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§1. Introduction

Throughout this paper, we assume that every ring has an identity 1,
every module over a ring is unitary and a ring extension A/B has the same
identity. Let R be a commutative ring. An R-algebra 4 is called separable
if 4 1is left A"=AC>§A°-projective where A° is an opposite ring of 4. An R-

algebra A which is finitely generated and projective as an R-module is called
a symmetric R-algebra if A is isomorphic to Homg(4, R) as a left A*

module ([1], [3]).

Let S be a commutative ring which is a finite Abel extension of R with
Galois group G=<g,> x --- x <a,> (direct product of cyclic groups) such
that the order of ¢,=n,. We consider a twisted polynomial ring of [-
variables B=S[X,, -, X,; o1, --,0;]. That is, B={ X Xp--X}Pa,, . zla,,

i
..p,€S}; and B has the following arithmetics; for any clzéS, aX,=X,a* and
X,;XJ=XJX¢.

For a f(X;, -, X))=F(Xp, -, XM)eR[X,, -+, X,], we have f(X,, -, X)B

=Bf(X,, -, X,). Let fi(X,)=F,(XeR[X)] ({=1,-,]) be monic polyno-
z

mials. Put I=Y.Bf;(X,), A=B/I and u,=X,+IcA. Then we have a fol-
i=1

lowing theorem.
THEOREM 2. If f;(0)= F;(0) is a unit of R (i=1,--,1), then
A= T @up-upSha, )

Ogajgnj——l

= A(C a,.. ap By.. Bp> S[uln‘, Tty u?l]a G= <01> X X <ql>)

”l ¢t b ”l 0‘2
(crossed product where the factor set is defined by the

l
Sfollowing way. C . . s 5= 1lus where
LA

”1 0‘[ 2, Uz

v_jm Zf a¢+‘3¢gn¢
) lO Zf a¢+.‘9¢§"¢“1)-

= A(u;‘x R Sl [u’f’l , u?l] , <01>)® ...... ®A(u";‘l , Sl [u;‘x AR u;‘l] ’ <o-l>)

R[ully ,u;l]
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(tensor product of cyclic crossed products where S;[u} -+, u}?]
=S[ui",---,u§‘l]""‘={,2:€S:[u1 , ,u,l]lx’” x for all wEG,} and
Gi={ay) x -+« x{a41) X <0¢+1> X ++1 X {07)).

The authors extend their hearty thanks to Professor Y. Mlyashlta for
his kind suggestion and encouragement.

§ 2. The proos of Theorem 2 and some results

We use notations which is written in §1. In the case that 1= 1 we

denote B=S[X;o]={XX?a,|a,eS) etc.

ProposITION 1. In the case that =1, for a monic polynomial f(X)=
L X"%a,€B, the followings are equivalent.
(1) fIX)B=Bf(X).
If a a,#0, it is a non zero divisor in S and a,#0.
(2) fX)=F(X"eR[X].
If a a,#0, it is a non zero divisor in S and a,#0.
Proor.

(2)= (1) trivial.

(1)=(2) By the condition that Bf( ) f( )B, for any a€S, there
exists €S such that af=fB. That is, Y X%a"a,=aY. X%a,=Y.X*%a,B So,
o a,=a,B. By the condition that aﬁ‘:O and that this is a non zero divisor,
a=p. For a p such that a,#0, " =f=a. So, ¢*°=1 and z|p (i.e. n di-
vides p). This denotes that f(X)=F(X"). By the condition that Bf(X)=
f(X)B, there exists a€.S such that Xf(X)=f(X) (X+a). That is,
ZX"‘*‘a —-ZX”‘“ n,+Z}X"‘ a,a. So, a,a=0 for all #, and by the fact

that a,#0, a=0. This denotes that ar,=a,,. That is, f(X)=F(X"eR[X]
Q.E.D.

Let fi(X,)=F,(X)eR[X,] (=1,---,]) be monic polynomials. kPut I=
Zl:Bfi(Xz) A=BJI and u,=X,+IcA. If deg F,(X,)=m,, deg f.(X,)=nm,.

Here, deg fi(X,) (=1, ---,1) is the degree of f;(X,). Then, we have A=
@D ule---ultS.

ngjgnjmj~1 .
The Proor of THEOREM 2 see (§1). As f;(0) is a unit of R, f,(X,)B+
X;B=B and Bf;(X )+BX¢—-B each u; is a unit of A. S[uf, -, u?] is a

free] S-module of rank Ilmi, Rlu}, .-+, u3t] is a free R-module rank ‘]f[m,i
=]

and S[u}, -, upt]=Rlup, -, u}?]&S. By ordinary computations, we have
_ 2 v
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A= - - ‘@»uf’!;--":u?l.S’: 2 6—)%1‘“---zg;'lS[u"l < um]. By our as-

e °§P1§"J’”r . O0=eysmy-1
sumptlons, for any *aES aui-u a’.  As S[ur, -+, up?] is a G-Galois extension
of R[u1 , o l] Y @us e uitS[up - ult] is a crossed product. As

) OSaanj I

the factor set we take {C Ca A ﬂu where v,=n, if ai+,@¢'2ni and

01 Gy 5 0, ltl

v;=0 Utaé+ﬁ¢§”r—{}- The fact that A can be written 4(uf, S;[uf, - -, u}?],
{o))@) veee ®A (wpr;Silap, s+ yit), €a,)) (tensor product  of cyclic crossed
e RLug Tugl .

products Where 'S, [u1 , ey U l] S [eerr, -+, uf 3]9%—{3565 [ul s ui]|xt=x for
al_l weG,;} and G¢—<al> X oo X LGy X <o¢+1> x -+ x {@;).) is a result of general
Galois_ theory: of -'commutative rings ([2]. Q.E.D.

CoRrROLLARY 3. In Theorem 2, furthermore we' assume that f,(X,)=
Xri—a,; (i.e. Fi(X) =X,—a,) and a is a unit of R (i=1,-,1), we have

A= A(al, Sla <0'1>)® ®A(au Sz, <0'z>> ‘where S;=8%.

Proor. In™ this” case an=a;,€R. - So, this' follows immediately from
THEOREM 2.

ProrosiTiON 4. Under the same assumptzons as in THEOREM 2, A is
symmei‘rzc R-algebra A
PROOF As R[ui] is a free R-module of rank m, (i=1,---,1), Rlup,
]"'R[ul] ®R[u§‘l] R[u;‘]"’R[Xi]/F (Xi)R[Xz] is a free sym-
me*tnc \R-algebra [6] THEOREM 2.1). So, R[up, -, u}'] is also a symmetric
R-algebra ([3]). As A is a central separable R[u1 , -+, uy?]-algebra, by

THEOREM:4.2, A is a symmetrlc Rlut, -+, ui*]-algebra.  So, A is a sym-
metrlc R-algebra Q E D.

“LimMA. 5. Let R be a commutative ving and R[Xy, -, X)) be a poly-
nomial ring of l-variables (=1, not twisted). Let A be a proper ideal
z

Of REXI’ 'f'fp’»:Xl]w:SuCh that A = Z‘a‘ﬁ (X X) R[le ) Xz] (ﬁ(le Tt Xz) €

REX 5. X G=1,0-1,0). We putS R[X,, -, X;l/U, and assume that S
is .a ﬁnztely generated R-module Then 5 s a separable R-algebra if and

only 1 f

- 6f ) )
Lo S det ¢ +%I R X » X] .

PROOF Thls s easﬂy seen..

5 44

- ? , , : o
COROLLARY 6. In LEMMA 5 ‘moreover we assume that S (z— e 1)

;zs @ monic polynomzal of R[X 1. Then S is separable R- algebra 1f and
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only if each f,=fiX) is a separable polynomial of R[X.] in 'the sence’of
[5] (i=1, -, ). |  of RIX. in

Proor. only if part; By LEmma 5,

%
det| —Lt +A=R[X,,-, X;]. So,
( (an 154, js1 4 |

(TCZZ)Q :gé > +A =R[X,, -, X;]. Especially,

(j;:f)m R[X,, - X,] and(j}é)ﬂﬁ(X,)):R[Xd (i=1, 1),

So, by LEMMa 5, each f;(X;) is a separable polynomial (;=1,---,7). if part;

By LeEmMA 5 <~%>+(ﬁ(Xz))=R[X¢] for each 7 (i=1,--,1). o, (5}?

j).];‘ )+Zﬂ(Xi)R[Xl, ',Xl]=R[X19"',Xl]' By LeMMma 5’ Sis a sepa-
l

rable R-algebra. Q.E.D.

ProposiTiON 7. Under the same assumptions as in THEOREM 2, the
Sollowings are equivalent.

(1) Each Fy(X,) is a separable polynomial of R[X,] (=1, ---,]).

(2) A is a separable R-algebra.

Proor. (1)=>(2). It is sufficient if we prove that Rlwl, .-, u] is a
separable R-algebra. But this is similarly proved as PROPOSITION 4.

(2)=>(1). By our assumptipns, R[u1 , -, U] is a separable R-algebra.
But as R[up, .-, up]=R[X,, - X]/ZF( JRI[X, -+, X;], by COROLLARY 6,
each F;(X,) is a separable polynomlal of R[X,] (=1,---,1). Q.E.D.
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