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Abstract. We give a detailed account of Agol’s theorem and his proof con-

cerning two-meridional-generator subgroups of hyperbolic 2-bridge link groups,

which is included in the slide of his talk at the Bolyai conference 2001. We also

give a generalization of the theorem to two-parabolic-generator subgroups of hyper-

bolic 3-manifold groups, which gives a refinement of a result due to Boileau-

Weidmann.

1. Introduction

Adams proved in [1, Theorem 4.3] that the fundamental group of a finite

volume hyperbolic 3-manifold is generated by two parabolic elements if and

only if the 3-manifold is homeomorphic to the complement of a 2-bridge link

which is not a torus link. Moreover, he also proved that the pair consists

of meridians. This refines the result of Boileau-Zimmermann [13, Corollary

3.3] that a link in S3 is a 2-bridge link if and only if its link group is generated

by two meridians. Adams also proved that (i) each hyperbolic 2-bridge link

group admits only finitely many distinct parabolic generating pairs up to equiv-

alence [1, Corollary 4.1] and (ii) for the figure-eight knot group, the upper

and lower meridian pairs are the only parabolic generating pairs up to

equivalence [1, Corollary 4.6]. Here, a parabolic generating pair of a non-

elementary Kleinian group G is an unordered pair of two parabolic transforma-

tions that generates G . Two parabolic generating pairs fa; bg and fa 0; b 0g of

G are equivalent if fa 0; b 0g is equal to fa�1 ; b�2g for some �1; �2 A fG1g up to

simultaneous conjugation.
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Agol [3] announced the following theorem which generalizes and refines

these results to all non-free Kleinian groups generated by two parabolic

transformations.

Theorem 1.1 (Agol [3]). Let G be a non-free Kleinian group gen-

erated by two non-commuting parabolic elements. Then one of the following

holds.

(1) G is conjugate to a hyperbolic 2-bridge link group. Moreover, every hyper-

bolic 2-bridge link group has precisely two parabolic generating pairs up to

equivalence.

(2) G is conjugate to a Heckoid group. Moreover, every Heckoid group has a

unique parabolic generating pair up to equivalence.

For an explicit description of the theorem, including the definition of a

Heckoid group, see Akiyoshi-Ohshika-Parker-Sakuma-Yoshida [9] and Aimi-

Lee-Sakai-Sakuma [8] (cf. Lee-Sakuma [23]), which give a full proof of the

classification of non-free, two-parabolic-generator Kleinian groups and an alter-

native proof of the classification of parabolic generating pairs, respectively. In

the recent interesting articles [20] and [33] by Parker-Tan and Elzenaar-Martin-

Schillewaert, respectively, we can find very beautiful pictures, produced by

Yasushi Yamashita upon request of Caroline Series, that nicely illustrate

Theorem 1.1 (see also Figure 0.2b in Akiyoshi-Sakuma-Wada-Yamashita

[10]).

The two parabolic generating pairs of a hyperbolic 2-bridge link group in

the second statement of Theorem 1.1(1) are the upper and lower meridian pairs

illustrated in Figure 1.1 (cf. Section 2). The assertion was obtained in [3] as a

consequence of the following more detailed result, together with Adams’ result

Fig. 1.1. The upper and lower meridian pairs of a 2-bridge link group. The proper arcs tþ and

t� in the exterior MðLÞ of a 2-bridge link L � S3 are the upper and lower tunnels, respectively.

Each of the meridian pairs represented by tþ and t� generates the link group GðLÞ ¼ p1ðS3nLÞ.
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[1, Theorem 4.3] that every parabolic generating pair of a hyperbolic 2-bridge

link group consists of meridians.

Theorem 1.2 (Agol [3]). Let L � S3 be a hyperbolic 2-bridge link. Then

any non-commuting meridian pair in the link group GðLÞ which is not equivalent

to the upper nor lower meridian pair generates a free Kleinian group which is

geometrically finite.

The main purpose of this paper is to give a detailed account of Agol’s

beautiful proof of Theorem 1.2 included in the slide [3]. A key ingredient of

the proof is non-positively curved cubed decompositions of alternating link

exteriors in which the checkerboard surfaces are hyperplanes (Proposition 6.1).

According to Rubinstein [40, p. 3177], such cubed decompositions were first

found by Aitchison, though he did not publish the result. They were redis-

covered by D. Thurston [45] and described in detail by Yokota [48] (cf. [5,

40, 36]). The cubed decompositions play essential roles in the proofs of (i)

Proposition 3.1 which says that the checkerboard surfaces for hyperbolic alter-

nating links are quasi-fuchsian and (ii) Propositions 7.4 and 8.3 concerning the

disks bounded by the limit circles associated with checkerboard surfaces in the

ideal boundary ĈC of the universal covering H3 of the hyperbolic alternating

link complement. The proof of Theorem 1.2 is completed by applying Prop-

osition 4.11 (a variant of Klein-Maskit combination theorem proved by using

Maskit-Swarup [25]) to the action of meridian pairs on ĈC by using Proposition

8.3. (See Figures 9.4 and 9.5, which are copied from [3].)

Building on Theorems 1.1 and 1.2, we also prove the following gener-

alization of Theorem 1.2.

Theorem 1.3. Let X ¼ H3=G be an orientable, complete, hyperbolic

3-manifold, fm1; m2g a pair of non-commuting parabolic elements of G, and

G ¼ hm1; m2i the subgroup of G generated by fm1; m2g. Then one of the

following holds.

(1) G is a rank 2 free group.

(2) G is equal to G, and it is a hyperbolic 2-bridge link group. Moreover,

fm1; m2g is equivalent to the upper or lower meridian pair.

(3) G is an index 2 subgroup of G, where G is the link group of a

2-component hyperbolic 2-bridge link, and G is the link group of a

rational link in the projective 3-space P3. Moreover, fm1; m2g, as

a subset of G , is equivalent to the upper or lower meridian pair in the

2-bridge link group, and fm1; m2g, as a subset of G, consists of

meridians of the rational link.

Moreover, if X has finite volume, then the conclusion (1) is replaced with the

following finer conclusion.

(10) G is a rank 2 free Kleinian group which is geometrically finite.
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See Definition 10.2 for the definition of a rational link in P3, and see

Remark 10.6 for a detailed description of the statement (3) in the above

theorem. This theorem gives a refinement of the result by Boileau-Weidmann

[12, Proposition 2] concerning subgroups generated by two parabolic primitive

elements of the fundamental group of an orientable, complete, hyperbolic

3-manifold of finite volume. The proof of Theorem 1.3 is based on (i) the

result of Millichap-Worden [29] concerning the commensurable classes of

2-bridge link groups and (ii) the covering theorem of Canary [18] together

with the tameness theorem established by Agol [4] and Calegari-Gabai [17] (see

also Soma [42] and Bowditch [15]).

This paper is organized as follows. In Section 2, we reformulate the

main Theorem 1.2 into Theorem 2.1, by using the correspondence between the

meridian pairs up to equivalence and the proper arcs in the link exterior up to

proper homotopy. We also state Theorem 2.2 concerning general alternating

links which is implicitly included in [3]. In Section 3, we recall the key fact

that the checkerboard surfaces associated with prime alternating link diagrams

of hyperbolic alternating links are quasi-fuchsian (Proposition 3.1). In Section

4, we describe the actions of meridians on the ideal boundary ĈC of the hyper-

bolic space H3, and give a su‰cient condition for a meridian pair to generate

a free Kleinian group which is geometrically finite (Proposition 4.11). The

proposition is a basic tool for the proof of Theorems 2.1 and 2.2. In Section

5, we quickly recall fundamental facts concerning non-positively curved spaces,

which is used in Sections 6 and 7. In Section 6, we describe non-positively

curved cubed decompositions of alternating link exteriors (Proposition 6.1), and

study relative positions of ‘‘checkerboard hyperplanes’’ and ‘‘peripheral hyper-

planes’’, the components of the inverse images of checkerboard surfaces and

peripheral tori, respectively, in the universal cover ~XX of a hyperbolic alternating

link complement X (Proposition 6.6). In Section 7, we review the ideal poly-

hedral decomposition of X from the viewpoint of the non-positively curved

cubed decompositions. Then we prove Proposition 7.4 concerning relative

positions of closed half-spaces in ~XX bounded by checkerboard hyperplanes. In

Section 8, we use Proposition 7.4 to prove the key proposition, Proposition 8.3,

concerning discs, in the ideal boundary ĈC of ~XX ¼ H3, bounded by the limit

circles of checkerboard hyperplanes. In Section 9, we prove Theorems 2.1 and

2.2 (and so Theorem 1.2), by using Propositions 4.11 and 8.3. In Section 10,

we prove Theorem 1.3 after introducing and studying rational links in P3.
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2. Reformulation of Theorem 1.2

Let L be a link in S3, X ¼ XðLÞ :¼ S3nL the link complement, and

M ¼ MðLÞ :¼ S3nint NðLÞ, the link exterior, where N ¼ NðLÞ is a regular

neighborhood of L. The link group G ¼ GðLÞ of L is the fundamental group

p1ðMÞ ¼ p1ðXÞ. A meridian of L is an element m of G which is represented by

a based loop freely homotopic to a meridional loop in qN, i.e., a simple loop

that bounds an essential disk in N.

A meridian pair is an unordered pair fm1; m2g of meridians of L. Two

meridian pairs fm1; m2g and fm 0
1; m

0
2g are equivalent if fm 0

1; m
0
2g is equal to

fgme1
1 g

�1; gme2
2 g

�1g for some e1; e2 A fG1g and g A G.

Note that there is a bijective correspondence between the set of meridian

pairs of L up to equivalence and the set of proper paths in M up to proper

homotopy (cf. [1], [23, Section 2] and Lemma 4.9(2)). Here a proper path in

M is a path (a continuous image of a closed interval) which intersects qM

precisely at the endpoints. Two proper paths in M are properly homotopic in

M if they are homotopic keeping the condition that the endpoints are contained

in qM.

Assume that L is hyperbolic, i.e., the complement X admits a com-

plete hyperbolic structure of finite volume. Then the meridian pair fm1; m2g
is commuting (i.e., m1m2 ¼ m2m1) if and only if the corresponding proper path

is inessential, i.e., properly homotopic to an arc in qM (cf. Lemma 4.2).

In other words, fm1; m2g is non-commuting if and only if the proper path

is essential, i.e., not inessential. If L is a 2-bridge link and if the arc is

properly homotopic to the upper or lower tunnel of L, then fm1; m2g gen-

erates the link group G (see Figure 1.1). Thus Theorem 1.2 is reformulated

as follows.

Theorem 2.1. Let L � S3 be a hyperbolic 2-bridge link. Let g be an

essential proper path in the link exterior MðLÞ, and let fm1; m2g be the meridian

pair in the link group GðLÞ represented by g. Assume that g is not properly
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homotopic to the upper nor lower tunnel of L. Then fm1; m2g generates a rank 2

free Kleinian group which is geometrically finite.

Agol’s proof of Theorem 2.1 in [3] actually includes a proof of the

following result concerning hyperbolic alternating links.

Theorem 2.2. Let L � S3 be a hyperbolic alternating link and D a prime

alternating diagram of L. Let fm1; m2g be a non-commuting meridian pair and

g an essential proper path in the link exterior MðLÞ that represents the pair

fm1; m2g. If g is not properly homotopic to a crossing arc (with respect to the

diagram D), then fm1; m2g generates a rank 2 free Kleinian group which is

geometrically finite.

3. Checkerboard surfaces for alternating links

In the remainder of this paper, L � S3 denotes a hyperbolic alternating link

and D � S2 denotes a prime alternating diagram of L, except in Sections 6 and

7, where we assume only that L is a prime alternating link. Here a link

diagram is prime if (i) it contains at least one crossing and (ii) for every simple

loop a in the projection plane, if a meets the diagram transversely in exactly

two points, then a bounds a disk that contains no crossings of the diagram. It

should be noted that a prime alternating diagram of a prime link is connected

(as a plane graph) and reduced (i.e., contains no nugatory crossings.)

We pick two points vþ and v� in S3, identify S3nfvþ; v�g with S2 �R so

that limt!Gyðx; tÞ ¼ vG for x A S2. The diagram D is regarded as a 4-valent

graph in S2 � f0g, and we assume L � D� ½�1; 1�. For each crossing c of

D, we assume L \ ðc� ½�1; 1�Þ ¼ c� f�1; 1g. We call the point cþ :¼ c� 1

(resp. c� :¼ c� ð�1Þ) the over (resp. under) crossing point of L at c, and call

c� ½�1; 1� the crossing arc of L at c. The intersection of c� ½�1; 1� with the

link exterior M (resp. the link complement X ) is called the crossing arc in

M (resp. the open crossing arc in X ) at c. We assume that the crossing arc

c� ½�1; 1� is oriented so that c� and cþ, respectively, are the initial and ter-

minal points.

We also assume that L coincides with D outside crossing balls, regular

neighborhoods in S3 of the crossing arcs at the crossings of D. We color the

complementary regions of D in S2 alternatively black and white. Then there

is a compact, connected surface Sb (resp. Sw) bounded by L that coincides with

the black (resp. white) regions outside the crossing balls and intersects each

crossing ball in a twisted rectangle: it is called the black (resp. white) surface for

L. It should be noted that Sb and Sw intersect transversely along the crossing

arcs (cf. Figure 6.2(a) in Section 6). Moreover, there is a natural bijective

correspondence between the components of ðSb [ SwÞnðSb \ SwÞ and the regions
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of D. We occasionally refer to each of Sb and Sw as a checkerboard surface

and denote it by S.

For each checkerboard surface S, we assume that S intersects the regular

neighborhood N of L in a collar neighborhood of qS and so S \M is properly

embedded in M. We refer to S \M � M (resp. S \ X � X ) a checkerboard

surface in M (resp. an open checkerboard surface in X ), and continue to denote

it by S.

The following key proposition is implicitly included in the slide [3], and

its proof following Agol’s suggestion is given by Adams [2, Theorem 1.9]. The

proof depends on the fact that every hyperbolic alternating link complement

admits a non-positively curved cubed decomposition in which checkerboard

surfaces are hyperplanes (see Section 6). Except for the existence of such a

decomposition, essentially the same arguments had been given by Aitchison-

Rubinstein [6, Lemma and its proof in p. 146] in a more general setting. See

Futer-Kalfagianni-Purcell [21, Theorem 1.6] for a generalization.

Proposition 3.1. Let L � S3 be a hyperbolic alternating link, and S a

checkerboard surface obtained from a prime alternating diagram D of L. Then

S is quasi-fuchsian.

To explain the meaning of the proposition, let pu : ~XX ! X be the universal

covering, and identify the link group G ¼ p1ðX Þ with the covering transforma-

tion group Autð ~XX Þ. Since L is hyperbolic, ~XX is identified with the hyperbolic

space H3 and G ¼ Autð ~XX Þ is regarded as a Kleinian group. Then S being

quasi-fuchsian means that p1ðSÞ injects into p1ðXÞ ¼ G and the Kleinian group

p1ðSÞ < G < PSLð2;CÞ satisfies the following condition: if S is orientable then

p1ðSÞ is a quasi-fuchsian group (cf. [26, p. 120, Definition]), and if S is non-

orientable then the index 2 subgroup of p1ðSÞ corresponding to the orientation

double cover is a quasi-fuchsian group. Since the action of a quasi-fuchsian

group on the 3-ball H3 ¼ H3 [ ĈC is topologically conjugate to the action of a

fuchsian group (see [26, Theorem 5.31]), we obtain the following corollary.

Corollary 3.2. Let L � S3 be a hyperbolic alternating link, and S a

checkerboard surface obtained from a prime alternating diagram D of L. Let

S be a component of the inverse image p�1
u ðSÞ � ~XX ¼ H3. Then S is an open

disk properly embedded in H3, and it divides H3 into two half-spaces, B� and

Bþ, which satisfy the following conditions.

(1) H3 ¼ B� [ Bþ and S ¼ B� \ Bþ.

(2) The closure S of S in H3 ¼ H3 [ ĈC is a disk properly embedded in

H3, and ðH3;SÞ is homeomorphic to the standard ball pair ðB3;B2Þ,
where B3 is the unit 3-ball in R3 and B2 is the intersection of B3 with

the x-y plane.
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(3) The closures BG of BG in H3 are 3-balls, such that

H3 ¼ B� [ Bþ; S ¼ B� \ Bþ:

(4) qS is a circle in ĈC which divides ĈC into two disks D� :¼ B� \ ĈC and

Dþ :¼ Bþ \ ĈC, such that ĈC ¼ D� [ Dþ and qS ¼ D� \ Dþ.

We call S � H3 and S � H3, respectively, a checkerboard plane and a

checkerboard disk. The color of S (or S) is defined to be black or white

according to the color of the corresponding checkerboard surface S. We call

each of BG a checkerboard half-space bounded by S.

4. The action of meridian pairs on the ideal boundary of

the hyperbolic space

In the remainder of the paper, we assume for convenience that the hyper-

bolic alternating link L is oriented, and we use the terminology ‘‘meridian’’

and ‘‘meridian pair’’ in the following restricted sense: A meridian of L is an

element of the link group G which is represented by an oriented closed path

freely homotopic to a meridional loop in qN that has linking number þ1 with

L. A meridian pair is an unordered pair fm1; m2g of meridians of L in the

restricted sense. Then two meridian pairs are equivalent in the sense defined

in Section 2 if and only if they are simultaneously conjugate. Of course, this

does not a¤ect the contents of Theorems 2.1 and 2.2.

Recall that ~XX is identified with the hyperbolic space H3 and G ¼ Autð ~XX Þ
is identified with a Kleinian group. Thus a meridian m A G < PSLð2;CÞ is

parabolic, and its action on H3 ¼ H3 [ ĈC has a unique fixed point, which lies

in ĈC. The point is called the parabolic fixed point of m and denoted by FixðmÞ.
Let PFixðGÞ � ĈC be the set of the parabolic fixed points of G, i.e., the set

of the fixed points of the parabolic elements of G. For each p A PFixðGÞ, the
stabilizer StabGðpÞ of p in G is a rank 2 free abelian group which belongs to

the conjugacy class of the fundamental group of a component of qM. Since

every component of qM contains a unique meridian loop (which has linking

number þ1 with L) up to isotopy, StabGðpÞ contains a unique meridian mp
of the oriented link L. We call mp the meridian of L at the parabolic fixed

point p.

Lemma 4.1. The maps m 7! FixðmÞ and p 7! mp, respectively, determine the

following bijective correspondence and its inverse:

fmeridians of Lg ! PFixðGÞ:

The following lemma is easily proved.
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Lemma 4.2. Let fm1; m2g be a meridian pair represented by a proper path g

in the link exterior M. Then the following conditions are equivalent.

(1) fm1; m2g is commuting.

(2) Fixðm1Þ ¼ Fixðm2Þ.
(3) g is inessential.

We now describe the action of the meridian mp on H3. To this end,

we assume that XnM consists of open cusp neighborhoods, and therefore
~MM :¼ p�1

u ðMÞ is a submanifold of ~XX ¼ H3 bounded by disjoint horospheres

fHpgp APFixðGÞ. Note that the Euclidean torus Hp=StabGðpÞ is a component of

qM and every component of qM is of this form.

Now, let S � X be an open checkerboard surface for L. We may as-

sume that S intersects transversely each component of qM in a closed

Euclidean geodesic. For each p A PFixðGÞ, p�1
u ðSÞ \Hp is a disjoint union

of Euclidean lines fljgj AZ ¼ fljðpÞgj AZ such that mpðljÞ ¼ ljþ1. Let Sj ¼ SjðpÞ
be the checkerboard plane that is the component of p�1

u ðSÞ such that lj �
Sj \Hp.

Lemma 4.3. Under the above setting, Sj \Hp ¼ lj for each p A PFixðGÞ
and j A Z. In other words, the checkerboard planes Sj ð j A ZÞ are all di¤erent.

Proof. Suppose to the contrary that Sj ¼ Sj 0 for some distinct integers

j and j 0. Let �SS be the intersection of Sj ¼ Sj 0 and ~MM. Then �SS is properly

embedded in ~MM, and the image �SS :¼ puð �SSÞ ¼ S \M is a checkerboard surface

in M. Let ~aa be a path in �SS joining the boundary components lj and lj 0 of �SS.

Since ~MM is simply connected, ~aa is homotopic rel endpoints to a path in

Hp � q ~MM. Thus the path a :¼ pu � ~aa in �SS is homotopic rel endpoints to a

path in qM inside M. On the other hand, since lj 0 lj 0 , a is not homotopic

rel endpoints to q �SS in �SS. This contradicts [34, Theorem 11.31] which says

that �SS is p1-essential, in particular, boundary p1-injective (see [34, Definition

11.30]).

Remark 4.4. See Proposition 6.6(2) for a direct geometric proof of the

above lemma. The p1-essentiality of checkerboard surfaces associated with

prime alternating diagrams had been proved by Aumann [11] (cf. Menasco-

Thistlethwaite [28, Proposition 2.3]). See Ozawa [31, Theorem 3] and [32,

Theorem 2.8] for generalizations.

Lemma 4.5. (1) There are checkerboard half-spaces BG
j ¼ BG

j ðpÞ ð j A ZÞ
bounded by Sj which satisfy the following conditions:

(a) H3 ¼ B�
j [ Bþ

j and Sj ¼ B�
j \ Bþ

j .

(b) B�
j � B�

jþ1 and Bþ
j � Bþ

jþ1.

(c) mpðBG
j Þ ¼ BG

jþ1.
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(2) Set DG
j ¼ DG

j ðpÞ :¼ BG
j ðpÞ \ ĈC. Then DG

j are disks in ĈC which satisfy

the following conditions.

(a) ĈC ¼ D�
j [ Dþ

j and qSj ¼ D�
j \ Dþ

j .

(b) D�
j � D�

jþ1 and Dþ
j � Dþ

jþ1.

(c) mpðDG
j Þ ¼ DG

jþ1.

In the above lemma, the symbol G is used in the following way: for

example, mpðBG
j Þ ¼ BG

jþ1 means that mpðB�
j Þ ¼ B�

jþ1 for each � A f�;þg. We

apply this convention throughout the paper.

Proof. By Lemma 4.3, Hp \ Sj is equal to the line lj . Observe that

the line lj divides Hp into two closed half-spaces H�
p; j and Hþ

p; j, where

ljG1 � HG
p; j (see Figure 4.1(a)). By Corollary 3.2, ðH3;SjÞ is a standard

ball pair and there are checkerboard half-spaces B�
j ð� A f�;þgÞ bounded by

Sj which satisfy the condition (1-a), such that H �
p; j � B�

j . Since H�
p; j � H�

p; jþ1

and Hþ
p; j � Hþ

p; jþ1, the condition (1-b) is satisfied. Since mpðHG
p; jÞ ¼ HG

p; jþ1, the

condition (1-c) is also satisfied, completing the proof of (1).

The assertion (2) follows from (1) and the fact that ðH3;SjÞ is a standard

ball pair.

Definition 4.6. Under the above setting, a butterfly BFðpÞ at

p A PFixðGÞ is a pair of disks fD�
j ;D

þ
jþ1g ¼ fD�

j ðpÞ;Dþ
jþ1ðpÞg in ĈC for some

j A Z. The color of the butterfly is defined to be black or white according

to the color of the checkerboard surface S. The underlying space jBFðpÞj of
BFðpÞ is defined by jBFðpÞj :¼ D�

j [ Dþ
jþ1 � ĈC (see Figure 4.1(b)).

It should be noted that a butterfly BFðpÞ is determined by the parabolic

fixed point p, the color (equivalently, the choice of a checkerboard surface S),

and the choice of a component Sj of p�1
u ðSÞ such that p A Sj.

Fig. 4.1. (a) The action of mp on ðHp;Hp \ p�1
u ðSbÞ;Hp \ p�1

u ðSwÞÞ. (b) A rough model of the

action of mp on ðH3; fSjgjÞ. This figure is not precise. In fact, D�
j \ Dþ

jþ1 ¼ qD�
j \ qDþ

jþ1 is

generically strictly bigger than fpg (cf. Remark 4.8).
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Lemma 4.7. For a butterfly BFðpÞ ¼ fD�
j ;D

þ
jþ1g at p A PFixðGÞ, the

following hold.

(1) D�
j and Dþ

jþ1 are disks in ĈC which have disjoint interiors.

(2) mpðĈCnint D�
j Þ ¼ Dþ

jþ1.

Proof. (1) By Lemma 4.5(2-a, b), int D�
j � int D�

jþ1 ¼ ĈCnDþ
jþ1. Hence

int D�
j \ int Dþ

jþ1 � ðint D�
j Þ \ Dþ

jþ1 ¼ q:

(2) By Lemma 4.5(2-c), mpðĈCnint D�
j Þ ¼ mpðDþ

j Þ ¼ Dþ
jþ1.

Remark 4.8. The parabolic fixed point p is contained in the intersection

D�
j \ Dþ

jþ1 ¼ qD�
j \ qDþ

jþ1. However, in general, the intersection is strictly

bigger than the singleton fpg; it is generically a Cantor set (cf. [26, Theorem

3.13]). We hope to give a more detailed description of the intersection in a

subsequent paper.

Now, let fm1; m2g be a non-commuting meridian pair, and set pi :¼
FixðmiÞ A PFixðGÞ ði ¼ 1; 2Þ. Note that p1 0 p2 and mi ¼ mpi ði ¼ 1; 2Þ by

Lemmas 4.1 and 4.2. Then the following lemma follows immediately from

Lemma 4.1.

Lemma 4.9. (1) The correspondence fm1; m2g 7! fp1; p2g gives a bijective

correspondence from the set of the non-commuting meridian pairs of L up to

equivalence to the set of the unordered pairs of distinct points in PFixðGÞ up to

the action of G.

(2) Let fm1; m2g and fp1; p2g be as in the above, and let g be a proper path

in M that represents the pair fm1; m2g. Then g lifts to a proper path ~gg in the

universal cover ~MM � ~XX ¼ H3 that joins the horospheres Hp1 and Hp2 . Con-

versely, if g is a proper path in M which is the image of a proper path ~gg in ~MM

joining Hp1 and Hp2 , then g represents the pair fm1; m2g.

Notation 4.10. Under the above setting, when we consider two butter-

flies BFðp1Þ and BFðp2Þ simultaneously, we denote the butterfly BFðpiÞ by

fD�
i ;D

þ
i g for i ¼ 1; 2, where D�

i and Dþ
i correspond to D�

j ðpiÞ and Dþ
jþ1ðpiÞ,

respectively, in Definition 4.6. Thus miðĈCnint D�
i Þ ¼ Dþ

i ði ¼ 1; 2Þ. In this

sense, we regard BFðpiÞ as the ordered pair ðD�
i ;D

þ
i Þ of closed disks in ĈC,

though we continue to denote it by fD�
i ;D

þ
i g.

The proof of Theorem 2.1 is based on the following proposition.

Proposition 4.11. Let L � S3 be a hyperbolic alternating link, fm1; m2g a

non-commuting meridian pair in the link group GðLÞ, and fp1; p2g the corre-

sponding pair of parabolic fixed points. Then the subgroup G ¼ hm1; m2i gen-

erated by fm1; m2g is a rank 2 free Kleinian group which is geometrically finite,
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provided that there are butterflies BFðpiÞ ¼ fD�
i ;D

þ
i g at pi ði ¼ 1; 2Þ satisfying

the following conditions.

( i ) The underlying spaces jBFðp1Þj and jBFðp2Þj have disjoint interiors

in ĈC, equivalently, the four disks D�
1 , Dþ

1 , D�
2 and Dþ

2 have disjoint

interiors.

(ii) The complementary open set O :¼ ĈCnðjBFðp1Þj [ jBFðp2ÞjÞ is non-

empty.

Proof. By a standard ping-pong argument (see [30, Chapter 4] for a nice

exposition with beautiful illustrations), we have wðOÞ \O ¼ q for any non-

trivial reduced word w in fm1; m2g. Hence, the subgroup G ¼ hm1; m2i of GðLÞ
is a rank 2 free group and it has a non-empty domain of discontinuity. Since

a two-parabolic-generator Kleinian group which has a non-empty domain of

discontinuity is geometrically finite by Maskit-Swarup [25, Theorem 1], G is

geometrically finite.

Remark 4.12. Though [3] appeals to the Klein-Maskit combination the-

orem, we could not verify that the conditions in [24, Theorem C.2] is satisfied

in the setting of Proposition 4.11. This is the reason why we use the result of

Maskit and Swarup [25]. We thank Yohei Komori and Hideki Miyachi for

suggesting this idea to us.

5. Basic facts concerning non-positively curved spaces

In this section, we recall fundamental facts concerning non-positively

curved spaces, basically following Bridson-Haefliger [16].

Let X ¼ ðX ; dÞ be a metric space. In this paper, we mean by a geodesic

in X an isometric embedding g : J ! X where J is a connected subset of R.

If J is the whole R (resp. a closed interval), g is called a geodesic line (resp. a

geodesic segment). We do not distinguish between a geodesic and its image.

X is said to be a geodesic space if every pair of points can be joined by a

geodesic in X . For points a and b in a geodesic space X , we denote by ½a; b�
a geodesic segment joining a and b. The symbols ða; bÞ, ½a; bÞ and ða; b�
represent open or half-open geodesic segments, respectively. Then the distance

dða; bÞ is equal to the length, lengthð½a; b�Þ, of the geodesic segment ½a; b�. (See

[16, Definition I.1.18] for the definition of the length of a curve.)

A geodesic space X is called a CAT(0) space if any geodesic triangle is

thinner than a comparison triangle in the Euclidean plane E2, that is, the

distance between any points on a geodesic triangle is less than or equal to the

corresponding points on a comparison triangle. A CAT(0) space is uniquely

geodesic, i.e., for every pair of points, there is a unique geodesic joining them

([16, Proposition II.1.4(1)]). A geodesic space X is said to be non-positively
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curved if it is locally a CAT(0) space (cf. [16, Definitions II.1.1 and II.1.2]).

The following (special case of ) the Cartan-Hadamard theorem is fundamental.

Proposition 5.1 ([16, Special case of Theorem II.4.1(2)]). Let X be a

complete, connected, metric space. If X is non-positively curved, then the uni-

versal covering ~XX (with the induced length metric) is a CAT(0) space.

A subset W of a uniquely geodesic space X is said to be convex if, for any

distinct points a and b in W , the geodesic segment ½a; b� is contained in W .

For a closed convex set W of a complete CAT(0) space X , let pW : X ! W be

the projection, namely pW ðxÞ for every x A X is the unique point in W such

that dðx; pW ðxÞÞ ¼ dðx;WÞ :¼ inffdðx; yÞ j y A Wg (see [16, Proposition II.2.4]).

For points x A XnW and w A W define

—wðx;WÞ :¼ inff—wðx; yÞ j y A Wnfwgg;

where —wðx; yÞ is the Alexandrov angle —wð½w; x�; ½w; y�Þ between the geodesic

segments ½w; x� and ½w; y� at w (see [16, Definition I.1.12 and Notation II.3.2]).

Remark 5.2. The angle —wðx;WÞ is determined by the local shape of

ðX ;WÞ around w in the following sense. For any neighborhood U of w, and

for any x 0 A ðw; x� \U , we have

—wðx;WÞ ¼ —wðx 0;W \UÞ :¼ inff—wðx 0; y 0Þ j y 0 A ðW \UÞnfwgg;

because for any x 0 A ðw; x�, y A Wnfwg and y 0 A ðw; y�, we have —wðx; yÞ ¼
—wðx 0; y 0Þ.

Lemma 5.3. Let X be a complete CAT(0) space and W a closed convex

subset of X. Then for any x A X and w A W, we have w ¼ pW ðxÞ if and only

if —wðx;WÞb p
2 .

Proof. The only if part is nothing other than [16, Proposition II.2.4(3)].

To see the if part, suppose that the inequality —wðx;WÞb p
2 holds, and as-

sume to the contrary that w is di¤erent from the point w0 :¼ pW ðxÞ. Let

Dðx; w; w0Þ � E2 be the comparison triangle of the geodesic triangle Dðx;w;w0Þ
� X . Then —wðx; w0Þb—wðx;w0Þb—wðx;WÞb p

2 by [16, Proposition

II.1.7(4)] and the assumption. We also have —w0
ðx; wÞb—w0

ðx;wÞb p
2 by

[16, Propositions II.1.7(4) and II.2.4(3)]. Thus the Euclidean triangle

Dðx; w; w0Þ has two angles b p
2 , a contradiction.

Let W1 and W2 be closed convex subsets of a complete CAT(0) space X .

The distance dðW1;W2Þ between W1 and W2 is defined by

dðW1;W2Þ :¼ inffdðx1; x2Þ j x1 A W1; x2 A W2g:
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For a pair of distinct points ðx1; x2Þ A W1 �W2, the geodesic segment ½x1; x2� is
a shortest path between W1 and W2 if dðW1;W2Þ ¼ lengthð½x1; x2�Þ. The geo-

desic segment ½x1; x2� is a common perpendicular to W1 and W2 if —x1ðx2;W1Þb
p
2 and —x2ðx1;W2Þb p

2 .

Lemma 5.4. Let X be a complete CAT(0) space, and let W1 and W2

be closed convex subsets of X. Then, for a pair of distinct points ðx1; x2Þ A
W1 �W2, the geodesic segment ½x1; x2� is a shortest path between W1 and W2

if and only if it is a common perpendicular to W1 and W2. In particular, if

a common perpendicular to W1 and W2 exists, then dðW1;W2Þ > 0 and so

W1 \W2 ¼ q.

Proof. Assume that ½x1; x2� is a common perpendicular to W1 and W2.

Consider the projection ps :¼ p½x1;x2� from X to the closed convex set ½x1; x2�.
Then for any pair of points ðy1; y2Þ A W1 �W2, we see x1 ¼ psðy1Þ by the if

part of Lemma 5.3, because —x1ðy1; ½x1; x2�Þ ¼ —x1ðx2; y1Þb—x1ðx2;W1Þb p
2 .

Similarly x2 ¼ psðy2Þ. Since the projection does not increase distances by

[16, Proposition II.2.4(4)], we have

dðx1; x2Þ ¼ dðpsðy1Þ; psðy2ÞÞa dðy1; y2Þ:

Hence lengthð½x1; x2�Þ ¼ dðx1; x2Þ ¼ dðW1;W2Þ. This completes the proof of

the if part. The only if part immediately follows from (the if part of )

Lemma 5.3.

A cubed complex is a metric space X ¼ ðX ; dÞ obtained from a disjoint

union of unit cubes X̂X ¼
F

l ALðI nl � flgÞ by gluing their faces through iso-

metries. To be precise, it is an Mk-polyhedral complex with k ¼ 0 in the

sense of [16, Definition I.7.37] that is made up of Euclidean unit cubes, i.e.,

the set ShapesðXÞ in the definition consists of Euclidean unit cubes. (See

[16, Example (I.7.40)(4)].) The metric d on X is the length metric induced

from the Euclidean metrics of the unit cubes (see [16, I.7.38] for a precise

definition). We recall the following basic fact (cf. [16, Theorem in p. 97 or

I.7.33]).

Proposition 5.5. Every finite dimensional cubed complex is a complete

geodesic space.

When we need to consider the combinatorial structure of the cubed com-

plex X in addition to its metric, we denote it by using the corresponding

calligraphic letter X and regard the metric space X as the underlying space

jXj of X. Otherwise, we do not distinguish symbolically among X , X and jXj,
and use a symbol which we think fit to the setting. We also call X a cubed

decomposition of the metric space X .
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For a point x A X ¼ jXj, two non-trivial geodesics issuing from x are said

to define the same direction if the Alexandrov angle between them is zero.

This determines an equivalence relation on the set of non-trivial geodesics

issuing from x, and the Alexandrov angle induces a metric on the set of the

equivalence classes. The resulting metric space is called the space of directions

at x and denoted by SxðXÞ (see [16, Definition II.3.18]).

Suppose x is a vertex v of the cubed complex X. Then the space SvðXÞ
is obtained by gluing the spaces fSvlðI nl � flgÞg, where l runs over the ele-

ments of the index set L such that ðvl; lÞ A I nl � flg � X̂X is mapped to v by

the projection X̂X ! X . Here SvlðI nl � flgÞ is the space of directions in the

cube I nl � flg at the vertex vl; so it is an all-right spherical simplex, a geodesic

simplex in the unit sphere Snl�1 all of whose edges have length p=2. Hence

SvðXÞ has a structure of a finite dimensional all-right spherical complex, namely

an Mk-polyhedral complex with k ¼ 1 in the sense of [16, Definition I.7.37]

which is made up of all-right spherical simplices. This complex is called the

geometric link of v in X, and is denoted by Lkðv;XÞ (see [16, (I.7.38)]). It is

endowed with the length metric dLkðv;XÞ induced from the spherical metrics of

the all-right spherical simplices. Then the following holds (cf. [16, the second

sentence in p. 191]).

Lemma 5.6. The metric dSvðXÞ on SvðXÞ ¼ Lkðv;XÞ determined by the

Alexandrov angle is equal to the metric d p
Lkðv;XÞ defined by

d p
Lkðv;XÞðg1; g2Þ :¼ minfdLkðv;XÞðg1; g2Þ; pg:

Proof. By [16, Theorem I.7.39], there is a natural isometry f from the

open ball BX ðv; �Þ ¼ fx A X j dðv; xÞ < �g, for some � > 0, onto the open ball of

the same radius � about the cone point of the Euclidean cone C0ðLkðv;XÞÞ over
the metric space Lkðv;XÞ. (See [16, Definition I.5.6] for the definition of the

Euclidean cone (k-cone with k ¼ 0) and its cone point.) The metric d p
Lkðv;XÞ

is recovered from the metric of the open ball about the cone point of the

Euclidean cone C0ðLkðv;XÞÞ (see [16, Remark I.5.7]), whereas the metric dSvðXÞ
is determined by the metric on BX ðv; �Þ. Hence, by the naturality of the

isometry f , we obtain the desired result.

We recall the following well-known criterion for a cubed complex to be

non-positively curved [16, Theorem II.5.20], where a flag complex is a simplicial

complex in which every finite set of vertices that is pairwise joined by an edge

spans a simplex.

Proposition 5.7 (Gromov’s flag criterion). A finite dimensional cubed

complex X is non-positively curved if and only if the geometric link of each

vertex is a flag complex.
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6. Non-positively curved cubed decompositions of alternating link exteriors

The proof of Proposition 7.4, as well as that of Proposition 3.1 given by

[2, 3, 6], is based on non-positively curved cubed decompositions of prime

alternating link exteriors in which the checkerboard surfaces are hyperplanes,

i.e., consist of midsquares of the cubes. Here a midsquare of a cube I 3 is a

square properly embedded in I 3 which is parallel to a face of qI 3 and passes

through the center 1
2 ;

1
2 ;

1
2

� �
. (See [22, Definition 2.2] for a precise definition of

a hyperplane.) In this section, we quickly describe the cubed decompositions

following the construction by D. Thurston [45] and the detailed description by

Yokota [48] (cf. [5, 40, 36]).

For each crossing of a prime alternating diagram D of a prime alternating

link L, consider an octahedron that contains the corresponding crossing arc

as a vertical central axis (see Figure 6.1). Truncating each octahedron at

its top and bottom vertices and splitting along the horizontal square containing

Fig. 6.1. Local picture of the cubed complex M. The partially truncated octahedra in M are

expanded so that they cover the whole M. The shaded faces of the octahedra at the crossings c

and c 0 are identified with the central bow-shaped face. In particular, the pair of the horizontal

arrowed edges of the octahedra are identified with the arrowed edge of the bow-shaped face joining

monotonically the top vertex vþ and the bottom vertex v�, passing through the center mðRÞ of the

region R.
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the remaining four vertices, we obtain a pair of cubes in the link exterior

M, each of which intersects qM along the top or bottom face and intersects

the checkerboard surfaces in the vertical midsquares (see Figure 6.2). We

can expand the cubes in M so as to obtain the desired cubed decomposi-

tion of M (see Figure 6.1 and its caption). Thus we obtain the following

proposition.

Proposition 6.1. Let L be a prime alternating link and D a prime

alternating diagram of L. Then there is a complete, non-positively curved,

cubed complex M whose underlying space is the exterior M of L, which satisfies

the following conditions.

(1) Each cube I 3 intersects qM in the top face I 2 � f1g or the bottom face

I 2 � f0g.
(2) There are hyperplanes Sb and Sw in M that represent the isotopy

classes of the black and white surfaces, respectively, and satisfy the

following conditions.

(a) Each of Sb and Sw intersects each cube in one of the two vertical

midsquares 1
2

� �
� I 2 and I � 1

2

� �
� I .

(b) Sb and Sw intersects ‘‘orthogonally’’ along C :¼ Sb \Sw, the

disjoint union of geodesic segments representing crossing arcs.

(3) M has precisely two inner vertices vþ and v�.

Fig. 6.2. At each crossing, (a) Sb and Sw intersect transversely along the crossing arc, (b) each of

Sb and Sw intersects the partially truncated octahedron in a vertical middle plate containing the

crossing arc, and (c) each of the middle plate determines a pair of midsquares in the pair of cubes,

and the two pairs of midsquares intersect orthogonally along the vertical axes of the cubes.
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(4) There is a bijective correspondence between the inner edges (edges

contained in int M) of M and the regions of D: the inner edge eðRÞ
corresponding to a region R is a monotone path joining vþ with v�
that intersects Sb [Sw ‘‘orthogonally’’ at a single point mðRÞ which is

contained in the component of ðSb [SwÞnC corresponding to R. We

call mðRÞ the center of R.

(5) For each � A fþ;�g, the geometric link Lkðv�;MÞ is the all-right

spherical complex whose combinatorial structure is obtained from the

cell decomposition of S2 determined by the dual graph D� of D, by

subdividing each region of D� as follows. Each region of D� contains

a unique vertex, say c, of D. Subdivide the region by taking the join

of c and the edge cycle of D� forming the boundary of the region (see

Figure 6.3). Here the vertex m�ðRÞ of D� � LkðvG;MÞ dual to the

region R corresponds to the direction at v� determined by the geodesic

½v�;mðRÞ�.

Remark 6.2. (1) In the statement (2-b), the adjective ‘‘orthogonally’’

means that every interior point of C has a neighborhood U in M such that

the triple ðU ;U \Sb;U \SwÞ is isometric to a neighborhood of the origin in

ðR3; 0�R2;R� 0�RÞ.
(2) In the statement (4), the adjective ‘‘orthogonally’’ means that there

is a CAT(0) neighborhood U of mðRÞ in M, such that for any point x A
ðeðRÞnfmðRÞgÞ \U and y A ððSb [SwÞnfmðRÞgÞ \U , we have —mðRÞðx; yÞ ¼
p=2.

(3) For each component T of qM, the restriction MjT of M to T gives

a cubed decomposition of T , whose 1-skeleton is the union of two longitudes

lb and lw, where lb and lw are parallel to Sb \ T and Sw \ T , respectively. In

particular, for each square I 2 of MjT , exactly one of the two diagonals of the

square projects to a meridional loop (cf. Figure 4.1(a)).

Fig. 6.3. The geometric link Lkðv�;MÞ: The union of the thick red graph and the thick green

graph forms the 1-skeleton of Lkðv�;MÞ.
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(4) The assertion (5) implies the following key fact. For distinct regions

R1 and R2 of D, the distance dLkðv�;MÞðm�ðR1Þ;m�ðR2ÞÞ is p=2 orb p according

to whether R1 and R2 are adjacent or not. By Lemma 5.6, this implies that

the Alexandrov angle —v�ðmðR1Þ;mðR2ÞÞ is equal to p=2 or p according to

whether R1 and R2 are adjacent or not. This fact plays a key role in the proof

of Proposition 7.4.

Let X be the cubed complex obtained by attaching the cubed complexSy
n¼1 qM� ½n; nþ 1� to M along qM. Then the underlying space is the link

complement X , and we have the following key proposition.

Proposition 6.3. The cubed complexes M and X are complete and non-

positively curved.

Proof. By Proposition 5.5, M and X are complete. From the descrip-

tion of LkðvG;MÞ ð¼ LkðvG;XÞÞ given by Proposition 6.1(5), we can check that

they are flag complexes as in [40, Proof of Proposition 3.3]. For any other

vertex v of M and X, we can easily see that the geometric link of v in M and

X, respectively, is a flag complex. Hence, M and X are non-positively curved

by Gromov’s flag criterion (Proposition 5.7).

Let ~XX (resp. ~MM) be the cubed decomposition of the universal covering

space ~XX (resp. ~MM ) obtained by pulling back the cubed decompositions X of

X (resp. M of M ) through the covering projection pu : ~XX ! X . Then ~XX and
~MM are complete CAT(0) cubed complexes by Proposition 6.3 and the Cartan-

Hadanard theorem (Proposition 5.1).

As in Proposition 6.1(2), the open checkerboard surfaces Sb and Sw in

X are isotopic to hyperplanes in X, which we also denote by Sb and Sw,

respectively. Then Sb and Sw intersects orthogonally along C :¼ Sb \Sw, the

disjoint union of geodesic lines representing open crossing arcs. Set ~SSb :¼
p�1
u ðSbÞ and ~SSw :¼ p�1

u ðSwÞ. Then every component S of ~SSb (resp. ~SSw) is a

hyperplane in ~XX, and it is regarded as the universal covering of Sb (resp. Sw):

we call S a checkerboard hyperplane in ~XX. Of course, a checkerboard hyper-

plane is a checkerboard plane defined in Section 3.

Proposition 6.4. Every checkerboard hyperplane S is convex in the

CAT(0) space ~XX. Moreover, S divides ~XX into two closed convex subspaces,

namely, there are convex subspaces B and Bc of ~XX such that ~XX ¼ B [Bc and

S ¼ B \B c.

Proof. This follows from Farley’s result [19, Theorem 4.4], that is moti-

vated by Sageev’s combinatorial study of hyperplanes in [35, Section 4]. See

[37, Section 4.3] for another proof.
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We call each of the subspaces B and Bc of ~XX in the above proposition a

checkerboard half-space bounded by the checkerboard hyperplane S. Though

every checkerboard half-space is also regarded as that defined in Section 3,

we use the terminology in the above sense throughout the remainder of this

paper.

By a peripheral plane, we mean a component of q ~MM � ~XX. Then we

have the following proposition, which is easily proved by using [37, Theorem

1.1].

Proposition 6.5. Under the above setting, every peripheral plane H � q ~MM

is convex in the CAT(0) space ~XX.

Propositions 6.4 and 6.5 imply the following proposition.

Proposition 6.6. (1) Let S1 and S2 be distinct checkerboard hyperplanes

in ~XX. Then one of the following holds.

(a) S1 \ S2 ¼ q.

(b) S1 \ S2 is a geodesic line. Moreover, S1 and S2 intersect orthogo-

nally along S1 \ S2, in the sense defined in Remark 6.2(1). Further-

more, S1 \ S2 divides each of S1 and S2 into two convex subspaces.

(2) Let S be a checkerboard hyperplane and H a peripheral plane in ~XX.

Then one of the following holds.

(a) S \H ¼ q.

(b) S \H is a geodesic line. Moreover, S and H intersect orthogonally

along S \H, in the sense defined in Remark 6.2(1). Furthermore,

S \H divides each of S and H into two convex subspaces.

Proof. The assertions except for the orthogonalities are consequences of

Propositions 6.4, 6.5 and the fact that the intersection of two convex sets is

again convex. The orthogonality of S1 and S2 in (1-b) follows from the fact

that S1 and S2 are hyperplanes, and so their relative positions are as explained

in Proposition 6.1(2) and illustrated in Figure 6.2(c). The orthogonality of S

and H in (2-b) follows similarly from Proposition 6.1(1,2) and Figure 6.2(c).

The additional assertions in (1-b) and (2-b) are proved by a (much simpler)

argument similar to the proof of Proposition 6.4.

The following technical corollary is used in Section 9.

Corollary 6.7. Let S1 and S2 be distinct checkerboard hyperplanes such

that l :¼ S1 \ S2 is a geodesic line. Then the following hold.

(1) If l 0 is a geodesic in ~XX such that l \ l 0 0q, then either l 0 � l or

l \ l 0 is a singleton.

(2) If l 0 is a geodesic in Si (i ¼ 1 or 2) such that l \ l 0 is a singleton

fyg in int l 0, then y is a transversal intersection point of l and l 0, and

188 Shunsuke Sakai and Makoto Sakuma



the two components of l 0nfyg are contained in distinct components of

Sinl.
(3) Let H be a peripheral hyperplane in ~XX, such that l \H0q. Then

l \H consists of a single point, w, and p�1
H ðwÞ ¼ l, where pH : ~XX ! H

is the projection.

Proof. (1) Since l \ l 0 is a convex subset of l, l \ l 0 is either a singleton

or a non-degenerate geodesic (a geodesic strictly bigger than a singleton). If

l \ l 0 is a non-degenerate geodesic, then l 0 must be contained in the geodesic

line l, because every point in l has a Euclidean neighborhood in ~XX by Prop-

osition 6.6(1-b) and Remark 6.2(1), and because, in the Euclidean space, every

geodesic has no branching (see Figure 6.4(a)).

(2) This follows from the fact that the point y A l � Si has a Euclidean

neighborhood in Si (by Proposition 6.6(1-b) and Remark 6.2(1)) and the fact

that every geodesic has no branching in the Euclidean plane (see Figure 6.4(b)).

(3) It follows from Proposition 6.1(1), (2) that l intersects H orthogonally

at a single point, w, and that l � p�1
H ðwÞ. To see the converse inclusion, pick

a point z ð0wÞ of p�1
H ðwÞ. Then the geodesic segment of ½z;w� is orthogonal

to H at w (cf. Lemma 5.3). Since w has a Euclidean neighborhood in ~XX

by Proposition 6.6(2-b), this implies that a small neighborhood of w in ½z;w�
is contained in l. Hence ½z;w� � l by the assertion (1). Thus z A l and so

p�1
H ðwÞ ¼ l.

The following lemma is used in Sections 8 and 9.

Lemma 6.8. Let S1 and S2 be disjoint checkerboard hyperplanes in ~XX.

Then S1 [ S2 divides ~XX into three convex subspaces. To be precise, there are

three closed convex subspaces B1, B1;2 and B2, such that

~XX ¼ B1 [B1;2 [B2; B1 \B1;2 ¼ S1; B1;2 \B2 ¼ S2; B1 \B2 ¼ q:

Proof. By Proposition 6.4, there are closed convex subspaces Bi and

Bc
i such that ~XX ¼ Bi [Bc

i and Si ¼ Bi \Bc
i ði ¼ 1; 2Þ. Since S1 � ~XXnS2 ¼

Fig. 6.4. Branching of geodesics. Though branching of geodesic can occur in CATð0Þ spaces, it

never occurs in Euclidean spaces.

189Two-parabolic-generator subgroups



int B2 t int Bc
2, we may assume S1 � int B c

2 and S1 \B2 ¼ q. Similarly,

we may assume S2 � int Bc
1 and S2 \B1 ¼ q. Then B1 \B2 is disjoint

from S1 [ S2 ¼ qB1 [ qB2, and therefore B1 \B2 ¼ int B1 \ int B2. Hence

B1 \B2 is a closed, open, proper subset of ~XX. Since ~XX is connected, this

implies B1 \B2 ¼ q. Thus, by setting B1;2 :¼ Bc
1 \Bc

2, we obtain the desired

result.

7. Decompositions of alternating link complements into checkerboard

ideal polyhedra

We recall the (topological) ideal polyhedral decomposition of the com-

plement X of a prime alternating link L associated with its prime alternating

diagram D, due to Thurston [47], Menasco [27], Takahashi [44] and others,

following the description by Aitchison-Rubinstein [7] (see also [34, Theorem

11.6]).

Regard the prime alternating diagram D as a 4-valent graph on the bound-

ary of the 3-ball B3. Then ðB3;DÞ is regarded as a (topological) polyhedron

(cf. [34, Definition 1.1]). By removing the vertices from ðB3;DÞ, we obtain a

(topological) ideal polyhedron, which we denote by PðDÞ. Each region R of

D determines the (ideal) face �RR :¼ Rnfverticesg of PðDÞ, and each edge e of

D determines the (ideal) edge �ee :¼ int e of PðDÞ. Prepare two disjoint copies

PþðDÞ and P�ðDÞ of PðDÞ, and glue them together by the following ‘‘gear

rule’’: For each region R of D, the face �RR of PþðDÞ is identified with the face
�RR of P�ðDÞ through rotation by one edge in the clockwise or anti-clockwise

direction according to whether R is black or white (see Figure 7.1). (Here, we

employ the convention that the twisted bands in the black (resp. white) surface

are left-handed (resp. right-handed) as in Figure 6.2(a).)

Proposition 7.1. Under the above setting, the resulting space is naturally

homeomorphic to the complement X of L. Moreover, the following hold.

Fig. 7.1. The decomposition of the figure-eight knot complement into a pair of checkerboard ideal

polyhedra: The shaded regions are black regions and the unshaded regions are white regions.
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(1) The image in X of an edge of PGðDÞ is an open crossing arc. More-

over, the inverse image of each crossing arc in each of PGðDÞ consists

of two edges.

(2) If R is a black region of D, then the image in X of the face �RR of

PGðDÞ is equal to the closure of the component of SbnðSb \ SwÞ cor-

responding to R. Parallel assertions also hold when R is a white

region.

(3) For each � A fþ;�g, the image of P�ðDÞ in X is equal to the closure

of the component of XnðSb [ SwÞ containing the point v�.

Though the natural maps from PGðDÞ to X are not injective on the

1-skeletons, their lifts to the universal cover ~XX are homeomorphisms onto

their images, each of which is equal to the closure of a component of
~XXnp�1

u ðSb [ SwÞ. Thus we obtain a tessellation of ~XX by copies of PþðDÞ
and P�ðDÞ, where the wall is p�1

u ðSb [ SwÞ, the union of all checkerboard

planes.

By working in the non-positively curved cubed decomposition X of X and

the CAT(0) cubed decomposition ~XX of ~XX , we can refine the above topological

picture into the geometric picture explained below.

Recall that the open checkerboard surfaces Sb and Sw in X are isotopic to

the hyperplanes Sb and Sw in the non-positively curved cubed complex X.

They intersect orthogonally along C ¼ Sb \Sw, the disjoint union of geodesic

lines representing open crossing arcs. The union Sbw :¼ Sb [Sw cuts X into

two connected components. We denote by Pþ and P�, the closures of the

components of XnSbw containing the vertices vþ and v�, respectively. Then

PG is naturally homeomorphic to the image of PGðDÞ in X .

In the universal cover ~XX, both ~SSb ¼ p�1
u ðSbÞ and ~SSw ¼ p�1

u ðSwÞ are dis-

joint unions of checkerboard hyperplanes, and they intersect orthogonally along
~CC :¼ ~SSb \ ~SSw. The union ~SSbw ¼ ~SSb [ ~SSw of all checkerboard hyperplanes

divides ~XX into infinitely many ‘‘right-angled, cubed, ideal polyhedra’’, and

we obtain the following proposition.

Proposition 7.2. Let ~PP� be the closure of a component of ~XXn ~SSbw which

projects to P� � X ð� A fþ;�gÞ. Then ~PP� admits a natural structure of a

(topological) ideal polyhedron with respect to which there is an isomorphism

j� : PðDÞ ! ~PP� satisfying the following conditions.

(1) For each region R of D, there is a checkerboard hyperplane, SR ¼
SRð ~PP�Þ, satisfying the following conditions.

(a) j�ð �RRÞ ¼ q ~PP� \ SR.

(b) If R is a black region, then puðSRÞ ¼ Sb, and the restriction of the

universal covering projection pujSR
: SR ! Sb to the face j�ð �RRÞ is

a homeomorphism onto the closure of the component of SbnC
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corresponding to R. Parallel assertions also hold when R is a

white region.

(2) For each region R of D, let Bc
R ¼ Bc

Rð ~PP�Þ be the checkerboard half-

space bounded by SR that contains ~PP�. Then ~PP� ¼
T

R Bc
R, where R

runs over the regions of D. In particular, ~PP� is convex in the CAT(0)

space ~XX.

(3) Let e be an edge of D and let R1 and R2 be the regions of D sharing e.

Then the two faces j�ð �RR1Þ and j�ð �RR2Þ intersect orthogonally along the

edge j�ð�eeÞ. The edge j�ð�eeÞ projects to a geodesic line in X represent-

ing an open crossing arc.

Moreover, jþ and j� are related as explained below. Note that, for each

region R of D, ðpu � jGÞj �RR are homeomorphisms with the same image, and so the

composition ðpu � j�Þj �RR � ðpu � jþÞj �RR
�1

is a well-defined automorphism of the

ideal polygon �RR. This automorphism is a rotation by one edge in the clockwise

or anti-clockwise direction according to whether R is black or white.

The proposition is obtained by looking Proposition 7.1 in the setting of

Proposition 6.1. The convexity of ~PP� in (2) is a consequence of Proposi-

tion 6.4.

Definition and Notation 7.3. We call ~PP� a checkerboard ideal poly-

hedron in ~XX. The unique point ~vv� A p�1
u ðv�Þ contained in ~PP� is called the center

of ~PP�.

When we do not mind the sign �, we drop it from the symbols, such as ~PP�

and j�. For a fixed checkerboard ideal polyhedron ~PP and for a region R of

D, we use the following terminology and notation.

(1) The face jð �RRÞ of ~PP is called the face R of ~PP.

(2) The center ~mmðRÞ of the face R of ~PP is defined as follows. By Prop-

osition 7.2(1-b), pu determines a homeomorphism from jð �RRÞ to the

closure of the component of SbwnC containing the center mðRÞ.
Then ~mmðRÞ A jð �RRÞ is the inverse image of mðRÞ.

(3) SR ¼ SRð ~PPÞ denotes the checkerboard hyperplane in ~XX containing

the face R of ~PP.

(4) BR ¼ BRð ~PPÞ and Bc
R ¼ B c

Rð ~PPÞ denote the checkerboard half-spaces

in ~XX bounded by SRð ~PPÞ, such that ~PP � Bc
Rð ~PPÞ and BRð ~PPÞ \Bc

Rð ~PPÞ
¼ SRð ~PPÞ (see Figure 7.2(a)).

Then we have the following proposition, which plays a key role in the

proof of Theorem 1.2.

Proposition 7.4. Let ~PP � ~XX be a checkerboard ideal polyhedron, and let

R1 and R2 be distinct regions of D. Then BR1
¼ BR1

ð ~PPÞ and BR1
¼ BR2

ð ~PPÞ are
disjoint if and only if R1 and R2 are not adjacent.
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Proof. Let ~vv be the center of ~PP, and let ~mmðRiÞ be the center of the

face Ri of ~PP ði ¼ 1; 2Þ. Then the geodesic segment ½~vv; ~mmðRiÞ� is perpendicular

to SRi
¼ SRi

ð ~PPÞ by Proposition 6.1(4) (cf. Remark 6.2(2)) and Remark 5.2.

Note that there is a natural isomorphism Lkð~vv; ~XXÞGLkðv;MÞ, where v ¼ puð~vvÞ.
Thus, by Remark 6.2(4), —~vvð ~mmðR1Þ; ~mmðR2ÞÞ is equal to p=2 or p according to

whether R1 and R2 are adjacent or not. Hence, if R1 and R2 are not adjacent,

then ½ ~mmðR1Þ; ~vv� [ ½~vv; ~mmðR2Þ� is a geodesic which is perpendicular to the check-

erboard hyperplanes SR1
and SR2

at their endpoints. (In fact, it is a local

geodesic by [16, Remark I.5.7 and Theorem I.7.39] and so it is a geodesic by

[16, Proposition II.1.4(2)].) Hence, by Lemma 5.4, it is a shortest path between

the hyperplanes, and in particular, SR1
and SR2

are disjoint. By Lemma 6.8,

SR1
[ SR2

divides ~XX into three closed convex subspaces B1, B1;2 and B2, that

satisfy the condition in the lemma. Since ~PP intersects both SR1
and SR2

, we

have ~PP � B1;2. This implies that Bi ¼ BRi
ði ¼ 1; 2Þ. Hence BR1

and BR2

are disjoint (see Figure 7.2(b)).

On the other hand, if the regions R1 and R2 are adjacent in D, then the

faces R1 and R2 of ~PP are adjacent. Thus SR1
\ SR2

is a geodesic line (cf.

Proposition 6.6(1)) and hence BR1
and BR2

are not disjoint.

At the end of this section, we note the following observation (see Figure

7.3), which is used in Section 9.

Lemma 7.5. Let Rw be a white region of D and Rb; i ð1a ia nÞ be the

black regions of D which are adjacent to Rw and which are arranged around Rw

in this cyclic order with respect to the anti-clockwise orientation of qRw. Let
~PPG � ~XX be the checkerboard ideal polyhedra, such that ~PPþ \ ~PP� is the face Rw

Fig. 7.2. (a) BRð ~PPÞ is the checkerboard half-space in ~XX bounded by the hyperplane SRð ~PPÞ which

is disjoint from int ~PP. (This 2-dimensional figure does not reflect the fact that ~PP is an ideal

polyhedron.) (b) If R1 and R2 are not adjacent, then —~vvð ~mmðR1Þ; ~mmðR2ÞÞ ¼ p, and hence ½ ~mmðR1Þ; ~vv� [
½~vv; ~mmðR2Þ� is a common perpendicular to SR1

and SR2
. This implies BR1

ð ~PPÞ \BR2
ð ~PPÞ ¼ q.
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of both ~PPþ and ~PP�. Then we have SRb; i
ð ~PPþÞ ¼ SRb; iþ1

ð ~PP�Þ and BRb; i
ð ~PPþÞ ¼

BRb; iþ1
ð ~PP�Þ, where the index i is considered with modulo n. When the colors

black and white are interchanged, similar assertion holds.

Proof. For � A fþ;�g, let j� be the isomorphism from PðDÞ to the

checkerboard ideal polyhedron ~PP�. Then jþð �RRwÞ ¼ j�ð �RRwÞ by the assumption.

Consider the edge ei :¼ Rw \ Rb; i of D. Then, by the last assertion of Propo-

sition 7.2, we see that jþð�eeiÞ ¼ j�ð�eeiþ1Þ and that it is a common edge of the

faces jþð �RRb; iÞ and j�ð �RRb; iþ1Þ. Since ~PPG are right-angled cubed polyhedra

(cf. Proposition 7.2(3)), this implies that the two faces are contained in a single

checkerboard hyperplane, which is equal to SRb; i
ð ~PPþÞ ¼ SRb; iþ1

ð ~PP�Þ. Since ~PPþ
and ~PP� share the common face jþð �RRwÞ ¼ j�ð �RRwÞ, we also have BRb; i

ð ~PPþÞ ¼
BRb; iþ1

ð ~PP�Þ.

8. Butterflies and checkerboard ideal polyhedra

The complement X of a hyperbolic alternating link L with a prescribed

prime alternating diagram D admits two distinct geometric structures given as:

– the complete hyperbolic manifold H3=G, and

– the underlying space of the non-positively curved cubed complex X

that is constructed from a prime alternating diagram D of L.

We fix homeomorphisms

ðX ;MÞG ðH3=G; ðH3nQÞ=GÞG ðjXj; jMjÞ;

and identify the relevant spaces through the homeomorphisms. Here Q is the

disjoint union of the open horoballs bounded by the horospheres fHpgp APFixðGÞ

Fig. 7.3. The checkerboard polyhedra ~PPþ and ~PP� share a face that is contained in the

checkerboard hyperplane SRw
ð ~PPþÞ ¼ SRw

ð ~PP�Þ. Then SRb; i
ð ~PPþÞ ¼ SRb; iþ1

ð ~PP�Þ.

194 Shunsuke Sakai and Makoto Sakuma



introduced in Section 4 (the paragraph after Lemma 4.2). This identification

induces the following G-equivariant identifications of the universal covering

spaces

ð ~XX ; ~MMÞ ¼ ðH3;H3nQÞ ¼ ðj ~XXj; j ~MMjÞ:

In particular, each horosphere Hp � H3 is regarded as a peripheral plane

contained in q ~MM in the CAT(0) space ~XX; so we call it the peripheral plane

centered at p.

We also assume that the quasi-fuchsian checkerboard surfaces Sb and Sw in

the hyperbolic manifold X ¼ H3=G (cf. Sections 3 and 4) are the hyperplanes

Sb and Sw, respectively, in the non-positively curved cubed complex X (cf.

Sections 6 and 7). Thus each checkerboard plane S � H3 is a checkerboard

hyperplane in the CAT(0) cubed complex ~XX.

For a checkerboard ideal polyhedron ~PP � ~XX ¼ H3, let P̂P be the closure

of ~PP in H3 ¼ H3 [ ĈC. Then the isomorphism j : PðDÞ ! ~PP (between topo-

logical ideal polyhedra) extends to an isomorphism ĵj : ðB3;DÞ ! P̂P (between

topological polyhedra), because ~XXn ~MM is identified with the disjoint family of

open horoballs Q centered at points in PFixðGÞ. For each vertex c of D, the

ideal point p :¼ ĵjðcÞ belongs to PFixðGÞ, and we call p the ideal vertex of ~PP

corresponding to c. We also call c the vertex of D corresponding to the ideal

vertex p of ~PP.

We introduce the following notation for objects in the closure H3 of the

hyperbolic space, building on Definition and Notation 7.3 for objects in the

CAT(0) cubed complex ~XX (cf. Figure 7.2(a)).

Notation 8.1. Let ~PP � ~XX be a checkerboard ideal polyhedron, and R

a region of the diagram D.

(1) SR ¼ SRð ~PPÞ denotes the checkerboard disk properly embedded in H3

obtained as the closure of SRð ~PPÞ � ~XX ¼ H3.

(2) BR ¼ BRð ~PPÞ and Bc
R ¼ Bc

Rð ~PPÞ denote the 3-balls in H3 obtained

as the closures of the checkerboard half-spaces BRð ~PPÞ and Bc
Rð ~PPÞ.

Note that ~PP � Bc
Rð ~PPÞ and BRð ~PPÞ \Bc

Rð ~PPÞ ¼ SRð ~PPÞ.
(3) DRð ~PPÞ denotes the disk in ĈC defined by DRð ~PPÞ :¼ BRð ~PPÞ \ ĈC.

Then we have the following lemma.

Lemma 8.2. Let ~PP1 and ~PP2 be checkerboard ideal polyhedra, and let R1

and R2 be regions of D. If the checkerboard half-spaces BR1
ð ~PP1Þ and BR2

ð ~PP2Þ
in H3 are disjoint, then the two disks DR1

ð ~PP1Þ and DR2
ð ~PP2Þ have disjoint interiors

in ĈC.

Proof. By Corollary 3.2, the pair ðH3;BRi
Þ, with BRi

¼ BRi
ð ~PPiÞ, is

homeomorphic to the standard pair ðB3;B3
þÞ of the unit 3-ball B3 in R3
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and the closed upper half-ball B3
þ ¼ fðx; y; zÞ A B3 j zb 0g ði ¼ 1; 2Þ. Thus a

point x A ĈC belongs to the interior of DRi
:¼ DRi

ð ~PPiÞ if and only if there is a

neighborhood U of x in H3 such that U \H3 � BRi
ði ¼ 1; 2Þ. So x belongs

to int DR1
\ int DR2

if and only if there is a neighborhood U of x in H3 such

that U \H3 � BR1
\BR2

. Hence, if BR1
\BR2

¼ q then int DR1
\ int DR2

¼
q.

Proposition 7.4 together with Lemma 8.2 implies the following proposition,

which plays a key role in the proof of Theorem 2.1.

Proposition 8.3. Let ~PP � ~XX be a checkerboard ideal polyhedron, and let

R1 and R2 be distinct regions of D. If R1 and R2 are not adjacent, then DR1
ð ~PPÞ

and DR2
ð ~PPÞ have disjoint interiors in ĈC.

Remark 8.4. In Lemma 8.2 and Proposition 8.3, the converses also hold.

Actually, Proposition 8.3 reflects only a small part of a very interesting state-

ment in Agol’s slide [3], which we read as follows. Aitchison and Rubinstein

(cf. [6]) studied patterns of the intersections of the limit circles fqySg of the

checkerboard hyperplanes in the ideal boundary qy ~XX of the CAT(0) space
~XX: Put a circle around each region of D, then the limit circles fqyðSRð ~PPÞÞgR
‘‘have this intersection pattern’’ in qy ~XX (see Figure 8.1). We hope to give

more detailed interpretation of this statement in a subsequent paper.

The following characterization of butterflies is used repeatedly in the proof

of Theorem 2.1.

Lemma 8.5. Let p A PFixðGÞ be a parabolic fixed point and ~PP an ideal

checkerboard polyhedron which has p as an ideal vertex. Let c be the vertex of

D corresponding to p, and let fR�;Rþg be a pair of regions that contain c and

Fig. 8.1. Put a circle CR around each region R of the diagram D, so that CR bounds a disk

containing R and passes through the vertices on qR. The figures (a) and (b) illustrates the circles

fCRg where R runs over the black or white regions, respectively. By overlaying these two figures,

we obtain the figure (c). According to [3], the figure (c) ‘‘illustrates’’ the intersection pattern of the

limit circles fqyðSRð ~PPÞÞgR, where R runs over the regions of D.
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have the same color. Then, after replacing RG with RH if necessary, the pair

fDR�ð ~PPÞ;DRþð ~PPÞg forms a butterfly BFðpÞ at p (in the sense of Notation 4:10).

Conversely, every butterfly is obtained in this way.

Proof. Consider the compact right-angled polyhedron ~PP0 obtained from
~PP through truncation along the peripheral planes fHpg (see Figure 8.2). Then,

for each ideal vertex p of ~PP, the intersection ~PP \Hp forms a square in q ~PP0,

one of whose diagonals projects to a meridian (see Figure 8.2). By using this

fact, we can see that the meridian mp A G maps the checkerboard hyperplane

SR�ð ~PPÞ to the checkerboard hyperplane SRþð ~PPÞ, if necessary after replacing

RG with RH. We can further see that mp maps the ball pair ðBR�ð ~PPÞ;Bc

R�ð ~PPÞÞ
to the ball pair ðB c

Rþð ~PPÞ;BRþð ~PPÞÞ. This implies that fDR�ð ~PPÞ;DRþð ~PPÞg is a

butterfly at p.

To see the converse, let BFðpÞ ¼ fD�
j ;D

þ
jþ1g ¼ fD�

j ðpÞ;Dþ
jþ1ðpÞg be a

butterfly, where we use notations in Definition 4.6. Consider the infinite strip

in the peripheral plane (or the horosphere) Hp � p�1
u ðqMÞ bounded by the

lines ljðpÞ ¼ SjðpÞ \Hp and ljþ1ðpÞ ¼ Sjþ1ðpÞ \Hp (see Figure 4.1). Let ~PP

be a checkerboard ideal polyhedron which has p as an ideal vertex, such that
~PP \Hp is a square contained in the strip. Then there are regions R� and

Rþ of D containing the vertex c of D corresponding to the ideal vertex p of
~PP, such that SjðpÞ ¼ SR�ð ~PPÞ and Sjþ1ðpÞ ¼ SRþð ~PPÞ. Then we see BFðpÞ ¼
fD�

j ;D
þ
jþ1g ¼ fDR�ð ~PPÞ;DRþð ~PPÞg.

At the end of this subsection, we prove the following elementary lemma

concerning prime alternating diagrams of hyperbolic alternating links, which is

used in Section 9.

Lemma 8.6. Let D be a prime alternating diagram of a hyperbolic alter-

nating link L � S3. Then the following hold.

Fig. 8.2. The truncation ~PP0 of the checkerboard ideal polyhedron ~PP ¼ ~PPþ. The blue diagonal

arcs in the squares project to meridians.
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(1) D has at least three black regions.

(2) Suppose D has precisely three black regions. Then there is a white

region Rw, such that Rw is a bigon and the black regions adjacent to Rw

are distinct (to be precise, the black regions that contain one of the two

edges of Rw are distinct).

(3) Suppose D has precisely four black regions. Then there is a white

region Rw, such that either (a) Rw is a bigon and the black regions

adjacent to Rw are distinct, or (b) Rw is a 3-gon and the black regions

adjacent to Rw are all distinct.

Parallel statements also hold when black and white are interchanged.

Proof. Let G be the plane graph whose vertices are the black regions

and whose edges correspond to the crossings. Observe that G is connected

and has no loop edge nor a cut edge, because the diagram D is connected and

prime.

(1) By using the above observation, we see that D has at least two black

regions. If D has only two black regions, then L is the ð2;GnÞ-torus link,

where n is the number of the edges of G, a contradiction. Hence D has at

least three black regions.

(2) Suppose D has precisely three black regions. Then, by using the

observation above, we see that G has a 3-cycle. If G is equal to the 3-cycle

then L is the ð2;G3Þ-torus knot, a contradiction. Hence, there is an additional

edge and so G has multiple edges. Then we see that the white region, Rw,

determined by an innermost pair of multiple edges satisfies the desired con-

dition (see Figure 8.3(a)).

(3) Suppose D has precisely four black regions. Then, as in (2), we see

that G has a 4-cycle. Since L is hyperbolic, G is strictly bigger than the

4-cycle. Thus we see that there is a complementary region of G that is either

a bigon or a triangle. Then the white region, Rw, determined by a comple-

mentary bigon or triangle satisfies the desired condition (a) or (b), accordingly

(see Figure 8.3 (b,c)).

Fig. 8.3. The plane graph G dual to the black regions. The complementary region of G labeled

Rw determines the desired white region Rw.
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9. Proof of Theorem 2.1 and 2.2

In this section, we first prove Theorem 2.2 and then prove Theorem 2.1.

Proof (Proof of Theorem 2.2). Let L, D, fm1; m2g and g be as in the

setting of the theorem, and let fp1; p2g be the pair of parabolic fixed points

corresponding to fm1; m2g (cf. Lemma 4.9(1)). We regard g living in the non-

positively curved cubed complex M � X. Then there is a lift ~gg of g in the

universal cover ~MM � ~XX which joins the peripheral planes Hp1 and Hp2 centered

at p1 and p2, respectively (cf. Lemma 4.9(2)). We may assume ~gg satisfies the

following conditions.

(A1) ~gg is an arc properly embedded in ~MM � ~XX that is disjoint from
~CC ¼ ~SSb \ ~SSw and transversal to ~SSbw ¼ ~SSb [ ~SSw. Moreover, for

i ¼ 1; 2, the endpoint xi :¼ q~gg \Hpi is disjoint from the family of

lines ~SSbw \Hpi (see Figure 4.1(a)).

(A2) The cardinality ið~ggÞ of ~gg \ ~SSbw ¼ ~gg \ ð ~SSbwn ~CCÞ is minimal among all

arcs properly embedded in ~MM joining the boundary components Hp1

and Hp2 of ~MM and satisfying the condition (A1).

We orient ~gg so that x1 A Hp1 and x2 A Hp2 are the initial point and the terminal

point, respectively.

In the remainder of the paper, we use the following terminology. For

a connected topological space Y and its connected subspaces Y1, Y2 and Z, we

say that Z separates Y1 and Y2 (in Y ), if Y1 and Y2 are contained in distinct

components of YnZ. We say that Z weakly separates Y1 and Y2 (in Y ), if Y1

and Y2 are contained in the closures of distinct components of YnZ.

Case I. ið~ggÞ > 0. Throughout the treatment of this case, geodesics are

those with respect to the CAT(0) metric of the cubed complex ~XX.

Lemma 9.1. Any checkerboard hyperplane intersects ~gg in at most one

point.

Proof. Assume that there is a checkerboard hyperplane S which inter-

sects ~gg in more than one points. Pick two successive intersection points z1 and

z2 of ~gg with S, and let ~gg0 be the subarc of ~gg bounded by z1 and z2. Since S

is convex (Proposition 6.4), the geodesic segment ½z1; z2� is contained in S.

Claim 9.2. If a checkerboard hyperplane S 0 di¤erent from S intersects

½z1; z2�, then (i) S 0 \ ½z1; z2� consists of a single transversal intersection point in

ðz1; z2Þ and (ii) S 0 \ int ~gg0 0q.

Proof. Let S 0 0S be a checkerboard hyperplane which intersects ½z1; z2�.
Then l :¼ S \ S 0 � ½z1; z2� \ S 0 0q, and so l is a geodesic line (cf. Propo-

sition 6.6(1)) which intersects ½z1; z2�. Since z1; z2 B l by the condition (A1),
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S 0 \ ½z1; z2� ¼ l \ ½z1; z2� is a singleton fyg for some y A ðz1; z2Þ by Corollary

6.7(1). By Corollary 6.7(2), the two components of ½z1; z2�nfyg are con-

tained in distinct components of Snl. Hence the condition (i) holds. This

also implies that S 0 separates the endpoints z1 and z2 of ~gg0. Hence (ii) also

holds.

Let ~gg 0 be an arc obtained from ~gg by replacing ~gg0 with ½z1; z2� and then

pushing (a neighborhood in the resulting arc of ) ½z1; z2� o¤ S, by using a

regular neighborhood of S. Then ~gg 0 is properly homotopic to ~gg, and we

may assume ~gg 0 satisfies the condition (A1). Moreover, Claim 9.2 implies that

ið~gg 0Þa ið~ggÞ � 2, a contradiction.

We now prove a key lemma for the treatment of Case 1.

Lemma 9.3. Any checkerboard hyperplane which intersects ~gg separates Hp1

and Hp2 in ~XX.

Proof. Let S be a checkerboard hyperplane which intersects ~gg. By

Lemma 9.1 and the condition (A1), S \ ~gg consists of a single transversal

intersection point z A int ~gg. Thus we have only to show that S is disjoint from

Hp1 and Hp2 . Suppose to the contrary that S intersects one of Hp1 and Hp2 ,

say, Hp1 (see Figure 9.1). Let ~gg0 be the subarc of ~gg bounded by the initial

point x1 A Hp1 of ~gg and the intersection point z A S \ ~gg. Let x 0
1 A S \Hp1 be

the projection, in the CAT(0) space S, of z to the geodesic line S \Hp1 . Since

S intersects Hp1 orthogonally (Proposition 6.6(2)), we see that the geodesic

segment ½x 0
1; z� intersects Hp1 orthogonally. Thus x 0

1 is the projection, in the

CAT(0) space ~XX, of z to Hp1 by Lemma 5.3.

Fig. 9.1. If a checkerboard hyperplane S 0 0S intersects ½x 0
1; z�, then it separates Hp1 and z, and

hence intersects ~gg0.
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Claim 9.4. If a checkerboard hyperplane S 0 di¤erent from S intersects

½x 0
1; z�, then (i) S 0 \ ½x 0

1; z� consists of a single transversal intersection point in

ðx 0
1; zÞ and (ii) S 0 \ int ~gg0 0q.

Proof. Let S 0 0S be a checkerboard hyperplane which intersects ½x 0
1; z�.

Then, as in the proof of Claim 9.2, l :¼ S \ S 0 is a geodesic line which

intersects ½x 0
1; z�. Since z B l \ ~gg by the condition (A1), l \ ½x 0

1; z� is a singleton

fyg for some y A ½x 0
1; zÞ by Corollary 6.7(1). If y ¼ x 0

1, then fx 0
1g ¼ Hp1 \ S \

S 0 and so ½x 0
1; z� � p�1

Hp1
ðx 0

1Þ ¼ l by Corollary 6.7(3), a contradiction to the fact

that z B l \ ~gg. Thus l \ ½x 0
1; z� is a singleton fyg for some y A ðx 0

1; zÞ. So, by

Corollary 6.7(2), we obtain the conclusion (i). This also implies that x 0
1 and z

belong to distinct components of Snl, and hence S 0 separates x 0
1 A Hp1 and z.

Moreover, S 0 is disjoint from Hp1 as shown below. Suppose to the contrary

that S 0 \Hp1 0q. Then S 0 intersects Hp1 orthogonally (Proposition 6.6(2)),

and we see by the argument preceding Claim 9.4 that the projection, y1, of y,

in the CAT(0) space S 0, to S 0 \Hp1 is equal to the projection of y in the

CAT(0) space ~XX to Hp1 , which is equal to x 0
1. Hence x 0

1 ¼ y1 belongs to S 0,

and therefore x 0
1 A S 0 \ S ¼ l, a contradiction to the fact that ½x 0

1; z� \ S 0 ¼
fyg � ðx 0

1; zÞ. Hence S 0 is disjoint from Hp1 as desired. Since S 0 separates

x 0
1 A Hp1 and z, this implies that S 0 separates Hp1 and z. Since ~gg0 joins the

point x1 A Hp1 and z, ~gg0 must intersect S 0. Thus the conclusion (ii) holds.

Let ~gg 0 be an arc obtained from ~gg by replacing ~gg0 with ½x 0
1; z� and then

pushing (a neighborhood in the resulting arc of ) ½x 0
1; z� o¤ S. Then ~gg 0 is

properly homotopic to ~gg, and we may assume ~gg 0 satisfies the condition (A1).

Moreover, Claim 9.4 implies that ið~gg 0Þa ið~ggÞ � 1, a contradiction.

Let y1 be the first intersection point of ~gg with ~SSbw, and ~PP1 the check-

erboard ideal polyhedron that contains the subarc of ~gg bounded by x1 and y1.

Similarly, let y2 be the last intersection point of ~gg with ~SSbw, and ~PP2 the

checkerboard ideal polyhedron that contains the subarc of ~gg bounded by x2 and

y2 (see Figure 9.2(a)). (If ið~ggÞ ¼ 1 then y1 ¼ y2 but ~PP1 0 ~PP2.) For i ¼ 1; 2,

recall the isomorphism P̂Pi G ðB3;DÞ, and let ci be the vertex of D correspond-

ing to the ideal vertex pi of P̂Pi, and let Ri be the region of D such that SRi
¼

SRi
ð ~PPiÞ contains yi (Definition and Notation 7.3). Note that the region Ri

does not contain the vertex ci by Lemma 9.3.

For simplicity, we assume that R1 is a black region. For i ¼ 1; 2, let RG
i

be the black regions of D that contain the vertex ci, and consider the disks

DRG
i
:¼ DRG

i
ð ~PPiÞ in ĈC (see Notation 8.1 and Figure 7.2(a)). Then BFðpiÞ :¼

fDR�
i
;DRþ

i
g forms a butterfly at pi by Lemma 8.5 (after replacing RG

i with

RH
i if necessary). Set SRG

i
:¼ SRG

i
ð ~PPiÞ and BRG

i
:¼ BRG

i
ð ~PPiÞ (see Figure 9.2(a)).

Then we have the following lemma.
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Lemma 9.5. (1) BR�
2
[BRþ

2
� BR1

, where BR1
¼ BR1

ð ~PPiÞ.
(2) BR�

1
[BRþ

1
and BR�

2
[BRþ

2
are disjoint.

(3) DR�
2
[ DRþ

2
� DR1

, where DR1
¼ DR1

ð ~PP1Þ.
(4) jBFðp1Þj ¼ DR�

1
[ DRþ

1
and jBFðp2Þj ¼ DR�

2
[ DRþ

2
have disjoint inte-

riors.

Proof. (1) For each � A f�;þg, SR1
is distinct from SR �

2
, because

SR �
2
\Hp2 0q whereas SR1

\Hp2 ¼ q by Lemma 9.3. This implies that SR1

is disjoint from SR �
2
(because they are distinct components of p�1

u ðSbÞ). By

Lemma 6.8, the disjoint union SR1
t SR �

2
divides ~XX into three closed convex

subspaces B1, B1;2 and B2, such that B1 \B1;2 ¼ SR1
, B1;2 \B2 ¼ SR �

2
and

B1 \B2 ¼ q. Let d be an arc in the square Hp2 \ ~PP2 which joins x2 with

a point z2 in Hp2 \ SR �
2
(cf. Figure 4.1(a)), and let ~gg1;2 be the union of d and

the subarc of ~gg bounded by y1 and x2 (see Figure 9.2(b), where � is assumed to

be þ). Then ~gg1;2 is an arc in ~XX joining y1 and z2, such that ~gg1;2 \ SR1
¼

fy1g and ~gg1;2 \ SR �
2
¼ fz2g. Hence ~gg1;2 is contained in B1;2. This implies

~PP2 � B1;2, because int ~PP2 \ ðSR1
[SR �

2
Þ ¼ q and int ~PP2 \ int ~gg1;20q. Hence

we have B2 ¼ BR �
2
. On the other hand, we have ~PP1 � B1, because ~gg1;2 � B1;2

and ~gg intersects SR1
transversely at y1; so B1 ¼ Bc

R1
:¼ Bc

R1
ð ~PP1Þ. Hence

Bc
R1

\BR �
2
¼ B1 \B2 ¼ q, and therefore BR �

2
� BR1

.

(2) Since the black region R1 does not contain c1, it is distinct from

the black regions RG
1 . Hence BRG

1
are disjoint from BR1

by Proposition 7.4.

Since BR�
2
[BRþ

2
� BR1

by (1), this implies that BRG
1

are disjoint from

BR�
2
[BRþ

2
.

Fig. 9.2. (a) The checkerboard hyperplane SR1
ð ~PP1Þ separates BR�

1
[BRþ

1
and BR�

2
[BRþ

2
. Note

that BR1
¼ BR1

ð ~PP1Þ is the region in ~XX ¼ H3 ‘‘below’’ SR1
. (b) The arc ~gg1; 2, that is the union of

the arc d � Hp2 and the subarc of ~gg bounded by y1 and x2, intersects SR1
and SR �

2
only at the

endpoints. Here � ¼ þ.
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(3) By (1), we have DR�
2
[DRþ

2
¼ ðBR�

2
\ ĈCÞ [ ðBRþ

2
\ ĈCÞ � BR1

\ ĈC ¼ DR1
.

(4) This follows from (2) and Lemma 8.2.

Lemma 9.6. The open set O :¼ ĈCnðjBFðp1Þj [ jBFðp2ÞjÞ is non-empty.

Proof. Suppose first that D has more than 3 black regions. Pick a black

region Rb of D di¤erent from R1 and RG
1 . Then the interior of the disk DRb

:¼
DRb

ð ~PP1Þ is disjoint from the disks DR1
and DRG

1
by Proposition 8.3. Since

DR�
2
[ DRþ

2
� DR1

by Lemma 9.5(3), this implies that the open disk int DRb
is

disjoint from DR1
[ DR�

1
[ DRþ

1
� DR�

1
[ DRþ

1
[ DR�

2
[ DRþ

2
¼ jBFðp1Þj [ jBFðp2Þj

(see Figure 9.3(a)). Hence int DRb
� O and therefore O is non-empty, as

desired.

Suppose next that D has at most 3 black regions. Then, by Lemma

8.6(1), (2), D has precisely three black regions, fRb; jg1aja3 ¼ fR1;R
�
1 ;R

þ
1 g and

a white bigon Rw. We may assume Rb;1 is not adjacent to Rw. Let ~PP 0
1 be

the checkerboard ideal polyhedron such that ~PP1 \ ~PP 0
1 is the common face

corresponding to Rw. Set DRb; j
:¼ DRb; j

ð ~PP1Þ and D 0
Rb; j

:¼ DRb; j
ð ~PP 0

1Þ ð1a ja 3Þ.
(See Figure 9.3(b).)

Claim 9.7. The interior of the disk D 0
Rb; 1

is disjoint from [3
j¼1 DRb; j

¼
DR1

[ DR�
1
[ DRþ

1
.

Proof. By Lemma 7.5 and by Notation 8.1(3), we see D 0
Rb; 2

¼ DRb; 3
and

D 0
Rb; 3

¼ DRb; 2
. Hence, by Proposition 8.3, int D 0

Rb; 1
is disjoint from D 0

Rb; 3
[ D 0

Rb; 2

¼ DRb; 2
[ DRb; 3

. Moreover, int D 0
Rb; 1

is also disjoint from DRb; 1
, as explained

below. Since Rb;1 and Rw are not adjacent, Proposition 7.4 implies

that BRb; 1
ð ~PP1Þ \BRw

ð ~PP1Þ ¼ q. Hence BRb; 1
ð ~PP1Þ � ~XXnBRw

ð ~PP1Þ ¼ int BRw
ð ~PP 0

1Þ.

Fig. 9.3. (a) If D has more than 3 black regions, then, for a black region Rb distinct from R1 and

RG
1 , the open disk int DRb

is disjoint from jBFðp1Þj [ jBFðp2Þj. (b) If D has precisely 3 black

regions, then, for the black region Rb; 1 that is not adjacent to the white bigon Rw, the open disk

int D 0
Rb; 1

, where D 0
Rb; 1

¼ DRb; 1
ð ~PP 0

1Þ, is disjoint from jBFðp1Þj [ jBFðp2Þj.
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Similarly, BRb; 1
ð ~PP 0

1Þ � int BRw
ð ~PP1Þ. Since int BRw

ð ~PP1Þ and int BRw
ð ~PP 0

1Þ ¼
int Bc

Rw
ð ~PP1Þ are disjoint, BRb; 1

ð ~PP1Þ and BRb; 1
ð ~PP 0

1Þ are disjoint. By Lemma

8.2, this implies that DRb; 1
and D 0

Rb; 1
have disjoint interiors, and hence int D 0

Rb; 1

is disjoint from DRb; 1
.

Since DR�
2
[ DRþ

2
� DR1

by Lemma 9.5(3), Claim 9.7 implies that the open

disk int D 0
Rb; 1

is disjoint from DR�
1
[ DRþ

1
[ DR�

2
[ DRþ

2
¼ jBFðp1Þj [ jBFðp2Þj.

Hence int D 0
Rb; 1

� O and therefore O is non-empty, as desired.

Thus we have proved that the pair of butterflies BFðp1Þ and BFðp2Þ
satisfies the conditions in Proposition 4.11. Hence fm1; m2g generates a rank 2

free Kleinian group which is geometrically finite. This completes the proof of

Theorem 2.2 in Case I where ið~ggÞ > 0.

Case II. ið~ggÞ ¼ 0. In this case, the proper arc ~gg � ~MM is contained in
~PP \ ~MM for some ideal checkerboard polyhedron ~PP. Recall the isomorphism

ĵj : ðB3;DÞ ! P̂P, where P̂P is the closure of ~PP in H3 (Section 8). We identify

P̂P with ðB3;DÞ through the isomorphism. Let ci be the vertex of D corre-

sponding to the ideal vertex pi of P̂P ði ¼ 1; 2Þ. Then the equivalence class of

the meridian pair fm1; m2g is determined by the pair fc1; c2g. Let ĝg be an arc

in qB3 joining c1 and c2, such that ĝg intersects the vertex set of D only at their

endpoints and that int ĝg is transversal to D. Then the proper homotopy class

of ~gg is represented by ĝg. We assume that the cardinality oðĝgÞ of int ĝg \D is

minimized.

Subcase II-1. oðĝgÞ > 0. For i ¼ 1; 2, let R�
i and Rþ

i be the black regions

that contain the vertex ci. Then fDR�
i
;DRþ

i
g forms a butterfly BFðpiÞ at pi by

Lemma 8.5 (see Figure 9.4).

Claim 9.8. The four black regions R�
1 , R

þ
1 , R

�
2 and Rþ

2 are distinct.

Fig. 9.4. The butterflies BFðp1Þ and BFðp2Þ and the actions of the meridians m1 and m2, in the

case oðĝgÞ > 0. Here, we employ the model picture of the limit circles described in Remark 8.4 and

Figure 8.1.
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Proof. Suppose to the contrary that there is an overlap among the four

regions. Since R�
i 0Rþ

i for i ¼ 1; 2, we have R�1
1 ¼ R�2

2 for some �1; �2 A
f�;þg. Then the vertices c1 and c2 are contained in the single region

R�1
1 ¼ R�2

2 . Thus the two vertices are joined by an arc in the region, a con-

tradiction to the assumption oðĝgÞ > 0.

By Claim 9.8 and Proposition 8.3, the butterflies BFðp1Þ and BFðp2Þ have

disjoint interiors. Moreover, the following lemma holds.

Lemma 9.9. The open set O :¼ ĈCnðjBFðp1Þj [ jBFðp2ÞjÞ is non-empty.

Proof. The proof of this lemma is parallel to that of Lemma 9.6. If

D has more than four black regions, then a black region Rb di¤erent from RG
1

and RG
2 gives a non-empty open disk int DRb

disjoint from jBFðp1Þj [ jBFðp2Þj
by Proposition 8.3. So, we may assume D has precisely four black regions.

Then, by Lemma 8.6(3), there is a white region Rw which is either a bigon or

a 3-gon. In either case, there is a black region, say Rb;1, that is not adjacent

to Rw. Let ~PP 0
1 be the checkerboard ideal polyhedron such that ~PP1 \ ~PP 0

1 is the

common face corresponding to Rw. Then, as in the proof of Claim 9.7, we

see that the open disk int DRb; 1
ð ~PP 0

1Þ is disjoint from jBFðp1Þj [ jBFðp2Þj.

Thus the pair of butterflies BFðp1Þ and BFðp2Þ satisfies the conditions in

Proposition 4.11. Hence fm1; m2g generates a rank 2 free Kleinian group which

is geometrically finite. This completes the proof of Theorem 2.2 in the case

where ið~ggÞ ¼ 0 and oðĝgÞ > 0.

Subcase II-2. oðĝgÞ ¼ 0. In this case, there is a region R of D that con-

tains ĝg and the vertices c1 and c2. Recall that g is not properly homotopic to

a crossing arc by the assumption of the theorem. This implies that ĝg is not

homotopic relative to the endpoints to an edge of R (i.e., the vertices c1 and

c2 are not adjacent in qR), because, for any edge e of D, the composition

pu � j : PðDÞ ! puð ~PPÞ � X maps the ideal edge �ee to an open crossing arc

(cf. Proposition 7.2(3) and Figure 7.1).

For simplicity, assume that R is a white region. For i ¼ 1; 2, let RG
i

be the black regions that contain the crossing ci. Then fDR�
i
;DRþ

i
g forms a

butterfly BFðpiÞ at pi by Lemma 8.5 (see Figure 9.5).

Claim 9.10. The four black regions R�
1 , R

þ
1 , R

�
2 and Rþ

2 are distinct.

Proof. Suppose to the contrary that there is an overlap among the 4

regions. Then as in the proof of Claim 9.8, we have R�1
1 ¼ R�2

2 for some

�1; �2 A f�;þg. Since c1 and c2 are not adjacent in qR, the edges ei :¼ R \ R�i
i

ði ¼ 1; 2Þ are distinct. Thus we can find a simple loop C in the union of the

white region R and the black region R�1
1 ¼ R�2

2 , which intersects D transversely

in precisely two points, one in int e1 and the other in int e2. Since e1 0 e2,
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both disks bounded by C contains a vertex of D. This contradicts the

primeness of the diagram D.

The proof of Lemma 9.9 works in the current setting, and so, we see that

the open set O ¼ ĈCnðjBFðp1Þj [ jBFðp2ÞjÞ is non-empty. Thus the pair of the

butterflies BFðp1Þ and BFðp2Þ satisfies the conditions in Proposition 4.11.

Hence fm1; m2g generates a rank 2 free Kleinian group which is geometrically

finite.

This completes the proof of Theorem 2.2.

Proof (Proof of Theorem 2.1). Let L � S3 be a hyperbolic 2-bridge link,

g an essential proper path in the link exterior M, fm1; m2g a non-commuting

meridian pair in the link group G represented by g, and fp1; p2g the corre-

sponding pair of parabolic fixed points. Assume that g is not properly homo-

topic to the upper or lower tunnel of L. We show that fm1; m2g generates a

rank 2 free Kleinian group which is geometrically finite.

If necessary by taking the mirror image of L, we may assume that L

admits the prime alternating diagram D in Figure 9.6, where ða1; a2; . . . ; anÞ is a
sequence of positive integers with nb 2, a1 b 2 and an b 2. D consists of n

twist regions A1;A2; . . . ;An, where Ai consists of ai right-hand or left-hand half-

twists according to whether i is odd or even. By Theorem 2.2, we have only

to treat the case where g is a crossing arc with respect to the diagram D. Let

Ai be the twist region that contains the crossing corresponding to the crossing

arc g. If i ¼ 1 or n, then g is isotopic to the upper or lower tunnel accordingly.

So, 2a ia n� 1.

Suppose i is odd. Apply the flype to D as illustrated in Figure 9.7, and let

D 0 be the resulting prime alternating diagram. Then the image of the crossing

arc g by the flype is an arc g 0 contained in a region R 0 of D 0, such that the

corresponding arc ĝg 0 in the polyhedron ðB3;D 0Þ joins crossings c 01 and c 02 of R 0

Fig. 9.5. The butterflies BFðp1Þ and BFðp2Þ and the actions of the meridians m1 and m2, in the

case oðĝgÞ ¼ 0 and g is not a crossing arc. Here, we employ the model picture of the limit circles

described in Remark 8.4 and Figure 8.1.
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which are not adjacent in qR 0. Hence, we can apply the arguments in Subcase

II-2 in the proof of Theorem 2.2 to show that fm1; m2g generates a rank 2 free

group which is geometrically finite.

Suppose i is even. Then we first modify D by an ambient isotopy in S2

(which is not an ambient isotopy in R2) as in Figure 9.8, and then apply the

flype as in Figure 9.8. Then we can again apply the arguments in Subcase II-2

in the proof of Theorem 2.2 and to obtain the same conclusion.

This completes the proof of Theorem 2.1.

10. Rational links in the projective 3-space and the proof of Theorem 1.3

In this section, we first define the rational links in P3 (Definition 10.2)

and present their basic properties including classification and hyperbolization

Fig. 9.7. The flype maps the crossing arc g in the diagram D to an arc which is not a crossing arc

in the new diagram D 0.

Fig. 9.6. The standard prime alternating diagram D of a hyperbolic 2-bridge link L.
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(Propositions 10.3 and 10.5). Then we give a detailed description of Theorem

1.3(3) in Remark 10.6, and prove the theorem.

We recall the definition of a rational tangle following [14, Chapter 18] and

[9, Section 2]. Let B3 :¼ fðx; y; zÞ A R3 j x2 þ y2 þ z2 a 2g be the round 3-ball

in R3 � R̂R3 :¼ R3 [ fyg, whose boundary contains the set P0 consisting of the

four marked points

SW :¼ ð�1;�1; 0Þ; SE :¼ ð1;�1; 0Þ; NE :¼ ð1; 1; 0Þ; NW :¼ ð�1; 1; 0Þ:

For r A Q̂Q :¼ Q [ fyg, the rational tangle of slope r is the pair ðB3; tðrÞÞ, where
tðrÞ is a pair of arcs properly embedded in B3 such that tðrÞ \ qB3 ¼ qtðrÞ ¼ P0

as depicted in Figure 10.1(b). Here the ‘‘pillowcase’’ in the figure is the quo-

tient space ðR2;Z2Þ=J, where J is the group of isometries of the Euclidean

plane R2 generated by the p-rotations around the points in Z2, and the pair of

Fig. 9.8. If i is even, then first modify D by an ambient isotopy in S2 into the middle diagram and

then apply the flype.

Fig. 10.1. (a) The 3-ball B3 with the set P0 of the four marked points. (b) The rational tangle

ðB3; tðrÞÞ with r ¼ 2=5. Note that the vertical axis is the y-axis, not the z-axis.
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arcs on the pillowcase is the image of the lines in R2 of slope r passing through

points in Z2. We can arrange tðrÞ so that it is invariant by the p-rotations hx,

hy and hz ¼ hxhy about the x-, y- and z-axis, respectively.

The 2-bridge link ðS3;KðrÞÞ of slope r is obtained by gluing (disjoint copies

of ) ðB3; tðrÞÞ and ð�B3; tðyÞÞ via the identity map on qB3. (Here B3 inherits

the natural orientation of R̂R3.) Thus we may regard

KðrÞ ¼ tðrÞ [ iðtðyÞÞ � B3 [ iðB3Þ ¼ R̂R3;

where i is the inversion of R̂R3 in qB3. Let D be the Farey tessellation, that is,

the tessellation of the upper half-space H2 by ideal triangles which are obtained

from the ideal triangle with the ideal vertices 0; 1;y A Q̂Q by repeated reflection

in the edges. Let AutðDÞ be the automorphism group of D and AutþðDÞ the

orientation-preserving subgroup of AutðDÞ. The following proposition refor-

mulates (i) the classification of 2-bridge links established by Schubert [41] and

(ii) the hyperbolization of alternating link complements proved by Menasco [27,

Corollary 2] by using Thurston’s uniformization theorem of Haken manifolds

[46], applied to 2-bridge link complements.

Proposition 10.1. (1) For two rational numbers r; r 0 A Q̂Q, there is a

homeomorphism c : S3 ! S3 such that cðKðrÞÞ ¼ Kðr 0Þ if and only if there

is an element x A AutðDÞ that maps fr;yg to fr 0;yg. Moreover, c can be

chosen to be orientation-preserving if and only if either (i) x is orientation-

preserving and ðxðrÞ; xðyÞÞ ¼ ðr 0;yÞ or (ii) x is orientation-reversing and

ðxðrÞ; xðyÞÞ ¼ ðy; r 0Þ.
(2) KðrÞ is hyperbolic if and only if dðy; rÞb 3, where d is the edge path

distance in the 1-skeleton of D.

Now, we define the rational links in P3 and state their basic properties.

Definition 10.2. For r A Q̂Q, the rational link of slope r in the projective

3-space P3 is the pair ðP3;KPðrÞÞ :¼ ðB3; tðrÞÞ=@, where @ identifies x and �x

for every x A qB3. The inverse image ~KKPðrÞ of KPðrÞ in the universal cover S3

of P3 is called the covering link of KPðrÞ.

Proposition 10.3. The covering link of a rational link KPðrÞ in P3 is

equivalent to the 2-bridge link Kð~rrÞ with ~rr ¼ hrðrÞ, where hr is an element of

AutþðDÞ such that hrð�rÞ ¼ y. (In other words, ~rr is characterized by the

property that ð~rr;yÞ ¼ ðhrðrÞ; hrð�rÞÞ for some hr A AutþðDÞ.)

Here, we assume that P3 inherits the natural orientation of B3 � R̂R3 GS3,

and so the covering projection S3 ! P3 is orientation-preserving. Two links

in an oriented 3-manifold are equivalent if there is an orientation-preserving

homeomorphism of the ambient 3-manifold that maps one to the other.

209Two-parabolic-generator subgroups



Proof (Proof of Proposition 10.3). Identify S3 :¼ fðz1; z2Þ A C2 j
jz1j2 þ jz2j2 ¼ 1g with the spherical join S1

1 � S1
2 of the circles S1

1 :¼
S3 \ ðC� 0Þ and S1

2 :¼ S3 \ ð0�CÞ (cf. [16, Definition I.5.13]). Then we

can identify R̂R3 with S3 so that the following conditions are satisfied (see

Figure 10.2(a)).

(1) The great circle qB3 \ fy ¼ 0g is identified with S1
1 , and the com-

pactified y-axis is identified with S1
2 . Moreover B3 is identified with

the spherical join S1
1 � J2, where J2 :¼ fð0; z2Þ A S1

2 j �p=2a argðz2Þa
p=2g.

(2) The p-rotations hx, hy, hz of R̂R3, respectively, are identified with the

involutions on S3 defined by

hxðz1; z2Þ ¼ ðz1; z2Þ; hyðz1; z2Þ ¼ ð�z1; z2Þ; hzðz1; z2Þ ¼ ð�z1; z2Þ:

(3) Let f be the generator of the covering transformation group of the

covering S3 ! P3, given by f ðz1; z2Þ ¼ ð�z1;�z2Þ. Then f viewed

on R̂R3 is the composition of the antipodal map ðx; y; zÞ 7! ð�x;�y;

�zÞ and the inversion i in qB3.

Then the covering link ~KKPðrÞ � S3 of KPðrÞ � P3 is given by ~KKPðrÞ ¼
tðrÞ [ f ðtðrÞÞ � B3 [ f ðB3Þ ¼ S3, and it is invariant by the action of the sub-

group hhx; hy; f iG ðZ=2ZÞ3 of IsomþðS3Þ. Note that f ðtðrÞÞ ¼ fhzðtðrÞÞ,
where fhz, which is given by fhzðz1; z2Þ ¼ ðz1;�z2Þ, is the p-rotation of S3 ¼
S1
1 � S1

2 whose axis is the spherical join S0
1 � iS0

2 , where S0
1 ¼ fðG1; 0Þg and

iS0
2 ¼ fð0;GiÞg. The axis of fhz viewed in R̂R3 is the great circle qB3 \ fz ¼ 0g,

which passes through the set P0. Hence the action of fhz on ðS3; ~KKPðrÞÞ is

Fig. 10.2. In (a), the axis of the p-rotation fhz is the great circle qB3 \ fz ¼ 0g, and it passes

through the four marked points. In (b), qB3 is the central vertical plane and the axis of fhz is the

vertical line. The free involution f is the composition of the p-rotations fhz and hz, where

Fixð fhzÞ [ FixðhzÞ forms a Hopf link.
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conjugate to the involution illustrated in Figure 10.2(b), where ~KKPðrÞ is repre-

sented as the ‘‘sum’’ of the two rational tangles of slope r. Note that the right

rational tangle in the figure corresponds to the image of ðB3; tð�rÞÞ by the

inversion i. So, we have ðS3; ~KKPðrÞÞG ðB3; tðrÞÞ [ iðB3; tð�rÞÞ.
Now, let hr A AutþðDÞ and ~rr A Q̂Q be such that ð~rr;yÞ ¼ ðhrðrÞ; hrð�rÞÞ.

Recall the isomorphism AutþðDÞG SLð2;ZÞ, and let A A SLð2;ZÞ be the

matrix corresponding to hr. Then the linear map A : R2 ! R2 maps the

lines of slope r (resp. �r) to the lines of slope ~rr (resp. y). Thus A induces

an orientation-preserving auto-homeomorphism of the pillowcase ðR2;Z2Þ=J
which maps the pair of proper arcs of ‘‘slope’’ r (resp. �r) to the pair of proper

arcs of slope ~rr (resp. y). This homeomorphism induces an orientation-

preserving auto-homeomorphism of ðqB3;P0Þ via the natural identification

ðqB3;P0ÞG ðR2;Z2Þ=J. By using the fact that tðsÞ � B3 is boundary par-

allel for every s A Q̂Q, we can extend the homeomorphism to an orientation-

preserving homeomorphism from ðS3; ~KKPðrÞÞG ðB3; tðrÞÞ [ iðB3; tð�rÞÞ to

ðS3;Kð~rrÞÞ ¼ ðB3; tð~rrÞÞ [ iðB3; tðyÞÞ.

Remark 10.4. By using [39, Proof of Lemma II.3.3(3) and Figure

II.3.4], we obtain the following expression of ~rr. Consider a continued fraction

expansion

r ¼ a0 þ ½a1; a2; . . . ; an� ¼ a0 þ
1

a1 þ
1

a2 þ . .
.

þ 1

an

:

Then

~rr ¼ ð�1Þn�1½an; . . . ; a1; 2a0; a1; . . . ; an� if a0 0 0;

ð�1Þn�1½an; . . . ; a2; 2a1; a2; . . . ; an� if a0 ¼ 0:

(

Moreover, if ~rr ¼ ~qq=~pp with gcdð~pp; ~qqÞ ¼ 1 then ~qq2 1 1 ðmod 2~ppÞ.

Propositions 10.1 and 10.3 imply the following proposition for rational

links in P3.

Proposition 10.5. (1) KPðrÞ is trivial (i.e., it bounds a disk in P3) if and

only if r ¼ 0 or y.

(2) For r; r 0 A Q̂Q, there is a homeomorphism c : P3 ! P3 such that

cðKPðrÞÞ ¼ KPðr 0Þ if and only if r 0 ¼Gr or G1=r. Moreover, c can be chosen

to be orientation-preserving if and only if r 0 ¼ r or �1=r.

(3) KPðrÞ is hyperbolic if and only if minðdð0; rÞ; dðy; rÞÞb 2, equiva-

lently, r B Z [ fyg [ f1=p j p A Znf0gg.
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Proof. (1) Recall that tðrÞ is boundary parallel in B3, namely, there is a

pair of disjoint disks D in B3, such that tðrÞ � qD and clðqDntðrÞÞ ¼ D \ qB3.

If r ¼ 0 or y, then the antipodal map interchanges the components of

clðqDntðrÞÞ, and so D descends to a disk in P3 bounded by KPðrÞ. Hence

KPðrÞ is trivial if r ¼ 0 or y. Conversely, suppose that KPðrÞ is trivial. Then

its covering link Kð~rrÞ is the 2-component trivial link, and so ~rr ¼ y. This

implies r ¼ 0 or y by Proposition 10.3.

(2) If r 0 ¼ �1=r, then ðB3; tðr 0ÞÞ is obtained from ðB3; tðrÞÞ by p=2-

rotation about the z-axis. Since its restriction to qB3 is commutative with

the antipodal map, it induces an orientation-preserving homeomorphism

c : P3 ! P3 such that cðKPðrÞÞ ¼ KPðr 0Þ. Similarly, if r 0 ¼ �r, then ðB3; tðr 0ÞÞ
is obtained from ðB3; tðrÞÞ by the reflection in the xy-plane. Since its restric-

tion to qB3 is commutative with the antipodal map, it induces an orientation-

reversing homeomorphism c : P3 ! P3 such that cðKPðrÞÞ ¼ KPðr 0Þ. The if

part of (2) follows from these two observations.

Next, we prove the only if part of (2). By (1), we may assume none of

r and r 0 is equal to 0 or y. Then the following hold.

(a) Let n0 A AutðDÞ be the reflection of D in the Farey edge 0y, i.e.,

n0 is the element of AutðDÞ such that n0ðxÞ ¼ �x for every x A Q̂Q.

Then, for any r A Q̂Qnf0;yg, n0 is the unique reflection of D that

interchanges r and �r.

(b) If x A AutðDÞ is commutative with n0, then the action of x on Q̂Q
is given by xðxÞ ¼ x, �x, 1=x or �1=x. Here x is orientation-

preserving if and only if xðxÞ ¼ x or �1=x.

The observation (a) implies that, for any r A Q̂Qnf0;yg, if hr is an element of

AutþðDÞ such that ðhrðrÞ; hrð�rÞÞ ¼ ð~rr;yÞ, then nr :¼ hrn0h
�1
r is the unique

reflection of D that interchanges ~rr and y.

Now suppose that there is a homeomorphism c : P3 ! P3 such that

cðKPðrÞÞ ¼ KPðr 0Þ, where r; r 0 A Q̂Qnf0;yg. Then c lifts to a homeomorphism
~cc : S3 ! S3 which maps the covering link Kð~rrÞ of KPðrÞ to the covering link

Kð~rr 0Þ of KPðr 0Þ. By Proposition 10.1(1), there is an automorphism x A AutðDÞ
which maps f~rr;yg to f~rr 0;yg. By the uniqueness of the reflections nr and nr 0 ,

we have nr 0 ¼ xnrx
�1. Again, by the uniqueness of the reflection n0, this in

turn implies that the conjugation of n0 by x0 :¼ h�1
r 0 xhr is n0, i.e., n0 and x0 are

commutative. Hence, by the observation (b), the action of x0 on Q̂Q is given by

x0ðxÞ ¼ x, �x, 1=x or �1=x. On the other hand, r 0 ¼ h�1
r 0 ð~rr 0Þ is equal to either

h�1
r 0 ðxð~rrÞÞ ¼ h�1

r 0 ðxðhrðrÞÞÞ ¼ x0ðrÞ or h�1
r 0 ðxðyÞÞ ¼ h�1

r 0 ðxðhrð�rÞÞÞ ¼ x0ð�rÞ.
Since x0 is equal to one of the four transformations in the above, we see

that r 0 is equal toGr orG1=r as desired. This completes the proof of the first

assertion of (2). The second assertion of (2) can be proved by refining the

above arguments by using the second assertion of Proposition 10.1(1).
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(3) Since KPðrÞ is hyperbolic if and only if Kð~rrÞ is hyperbolic, Proposition
10.1(2) implies that KPðrÞ is hyperbolic if and only if dðy; ~rrÞb 3. On the

other hand, since the Farey edge 0y separates �r and r, we have

dðy; ~rrÞ ¼ dð�r; rÞ ¼ 2 minðdðy; rÞ; dð0; rÞÞ:

Hence KPðrÞ is hyperbolic if and only if minðdðy; rÞ; dð0; rÞÞb 2. It is obvious

that the latter condition is equivalent to the condition r B Z [ fyg [ f1=p j
p A Znf0gg.

By Proposition 10.5, we have the following description of the statement (3)

of Theorem 1.3.

Remark 10.6. In the setting of Theorem 1.3(3), the following hold.

X ¼ H3=G is the complement of a hyperbolic rational link KPðrÞ in P3 for

some r A Q̂QnðZ [ fyg [ f1=p j p A Znf0ggÞ, G ¼ hm1; m2i is an index 2 sub-

group of G, and H3=G is the complement of the 2-bridge link Kð~rrÞ, where ~rr is

characterized by the property that ð~rr;yÞ ¼ ðhðrÞ; hð�rÞÞ for some h A AutþðDÞ.
In the group G ¼ p1ðS3nKð~rrÞÞ, fm1; m2g is equivalent to the upper or lower

meridian pair of the 2-bridge link Kð~rrÞ. In the group G ¼ p1ðP3nKPðrÞÞ,
fm1; m2g is a meridian pair of the rational link KPðrÞ, such that G=hm1; m2iG
p1ðP3ÞGZ=2Z.

The following proposition, obtained by using the result of Millichap-

Worden [29, Corollary 1.2] on the commensurable classes of hyperbolic

2-bridge links, plays a key role in the proof of Theorem 1.3.

Proposition 10.7. If the complement of a hyperbolic 2-bridge link Kð~rrÞ
non-trivially covers an orientable, complete hyperbolic manifold X, then X is the

complement of a hyperbolic rational link KPðrÞ in P3, and Kð~rrÞ is the covering

link of KPðrÞ. Thus the covering is a double covering, and ~rr is characterized by

the property that ð~rr;yÞ ¼ ðhðrÞ; hð�rÞÞ for some h A AutþðDÞ. Moreover, the

image of the upper and lower meridian pairs of the link group of Kð~rrÞ in p1ðXÞ
are meridian pairs of KPðrÞ.

Proof. By [29, Corollary 1.2], a hyperbolic 2-bridge link complement

covers a hyperbolic manifold X non-trivially, then it is a regular covering.

The isometry group of hyperbolic 2-bridge link complements are calculated

by [8, Proposition 4.1] (cf. [38, Theorem 4.1]). As suggested by Boileau-

Weidmann [12, Lemma 15], the calculation implies that (i) the complement of

the hyperbolic 2-bridge link Kð~rrÞ with ~rr ¼ ~qq=~pp admits an orientation-preserving

free isometry if and only if ~qq2 1 1 ðmod 2~ppÞ and (ii) any such hyperbolic

2-bridge link complement admits a unique orientation-preserving free isometry.

In fact, the orientation-preserving isometry group IsomþðS3nKð~rrÞÞ for such a
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2-bridge link Kð~rrÞ is isomorphic to ðZ=2ZÞ3. Moreover, it extends to the

ðZ=2ZÞ3-action of ðS3;Kð~rrÞÞ generated by fhx; hy; f g as illustrated in Figure

10.2; we can easily check that f is the unique element which acts on the link

complement (and also on S3) freely. (See Bonahon-Siebenmann [14, Chapter

18] for nice description of link symmetries as rigid motions of S3.) This fact

together with Proposition 10.3 implies the first assertion. The last assertion is

obvious.

Proof (Proof of Theorem 1.3). Let X ¼ H3=G and fm1; m2g be as in

Theorem 1.3, and let G ¼ hm1; m2i be the subgroup of G generated by fm1; m2g.
Then, since G < G is torsion-free, Theorem 1.1 implies that G is either a rank 2

free group or a hyperbolic 2-bridge link group. In the former case, the con-

clusion (1) holds. In the latter case, X ¼ H3=G is covered by the hyperbolic

2-bridge link complement H3=G . Hence, by Proposition 10.7, either (i) G ¼ G

and the conclusion (2) holds by Theorem 1.2 (or Theorem 1.1) or (ii) G is a

proper subgroup of G and the conclusion (3) holds. This completes the first

assertion of Theorem 1.3.

In order to prove the second assertion, assume that X ¼ H3=G has finite

volume and G is a rank 2 free group. Suppose to the contrary that G

is geometrically infinite. Since the codomain X of the covering p : X̂X ¼
H3=G ! X ¼ H3=G has finite volume and since X̂X is tame by the tameness

theorem ([4, 15, 17, 42]), the covering theorem of Canary [18] implies that X

has a finite cover X 0 which fibers over the circle, such that the cover XS of X 0

associated to a fiber subgroup satisfies one of the following conditions.

(a) X̂X ¼ XS.

(b) X̂X is a twisted I -bundle which is doubly covered by XS.

Suppose first that X̂X ¼ XS. Then there is a fuchsian group G0 of co-finite

volume, such that (i) the hyperbolic surface H2=G0 is homeomorphic to the

fiber surface S of the bundle X 0 over S1, and (ii) there is an isomorphism

r : G0 ! G which is strictly type-preserving, i.e., for g A G0 < IsomþðH2Þ, rðgÞ
is parabolic if and only if g is parabolic. Since G is generated by two par-

abolic elements, S must be a thrice-punctured sphere. This contradicts the

assumption that S is a fiber surface of X 0, because a thrice-punctured sphere

does not admit a pseudo-Anosov homeomorphism.

Suppose next that X̂X is a twisted I -bundle which is doubly covered by

XS. Then there is a non-orientable hyperbolic surface F ¼ H2=G0, where

p1ðF ÞGG0 < IsomðH2Þ < IsomþðH3Þ, and a strictly type-preserving isomor-

phism r : G0 ! G . (Here F is homeomorphic to the base space of the twisted

I -bundle X̂X .) This contradicts the fact that there is no non-orientable surface

whose fundamental group is generated by peripheral elements. Hence G is

geometrically finite.
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