\in 6\mathfrak{l}(2, R)) is projectively
flat. The corresponding Lie algebra homomorphism f:6\mathfrak{l}(2, R)arrow \mathfrak{g}=@\mathfrak{l}(4, R)

is given by

f(X_{1})=(\begin{array}{llll}0 0 0 10 1 0 00 0 -1 01 0 0 0\end{array}\}

,

(5. 3) f(X_{2})=\{\begin{array}{llll}0 0 \frac{1}{2} 0-1 0 0 10 0 0 00 0 \frac{1}{2} 0\end{array})

,

f(X_{3})=

/

0001- \frac\frac{1}{22001} 0000 00)_{1}10

Obviously f satisfies condition (N). Let \{a_{1}, a_{2}, a_{3}, a_{4}\} be the canonical base
of R^{4} . Then \{a_{1}+a_{4}, a_{3}\} and \{a_{1}-a_{4}, a_{2}\} are invariant subspaces of f and

f is equivalent to the direct sum of two real irreducible representations
with degree two.

The rank of \mathfrak{l}=@\mathfrak{l}(2, R) is 1 and the standard inclusion \rho_{1} : 8\mathfrak{l}(2, R)arrow

\mathfrak{g}\mathfrak{l}(2, C) forms the fundamental system of irreducible representations. Let
\Lambda be the highest weight of \rho_{1} and let \rho_{\tau n} (m be a non-negative integer) be
the irreducible complex representation of 8\mathfrak{l}(2, R) with highest weight mA.
The degree of \rho_{m} is m+1 . By an easy calculation \rho_{m} is self-conjugate and
the index of \rho_{m} is 1 for all m. Therefore [\rho_{m}]\in C_{m+1}^{I}(\mathfrak{l})\equiv R_{m+1}^{I}(\mathfrak{l}) for m=0,
1, 2, \cdots , and \hat{C}_{N}^{II}(\mathfrak{l})\cong R_{2N}^{II}(\mathfrak{l})=\phi and hence for each positive integer k, S\mathfrak{l}(2, R)

has a unique equivalence class of real irreducible representations with degree
k. If f:\mathfrak{l}arrow \mathfrak{g}=\mathfrak{s}\mathfrak{l}(4, R) satisfies condition (N), then by Proposition 5. 1, f
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is equivalent to the real irreducible representation or the direct sum of two

real irreducible representations with degree two. If f is not real irreducible,

f is equivalent (as a representation) to (5. 3). In this case we have

Lemma 5. 5. Let f be the homomorphism (5. 3). For v\in R^{4}, we set
P=(f(X_{1})v,f(X_{2})v,f(X_{3})v , v) . Then we have f(X_{k})P=Pf(X_{k}) for k=1,2
and 3.

The proof is easy. Therefore by Proposition 4. 8, an (N) -homomor-
phism which is not real irreducible uniquely exists and it is the homomor-
phism (5. 3).

Next we shall study the case where f is real irreducible. Let f be
a real irreducible representation of 81 (2, R) with degree four given by

f(X_{1})=(\begin{array}{llll}3 1 -1 -3\end{array})

,

(5. 4) f(X_{2})=(\begin{array}{llll}0 3 0 4 0 3 0\end{array})

,

f(X_{3})=(\begin{array}{llll}0 1 0 1 0 1 0\end{array})

In this case the similar result as in Lemma 5. 5 does not hold. Indeed
there are many (AO -homomorphisms which are equivalent to (5. 4). In the
following we shall identify two (AO -homomorphisms f_{1} and f_{2} which are
equivalent to (5. 4) if two invariant affine connections \chi_{1} and \chi_{2} corresponding
to f_{1} and f_{2} are mapped to each other by an automorphism of L=SL(2, R) .
Under this identification we shall determine the number of (N) -homomor-
phisms which are equivalent to (5. 4). For this purpose we review the
general theory.

Let \tilde{\phi}:Larrow L be an automorphism of L and \phi:\mathfrak{l}arrow \mathfrak{l} be an induced
isomorphism. \phi is expressed in the matrix form with respect to the base
\{X_{1^{ }},\cdots, X_{n}\} of \mathfrak{l} . Let \nabla be a projectively flat invariant affine connection on
L and \tilde{\phi}^{*}\nabla be the induced connection by \phi . Then \tilde{\phi}^{*}\nabla is also invariant and
projectively flat. Let f (resp. f_{\phi}) be the (N)-homomorphism corresponding
to \nabla (resp. \tilde{\phi}^{*}\nabla). Then by an easy calculation f_{\phi} is expressed in the form
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(5. 5) f_{\phi}(X)=(\begin{array}{ll}\phi 00 1\end{array})(f\circ\phi(X)) (\begin{array}{ll}\phi 00 1\end{array}) for X\in \mathfrak{l} .

Note that \phi is expressed in the matrix form and hence

(\begin{array}{ll}\phi 00 1\end{array})\in GL(n+1, R)1

We say that f is transformed into f_{\phi} by \phi and two (\^A)-homomorphisms f
and g are called a-equivalent if there is an automorphism \tilde{\phi} of L such
that f_{\phi}=g . Obviously a-equivalence is an equivalence relation. Let f be the
(N)-homomorphism (5. 3). Then we have f_{\phi}=f for all automorphisms \phi

of \mathfrak{l}=8\mathfrak{l}(2, R) .
In the case of L=SL(2, R) it is known that any automorphism of

\mathfrak{l}=@\mathfrak{l}(2, R) is induced by an automorphism of SL(2, R) . We shall determine
the number of a-equivalence classes of (AO -homomorphisms which are
equivalent to (5. 4).

We denote by A(\mathfrak{l}) and I(\mathfrak{l}) the automorphism group and the inner
automorphism group of \mathfrak{l} respectively. It is well known that for \mathfrak{l}=6\mathfrak{l}(2, R)

the order of the factor group A(\mathfrak{l})/I(\mathfrak{l}) is two (Murakami [10]). The typical
outer automorphism \psi of \mathfrak{l}=@\mathfrak{l}(2, R) is given by

(5. 6) \psi(X_{1})=X_{1}
,\cdot

\psi(X_{2})=-X_{2} and \psi(X_{3})=-X_{3} .

We define v_{1} and v_{2}\in R^{4} by v_{1}=t(1, 0, \frac{1}{2} , 0) and v_{2}=(t1,0, - \frac{1}{2} , 0),

and we set P_{k}\in GL(4, R)(k=1,2) by P_{k}=(f(X_{1})v_{k},f(X_{2})v_{k},f(X_{3})v_{k}, v_{k}) where

f is the homomorphism (5. 4). We define homomorphisms g_{1} , g_{2} : 8\mathfrak{l}(2, R)arrow

6\mathfrak{l}(4, R) by g_{k}(X)=P_{k}^{-1}f(X)P_{k} for X\in 6\mathfrak{l}(2, R) , k=1,2 . Then g_{1} and g_{2} satisfy
condition (N). The explicit form of g_{1} and g_{2} are given by

g_{1}(X_{1})=\{\begin{array}{llll}2 0 0 10 1 2 00 0 -3 03 0 0 0\end{array}),g_{1}(X_{2})=(\begin{array}{llll}0 \frac{3}{2} 0 0-1 0 0 10 0 0 00 \frac{3}{2} 3 0\end{array})

,
(5. 7)

g_{1}(X_{3})=(\begin{array}{llll}0 -1 -\frac{1}{2} 02 0 0 0-1 0 0 10 3 \frac{3}{2} 0\end{array})
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g_{2}(X_{1})=(\begin{array}{llll}2 0 0 10 1 -2 00 0 -3 03 0 0 0\end{array}),g_{2}(X_{2})=\{\begin{array}{l}0-\frac{3}{2}-1 00 00-\frac{3}{2}\end{array} 0003 0001|,\cdot

(5. 8)

g_{2}(X_{3})=\{\begin{array}{llll}0 -1 \frac{1}{2} 0-2 0 0 0-1 0 0 10 3 -\frac{3}{2} 0\end{array})

.

Then we have

PROPOSITION 5. 6. Let g : @1 (2, R)arrow@\mathfrak{l}(4, R) be a real irreducible re-
presentation satisfying condition (N). Then g is a-equivalent to g_{1} or g_{2} .
g_{1} is not a-equivalent to g_{2} .

For the proof of this proposition we prepare several lemmas. Let H
be the set of all real irreducible representations f:6\mathfrak{l}(2, R)arrow 6\mathfrak{l}(4, R) satisfying
condition (N). For v=^{t}(x,y, z, u)\in R^{4} we have det (f(X_{1})v,f(X_{2})v,f(X_{3})v, v)

=2(18aiyzu-9x^{2}u^{2}-8xz^{3}-6y^{3}u+3y^{2}z^{2}) where f is the homomorphism (5. 4).
We denote by 2F(v)=2F(x, y, z, u) the right-hand side of the above equality
and we set

W^{0}=\{v\in R^{4}-\{0\}|F(v)=0\}rightarrow,

W^{+}=\{v\in R^{4}|F(v)>0\}\neg
,

W^{-}=\{v\in R^{4}|F(v)<0\}

and W^{\pm}=W^{+}\cup W^{-}

Then by Proposition 4. 8 (2) we can define a map \tilde{\Phi} : W^{\pm}arrow H by
\Phi(v)(X)=P^{-1}f(X)P for v\in W^{\pm} and X\in 6\mathfrak{l}(2, R) where P=(f(X_{1})v,f(X_{2})v ,
f(X_{3})v, v) . By Proposition 4. 8 (1) \tilde{\Phi} is a surjective map. Let \pi : R^{4}-\{0\}arrow

P^{3}(R) be the natural projection. We set

P^{3}(R)^{0}=\pi(W^{0}) ,

P^{3}(R)^{+}=\pi(W^{+}) ,

P^{3}(R)^{-}=\pi(W^{-})

and P^{3}(R)^{\pm}=P^{3}(R)^{+}\cup P^{3}(R)^{-}
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Then P^{3}(R)^{+} and P^{3}(R)^{-} are connected open subsets of P^{3}(R) and P^{3}(R)

is a disjoint union of P^{3}(R)^{+} , P^{3}(R)^{-} and P^{3}(R)^{0}. For k\in R-\{0\} we have
\tilde{\Phi}(kv)=\tilde{\Phi}(v)(v\in W^{\pm}) and hence \Phi induces the map \Phi : P^{3}(R)^{\pm}arrow H.

Lemma 5. 7. The map \Phi is bijective.
PROOF. We have only to prove that \Phi is injective. Let v, w be

elements of W^{\pm} . We assume that \tilde{\Phi}(v)=\tilde{\Phi}(w) , i . e. , P_{v}^{-1}f(X)P_{v}=P_{w}^{-1}f(X)P_{w}

for X\in \mathfrak{l} where

P_{v}=(f(X_{1})v,f(X_{2})v,f(X_{3})v, v)

and P_{w}=(f(X_{1})w,f(X_{2})w,f(X_{3})w, w)

Since the complexification f^{c} of f is a complex irreducible representation, we
have by Schur’s lemma P_{v}=\alpha P_{w} for some \alpha\in C-\{0\} . Since v and w are
real vectors, we have \alpha\in R-\{0\} and v=\alpha w . Hence \pi(v)=\pi(w)\in P^{3}(R)^{\pm} ,
i . e. , \Phi is injective. q. e . d .

By definition we have \tilde{\Phi}(v_{k})=g_{k} for k=1,2 and hence \Phi^{-1}(g_{1})\in P^{3}(R)^{-}

and \Phi^{-1}(g_{2})\in P^{3}(R)^{+} By an easy calculation we have
Lemma 5. 8. Let \psi be the outer automorphism (5. 6). Then we have

(g_{k})_{\psi}=g_{k} for k=1,2 . Accordingly we have (g_{k})_{\psi\phi}=(g_{k})_{\phi}(k=1,2) for any
inner automorphism \phi 0.f 6\mathfrak{l}(2, R) .

By this lemma any real irreducible (N)-homomorphism which is a-
equivalent to g_{k}(k=1,2) can be obtained by transforming g_{k} by an inner
automorphism of \mathfrak{s}\mathfrak{l}(2, R) .

For v\in W^{\pm} we define a (4, 4) -matrix P_{v} by P_{v}=(f(X_{1})v,f(X_{2})v,f(X_{3})v, v)

were f is the homomorphism (5. 4). We transform the (N)-homomorphism
P_{v}^{-1}fP_{v} by the inner automorphism Ad A^{-1} : @1 (2, R)arrow@\mathfrak{l}(2, R)(A\in SL(2, R)) .
We denote by f_{A} : \mathfrak{s}\mathfrak{l}(2, R)arrow 6\mathfrak{l}(4, R) the transformed (JV)-homomorphism.
Let \tilde{f}:SL(2, R)arrow SL(4, R) be the Lie group homomorphism given by

(5. 9) \tilde{f} (\begin{array}{ll}a bc d\end{array})=(\begin{array}{llll}a^{3} 3a^{2}b 6ab^{2} 6b^{3}a^{2}c a^{2}d+2abc 2b^{2}c+4abd 6b^{2}d\frac{1}{2}ac^{2} \frac{1}{2}bc^{2}+acd ad^{2}+2bcd 3bd^{2}\frac{1}{6}c^{3} \frac{1}{2}c^{2}d cd^{2} d^{3}\end{array})

for (\begin{array}{ll}a bc d\end{array})\in SL(2, R) .

The differential of \tilde{f} is nothing but the Lie algebra homomorphism (5. 4).
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Obviously we have f\circ AdA^{-1}=Ad\tilde{f}(A)^{-1}f : @1 (2, R)arrow@\mathfrak{l}(4, R) for A g5L(2, R) .
Thus by the formula (5. 5) we have

f_{A}(X)=(Ad A^{-1} 1 |) -1(P_{v}^{-1}f(AdA^{-1}\cdot X)P_{v}) (Ad A^{-1} 1)

–(Ad A^{-1} 1)(P_{v}^{-1}(Ad\tilde{f}(A)^{-1}f(X))P_{v}) (Ad A^{-1} 1)

=(Ad A^{-1} 1) -1(P_{v}^{-1}\tilde{f}(A)^{-1}f(X)\tilde{f}(A)P_{v}) (Ad A^{-1} 1)

for X\in 6\mathfrak{l}(2, R) . Note that Ad A^{-1} is expressed in the matrix form with
respect to the base \{X_{1}, X_{2}, X_{3}\} of 6\mathfrak{l}(2, R) . We set

Q=\tilde{f}(A)P_{v}(^{AdA^{-1}}1)\backslash

Then f_{A}=Q^{-1}fQ and by Proposition 4. 8 (1) Q is expressed in the form
Q=(f(X_{1})w,f(X_{2})w,f(X_{3})w, w) for some w\in R^{4} . Since the fourth column
vector of Q is \tilde{f}(A)v , we have w=\tilde{f}(A)v\in W^{\pm} and hence \Phi([\tilde{f}(A)v])=f_{A}

where [\tilde{f}(A)v] is the element of P^{3}(R)^{\pm} determined by \tilde{f}(A)v\in W^{\pm} . By
Lemma 5. 7 and Lemma 5. 8, we have

Lemma 5. 9. Let v, w\in W^{\pm} . Then \Phi([v]) is a-equivalent to \Phi([w])

if and only if [w]=[\tilde{f}(A)v] for some A g5L(2, R) .

We define a left action of SL(2, R) on P^{3}(R) by \Psi(A)[v]=[\tilde{f}(A)v]\in P^{3}(R)

for A\in SL(2, R) and [v]\in P^{3}(R) . Then for any A\in SL(2, R) , \Psi(A) preserves
the connected open subsets P^{3}(R)^{+} and P^{3}(R)^{-} . By Lemma 5. 7 and Lemma
5. 9 the number of a-equivalence classes is equal to the number of orbit
spaces of P^{3}(R)^{\pm} . Since \Phi^{-1}(g_{1})=[v_{1}]\in P^{3}(R)^{-} and \Phi^{-1}(g_{2})=[v_{2}]\in P^{3}(R)^{+}jg_{1}

is not a-equivalent to g_{2} (Lemma 5. 9). Thus in order to prove Proposition
5. 6, we have only to show the following lemma.

Lemma 5. 10. The orbital decomposition of P^{3}(R)^{\pm} by SL(2, R) is given
by P^{3}(R)^{\pm}=P^{3}(R)^{+}\cup P^{3}(R)^{-}

PROOF. For v\in R^{4}-\{0\} we define a map \psi_{v} : SL(2, R)arrow P^{3}(R) by
\psi_{v}(A)=[\tilde{f}(A)v] for A\in SL(2, R) . Then it is easy to check that the rank
of the map \psi_{v} at \^e SL\{2 ,R) is three if and only if [v]\in P^{3}(R)^{\pm} . Therefore
the orbit space of P^{3}(R)^{\pm} is open and connected. Since P^{3}(R)^{+} and P^{3}(R)^{-}

are open and connected, the orbital decomposition of P^{3}(R)^{\pm} is given by
P^{3}(R)^{+}\cup P^{3}(R)^{-}- q. e . d .

By Lemma 5. 5 and Proposition 5. 6, we have
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THEOREM 5. 11. We identify two left invariant flat projective struc-
tures [\nabla] and [\nabla’] on SL(2, R) if [\tilde{\phi}^{*}\nabla]=[\nabla’] for some automorphism \tilde{\phi} of
SL(2, R) . Then there exists three left invariant flat projective structures on
SL(2, R) . The typical (N)-homomorphisms are given by (5.3), (5.7) and (5.8).

\S 6. The case \mathfrak{l} is a real form of B_{m}, C_{m} or D_{m}

In this section we shall study the case where \mathfrak{l} is a real form of the
classical complex simple Lie algebra B_{m}=\mathfrak{o}(2m+1, C) , C_{m}=\mathfrak{s}\mathfrak{p}(m, C) or
D_{m}=\mathfrak{o}(2m, C) . The main result in this section is Theorem 6. 6 indicating
that for most of such a real simple Lie algebra an (N)-homomorphism
does not exist. Corollary 5. 2 plays an important role in the following
argument.

6. 1. The case \mathfrak{l} is a real form of B_{m}=\mathfrak{o}(2m+1, C)(m\geqq 2)

\mathfrak{l}^{c}\cong \mathfrak{o}(2m+1, C) is a complex simple Lie algebra of rank m. Let
\{\rho_{1}, \cdots, \rho_{m}\} be the fundamental system of irreducible representations of
\mathfrak{o}(2m+1, C) and let \{\Lambda_{1^{ }},\cdots, \Lambda_{m}\} be the corresponding highest weights. (We

take the standard numbering.) We denote by d( \sum_{i=1}^{m}m_{i}\Lambda_{i}) the degree of the

complex irreducible representation with highest weight \sum_{i=1}^{m}m_{i}\Lambda_{i} . Then it is

well known that

d(\Lambda_{k})=(\begin{array}{l}2m+1k\end{array}) for k=1 , \cdots , m-1

and d(\Lambda_{m})=2^{m} .

PROPOSITION 6. 1. Let \mathfrak{l} be a real form of B_{m}=\mathfrak{o}(2m+1, C)(m=2

or m\geqq 4). Then there is no (N)-homomorphism f:\mathfrak{l}arrow \mathfrak{g}=8\mathfrak{l}(n+1, R) where
n=\dim_{R}\mathfrak{l}=m(2m+1) .

PROOF. We shall show that a complex representation of \mathfrak{l}^{c} with degree
n+1 not containing a trivial representation does not exist for such a Lie
algebra.

The case m\geqq 7 . It is clear that d(\Lambda_{1})<d(\Lambda_{2})<\cdots<d(\Lambda_{m-1}) and d(\Lambda_{3}) ,
d(\Lambda_{m})>n+1 . By WeyPs formula we have d(2\Lambda_{1})=m(2m+3)>n+1 and
d(2 \Lambda_{2})=\frac{1}{3}(m+1)(m-1) (2m+1)(2m+3)>n+1 . We have also d(\Lambda_{2})+1=

n+1 . Therefore by Corollary 5. 2, the complexification f^{c} of an (N)-
homomorphism f is equivalent to the direct sum of \rho_{1} , i . e. , f^{c}=\rho_{1}\oplus\cdots\oplus\rho_{1} .
Hence if an (N)-homomorphism exists, there is a positive integer x such
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that n+1=m(2m+1)+1=x(2m+1) . But such an integer does not exist
and therefore there is no (N)-homomorphism for m\geqq 7 .

The case m\leqq 6 . The degrees of irreducible representations of \mathfrak{o}(2m+1 ,
C) less than n+1=m(2m+1)+1 are given by 1, 4, 5, 10 (for m=2), 1, 9,
16, 36 (for m=4), 1, 11, 32, 55 (for m=5) and 1, 13, 64, 78 (for m=6).
In each case there is no representation with degree n+1 not containing
a 1-dimensional representation and hence an (N)-homomorphism does not
exist for such a Lie algebra. q. e . d .

REMARK 6. 2. Let I be a real form of \mathfrak{o}(7, C) ( i. e. , the case m=3).
Then the degrees of irreducible representations of 0 (7, C) are given by 1, 7,
8, 21, 27, \cdots . In this case there exists a combination n+1=22=7+7+8
and hence in order to determine the existence or non-existence of (N)-
homomorphisms, we have to decide the self-conjugateness and the index
of \rho_{1} , \rho_{2} and \rho_{3} for each real form of \mathfrak{o}(7, C) . Next for each 22-dimensi0nal
real representation f of \mathfrak{l} not containing a 1-dimensional representation, we
construct a matrix P=(f(X_{1})v, \cdots,f(X_{22})v, v) for v\in R^{22} and determine
whether det P\neq 0 for some v\in R^{22} , which requires a considerably complicated
polynomial computations.

6. 2. The case \mathfrak{l} is a real form of D_{m}=\mathfrak{o}(2m, C)(m\geqq 4)

\mathfrak{l}^{c}\cong \mathfrak{o}(2m, C) is a complex simple Lie algebra of rank m. Let \{\rho_{1^{ }},\cdots, \rho_{m}\}

be the fundamental system of irreducible representations of o(2w, C) and let
\{\Lambda_{1}, \cdots, \Lambda_{m}\} be the corresponding highest weights. It is well known that

d(\Lambda_{k})=(\begin{array}{l}2mk\end{array}) for k=1, \cdots , m-2

and d(\Lambda_{m-1})=d(\Lambda_{m})=2^{m-1} .
PROPOSITION 6. 3. Let \mathfrak{l} be a real form of D_{m}=\mathfrak{o}(2m, C)(m=4,6 or

m\geqq 8) . Then there is no (N)-homomorphism f:\mathfrak{l}arrow \mathfrak{g}=\mathcal{B}\mathfrak{l}(n+1, R) where
n=\dim_{R}\mathfrak{l}=m(2m-1) .

PROOF. The case m\geqq 8 . We have d(\Lambda_{1})<d(\Lambda_{2})<\cdots<d(\Lambda_{m-2}) and d(\Lambda_{3}) ,
d(\Lambda_{m-1}) , d(\Lambda_{m})>n+1 . By Weyl’s formula we have d(2\Lambda_{1})=(m+1)(2m-1)>

n+1 and d(2 \Lambda_{2})=\frac{1}{3}m(m+1)(2m+1)(2m-3)>n+1 . We have also d(\Lambda_{2})+

1=n+1 . Thus if an (N)-homomorphism f:\mathfrak{l}arrow@\mathfrak{l}(n+1, R) exists, the com-
plexification f^{c} is equivalent to the direct sum of \rho_{1} , i . e. , f^{c}=\rho_{1}\oplus\cdots\oplus\rho_{1} and
hence there is a positive integer x such that n+1=m(2m-1)+1=x\cdot 2m .
But such an integer does not exist and therefore there is no (N) -hom0-
morphism for m\geqq 8 .
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The case m=4 and 6. The degrees of irreducible representations of
\mathfrak{o}(2m, C) less than n+1=m(2m-1)+1 are given by 1, 8, 28 (for m=4)
and 1, 12, 32, 66 (for m=6). Hence in each case there is no representa-
tion with degree n+1 not containing a 1-dimensional representation and
therefore an (N)-homomorphism does not exist. q . e . d .

REMARK 6. 4. For m=3, \mathfrak{o}(6, C) is isomorphic to @1 (4, C) and in \S 7
we shall show that a Lie group with Lie algebra \mathfrak{l}=\mathfrak{s}\mathfrak{l}(4, R) or \mathfrak{s}\mathfrak{u}^{*}(4) admits
a left invariant flat projective structure. For m=5, the degrees of irreducible
representations of \mathfrak{o}(10, C) are given by 1, 10, 16, 45, \cdots and in this case
there is a combination n+1=46=10+10+10+16 . For m=7, the degrees
of 0 (14, C) are given by 1, 14, 64, 91, \cdots and there is a combination n+1=
92=14+14+64. Thus we can not determine the existence or non-existence
of (AO -homomorphisms for the real form of \mathfrak{o}(10, C) or \mathfrak{o}(14, C) without
complicated computations.

6. 3. The case I is a real form of C_{m}=\mathfrak{s}\mathfrak{p}(m, C)(m\geqq 3)

\mathfrak{l}^{c}\cong@\mathfrak{p}(m, C) is a complex simple Lie algebra of rank m. Let \{\rho_{1^{ }},\cdots, \rho_{m}\}

be the fundamental system of irreducible representations of 8p(m, C) and
let \{\Lambda_{1}, \cdots, \Lambda_{m}\} be the corresponding highest weights. It is well known that
d(\Lambda_{1})=2m and

d(\Lambda_{k})=(\begin{array}{l}2mk\end{array}) – (\begin{array}{l}2mk-2\end{array}) for k=2, \cdots , m

PROPOSITION 6. 5. Let \mathfrak{l} be a real form of C_{m}=\mathfrak{s}\mathfrak{p}(m, C)(m\geqq 3) . Then
there is no (N)-homomorphism f : \mathfrak{l}arrow \mathfrak{g}=6\mathfrak{l}(n+1, R) where n=\dim_{R}\mathfrak{l}=

2m^{2}+m .
PROOF. The case m\geqq 4 . It is easy to check that d(\Lambda_{k})>n+1 for

k=3,4 , \cdots , m and by Weyl’s formula we have d(2\Lambda_{1})=2m^{2}+m=n , d(3\Lambda_{1})=

\frac{2}{3}m(m+1)(2m+1)>n+1 , d( \Lambda_{1}+\Lambda_{2})=\frac{8}{3}m(m+1)(m-1)>n+1 and d(2\Lambda_{2})=

\frac{1}{3}m(m-1)(2m-1)(2m+3)>n+1 . Hence the degrees of irreducible repre-

sentations less than n+1 are given by d(0)=1 , d(\Lambda_{1})=2m, d(\Lambda_{2})=2m^{2}-m-1

and d(2\Lambda_{1})=2m^{2}+m . If an (N)-homomorphism f exists, f^{c} is equivalent to
the direct sum of \rho_{1} and \rho_{2} , i . e. , f^{c}=\rho_{1}\oplus\cdots\oplus\rho_{1}\oplus\rho_{2}\oplus\cdots\oplus\rho_{2} . Therefore
there are non-negative integers x and y such that n+1=2m^{2}+m+1=
2xm+y(2m^{2}-m-1) . But such integers do not exist for m\geqq 4 and hence
there is no (N)-homomorphism.

The case m=3. The degrees of irreducible representations of \mathfrak{s}\mathfrak{p}(3, C)

are given by 1, 6, 14, 21, \cdots , and hence there is no 22-dimensional repre-
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sentation not containing a 1-dimensional respresentation. Therefore an (N)-

homomorphism does not exist. q. e . d .
Summarizing the above propositions, we have

THEOREM 6. 6. Let \mathfrak{l} be a real form of one of the following classical
simple complex Lie algebras :

B_{m}=\mathfrak{o}(2m+1, C) (m=2 or m\geqq 4) ,

C_{m}=\mathfrak{s}\mathfrak{p}(m, C) (m\geqq 3) ,

D_{m}=\mathfrak{o}(2m, C) (m=4,6 or m\geqq 8).

Then a Lie group L with Lie algebra \mathfrak{l} does not admit a left invariant
flat projective structure.

\S 7. The case \mathfrak{l} is a real form of \mathfrak{s}\mathfrak{l} (m, C)

Different from a real form of B_{m}, C_{m} or D_{m} , some real form of A_{m}=

6\mathfrak{l}(m, C) admits an (\^A)-homomorphism. In this section we shall prove the
following theorem.

THEOREM 7. 1. Let \mathfrak{l}=\mathfrak{s}\mathfrak{l}(m, R)(m\geqq 2) or 6t^{*}(2m)(m\geqq 2) . Then a Lie
group L with Lie algebra \mathfrak{l} admits a left invariant flat projective structure.

PROOF. By Corollary 4. 3 we have only to construct an (N) -homomor-
phism for each \mathfrak{l} .

(1) The case \mathfrak{l}=@\mathfrak{l}(m, R)(m\geqq 2) . We fix the base \{X_{1}, X_{2}, \cdots, X_{m^{2}-1}\}

of \mathfrak{l} by

X_{1}=(\begin{array}{llll}1 0 J -1\end{array})

,

X_{2}=(^{0}100

. .
0), oo , X_{m}=(\begin{array}{lll}0 .\cdot 01 0 \end{array})

.

X_{m+1}=(\begin{array}{llll}0 3\cdot\cdot o 01 o_{0} .o 0\end{array})

,

X_{m+2}=( 00.10\cdot\cdot 0)r\tau\tau oo\circ-1-0\circ 0

,

’ (’. X_{m^{2}-1}=(/o\backslash \cdot

. 1|-1
,

We shall construct an (N)-homomorphism f : @l(m, R) arrow 6\mathfrak{l}(m^{2}, R) . Note that
\dim_{R}\mathfrak{l}+1=m^{2} . Let g:\mathfrak{s}\mathfrak{l}(m, R)arrow@\mathfrak{l}(m^{2}, R) be a homomorphism defined by

g(X)=\{

X

Xo_{X}\backslash ) (m times) for X\in\S \mathfrak{l}(m, R)
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and we set P=(g(X_{1})v, \cdots, g(X_{m^{2}-1})v, v) for v={}^{t}(a_{11}, a_{12}, \cdots, a_{1m}, a_{21}, \cdots, a_{mm})\in

R^{m^{2}} . Then it is easy to see that det P=\pm m(\det(a_{ij}))^{m} . If we choose v\in R^{m^{2}}

such that det (a_{ij})\neq 0 , the homomorphism f=P^{-1}gP:\mathfrak{l}arrow 6\mathfrak{l}(m^{2}, R) satisfies
condition (N) and hence a left invariant flat projective structure exists onL.

(2) The case \mathfrak{l}=8\mathfrak{u}^{*}(2m) (m\geqq 2) . The Lie algebra \mathfrak{l}=\mathfrak{s}\mathfrak{u}^{*}(2m) is
expressed in the form:

J| (\begin{array}{ll}A B-\overline{B} \overline{A}\end{array}) |_{TrA+Tr\overline{A}=0}^{A,B\in \mathfrak{g}\mathfrak{l}(m,C)}\}

We define the elements X_{i} , Y_{ij}, Z_{ij}, S_{ij} and T_{ij} of \mathfrak{l} by

X_{i}=E_{ii}-E_{mm}+E_{m+i,m+i}-E_{2m,2m} for i=1 , \cdots , m-1 ,

X_{m-1+j}=\sqrt{-1}E_{jj}-\sqrt{-1}E_{m+j,m+j} for j=1 , \cdots , m ,

Y_{ij}=E_{ij}+E_{m+i,m+j} for 1\leqq i,j\leqq m(i\neq j) ,

Z_{ij}=\sqrt{-1}E_{ij}-\sqrt{-1}E_{m+i,m+j} for 1\leqq i,j\leqq m (i\neq j) .
S_{ij}=E_{i,m+j}-E_{m+i,j} for 1\leqq i,j\leqq m .

and T_{ij}=\sqrt{-1}E_{i,m+j}+\sqrt{-1}E_{m+i,j} for 1\leqq i,j\leqq m ,

where E_{ij} is the (2m, 2m) -matrix such that the entry at i-th row and the
j-th column is 1 and other entries are all zero. Then \{X_{i}, Y_{ij}, Z_{ij}, S_{ij}, T_{ij}\}

is a base of \mathfrak{l} . Note that \dim_{R}\mathfrak{l}=4m^{2}-1 . We define a Lie algebra hom0-
morphism g:\mathfrak{l}arrow 6\mathfrak{l}(4m^{2}, R) by

g(X)=
Im X Re X

|^{{\rm Re} X}-{\rm Im} X0O.{\rm Im} X{\rm Re} X{\rm Re} X-{\rm Im} X]0\in@\mathfrak{l}(4m^{2}, R)

for X\in \mathfrak{l} , where Re X (resp. Im X) is a real part (resp. imaginary part) of X.
We set P=(f(X_{1})v, \cdots,f(X_{2m-1})v,f(Y_{12})v, \cdots,f(Y_{m-1,m})v,f(Z_{12})v, \cdots,f(T_{mm})v, v)

for v\in R^{4m^{2}} . If v is given by

m

v={}^{t}(1, ^{0}’ \cdots, 0, 0, 1, 0, \cdots, 0, 0, 0, 1, 0, \cdots, o, \cdots, _{\frac{0,\cdot\cdot,0,1,0}{4m}}, \cdot\cdot, 0)

,
\overline{4}\overline{m}\overline{4m}\overline{4m}--

then we have det P=\pm m . Therefore f=P^{-1}gP:\mathfrak{l}arrow \mathfrak{s}\mathfrak{l}(4m^{2}, R) is an (N)-
homomorphism and hence a left invariant flat projective structure exists
on L. q. e . d .
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REMARK 7. 2. Let \nabla be the projectively flat invariant affine connection
on SL(m9 R) corresponding to the above (N) (and hence (A))-homomorphism.

If m=2, then \nabla is given by \nabla_{X}Y=\frac{1}{2}[X, Y] for X, Y\in 8\mathfrak{l}(2, R) , i . e. , the
corresponding homomorphism is (5. 3). However for m\geqq 3 , \nabla is not the
bi -invariant connection. In fact it is easily checked that the bi-invariant

affine connection given by \nabla_{X}Y=\frac{1}{\sim 9}[X, Y](X, Y\in@\mathfrak{l}(m, R)) is not projectively

flat for m\geqq 3 .

Applying Theorem 4. 7 we have

COROLLARY 7. 3. The Lie group L=SL(m9 R)(m\geqq 2) admits a left
invariant (affiffiffinely) flat affiffiffine connection.

Applying the similar method as in \S 6, we have

THEOREM 7. 4. Let L be a Lie group with Lie algebra \mathfrak{l}=8\mathfrak{u}(p, q)

such that m=p+q\geqq 3 , p\geqq q\geqq 1 and m is odd. Then L does not admit
a left invariant flat projective structure.

The proof of this theorem is quite analogous to that of Theorem 6. 6
and we left it to the reader. As for the other real forms of 81 (m, C) it is
hard to determine the existence or non-existence of (AO-homomorphisms

by using Proposition 4. 8 and Proposition 5. 1. For example the Lie algebra
\mathfrak{l}=6\mathfrak{u}(4) admits real irreducible representations with degree 1, 6, 8, 15, 20, \cdots ,
and there is a combination n+1=16=8+8. Thus in order to determine
the existence or non-existence we have to calculate the determinant of
(16, 16) -matrix P_{v} for each v\in R^{16} . But if we use the following theorem
we know that \mathfrak{l}=6\mathfrak{u}(m)(m\geqq 3) does not admit an (N)-homomorphism since
SU(m) is compact, simply connected and is not diffeomorphic to the standard
sphere for m\geqq 3 .

THEOREM D([6]) . Let M be an n-dimensional compact, simply con-
nected manifold with a flat projective structure [\nabla] . Then (M, [\nabla]) is
projectively isomorphic to the standard flat projective structure on S^{n} .

Note that \mathfrak{l}=\mathfrak{s}\mathfrak{u}(2) admits a unique (N)-homomorphism since \mathfrak{s}\mathfrak{u}(2)\cong \mathfrak{o}(3) .
For the Lie algebra \mathfrak{l}=@\mathfrak{u}(p, q) (m=p+q\geqq 4 , p\geqq q\geqq 1 and m is even), we do
not know whether I admits an (N)-homomorphism or not.
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\S 8. The case M is an irreducible Riemannian symmetric space
of the classical type

In this section we shall determine the existence or non-existence of
IFPS for each irreducible Riemannian symmetric space of the classical type.
(We assume that M is not a Lie group.) The spaces M=SO(n+1)/SO(n)
and SO_{0}(n, 1)/SO(n) (type BD II) are the spaces of constant curvature and
hence admit IFPS. We shall show that the spaces M=SL(m, R)/SO(m)
(the non-compact type of AI) and M=SU^{*}(2m)/Sp(m) (the non-compact
type of A II) also admit IFPS and the rest of (simply connected) irreducible
Riemannian symmetric spaces of the classical type do not admit IFPS.

Let M=L/K be an irreducible Riemannian symmetric space and let
\mathfrak{l}=f+\mathfrak{m} be the canonical decomposition. We fix the base \{X_{1^{ }},\cdots, X_{n}\}(n=

dim M) of \mathfrak{m} . M satisfies the following conditions.
1) The linear isotropy representation \rho_{0} : farrow \mathfrak{g}_{0} is irreducible. In

particular \mathfrak{m}=\{\sum_{a}\rho_{0}( ^{Y_{\alpha}})Z_{\alpha}|Y_{\alpha}\in f, Z_{\alpha}\in \mathfrak{m}\} .
2) Tr \rho_{0}(Y)=0 for all Y\in f .

Therefore by Proposition 4. 6 any IFPS on M admits a unique invariant
affine connection. In the following we shall decide all projectively flat invari-
ant affine connections for each irreducible Riemannian symmetric space of
the classical type. The following proposition plays an important role in our
arguments.

PROPOSITION 8. 1. Let M=L/K be an irreducible Riemannian sym-
metric space of dimension n\geqq 3 . Let \nabla be a projectively flat invariant
affiffiffine connection and f:\mathfrak{l}arrow \mathfrak{g}=@\mathfrak{l}(n+1, R) be the corresponding (N) -hom0-
morphism. Then the complexifification f^{c} : \mathfrak{l}^{c}arrow \mathfrak{g}^{c}=\mathfrak{s}1(n+1, C) is a complex
irreducible representation of \mathfrak{l}^{c} . In particular f is a real irreducible repre-
sentation of the l-st class.

To prove this proposition we use the following two lemmas.

Lemma 8. 2. Let \mathfrak{h} be a complex Lie algebra and let g : \mathfrak{h}arrow \mathfrak{g}\mathfrak{l}(m, C)

(m\geqq 2) be a complex irreducible representation of \mathfrak{h} . Then invariant sub-
spaces of the representation g\oplus 1 : \mathfrak{h}arrow \mathfrak{g}\mathfrak{l}(m+1, C) {direct sum of g and a
1 -dimensional trivial representation) are given by {0}, C^{1}, C^{m} and C^{m\dagger 1} .

Lemma 8. 3. Let \mathfrak{h} be a complex Lie algebra and let g_{k} : \mathfrak{h}arrow \mathfrak{g}\mathfrak{l}(m, C)

(k=1,2, m\geqq 2) be complex irreducible representations. Then the dimensions
of invariant subspaces of g_{1}\oplus g_{2}\oplus 1:\mathfrak{h}arrow \mathfrak{g}\mathfrak{l}(2m+1, C) are given by 0, 1, m,
m+1,2m and 2m+1 . The subspace \{a_{2m+1}\} (resp. \{a_{1} , \cdots , a_{2m}\} ) is the unique
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1-dimensional (resp. 2m-dimensional) invariant subspace, where \{a_{1^{ }},\cdots, a_{2m+1}\}

is the standard base of C^{2m+1} .

The proofs of these lemmas are easy and are left to the reader.
Proof of Proposition 8. 1. We divide the proof according as the com-

plexification \rho_{0^{c}} : f^{c}arrow \mathfrak{g}_{0^{c}}=\mathfrak{g}\mathfrak{l}(n, C) of \rho_{0} is irreducible or reducible.
(1) The case \rho_{0^{c}} is irreducible. We assume that f^{c} is reducible. Since

\mathfrak{l}^{c} is semi-simple, C^{n+1} is a direct sum of invariant subspaces V_{1} and V_{2}

( V_{k}\neq\{0\} for k=1,2). The restriction of f^{c} to f^{c} is a direct sum of \rho_{0^{c}} and
a 1-dimensional trivial representation. Note that f(Y) is expressed in the form

f(Y)=(\begin{array}{ll}\rho_{0}(Y) 00 0\end{array})

since Tr \rho_{0}(Y)=0 for Y\in I . Thus V_{1} and V_{2} are also invariant subspaces

of \rho_{0^{C}}\oplus 1 and hence by Lemma 8. 2 we have \dim_{C}V_{1}=n and \dim_{C}V_{2}=1 .
The space \{a_{n+1}\} is obviously an invariant subspace of \rho_{0^{C}}\oplus 1 and by the
uniqueness of a 1-dimensional invariant subspace we have V_{2}=\{a_{n+1}\} . Since

f is an (N)-homomorphism we have f^{c}(X_{k})a_{n+1}=a_{k}\in V_{2}=\{a_{n+1}\} for k=1 ,

\ldots , n , which is a contradiction. Therefore f^{c} is irreducible.
(2) The case \rho_{0^{c}} is reducible. It is well known that \rho_{0}^{c} is a direct

sum of two complex irreducible representations of the same degree (cf. [4]).

We set n=2m(m\geqq 2) and \rho_{0^{c}}=g_{1}\oplus g_{2} . Now we assume that f^{c} is reducible.
Then we have C^{n+1}=V_{1}\oplus V_{2} as before. The restriction of f^{c} to f^{c} is \rho_{0^{c}}\oplus 1=

g_{1}\oplus g_{2}\oplus 1 and V_{k}(k=1,2) are invariant subspaces of \rho_{0^{c}}\oplus 1 . By Lemma 8. 3
we have \dim_{C}V_{k}=1 , m, m+1 or 2m. If \dim_{C}V_{2}=1 , we have V_{2}=\{a_{n+1}\} and
a contradiction follows in the same way as above. Therefore \dim_{C}V_{1}=m+1

and \dim_{C}V_{2}=m . We assume that \{a_{n+1}\}\xi V_{1} . Then \{a_{n+1}\}\oplus V_{1} is an

m+2-dimensional invariant subspace of g_{1}\oplus g_{2}\oplus 1 which is impossible for
m_{=}^{\sim}\prime 3 . If m=2, \{a_{n+1}\}\oplus V_{1} is a 4-dimensional invar\dot{l}ant subspace and by

Lemma 8. 3 \{a_{n+1}\}\oplus V_{1}=\{a_{5}\}\oplus V_{1}=\{a_{1}, a_{2}, a_{3}, a_{4}\} which is also impossible.
Thus we have \{a_{n+1}\}\subset V_{1} . Since f is an (N)-homomorphism, f^{c}(X_{k})a_{n+1}=

a_{k}\in V_{1} for k=1 , \cdots , n and hence \{a_{1}, \cdots, a_{n}, a_{n+1}\}\subset V_{1} . It is a contradiction
and therefore f^{c} is irreducible. q. e . d .

Applying Proposition 8. 1 we can prove the non-existence of IFPS on
many irreducible Riemannian symmetric spaces.

PROPOSITION 8. 4. Let \nabla be an invariant projectively flat affiffiffine con-

nection on an irreducible Riemannian symmetric space M and let f:\mathfrak{l}arrow \mathfrak{g}

be the corresponding {N) -homomorphism. Then the induced connection
\sigma^{*}\nabla by the symmetry \sigma at 0\in M is also invariant and projectively flat.
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The corresponding homomorphism f’ is given by f’(X)=f_{-1}(X)-f_{0}(X)+f_{1}(X)

for X\in \mathfrak{m} and f’ ( Y)=f(Y) for Y\in f, where f_{p} is the \mathfrak{g}_{p} -component off. If
\nabla is identical to the canonical {Riemannian) connection on M, we have f’=f
(i. e. , f_{0}(X)=0 for X\in \mathfrak{m}).

The proof of this proposition is easy and is left to the reader.
In the following we shall determine the existence or non-existence of

IFPS for each irreducible Riemannian symmetric space of the classical type
using Proposition 8. 1. By Theorem D we have already known the non-
existence of IFPS on compact simply connected symmetric spaces which are
not diffeomorphic to the standard sphere (for example M=SO(p+q)/SO(p)\cross

SO(q) (p\geqq q\geqq 2) , SU(m)/SO(m)(m\geqq 3)) . But we shall prove the non-exist-
ence of IFPS on these spaces using the representation theory for the sake
of completeness.

(a) M=SO(n+1)/SO(n), SO_{0}(n, 1)/SO(n) (type BD II)

Since these spaces are the spaces of constant curvature, the canonical
affine connection (i . e. , Riemannian connection) is projectively flat. We shall
show that this connection is the unique projectively flat invariant affine
connection on M. Let M=SO(n+1)/SO(n)(n\geqq 2) and let \mathfrak{l}=f+\mathfrak{m} be the
canonical decomposition:

f =\mathfrak{l}_{1} (\begin{array}{ll}A 00 0\end{array}) |A\in \mathfrak{o}(n)\} ,

\mathfrak{m}=/_{1} (\begin{array}{ll}0 v-{}^{t}v 0\end{array}) |v\in R_{\int}^{n\mathfrak{l}}

We define the base \{X_{1^{ }},\cdots, X_{n}\} of nt by X_{k}=E_{k,n+1}-E_{n+1,k} for k=1 , \cdots , n ,
where E_{ij} is the (n+1, n+1) -matrix such that the entry at the i-th row
and the j-th column is 1 and other entries are all zero. Then the natural
inclusion \iota:\mathfrak{o}(n+1)- \mathfrak{g}=6\mathfrak{l}(n+1, R) satisfies condition (N). This homomor-
phism corresponds to the canonical affine connection on M. In the case
of M=SO_{0}(n, 1)/SO(n) the natural inclusion \iota:\mathfrak{o}(n, 1)arrow@\mathfrak{l}(n+1, R) is an

-homomorphism corresponding to the canonical affine connection if we
set X_{k}=E_{k,n+1}+E_{n+1,k} for k=1 , \cdots , n as a base of \mathfrak{m} . We shall show the
uniqueness of (N)-homomorphism. Let f:\mathfrak{l}arrow \mathfrak{g} be an (N)-homomorphism
( \mathfrak{l}=\mathfrak{o}(n+1) or \mathfrak{o}(n, 1) ). If n\geqq 3 , then by Proposition 8. 1 f^{c} is a complex
irreducible representation of \mathfrak{o}(n+1, C) with degree n+1 . We first show
that f^{c} is equivalent to the standard inclusion \iota:\mathfrak{o}(n+1, C)arrow 6\mathfrak{l}(n+1, C) .
We divide the proof according as n is even or odd.

(a-1) n=2m(m\geqq 2) . The rank of \mathfrak{o}(2m+1, C) is m. Let \{\Lambda_{1}, \cdots, \Lambda_{m}\}
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be the highest weights of fundamental system of irreducible representations.
In the following we denote an irreducible representation by its highest weight.
It is well known that

d(\Lambda_{k})=(\begin{array}{l}2m+1k\end{array}) for k=1 , \cdots , m-1

and d(\Lambda_{m})=2^{m} . If m\geqq 3 , we have d(\Lambda_{m})=2^{m}>n+1=2m+1 . Hence the
irreducible representation of \mathfrak{o}(2m+1, C) with degree 2m+1 is equivalent
to \Lambda_{1} . In the case m=2\mathfrak{o}(5, C) admits a unique representation with degree
n+1=5 and it is the standard inclusion.

(a-2) n=2m-1(m\geqq 2) . The rank of \mathfrak{o}(2m, C) is m. Let \{\Lambda_{1^{ }},\cdots, \Lambda_{m}\}

be the highest weights of fundamental system of irreducible representations.
Then

d(\Lambda_{k})=(\begin{array}{l}2mk\end{array}) for k=1 , \cdots , m-2

and d(\Lambda_{m-1})=d(\Lambda_{m})=2^{m-1} . If m\geqq 5 , we have d(\Lambda_{m-1})=d(\Lambda_{m})=2^{m-1}>n+1=

2m. Thus f^{c} must be equivalent to \Lambda_{1} . For m=2, there are three ir-
reducible representations of \mathfrak{o}(4, C) with degree 4: 3\Lambda_{1},3\Lambda_{2} and \Lambda_{1}+\Lambda_{2} .
But for \mathfrak{l}=\mathfrak{o}(4) and \mathfrak{o}(3,1) , the complex representations 3\Lambda_{1} and 3\Lambda_{2} are
both of the 2-nd class and hence f^{c} is equivalent to \Lambda_{1}+\Lambda_{2} which is the
standard inclusion. For m=3, the irreducible representation of \mathfrak{o}(6, C) with
degree 6 is \Lambda_{1} only. For m=4, there are three irreducible representations
of \mathfrak{o}(8, C) with degree 8: \Lambda_{1} , \Lambda_{3} and \Lambda_{4} . \Lambda_{3} and \Lambda_{4} are the spin representa-
tions and the restrictions of \Lambda_{3} and \Lambda_{4} to \mathfrak{o}(7, C) are also the spin represen-
tations of \mathfrak{o}(7, C) . In particular they are irreducible. But the restriction
of f^{c} to f^{c} must be a direct sum of \rho_{0^{c}} and a 1-dimensional trivial repre-
sentation. Thus f^{c} is equivalent to \Lambda_{1} . Therefore the complexification f^{c}

of an (AT)-homomorphism is equivalent to the standard inclusion for n\geqq 3 .
It is easy to see that for both Lie algebras \mathfrak{l}=\mathfrak{o}(n+1) and \mathfrak{o}(n, 1) , the stan-
dard inclusion \iota:\mathfrak{l}arrow \mathfrak{s}\mathfrak{l}(n+1, R) is the unique equivalence class of irreducible
representation of \mathfrak{l} whose complexification is equivalent to \iota : \mathfrak{o}(n+1, C)arrow

6\mathfrak{l}(n+1, C) . Hence by Proposition 4. 9 the standard inclusion is the unique
(N)-homomorphism for both Lie algebras \mathfrak{l}=\mathfrak{o}(n+1) and \mathfrak{o} (n, 1)(n\geqq 3) .
In the case n=2 since we know all the real irreducible representations of
\mathfrak{l}=\mathfrak{o}(3) and \mathfrak{o}(2,1)\cong@\mathfrak{l}(2, R) , we can prove the uniqueness of an (N) -hom0-
morphism using Proposition 4. 8. We omit the details.

(b) M=SO(p+q)/SO(p)\cross SO(q) , SO_{0}(p, q)/SO(p)\cross SO(q)

(p\geqq q\geqq 2 , (p, q)\neq(2,2) : type BD I)

In this case an IFPS does not exist on M, except the case M=SO_{0}(3,3)/



Invariant flflat projective structures on homogeneous spaces 165

SO(3) \cross (3) , which is isomorphic to SL(4, R)/SO(4) (type AI). The
dimension of M is pq and \mathfrak{l}^{c}\cong \mathfrak{o}(p+q, C) . We show that for (p, q)\neq(3,3)

there is no irreducible representation of \mathfrak{l}^{c} with degree pq+1 . Then by
Proposition 8. 1 an IFPS does not exist on M. We divide the proof into
two cases.

(b-1) p+q=2m+1(m\geqq 2) . The maximum of pq is m^{2}+m(p=m+1
and q=m). Let \{\Lambda_{1}, \cdots, \Lambda_{m}\} be the highest weights of fundamental system of
irreducible representations. Then d(\Lambda_{1})<d(\Lambda_{2})<\cdots<d(\Lambda_{m-1}) , d(\Lambda D=2m+1

and d(\Lambda_{2})=2m^{2}+m>m^{2}+m+1 . By Weyl’s formula we have d(2\Lambda_{1})=2m^{2}+

3m>m^{2}+m+1 . If m\geqq 5 , then d(\Lambda_{m})=2^{m}>m^{2}+m+1 and hence \Lambda_{1} is the
unique (non-trivial) irreducible representation with degree less than m^{2}+m+1 .
But there are no integers p and q(p\geqq q\geqq 2) satisfying p+q=2m+1 and
pq+1=2m+1 . Therefore, by Proposition 8. 1, an (\^A)-homomorphism does
not exist. For m=2,3 and 4 we can easily prove the non-existence of
an irreducible representation with degree pq+1 , calculating the degrees of
irreducible representations by Weyl’s formula.

(b-2) p+q=2m(m\geqq 3) . The maximum of pq is m^{2}(p=q=m) . If
m\geqq 7 , we can prove in the same way as above that \Lambda_{1} is the unique (non-
trivial) irreducible representation with degree less than m^{2}+1 . But there
are no integers p and q satisfying p+q=2m and pq+1=d(\Lambda_{1})=2m . For
m=4,5 and 6 we can prove the non-existence of an (\^A)-homomorphism
in the same manner. We omit the details. For m=3, there exists a
possible combination (p\backslash ’ q)=(3,3) . For the compact type, the degrees of
real irreducible representations of \mathfrak{l}=\mathfrak{o}(6) are given by 1, 6, 8, 15, \cdots . Hence
there is no (\^A)-homomorphism. (Note that dim M+1=10.) For the non-
compact type, SO_{0}(3,3)/SO(3)\cross SO(3) is isomorphic to SL(4, R)/SO(4) (type
AI) and we shall show in (c) that SL(m, R)/SO(m)(m\geqq 2) adimts an IFPS.

(c) M=SU(m)/SO(m), SL(m, R)/SO(m) ( m\geqq 2 : type AI)

If m=2, SU(2)/SO(2)\equiv SO(3)/SO(2) and SL(2, R)/SO(2)\equiv SO_{0}(2,1)/SO(2)

(local isomorphism) and we have already proved the uniqueness of an IFPS on

these spaces in (a). Now we assume that m\geqq 3 . The dimension of M is \frac{1}{2}

(m-1)(m+2) . First we shall determine the complex irreducible representa-

tions of \mathfrak{l}^{c}=8\mathfrak{l}(m, C) with degree \frac{1}{2}(m –1) (m+2)+1= \frac{1}{2}m(m+1) . Let
\{\Lambda_{1}, \cdots, \Lambda_{m-1}\} be the highest weights of fundamental system of irreducible
representations. Note that the rank of 8\mathfrak{l}(m, C) is m-1 . If m\geqq 7 , we have

d( \Lambda_{3})=d(\Lambda_{m-3})=\frac{1}{6}m(m-1)(m-2)>\frac{1}{2}m(m+1)j
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d( \Lambda_{1}+\Lambda_{2})=d(\Lambda_{m-2}+\Lambda_{m-1})=\frac{1}{3}m(m-1)(m+1)>\frac{1}{2}m(m+1) ,

d(2 \Lambda_{2})=d(2\Lambda_{m-2})=\frac{1}{12}m^{2}(m-1)(m+1)>\frac{1}{2}m(m+1)

and
d( \Lambda_{1}+\Lambda_{m-1})=(m-1)(m+1)>\frac{1}{2}m(m+1)

We have also
d( \Lambda_{1})=d(\Lambda_{m-1})=m\neq\frac{1}{2}m(m+1) ,

d( \Lambda_{2})=d(\Lambda_{m-2})=\frac{1}{2}m(m-1)\neq\frac{1}{2}m(m+1)

and
d(2 \Lambda_{1})=d(2\Lambda_{m-1})=\frac{1}{2}m(m+1)

Hence irreducible representations with degree \frac{1}{2}m(m+1) are 2\Lambda_{1} and 2\Lambda_{m-1} .
For m=3,4,5 and 6 we can easily prove that the same result holds as above.

(c-1) The case M=SU(m)/SO(m)(m\geqq 3) . In this case an IFPS does
not exist on M. In general, for the Lie algebra 8u(n 1) the complex ir-
reducible representation with highest weight m_{1}\Lambda_{1}+\cdots+m_{n}\Lambda_{n}(m_{k} are non-
negative integers) is of the 1-st class (cf. [4]) if and only if m_{k}=m_{n+1-k} for
k=1, \cdots , n (the case n=2i or 4i+3), m_{k}=m_{n+1-k} for k=1 , \cdots , n and m_{2i+1}

is even (the case n=4i+1). Thus if m\geqq 3 , both 2\Lambda_{1} and 2\Lambda_{m-1} are of the
2-nd class and hence there is no real irreducible representation of \mathfrak{s}\mathfrak{u}(m)

with degree \frac{1}{2}m(m+1) . Therefore M does not admit an IFPS for m\geqq 3 .
(c-2) The case M=SL(m, R)/SO(m)(m\geqq 3) . In this case it is easy

to check that both representations 2\Lambda_{1} and 2\Lambda_{m-1} are of the 1-st class and
hence \mathfrak{l}=@\mathfrak{l}(m, R) admits two (inequivalent) real irreducible representations

with degree \frac{1}{2}m(m+1) . We show that each equivalence class of represen-

tations contains a unique (\^A)-homomorphism. Let \mathfrak{l}=I+\mathfrak{m} be the canonical
decomposition : I =\mathfrak{o}(m) and \mathfrak{m}=\{E_{ij}+E_{ji}(1\leqq i<j\leqq m) , E_{ii}-E_{mm}(1\leqq i\leqq

m-1)\} . Then the linear isotropy representation \rho_{0} : Iarrow \mathfrak{g}\mathfrak{l}(\mathfrak{m}) is given by

\rho_{0}(E_{ij}-E_{ji})(E_{pq}+E_{qp})=\delta_{jp}(E_{iq}+E_{qi})+\delta_{jq}(E_{ip}+E_{pi})

-\delta_{ip}(E_{jq}+E_{qj})-\delta_{iq}(E_{jp}+E_{pj}) for 1\leqq i<j\leqq m , 1\leqq p<q\leqq m ,
(8. 1)

\rho_{0}(E_{ij}-E_{ji})(E_{kk}-E_{mm})=\delta_{jk}(E_{ik}+E_{ki})-\delta_{jm}(E_{im}+E_{mi})

-\delta_{ik}(E_{jk}+E_{kj}) for 1\leqq i<j\leqq m, 1\leqq k\leqq m-1 .
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It is well known that the representation space V of 2\Lambda_{1} is the space
of polynomials of degree two with variables \{x_{1^{ }},\cdots, x_{m}\} . We define the
base of V by \{4x_{i}x_{j}(1\leqq i<j\leqq m), 2x_{1}-22x_{m}^{2_{ }},\cdots, 2x_{m-1}^{2}-2x_{m}^{2}, x_{1}^{2}+\cdots+x_{m}^{2}\}

and express the real irreducible representation f:\mathfrak{l}arrow 8\mathfrak{l}(V)\subset \mathfrak{g}\mathfrak{l}(V) corre-
sponding to 2\Lambda_{1} in the matrix form with respect to this base. Then for
E_{ij}-E_{ji}\in f(1\leqq i<j\leqq m) , we have

f(E_{ij}-E_{ji})(4x_{p}x_{q})=4(\delta_{jp}x_{i}x_{q}+\delta_{jq}x_{i}x_{p}-\delta_{ip}x_{j}x_{q}-\delta_{iq}x_{j}x_{p})

for 1\leqq p<q\leqq m,

f(E_{ij}-E_{ji})(2x_{k}-22x_{m})2=4(\delta_{jk}x_{i}x_{k}-\delta_{jm}x_{i}x_{m}-\delta_{ik}x_{j}x_{k})

for 1\leqq k\leqq m-1 and f(E_{ij}-E_{ji})(x_{1}^{2}+\cdots+x_{m}^{2})=0 . Therefore the restriction
of f to I is \rho_{0}\oplus 1 (compare with (8. 1)). Next for the elements E_{ij}+E_{ji}

(1\leqq i<j\leqq m) and E_{ii}-E_{mm}(1\leqq i\leqq m-1) of \mathfrak{m} , we have
f(E_{ij}+E_{ji})(x_{1}^{2}+\cdots+x_{m}^{2})=4x_{i}x_{j}

and
f(E_{ii}-E_{mm})(x_{1}^{2}+\cdots+x_{m}^{2})=2(x_{i}^{2}-x_{m}^{2})(

Thus f:\mathfrak{l}arrow@\mathfrak{l}(V) satisfies condition (N). Note that we identify two spaces
\mathfrak{m}\oplus R and V by the correspondence:

E_{ij}+E_{ji}arrow-arrow 4x_{i}x_{j} ,

E_{ii}-E_{mm}-2x_{i}-22x_{m}2

and 1-x_{1}^{2}+\cdots+x_{m}^{2} .

By Proposition 4. 9 f is the unique (AO -homomorphism which is equi-
valent to 2\Lambda_{1} .

Next we consider the representation 2\Lambda_{m-1} . We define a linear map
g:\mathfrak{l}arrow@\mathfrak{l}(V) by

g(X)=f_{-1}(X)-f_{0}(X)+f_{1}(X) for X\in \mathfrak{m} ,

g(Y)=f(Y) for Y\in I
,\cdot

where f:\mathfrak{l}- 6\mathfrak{l}(V) is the homomorphism constructed as above. Then by
Proposition 8. 4 g is an (JV)-homomorphism and it is easy to see that g is
a real irreducible representation corresponding to 2\Lambda_{m-1} . By Proposition 4.9 g
is the unique (AO -homomorphism which is equivalent to 2\Lambda_{m-1} . Since f\neq g,f

and g are not the canonical (Riemannian) connection on M=SL(m, R)/SO(m) .

(d) M=Sp(m)/U(m), Sp(m, R)/U(m) ( m\geqq 3 : type CI)

In this case an IFPS does not exist on M. The dimension of M is
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m^{2}+m . We show that there is no complex irreducible representation of
\mathfrak{l}^{c}\cong \mathfrak{s}\mathfrak{p}(m, C) with degree m^{2}+m+1 . Let \{\Lambda_{1}, \cdots, \Lambda_{m}\} be the highest weights
of fundamental system of irreducible representations of \mathfrak{s}\mathfrak{p}(m, C) . Then
d(\Lambda_{1})=2m and

d(\Lambda_{k})=(\begin{array}{l}2mk\end{array}) – (\begin{array}{l}2mk-2\end{array}) for k=2, \cdots , m

By Weyl’s formula d(2\Lambda_{1})=2m^{2}+m>m^{2}+m+1 . It is easy to see that
d(\Lambda_{k})>m^{2}+m+1 for k\geqq 2 and there is no integer m such that 2m=m^{2}+

m+1 . Hence M=Sp(m)/U(m) and Sp(m, R|/U(m) do not admit an IFPS
for m\geqq 3 .

(e) M=Sp(p+q)/Sp(p)\cross Sp(q) , Sp(p, q)/Sp(p)\cross Sp(q) (p\geqq q\geqq 1 : type
CII)

If p=q=1, then Sp(2)/Sp(1)\cross Sp(1)\cong SO(5)/SO(4) and Sp(1,1)/Sp(1)\cross

Sp(1)\cong SO_{0}(4,1)/SO(4) and in this case we have already proved the uniqueness
of an IFPS on M. Now assume that (p, q)\neq(1,1) . Then an IFPS does
not exist on M. The dimension of M is 4pq and 4pq+1\leqq m^{2}+1 if we
set m=p+q(\geqq 3) . Let \{\Lambda_{1^{ }},\cdots, \Lambda_{m}\} be the highest weights of fundamental
system of irreducible representations of \mathfrak{s}\mathfrak{p}(m, C) . Then d(\Lambda_{k})>m^{2}+1 for
k=2, \cdots , m and d(2\Lambda_{1})=2m^{2}+m>m^{2}+1 . Hence \Lambda_{1} is the unique (non-
trivial) irreducible representation of \mathfrak{l}^{c}\equiv \mathfrak{s}\mathfrak{p}(m, C) with degree less than m^{2}+1 .
But there are no integers p and q such that 4pq+1=2m=2(p+q) . there
fore M=Sp(p+q)/Sp(p)\cross Sp(q) and Sp(p, q)/Sp(p)\cross Sp(q) do not admit
an IFPS.

(f) M=SO(2m)/U(m), SO^{*}(2m)/U(m) ( m\geqq 4 : type CII)

In this case an IFPS does not exist on M. The dimension of M is
m^{2}-m and we show that there is no irreducible representation of \mathfrak{l}^{c}\cong \mathfrak{o}(2m, C)

with degree m^{2}-m+1 . Let \{\Lambda_{1^{ }},\cdots, \Lambda_{m}\} be the highest weights of funda-
mental system of irreducible representations of \mathfrak{o}(2m, C) . Hm\geqq 6 , we have
d(\Lambda_{m-1})=d(\Lambda_{m})=2^{m-1}>m^{2}-m+1 and

d(\Lambda_{k})=(\begin{array}{l}2mk\end{array}) >m^{2}-m+1 for k=2, \cdots , m-2 .

By Weyl’s formula d(2\Lambda_{1})=2m^{2}+m-1>m^{2}-m+1 . Since there is no inte-
ger m such that d(\Lambda i)=2m=m^{2}-m+1 , an IFPS does not exist on M for
m\geqq 6 . For m=4 and 5 we can prove that there is not an irreducible
representation of \mathfrak{o}(2m, C) with degree m^{2}-m+1 using Weyl’s formula.
We omit the details.
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(g) M=SU(2m)/Sp(m), SU^{*}(2m)/Sp(m) ( m\geqq 2 : type All)
If m=2, we have SU(4)/Sp(2)\equiv SO(6)/SO(5) and SU^{*}(4)/Sp(2)\cong SO_{0}(5,1)/

SO(5) and both spaces admit a unique IFPS. We assume that m\geqq 3 . The
dimension of M is (2m+1)(m-1) . Let \{\Lambda_{1}, \cdots, \Lambda_{2m-1}\} be the highest weights
of fundamental system of irreducible representations of \mathfrak{l}^{c}\cong@\mathfrak{l}(2m, C) . Then
d(2\Lambda_{1})=d(2\Lambda_{2m-1})=2m^{2}+m>2m^{2}-m=(2m+1)(m-1)+1 , d(\Lambda_{1}+\Lambda_{2m-1})=

4m^{2}-1>2m^{2}-m and there is no positive integer m such that d(\Lambda_{1})=d(\Lambda_{2m-1})

=2m=2m^{2}-m . Therefore irreducible representations of \mathcal{B}\mathfrak{l}(2m, C) with
degree 2m^{2}-m are given by \Lambda_{2} and \Lambda_{2m-2} .

(g-1) The case M=SU(2m)/Sp(m)(m\geqq 3) . Let \rho_{k}(k=1, \cdots, 2m-1) be
the complex irreducible representations of \mathfrak{l}=@\mathfrak{u}(2m) corresponding to \Lambda_{k} .
Then it is easy to see that \rho_{k} is conjugate to \rho_{2m-k} for k=1 , \cdots , 2m-1 and
the index of \rho_{m} is (-1)^{m} . In particular \rho_{2} and \rho_{2m-2} are of the 2-nd class.
Hence there is no real irreducible representation of \mathfrak{l}=@\mathfrak{u}(2m) with degree
2m^{2}-m and an IFPS does not exist on M.

(g-2) The case M=SU^{*}(2m)/Sp(m)(m\geqq 3) . Let \rho_{k}(k=1, \cdots. 2m-1)

be the complex irreducible representations of \mathfrak{l}=6\mathfrak{u}^{*}(2m) corresponding to
\Lambda_{k} . In this case \rho_{k} is self-conjugate for k=1 , \cdots , 2m-1 and the index of
\rho_{k} is (-1)^{k} . In particular \rho_{2} and \rho_{2m-2} are of the 1-st class. First we shall
construct an (\^A)-homomorphism f:\mathfrak{l}arrow \mathfrak{g} which is equivalent to \Lambda_{2} .

Let \mathfrak{l}=I+\mathfrak{m} be the canonical decomposition:
I =\mathfrak{s}\mathfrak{p}(m) ,

\mathfrak{m}=\{ (\begin{array}{ll}A B-\overline{B} \overline{A}\end{array}) |A , B\in \mathfrak{g}\mathfrak{l}(m, C).{}^{t}A=\overline{A} , Tr A=0 and {}^{t}B+B=0\}

We set W=C^{2m} and fix a base \{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{m}\} of W. Let \tilde{f}:\mathfrak{l}=@\mathfrak{u}^{*}(2m)

c_{\geq}\mathfrak{s}\mathfrak{l}(2m, C)arrow \mathfrak{g}\mathfrak{l}(\Lambda^{2}W) be the composite of the natural inclusion and the
irreducible representation of 6\mathfrak{l}(2m, C) corresponding to \Lambda_{2} . We express \tilde{f}

in the matrix form with respect to the above base. We define the 2m^{2}-m

dimensional real subspace V of \Lambda^{2}W by

V=\{\sqrt{-1}(a_{i\wedge}b_{j}-a_{j\wedge}b_{i}) , a_{i\wedge}b_{j}+a_{j\wedge}b_{i} , a_{i\wedge}a_{j}+b_{i\wedge}b_{j}, \sqrt{-1}(a_{i\wedge}a_{j}-b_{i\wedge}b_{j})

(1 \leqq i<j\leqq m) , a_{k\wedge}b_{k}(1\leqq k\leqq m)\}

It is easy to see that V^{c} is isomorphic to \wedge^{2}W and for each X\in \mathfrak{l},\tilde{f}(X)

preserves the real subspace V. Therefore we obtain the homomorphism
\rho_{2} : \mathfrak{l}arrow \mathfrak{g}\mathfrak{l}(V) corresponding to \Lambda_{2} . We consider W to be a real vector space
of dimension 4m and define a linear map \phi:\mathfrak{m}\oplus Rarrow\wedge^{2}W by

\phi(X, r)=\rho_{2}(X)c+rc for X\in \mathfrak{l} and r\in R ,
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where c=a_{1\wedge}b_{1}+\cdots+a_{m\wedge}b_{m}\in V. Then \phi is an injective linear map over R
and the image of \phi is V. We identify V and \mathfrak{m}\oplus R by this map and obtain
the homomorphism f:\mathfrak{l}arrow \mathfrak{g}\mathfrak{l}(\mathfrak{m}\oplus R) , i . e. , f(X)=\phi^{-1}\circ\rho_{2}(X)\circ\phi:\mathfrak{m}\oplus Rarrow\iota \mathfrak{n}\oplus R

for X\in \mathfrak{l} . Since \mathfrak{l} is simple the image of f is contained in 8\mathfrak{l}(\mathfrak{m}\oplus R) . We
show that f is an (TV)-homomorphism. First we observe that \rho_{2}(Y)c=0

for all Y\in I . Then for X\in \mathfrak{m} , Y\in f and r\in R, we have \rho_{2}(Y)\phi(X, r)=\rho_{2}(Y)

(\rho_{2}(X)c+rc)=\rho_{2}[Y, X]c+\rho_{2}(X)\rho_{2}(Y)c+r\rho_{2}(Y)c=\rho_{2}[Y, X]c=\phi([Y, X], 0) .
(Note that [y, X]\in \mathfrak{m} .) Hence by definition we have f(Y)(X, r)=([Y, X], 0) ,
which implies that the restriction of f to I is a direct sum of \rho_{0}=ad:Iarrow \mathfrak{g}\mathfrak{l}(\mathfrak{m})

and a 1-dimensional trivial representation. Next for X\in \mathfrak{m} , we have
\rho_{2}(X)\phi(0,1)=\rho_{2}(X)c=\phi(X, 0) , i . e. , f(X)(0, 1)=(X, 0) which implies that f
satisfies condition (N). By Proposition 4. 9 f is the unique (N) -homomor-
phism which is equivalent to \Lambda_{2} .

Using Proposition 8. 4 we obtain another (N)-homomorphism f’ . It is
easy to see that f’ is equivalent to \Lambda_{2m-2} . f and f’ are not the canonical
(Riemannian) connection on M since f\neq f’ .

(h) M=SU(p+q)/S(U_{p}\cross U_{q}) , SU(p, q)/S(U_{p}\cross U_{q}) ( p\geqq q\geqq 1 : type AIII)

If p=q=1 , we have SU(2)/S(U_{1}\cross U_{1})\cong SO(3)/SO(2) and SU(1,1)/S(U_{1}\cross U_{1})

\cong SO_{0}(2,1)/SO(2) and we have already proved the uniqueness of an IFPS
on M. Now we assume that (p, q)\neq(1,1) . The dimension of M is 2pq.
We consider the complex irreducible representation of \mathfrak{l}^{c}\cong 8\mathfrak{l}(n, C) with degree
2pq+1 where n=p+q\geqq 3 .

(h-1) The case n=2m(m\geqq 2) . The maximum of 2pq is 2m^{2}(p=q=m) .
Let \{\Lambda_{1^{ }},\cdots, \Lambda_{2m-1}\} be the highest weights of fundamental system of irreducible

representations of 6\mathfrak{l}(2m, C) . Then d( \Lambda_{3})=\frac{2}{3}m(m-1)(2m-1)>2m^{2}+1 for
m\geqq 3 , d(2\Lambda_{1})=d(2\Lambda_{2m-1})=2m^{2}+m>2m^{2}+1 and d(\Lambda_{1}+\Lambda_{2m-1})=4m^{2}-1>2m^{2}

+1 . Thus the irreducible representations of \mathfrak{s}1(2m, C) with degree less
than 2m^{2}+1 are \Lambda_{1} , \Lambda_{2} , \Lambda_{2m-2} and \Lambda_{2m-1} . Let \rho_{k}(k=1, \cdots, 2m-1) be the
complex irreducible representations of \mathfrak{l} ( \mathfrak{l}=@\mathfrak{u}(p+q) or \mathfrak{s}\mathfrak{u}(p, q) ) correspcnd-
ing to \Lambda_{k} . Then for both Lie algebras @u(p+q) and SU\{p, q) \rho_{k} is conjugate
to \rho_{p+q-k} for k=1 , \cdots , 2m-1 . Hence if m\geqq 3 , then \rho_{1} , \rho_{2}, \rho_{2m-2} and \rho_{2m-1}

are of the 2-nd class and there is no real irreducible representation of
\mathfrak{l}=6\mathfrak{u}(p+q) , 6\mathfrak{u}(p, q) with degree less than 2m^{2}+1 whose complexification
is complex irreducible. For m=2, \rho_{1} and \rho_{3} are of the 2-nd class for both
Lie algebras. Therefore if an (N)-homomorphism f exists, f^{c} must be equi-
valent to \rho_{2} . But it is easily checked that positive integers p and q satisfying
p+q=4 and 2pq+1=d(\Lambda_{2})=6 do not exist. Hence an IFPS does not
exist on M.
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(h-2) The case n=2m+1(m\geqq 1) . The maximum of 2pq\overline{1}S 2m^{2}+2m

(p=m+1 and q=m). As in the case n=2m, it can be proved that the
irreducible representations of 8\mathfrak{l}(2m+1, C) with degree less than 2m^{2}+2m+1

are \Lambda_{1} , \Lambda_{2}, \Lambda_{2m-1} and \Lambda_{2m} . In this case \rho_{1} , \rho_{2}, \rho_{2m-1} and \rho_{2m} are of the 2-nd
class and hence there is no real irreducible representation of \mathfrak{l}=\mathfrak{s}\mathfrak{u}(p+q) ,
@u (p, q) with degree less than 2m^{2}+2m+1 whose complexification is complex
irreducible. Therefore an IFPS does not exist on M.

Summarizing the above results, we obtain

THEOREM 8. 5. Let M=L/K be a simply connected irreducible Rieman-
nian symmetric space of the classical type. If M admits an IFPS, then
M must be one of the following spaces:

(1) M_{1}=SL(m, R)/SO(m) for m\geqq 3 (the non-compact type of AI),
(2) M_{2}=SU^{*}(2m)/Sp(m) for m\geqq 3 (the non-compact type of A I),
(3) M_{3}=SO(n+1)/SO(n) for n\geqq 2 (the compact type of BDII),
(4) M_{4}=SO_{0}(n, 1)/SO(n) for n\geqq 2 (the non-compact type of BDII).

M_{1} and M_{2} admit two IFPS, while M_{3} and M_{4} admit a unique IFPS.
Each IFPS admits a unique invariant affiffiffine connection, which is the
canonical affiffiffine connection in the cases (3) and (4). Two projectively flat
invariant affiffiffine connections on M_{1} and M_{2} are not the canonical affiffiffine
connections and they are mapped to each other by the symmetry \sigma at 0\in M_{k}

(k=1,2) .

References

[1] \’E. CARTAN: Sur les vari\’et\’es \‘a connexion projective, Bull. Soc. math. France,
52 (1924), 205-241.

[2] \’E. CARTAN: Leqons sur la th\’eorie des espaces \‘a connexion projective, Paris,
Gauthier-Villars, 1937.

[3] L. P. EISENHART: Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ.
8, New York, 1927.

[4] N. IWAHORI: On real irreducible representations of Lie algebras, Nagoya Math.
J., 14 (1959), 59-83.

[5] S. KOBAYASHI: Transformation Groups in Differential Geometry, Springer,
Berlin-Heidelberg-New York, 1972.

[6] S. KOBAYASHI and T. NAGANO: On projective connections, J. Math. Mech.,
13 (1964), 215-235.

[7] S. KOBAYASHI and K. NOMIZU: Foundations of Differential Geometry I, II,

John Wiley & Sons, New York, 1963, 1969.
[8] S. KOBAYASHI and T. OCHIAI: G-structures of order two and transgression

operators, J. Diff. Geom., 6 (1971), 213-230.
[9] H. MATSUSHIMA and K. OKAMOTO: Non-existence of torsion free flat connec-

tions on a real semi-simple Lie group, Hiroshima Math. J., 9 (1979), 59-60.



172 Y. Agaoka

[10] S. MURAKAMI: On the automorphisms of a real semi-simple Lie algebra, J.
Math. Soc. Japan, 4 (1952), 103-133; 5 (1953), 105-112.

[11] N. TANAKA: Projective connections and projective transformations, Nagoya

Math. J., 12 (1957), 1-24.
[12] N. TANAKA : On the equivalence problems associated with a certain class of

homogeneous spaces, J. Math. Soc. Japan, 17 (1965), 103-139.
[13] N. TANAKA: On non-degenerate real hypersurfaces, graded Lie algebras and

Cartan connections, Japan. J. Math., 2 (1976), 131-190.

Departmentlof Mathematics
Kyoto University


	Introduction
	Preliminary remarks

	\S 1. Projective Cartan ...
	THEOREM A ...

	\S 2. Invariant flat projective ...
	THEOREM 2. ...

	\S 3. The case where an ...
	THEOREM 3. ...
	THEOREM 3. ...

	\S 4. A normalization ...
	THEOREM 4. ...

	\S 5. The case M=SO(3) ...
	THEOREM 5. ...
	THEOREM 5. ...

	\S 6. The case \mathfrak{l} ...
	THEOREM 6. ...

	\S 7. The case \mathfrak{l} ...
	THEOREM 7. ...
	THEOREM 7. ...
	THEOREM D([6]) ...

	\S 8. The case M is an ...
	THEOREM 8. ...

	References

