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Abstract. We study a general Lotka-Volterra competition-di¤usion-advection sys-

tem with general boundary conditions from river ecology. A complete classification

on all possible long-time dynamical behaviors is established. Moreover, we inves-

tigate the joint e¤ects of di¤usion rates, advection rates, the inter-specific competi-

tion intensities and boundary conditions on global dynamics of the system. Finally,

several numerical simulations are performed to verify the theoretical results. These

results improve previously known ones by removing one condition and considering

an interesting boundary condition where the species can be exposed to a net loss of

individuals.

1. Introduction

The question of how the random dispersing a¤ect the evolution of the

population has fascinated ecologists and evolutionary biologists for many

years. In recent decades, many works have been devoted to studying this

topic [5, 8, 9, 12]. In addition to the random movement, the species may

also take directed movement towards more favorable habitats in some spe-

cial circumstances [1, 3, 4] or there exist some external environmental forces,

such as water flow [17, 18]. River ecosystems are the typical example of

environment featured by a constantly unidirectional flow that influences the

dispersal of individuals. How populations resist washout and manage to

persist? This question has attracted many researchers to investigate by

employing an analytic or numerical approach based on some specific math-

ematical models. Speirs and Gurney [20] proposed the following single com-

partment model with di¤usion, advection and a logistic growth from river

ecosystems
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ut ¼ duxx � aux þ u½mðxÞ � u�; 0 < x < L; t > 0;

duxðx; tÞ � auðx; tÞ ¼ 0; x ¼ 0; t > 0;

uðx; tÞ ¼ 0; x ¼ L; t > 0;

uðx; 0Þ ¼ u0 b;2 0; 0 < x < L;

8>>><
>>>:

ð1:1Þ

where u stands for the population density of an aquatic species. d character-

izes random di¤usion rate which is therefore assumed to be non-negative.

a measures the tendency of the biased movement by water flow (sometimes we

call a the advection speed/rate). L is the size of the habitat, and in the sequel,

we call x ¼ 0 the upstream end and x ¼ L the downstream end. We point out

here that a should be positive since it is defined that x ¼ L is the downstream

end. The function mðxÞ accounts for intrinsic growth rate. It is assumed

by the no-flux type condition at the upstream end and by the hostile condition

at the downstream end. Their results suggested that a su‰cient amount of

di¤usive movement can counterbalance the water flow and lead to population

survival.

In this paper, we mainly study the population dynamics when a new

or invasive species is introduced into such advective environments with more

general boundary. To be more specific, the two-species Lotka-Volterra

competition-di¤usion-advection system with general boundary conditions:

ut ¼ d1uxx � a1ux þ u½m1ðxÞ � u� bv�; 0 < x < L; t > 0;

vt ¼ d2vxx � a2vx þ v½m2ðxÞ � cu� v�; 0 < x < L; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ bua1uðx; tÞ; x ¼ 0; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ �bda1uðx; tÞ; x ¼ L; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ bua2vðx; tÞ; x ¼ 0; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ �bda2vðx; tÞ; x ¼ L; t > 0;

uðx; 0Þ ¼ u0 b;2 0; vðx; 0Þ ¼ v0 b;2 0; 0 < x < L;

8>>>>>>>>>><
>>>>>>>>>>:

ð1:2Þ

where u and v represent the population densities of two aquatic competing

species. di, ai and mi ði ¼ 1; 2Þ can be understood biologically in the same

manner as that in (1.1). b; c > 0 signify the inter-specific competition inten-

sities. The parameters bu; bd b 0 are used to measure the loss rate of indi-

viduals at the upstream and downstream ends relative to the flow rate, see

[14]. It turns out that di¤erent values of parameters bu and bd may reflect

di¤erent biological scenarios at the habitat ends, and also, may induce di¤erent

types of boundary conditions from the mathematical point of view. To be

more specific, we take bd as an example to explain further: (1) bd ¼ 0 implies

that there is no loss at the habitat ends, which indicates that individuals can not

pass through the downstream end. Meanwhile, if bu ¼ 0, it means that the

species live in an isolated environment [13]. (2) bd ¼ 1 means that there is a
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hundred percent loss at the downstream end relative to the water flow, which

can be applied to describe the scenario stream to lake [14, 21] and biologically

is called free-flow boundary condition (homogeneous Neumann type boundary

condition). (3) 0 < bd < 1 indicates that at the downstream end, water flow

cause a partial loss, and this seems to happen under certain artificial factors,

e.g. at the interface of the stream and lake, there is a fishnet set up by human

beings, which may prevent a portion of individuals from being washed out

[31]. (4) bd > 1 shows that both di¤usive and advective movements will cause

population loss at the downstream end, which in turn reflects an unfavorable

environment nearby x ¼ L (Robin type boundary condition). If bd ! y, it

can be used to model the situation stream to ocean [20] (Dirichlet type bound-

ary condition). In the past few years, several special cases of system (1.2) have

been well understood.

We begin with the no-flux case, i.e., bu ¼ bd ¼ 0. In spatially homoge-

neous environment, that is m1ðxÞ ¼ m2ðxÞ ¼ m0 with m0 being a positive con-

stant. Lou et al [15] confirmed that weak advection is more beneficial for

species to exclude its competitor when d1 ¼ d2 and a1 0 a2. For di¤ering

movement rates, i.e., d1 0 d2 and a1 0 a2, Zhou [28] found that the strategy

of faster di¤usion together with slower advection is always favorable, which

can be seen as a generation of [15]. For the inhomogeneous case m1 ¼ m2 ¼
rðxÞ, non-constant, Lam et al [13] seemed to be the first attempt to talk about,

aiming at the existence and multiplicity of evolutionarily stable strategies by

using some limiting arguments if d1 0 d2 and a1 ¼ a2 with both di¤usion and

advection rates are su‰ciently small and comparable. Recently, if m1 0m2,

an important advance on a bit more general setting of system (1.2) is due to

Zhou and Xiao [30], they classified completely all possible long time behaviors

of system (1.2) under a technical assumption:

ðHÞ : a1=d1 ¼ a2=d2 ¼: k > 0:

Lately, Guo et al [6] got a complete classification by removing the assump-

tion ðHÞ (see [[6], Corollary 5.1]). Zhou et al [29] also got a similar classi-

fication and presented a picture on the dynamics in b� c plane, which was

new. Indeed, Zhou and Xiao [30], Guo et al [6] and Zhou et al [29] all

discussed in multi-dimensional space. For more investigations, we refer to

[22, 23, 24].

In addition, there have been many researchers discuss other boundary

conditions. For m1 ¼ m2 ¼ m0, if d1 0 d2 and a1 ¼ a2, Lou and Lutscher [14]

and Lou and Zhou [19], respectively, discussed bu ¼ 0, bd ¼ 1 and bu ¼ 0, bd
in ½0; 1Þ, and they concluded that the competitor with faster di¤usion rate

would displace the slower one. If d1 ¼ d2 and a1 0 a2, Xu et al [25] talked

about the case of bu ¼ 0 and 0 < bd aþy, and they showed that weak advec-
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tion is more favorable, which extended the result in [15]. When m1 ¼ m2 ¼
mðxÞ, Zhao and Zhou [27], focusing on the special case d1 0 d2, a1 ¼ 0 < a2,

bu ¼ �1 and bd ¼ 0, tried to reveal some di¤erent phenomena after involving

spatial variations. Later, they [32] investigated the case of d1 ¼ d2 and a1 0 a2
with bu ¼ 0, 0 < bd aþy which generalized [15]. Lou et al [16] explored a

more general case d1 0 d2, a1 ¼ a2, bu ¼ 0 and bd > 0, they obtained a deep

understanding on the global dynamics by developing new techniques to over-

come the di‰culties caused by non-self-adjoint operators. The general bound-

ary case ðbu; bdÞ belongs to ½0;y� � ½0;y�nð0; 0Þ was investigated by Xu et al

[26] recently, where they discussed the global dynamics of system (1.2) under

the technical condition ðHÞ.
In river ecosystems, advection speeds of aquatic species depend on

many factors, such as water flow rate and so on. The condition that the

di¤usion rate of species is proportional to the advection rate is specific. It

is obvious that condition ðHÞ : a1=d1 ¼ a2=d2 is harsh. To better describe

the reality of nature, through the above discussion, we will remove the tech-

nical condition ðHÞ. Considering di¤erent scenarios in nature (e.g. stream

to lake, stream to ocean and so on), we study the population dynamics

of system (1.2) with general boundary. To explore the joint e¤ects of dif-

fusion rates, advection rates, the inter-specific competition intensities and

the parameters bu as well as bd (boundary conditions) on the global dy-

namics of system (1.2), we will force the two species have the same growth

rate.

Before stating our results, firstly, we make the following assumptions:

ðH1Þ m1ðxÞ and m2ðxÞ belong to Lyð0;LÞ;
ðH2Þ ðbu; bdÞ belongs to ½0;y� � ½0;y�nð0; 0Þ.
In the sequel, when bu ¼ bd ¼ y, we mean that uð0; tÞ ¼ vð0; tÞ ¼ uðL; tÞ ¼

vðL; tÞ ¼ 0.

Set

k0 ¼
eða2=d2�a1=d1ÞL; a1

d1
� a2

d2
b 0;

eða1=d1�a2=d2ÞL; a1
d1
� a2

d2
< 0:

(
ð1:3Þ

It is obvious that k0 is in ð0; 1�. For every x > 0, define

Px :¼ fðb; cÞ A Rþ �Rþ : bca xg: ð1:4Þ

From the theory of monotone dynamical systems, to study the dynamics

of system (1.2), we should study the stability of its semi-trivial steady states.

Clearly, by similar arguments as in the proofs of existence and uniqueness

results in [2], we see that there is a unique steady state for the following two

equations, respectively
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ut ¼ d1uxx � a1ux þ uðm1ðxÞ � uÞ; 0 < x < L; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ bua1uðx; tÞ; x ¼ 0; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ �bda1uðx; tÞ; x ¼ L; t > 0;

8><
>: ð1:5Þ

and

vt ¼ d2vxx � a2vx þ vðm2ðxÞ � vÞ; 0 < x < L; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ bua2vðx; tÞ; x ¼ 0; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ �bda2vðx; tÞ; x ¼ L; t > 0:

8><
>: ð1:6Þ

And we denote the steady states of (1.5) and (1.6) by ~uu and ~vv, respectively.

Hence there are two semi-trivial steady states for system (1.2), in the sequel,

denoted by ð~uu; 0Þ and ð0; ~vvÞ. To characterize the linear stability properties of

steady states, we define:

G :¼ Rþ � Rþ � Rþ � Rþ and Rþ ¼ ð0;yÞ;

and

Su :¼ fðd1; a1; d2; a2Þ A G : ð~uu; 0Þ is linearly stableg;

Sv :¼ fðd1; a1; d2; a2Þ A G : ð0; ~vvÞ is linearly stableg;

~SSu :¼ fðd1; a1; d2; a2Þ A G : ð~uu; 0Þ is neutrally stableg;

~SSv :¼ fðd1; a1; d2; a2Þ A G : ð0; ~vvÞ is neutrally stableg;

~SS v
u :¼ ~SSu \ ~SSv;

So :¼ fðd1; a1; d2; a2Þ A G : ð~uu; 0Þ and ð0; ~vvÞ are linearly unstableg:

In order to study the stability of semi-trivial steady states, we introduce

the following auxiliary eigenvalue problem:

dvxx � avx þ rvþ tv ¼ 0; 0 < x < L;

dvxðxÞ � avðxÞ ¼ buavðxÞ; x ¼ 0;

dvxðxÞ � avðxÞ ¼ �bdavðxÞ; x ¼ L;

8><
>: ð1:7Þ

where d and a are greater than 0 and r belongs to Lyð½0;L�Þ. By the Krein-

Rutman theorem [11], there exists a principal eigenvalue for problem (1.7),

which is denoted by t1ðd; a; rÞ, and its corresponding eigenfunction v1ðd; a; rÞ
could be chosen to be strictly positive in ½0;L�.

Now we state our main results as follows.

Theorem 1.1. Assume that ðH1Þ and ðH2Þ hold. Let ðb; cÞ A Pk0 . Then

we have the following results:
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( i ) if t1ðd1; a1;m1Þb 0 and t1ðd2; a2;m2Þb 0, then ð0; 0Þ is g.a.s;

( ii ) if t1ðd1; a1;m1Þb 0 and t1ðd2; a2;m2Þ < 0, then Sv ¼ G and ð0; ~vvÞ is

g.a.s;

(iii) if t1ðd1; a1;m1Þ < 0 and t1ðd2; a2;m2Þb 0, then Su ¼ G and ð~uu; 0Þ is

g.a.s;

(iv) if t1ðd1; a1;m1Þ < 0 and t1ðd2; a2;m2Þ < 0, then we have the following

mutually disjoint decomposition of G

G ¼ ðSu [ ~SSun ~SS v
uÞ [ ðSv [ ~SSvn ~SS v

uÞ [ So [ ~SS v
u : ð1:8Þ

In particular,

ðd1; a1; d2; a2Þ A ~SS v
u if and only if

a1

d1
¼ a2

d2
; bc ¼ 1 and

~uu

~vv
1 b;

and the following statements are valid for system (1.2):

(iv1) For all ðd1; a1; d2; a2Þ A ðSu [ ~SSun ~SS v
uÞ, ð~uu; 0Þ is g.a.s;

(iv2) For all ðd1; a1; d2; a2Þ A ðSv [ ~SSvn ~SS v
uÞ, ð0; ~vvÞ is g.a.s;

(iv3) For all ðd1; a1; d2; a2Þ A So, system (1.2) has a coexistence

steady state that is g.a.s;

(iv4) For all ðd1; a1; d2; a2Þ A ~SS v
u , ~uu1 b~vv in ½0;L� and system (1.2) has

a compact global attractor consisting of a continuum of steady

states

fð%~uu; ð1� %Þ~uu=b : % A ½0; 1�Þg

connecting the two semi-trivial steady states;

where g.a.s means that the steady state is globally asymptotically stable among

all non-negative and nontrivial initial conditions.

Remark 1.2. We present a complete classification on all possible global

dynamical behaviors of system (1.2) in Theorem 1.1. In [25], Xu et al. made

a complete classification on the global dynamics of system (1.2) by assuming

random di¤usion rates and advection rates satisfying a1=d1 ¼ a2=d2. Zhou

et al [29] and Guo et al [6] displayed a similar complete classification in higher

spatial dimensions and a closed environment, i.e., bu ¼ bd ¼ 0. Here, we get

rid of the condition that a1=d1 ¼ a2=d2 and consider a more general boundary

condition.

It is highly challenging to precisely describe the geometric property of the

sets Su, Sv, ~SSu, ~SSv, ~SS v
u and So. To investigate this issue further, we next turn

to discuss the special case m1ðxÞ ¼ m2ðxÞ :¼ mðxÞ, that is:
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ut ¼ d1uxx � a1ux þ u½mðxÞ � u� bv�; 0 < x < L; t > 0;

vt ¼ d2vxx � a2vx þ v½mðxÞ � cu� v�; 0 < x < L; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ bua1uðx; tÞ; x ¼ 0; t > 0;

d1uxðx; tÞ � a1uðx; tÞ ¼ �bda1uðx; tÞ; x ¼ L; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ bua2vðx; tÞ; x ¼ 0; t > 0;

d2vxðx; tÞ � a2vðx; tÞ ¼ �bda2vðx; tÞ; x ¼ L; t > 0;

uðx; 0Þ ¼ u0 b;2 0; vðx; 0Þ ¼ v0 b;2 0; 0 < x < L:

8>>>>>>>>>><
>>>>>>>>>>:

ð1:9Þ

Set

b1 ¼
d1

d2
and b2 ¼

a1

a2
:

For system (1.9), by using b1, b2 and b as variable parameters with others

fixed, we obtain a more clear picture on the global dynamics as follows. Since

the case of b1 ¼ b2 has been studied in [26], we only consider b1 0 b2.

Theorem 1.3. Assume that ðH1Þ and ðH2Þ hold. For every bd b 1=2,

there exists a�
1 > 0 and a�

2 > 0 such that

( i ) case 1: b2 > b1 > 1,

(i1) if a2 < a�
2 and a�

1 < a1, then when ðb; cÞ A ðð0; 1� � ð0; 1�Þ \Pk0 ,

ð0; ~vvÞ is g.a.s;

(i2) if a2 > a�
2 , then when ðb; cÞ A ðð0; 1� � ð0; 1�Þ \Pk0 , ð0; 0Þ is g.a.s;

(i3) if a1 < a�
1 , there exists b� A ð0; 1Þ such that when ðb; cÞ A ð½b�; 1� �

ð0; 1�Þ \Pk0 , ð0; ~vvÞ is g.a.s, and system (1.2) has a unique co-

existence steady state that is g.a.s when ðb; cÞ A ðð0; b�Þ;�ð0; 1�Þ \
Pk0 .

(ii) case 2: 0 < b2 < b1 < 1,

(ii1) if a1 < a�
1 and a�

2 < a2, then when ðb; cÞ A ðð0; 1� � ð0; 1�Þ \Pk0 ,

ð~uu; 0Þ is g.a.s;

(ii2) if a1 > a�
1 , then when ðb; cÞ A ðð0; 1� � ð0; 1�Þ \Pk0 , ð0; 0Þ is g.a.s;

(ii3) if a2 < a�
2 , there exists c� A ð0; 1Þ such that when ðb; cÞ A ðð0; 1� �

½c�; 1�Þ \Pk0 , ð~uu; 0Þ is g.a.s, and system (1.2) has a unique co-

existence steady state that is g.a.s when ðb; cÞ A ðð0; 1� � ð0; c�ÞÞ
\Pk0 .

Moreover, the formulas for b� and c� are as follows

b� ¼ inf
00s AH 1ð0;LÞ

Ð L
0 ðd1s2

xe
ða1=d1Þx �ms2eða1=d1ÞxÞdxþ bda1e

ða1=d1ÞLs2ðLÞ þ bua1s
2ð0ÞÐ L

0
~vveða1=d1Þxs2 dx

;

and

c� ¼ inf
00s AH 1ð0;LÞ

Ð L
0 ðd2s2

xe
ða2=d2Þx �ms2eða2=d2ÞxÞdxþ bda2e

ða2=d2ÞLs2ðLÞ þ bua2s
2ð0ÞÐ L

0
~uueða2=d2Þxs2 dx

:
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Remark 1.4. By the subscripts of a�
1 and a�

2 , we mean that the values of a�
1

and a�
2 depend on d1 and d2, respectively. Indeed, if b2 > b1 > 1, the condition

a2 < a�
2 in (i1) means that a2 < minfa�

2 ; a1g and we can explain (ii1) in the same

way. In Theorem 1.2, we discuss the global dynamics of system (1.2) for the

cases of b2 > b1 > 1 and 0 < b2 < b1 < 1. Xu et al [26] explored the situation

where b2 ¼ b1. For the other cases, it is more complex to investigate and we

leave these questions.

Remark 1.5. From a biological point of view, we make some interpreta-

tions for Theorem 1.2. For statement (i), when b2 > b1 > 1, statement (i1) shows

that if species v can persist in the long run while species u cannot persist without

competition, then during the competition species v is in a good position and would

finally take place of species u. Statement (i2) suggests that if ð~uu; 0Þ and ð0; ~vvÞ
do not exist without competition, then when competition is involved both species

u and v will go extinct. Statement (i3) reveals that species v is more competi-

tive than species u in the sense that either it wipes out u completely in the final

or coexists with u eventually. Moreover, whether the inter-specific competition

intensity b crosses over a critical number b� which is in ð0; 1Þ determines if species

v will wipe out u eventually or coexist with u. For statement (ii), we can have

the similar explanations.

The rest of this paper is organized as follows. In Section 2, we pre-

sent some preliminary results which will be used in verifying our results.

Section 3 is devoted to establishing Theorem 1.1. In Section 4, we mainly

prove Theorem 1.2. Some numerical simulations are performed in Section 5

to support and verify the theoretical results. Finally, a short discussion then

completes this paper.

2. Preliminaries

Recall that t1ðd; a; rÞ is the principal eigenvalue of problem (1.7). By the

variational approach, if 0a bu; bd < y, then

t1ðd; a; rÞ ¼ inf
00f AH 1ð0;LÞ

Ð L
0 ðdf

2
xe

ða=dÞx � rf2eða=dÞxÞdxþ bdae
ða=dÞLf2ðLÞ þ buaf

2ð0ÞÐ L
0 eða=dÞxf2 dx

;

if bu ¼ bd ¼ y, then

t1ðd; a; rÞ ¼ inf
f AS

Ð L
0 ðdf

2
xe

ða=dÞx � rf2eða=dÞxÞdxÐ L
0 eða=dÞxf2 dx

;
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where S :¼ fv A H 1ð0;LÞ j vð0Þ ¼ vðLÞ ¼ 0; v2 0g; if bu ¼ y and 0a bd < y,

then

t1ðd; a; rÞ ¼ inf
f AS1

Ð L
0 ðdf

2
xe

ða=dÞx � rf2eða=dÞxÞdxþ bdae
aL=df2ðLÞÐ L

0 eða=dÞxf2 dx
; ð2:1Þ

where S1 :¼ fv A H 1ð0;LÞ j vð0Þ ¼ 0; v2 0g; and if bd ¼ y and 0a bu < y,

then

t1ðd; a; rÞ ¼ inf
f AS2

Ð L
0 ðdf

2
xe

ða=dÞx � rf2eða=dÞxÞdxþ buaf
2ð0ÞÐ L

0 eða=dÞxf2 dx
;

where S2 :¼ fv A H 1ð0;LÞ j vðLÞ ¼ 0; v2 0g.
In order to prove Theorem 1.1, it is needed to introduce the following

eigenvalue problem.

Let m1ðaðxÞ; qðxÞÞ be the principal eigenvalue of the following eigenvalue

problem:

ðaðxÞjxÞx þ qðxÞjþ mj ¼ 0; 0 < x < L;

aðxÞjxðxÞ ¼ bujðxÞ; x ¼ 0;

aðxÞjxðxÞ ¼ �bdjðxÞ; x ¼ L;

8><
>: ð2:2Þ

where a A C1; gð½0;L�Þ is a positive function on ½0;L�. Then we have the fol-

lowing variational characterization of m1ðaðxÞ; qðxÞÞ:

m1ða; qÞ ¼ inf
00f AH1ð0;LÞ

Ð L
0 ðafx2 � qf2Þdxþ buf

2ð0Þ þ bdf
2ðLÞÐ L

0 f2 dx
;

similarly, if bu ¼ bd ¼ y, then

m1ða; qÞ ¼ inf
00f AHð0;LÞ

Ð L
0 ðaf

2
x � qf2ÞdxÐ L
0 f2 dx

; ð2:3Þ

where H :¼ fj A H1ð0;LÞ j jð0Þ ¼ jðLÞ ¼ 0g, moreover, if bu ¼ y and 0a

bd < y and bu ¼ y and 0a bd < y, in view of the variational characteriza-

tions of t1ðd; a; rÞ, the variational characterizations of m1ðaðxÞ; qðxÞÞ can be

obtained correspondingly.

Since system (1.2) generates a monotone dynamical system, It is useful to

display the following lemma which is derived from the theory of monotone

dynamical systems [10].

Lemma 2.1. The following statements on system (1.2) are true:

( i ) If system (1.2) has no coexistence steady state, then one of the semi-

trivial steady state is unstable and the other is globally asymptotically

stable;
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( ii ) If both semi-trivial steady states are unstable, then there is at least one

stable coexistence steady state; moreover, if every coexistence steady

state is asymptotically stable, then there exists a unique coexistence

steady state which is globally asymptotically stable;

(iii) If every coexistence steady state is asymptotically stable, then either

there exists a unique coexistence steady state which is globally asymp-

totically stable or there are no coexistence steady state and one of the

semi-trivial steady state is unstable and the other is globally asymptoti-

cally stable.

For linear stability of the trivial steady state ð0; 0Þ and the two semi-trivial

steady states ð~uu; 0Þ and ð0; ~vvÞ of system (1.2), we have the following relatively

simple criterion.

Lemma 2.2. The linear stability of ð~uu; 0Þ, ð0; ~vvÞ and ð0; 0Þ in system

(1.2) are determined by the sign of t1ðd2; a2;m2 � c~uuÞ, t1ðd1; a1;m1 � b~vvÞ and

minft1ðd1; a1;m1Þ; t1ðd2; a2;m2Þg respectively.

The proof follows essentially from the same arguments as in that of [[12],

Corollary 2.10] and therefore is omitted here.

We include some properties of t1ðd; a; rÞ.

Lemma 2.3 (Monotonicity). Assume that ðH2Þ holds. For given d; a > 0

and r in Lyð½0;L�Þ, the following statements on t1ðd; a; rÞ are true:

( i ) If r1ðxÞa;2 r2ðxÞ in ½0;L�, then t1ðd; a; r1Þ > t1ðd; a; r2Þ;
(ii) t1ðd; a; rÞ, as a function of a, is strictly monotonically increasing

provided bd b
1
2 .

Proof. Statement (i) was proved in [2].

We next verify statement (ii) by using some idea from [7].

By the transformation v ¼ eða=dÞxv , the equation (1.7) becomes

dvxx þ avx þ rv þ t1v ¼ 0; 0 < x < L;

dvxðxÞ ¼ buavðxÞ; x ¼ 0;

dvxðxÞ ¼ �bdavðxÞ; x ¼ L;

8><
>: ð2:4Þ

where v > 0 is uniquely determined by kvk2L2ð0;LÞ ¼ 1. Let q
qa
¼ 0 denote dif-

ferentiation with respect to a. Di¤erentiating (2.4), we obtain

dv 0
xx þ vx þ av 0

x þ rv 0 þ t 01v þ t1v
0 ¼ 0; 0 < x < L;

dv 0
xðxÞ ¼ buvðxÞ þ buav

0ðxÞ; x ¼ 0;

dv 0
xðxÞ ¼ �bdvðxÞ � bdav

0ðxÞ; x ¼ L:

8><
>: ð2:5Þ
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Next, multiplying (2.4) by eða=dÞxv 0 and (2.5) by eða=dÞxv , and then subtracting

and integrating the resulting equations, one obtains

d½eða=dÞxv 0
xv j

L
0 � eða=dÞxv 0vxjL0 � þ

ðL
0

eða=dÞxvxv dx ¼ �t 01

ðL
0

eða=dÞxv 2 dx:

Using the integration by parts and the boundary conditions, one obtains

�bde
ða=dÞLv 2ðLÞ � buv

2ð0Þ þ eða=dÞL
v 2ðLÞ
2

� v 2ð0Þ
2

� a

d

ðL
0

eða=dÞx
v 2

2
dx

¼ �t 01

ðL
0

eða=dÞxv 2 dx;

from which we can further deduce that

t 01 ¼
bde

ða=dÞLv 2ðLÞ þ buv
2ð0Þ � eða=dÞL

v 2ðLÞ
2 þ v 2ð0Þ

2 þ a
d

Ð L
0 eða=dÞx v 2

2 dxÐ L
0 eða=dÞxv 2 dx

;

which, in view of bd b
1
2 , implies t 01 > 0, as desired.

Lemma 2.4 (Limiting Behavior). Assume that assumption ðH2Þ holds. For

given d; a > 0 and r in Lyð½0;L�Þ, we have

( i ) lima!0 t1ðd; a; rÞ ¼ t1ðd; 0; rÞ < 0;

(ii) lima!y t1ðd; a; rÞ ¼ þy.

Proof. Clearly, t1ðd; 0; rÞ < 0 follows directly from the positivity of rðxÞ.
Next we prove lima!y t1ðd; a; rÞ ¼ þy.

By variational representation of t1ðd; a; rÞ and a transformation f ¼
e�lða=dÞxQ, where l is a positive number to be determined later, we see

t1 ¼ inf
00Q A H 1ð0;LÞ

(Ð L
0 dQ2

xe
ð1�2lÞða=dÞx þ a2l 2

d

Ð L
0 Q2eð1�2lÞða=dÞxQ2 dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

þ bdae
ð1�2lÞða=dÞLQ2ðLÞ þ buaQ

2ð0ÞÐ L
0 eð1�2lÞða=dÞxQ2 dx

�
al
Ð L
0 eð1�2lÞða=dÞxðQ2Þxdxþ

Ð L
0 rðxÞQ2eð1�2lÞða=dÞx dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

)

¼ inf
00Q A H 1ð0;LÞ

(Ð L
0 dQ2

xe
ð1�2lÞða=dÞx þ a2l 2

d

Ð L
0 Q2eð1�2lÞða=dÞxQ2 dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

þ bdae
ð1�2lÞða=dÞLQ2ðLÞ þ buaQ

2ð0ÞÐ L
0 eð1�2lÞða=dÞxQ2 dx
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�
aleð1�2lÞða=dÞLQ2ðLÞ � alQ2ð0Þ � lð1� 2lÞ a2

d

Ð L
0 eð1�2lÞða=dÞxQ2 dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

�
Ð L
0 rðxÞQ2eð1�2lÞða=dÞx dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

)

¼ inf
00Q A H 1ð0;LÞ

(
½bd � l�aeð1�2lÞða=dÞLQ2ðLÞ þ ½l � l 2� a2

d

Ð L
0 eð1�2lÞða=dÞxQ2 dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

þ
Ð L
0 dQ2

xe
ð1�2lÞða=dÞx þ alQ2ð0Þ þ buaQ

2ð0ÞÐ L
0 eð1�2lÞða=dÞxQ2 dx

�
Ð L
0 rðxÞQ2eð1�2lÞða=dÞx dxÐ L

0 eð1�2lÞða=dÞxQ2 dx

)

b ½l � l 2� a
2

d
� max

x A ½0;L�
rðxÞ;

provided 0 < l < minfbd ; 1g. The desired result would then follow by sending

a ! þy.

3. Proof of Theorem 1.1

Suppose that ðU ;VÞ is a coexistence steady state of system (1.2), then

U ;V > 0 in ½0;L� and satisfy

d1Uxx � a1Ux þU ½m1ðxÞ �U � bV � ¼ 0; 0 < x < L;

d2Vxx � a2Vx þU ½m2ðxÞ � cU � V � ¼ 0; 0 < x < L;

d1UxðxÞ � a1UðxÞ ¼ bua1UðxÞ; x ¼ 0;

d1UxðxÞ � a1UðxÞ ¼ �bda1UðxÞ; x ¼ L;

d2VxðxÞ � a2VðxÞ ¼ bua2VðxÞ; x ¼ 0;

d2VxðxÞ � a2VðxÞ ¼ �bda2VðxÞ; x ¼ L:

8>>>>>>>><
>>>>>>>>:

ð3:1Þ

Denote

W ¼ e�ða1=d1ÞxU ; Z ¼ e�ða2=d2ÞxV :

Then ðW ;ZÞ satisfies the following system

ðd1eða1=d1ÞxWxÞx þWðeða1=d1Þxm1 � e2ða1=d1ÞxW

� beða1=d1Þxþða2=d2ÞxZÞ ¼ 0; 0 < x < L;

ðd2eða2=d2ÞxZxÞx þ Zðeða2=d2Þxm2 � ceða1=d1Þxþða2=d2ÞxW

� e2ða2=d2ÞxZÞ ¼ 0; 0 < x < L;

d1WxðxÞ ¼ bua1WðxÞ; d2ZxðxÞ ¼ bua2ZðxÞ; x ¼ 0;

d1WxðxÞ ¼ �bda1WðxÞ; d2ZxðxÞ ¼ �bda2ZðxÞ; x ¼ L:

8>>>>>>>><
>>>>>>>>:

ð3:2Þ
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Recall ð~uu; 0Þ and ð0; ~vvÞ are two semi-trivial steady states of system (1.2).

Denote

~ww ¼ e�ða1=d1Þx~uu; ~zz ¼ e�ða2=d2Þx~vv:

Then ~ww satisfies the following system

ðd1eða1=d1Þx ~wwxÞx þ ~wwðeða1=d1Þxm1ðxÞ � e2ða1=d1Þx ~wwÞ ¼ 0; 0 < x < L;

d1 ~wwxðxÞ ¼ bua1 ~wwðxÞ; x ¼ 0;

d1 ~wwxðxÞ ¼ �bda1 ~wwðxÞ; x ¼ L;

8><
>: ð3:3Þ

and ~zz satisfies the following system

ðd2eða2=d2Þx~zzxÞx þ ~zzðeða2=d2Þxm2ðxÞ � e2ða2=d2Þx~zzÞ ¼ 0; 0 < x < L;

d2~zzxðxÞ ¼ bua2~zzðxÞ; x ¼ 0;

d2~zzxðxÞ ¼ �bda2~zzðxÞ; x ¼ L:

8><
>: ð3:4Þ

Then we get to study the following system

wt ¼ ðd1eða1=d1ÞxwxÞx þ wðeða1=d1Þxm1 � e2ða1=d1Þxw� beða1=d1Þxþða2=d2ÞxzÞ;
0 < x < L; t > 0;

zt ¼ ðd2eða2=d2ÞxzxÞx þ zðeða2=d2Þxm2 � ceða1=d1Þxþða2=d2Þxw� e2ða2=d2ÞxzÞ;
0 < x < L; t > 0;

d1wxðx; tÞ ¼ bua1wðx; tÞ; d2zxðx; tÞ ¼ bua2zðx; tÞ;
x ¼ 0; t > 0;

d1wxðx; tÞ ¼ �bda1wðx; tÞ; d2zxðx; tÞ ¼ �bda2zðx; tÞ;
x ¼ L; t > 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:5Þ

from above discussion, it is clear that ðW ;ZÞ is a coexistence steady state

of system (3.5) and ð~ww; 0Þ and ð0; ~zzÞ are semi-trivial steady states of system

(3.5).

Similarly, we can denote Sw, Sz, ~SSw, ~SSz, and ~SS z
w.

For ð~ww; 0Þ and ð0; ~zzÞ, we have the following results which can be demon-

strated in the same way as in [[12], Corollary 2.10].

Lemma 3.1. The linear stability of ð~ww; 0Þ, ð0; ~zzÞ and ð0; 0Þ of system

(3.5) are determined by the sign of m1ðd2ea2x=d2 ; ea2x=d2m2 � cea1x=d1þa2x=d2 ~wwÞ,
m1ðd1ea1x=d1 ; ea1x=d1m1 � bea1x=d1þa2x=d2~vvÞ and minfm1ðd1ea1x=d1 ; ea1x=d1m1Þ;
m1ðd2ea2x=d2 ; ea2x=d2m2Þg, respectively.

Proof of Theorem 1.1. It is clear that the existence of semi-trivial steady

state ð~uu; 0Þ if and only if t1ðd1; a1;mÞ < 0 and the semi-trivial steady state

ð0; ~vvÞ exists if and only if t1ðd2; a2;mÞ < 0. In statement (i), both semi-trivial

steady states do not exist; in statement (ii), only ð0; ~vvÞ exists; and in statement
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(iii), only ð~uu; 0Þ exists. The dynamics in these three statements can be ob-

tained by using the standard upper and lower solution methods; see [[32],

Lemma 5.1].

Next we prove statements (iv).

By transformation, to investigate the linear stability of ð~uu; 0Þ, ð0; ~vvÞ and

ðU ;VÞ, we only need to investigate the linear stability of ð~ww; 0Þ, ð0; ~zzÞ and

ðW ;ZÞ. We employ similar arguments in [6] to complete the proof of

Theorem 1.1.

Linearizing the steady state problem (3.2) at ðW ;ZÞ, we have

ðd1eða1=d1ÞxFxÞx þFðeða1=d1Þxm1 � e2ða1=d1ÞxW

� beða1=d1Þxþða2=d2ÞxZÞ �Wðe2ða1=d1ÞxF
þ beða1=d1Þxþða2=d2ÞxCÞ þ hF ¼ 0; 0 < x < L;

ðd2eða2=d2ÞxFxÞx þCðeða2=d2Þxm2 � ceða1=d1Þxþða2=d2ÞxW

� e2ða2=d2ÞxZÞ � Zðceða1=d1Þxþða2=d2ÞxFþ e2ða2=d2ÞxCÞ
þ hC ¼ 0; 0 < x < L;

d1FxðxÞ ¼ bua1FðxÞ; d2CxðxÞ ¼ bua2CðxÞ; x ¼ 0;

d1FxðxÞ ¼ �bda1FðxÞ; d2CxðxÞ ¼ �bda2CðxÞ; x ¼ L;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3:6Þ

by the Krein-Rutman theorem [11] again, there is a principal eigenvalue to

system (3.6) denoted by h1, and its corresponding eigenfunctions ðF1;C1Þ can

be chosen to satisfy F1 > 0 > C1 in ð0;LÞ.
Now we establish the a priori estimate regarding the linear stability of the

coexistence steady state of system (3.2): for every ðd1; a1; d2; a2Þ in Gn ~SS z
w, every

coexistence steady state of system (1.2), if it exists, is linearly stable. It su‰ces

to show h1 > 0 when ðd1; a1; d2; a2Þ is in Gn ~SS z
w.

Multiplying the first equation in (3.6) by W , the first equation in (3.2) by

F1, and subtracting the resulting equations, one then finds

d1e
ða1=d1ÞxW 2 F1

W

� �
x

� �
x

¼ W 2ðe2ða1=d1ÞxF1 þ beða1=d1Þxþða2=d2ÞxC1Þ � h1WF1:

Multiplying both sides of the above equality by
F2

1

W 2 and integrating over ð0;LÞ,
we obtain

d1e
ða1=d1ÞxW 2 F1

W

� �
x

F2
1

W 2

����
L

0

� 2

ðL
0

d1e
ða1=d1ÞxWF1

F1

W

� �2
x

dx

¼
ðL
0

F2
1ðe2ða1=d1ÞxF1 þ beða1=d1Þxþða2=d2ÞxC1Þdx� h1

ðL
0

F3
1

W
dx:

By the boundary conditions
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d1e
ða1=d1ÞxW 2 F1

W

� �
x

F2
1

W 2

����
L

0

¼ d1e
ða1=d1ÞLW 2ðLÞF1xðLÞWðLÞ �F1ðLÞWxðLÞ

W 2ðLÞ
F2

1ðLÞ
W 2ðLÞ

� d1W
2ð0ÞF1xð0ÞWð0Þ �F1ð0ÞWxð0Þ

W 2ð0Þ
F2

1ð0Þ
W 2ð0Þ

¼ d1e
ða1=d1ÞL � bd

d1
a1F1ðLÞWðLÞ þF1ðLÞ

bd

d1
a1WðLÞ

� �
F2

1ðLÞ
W 2ðLÞ

� d1
bu

d1
a1F1ð0ÞWð0Þ �F1

bu

d1
a1Wð0Þ

� �

¼ 0;

then

h1

ðL
0

F3
1

W
dx ¼

ðL
0

F2
1ðe2ða1=d1ÞxF1 þ beða1=d1Þxþða2=d2ÞxC1Þdx

þ 2

ðL
0

d1e
ða1=d1ÞxWF1

F1

W

� �2
x

dx:

Similarly, we can derive the following identity:

h1

ðL
0

C 3
1

Z
dx ¼

ðL
0

C 2
1 ðe2ða2=d2ÞxF1 þ ceða1=d1Þxþða2=d2ÞxC1Þdx

þ 2

ðL
0

d2e
ða2=d2ÞxZC1

C1

Z

� �2
x

dx:

Denote ðF1;C1Þ :¼ ðF1;�C1Þ. It holds that F1;C1 > 0 on ½0;L�. By

Hölder’s inequality, we have

�h1

ðL
0

F
3

1

W
dxa

ðL
0

beða1=d1Þxþða2=d2ÞxF
2

1C1 dx�
ðL
0

e2ða1=d1ÞxF
3

1 dx

a

ðL
0

beða1=d1Þxþða2=d2ÞxF
2

1C1 dx

� min
x A ½0;L�

eða1=d1Þx�ða2=d2Þx
ðL
0

eða1=d1Þxþða2=d2ÞxF
3

1 dx

a

ðL
0

eða1=d1Þxþða2=d2ÞxF
3

1 dx

� �2=3
� min
x A ½0;L�

eða1=d1Þx�ða2=d2Þx
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�
"
b max

x A ½0;L�
eða1=d1Þx�ða2=d2Þx

ðL
0

eða1=d1Þxþða2=d2ÞxC
3

1 dx

� �1=3

�
ðL
0

eða1=d1Þxþða2=d2ÞxF
3

1 dx

� �1=3#
ð3:7Þ

and

�h1

ðL
0

C
3

1

Z
dxa

ðL
0

ceða1=d1Þxþða2=d2ÞxF1C
2

1 dx�
ðL
0

e2ða2=d2ÞxC
3

1 dx

a

ðL
0

eða1=d1Þxþða2=d2ÞxC
3

1 dx

� �2=3
� min
x A ½0;L�

eða2=d2Þx�ða1=d1Þx

�
"
c max

x A ½0;L�
eða2=d2Þx�ða1=d1Þx

ðL
0

eða1=d1Þxþða2=d2ÞxF
3

1 dx

� �1=3

�
ðL
0

eða1=d1Þxþða2=d2ÞxC
3

1 dx

� �1=3#
: ð3:8Þ

Denote

z1 ¼ b max
x A ½0;L�

eða1=d1Þx�ða2=d2Þx and z2 ¼ c max
x A ½0;L�

eða2=d2Þx�ða1=d1Þx;

then

z1z2 ¼ bc max
x A ½0;L�

eða1=d1Þx�ða2=d2Þx max
x A ½0;L�

eða2=d2Þx�ða1=d1Þx

¼ bc
maxx A ½0;L� e

ða1=d1Þx�ða2=d2Þx

minx A ½0;L� eða1=d1Þx�ða2=d2Þx
:

By the assumption that ðb; cÞ A Pk0

bc
maxx A ½0;L� e

ða1=d1Þx�ða2=d2Þx

minx A ½0;L� eða1=d1Þx�ða2=d2Þx
a 1;

one sees

�h1
v2
Ð L
0

F
3

1

W
dx

ð
Ð L
0 F

3

1 dxÞ2=3
þ

Ð L
0

C
3

1

Z
dx

ð
Ð L
0 C

3

1 dxÞ2=3

2
4

3
5

a bc
maxx A ½0;L� e

ða1=d1Þx�ða2=d2Þx

minx A ½0;L� eða1=d1Þx�ða2=d2Þx
� 1

 ! ðL
0

C
3

1 dx

� �1=3

a 0; ð3:9Þ

which implies that h1 b 0.
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We next show that h1 ¼ 0 could not happen under our assumptions. In

fact, h1 ¼ 0 if and only if

bc ¼
minx A ½0;L� e

ða1=d1Þx�ða2=d2Þx

maxx A ½0;L� eða1=d1Þx�ða2=d2Þx
;

and all the above inequalities involved in the proof become equalities. In

other words, h1 ¼ 0 if and only if

a1

d1
¼ a2

d2
; FzU zCzV ; bc ¼ 1 and

F

C
1 b;

where FzU means F=U 1 const.

In addition, if h1 ¼ 0, denote y ¼ W=Z, which is a positive constant.

Then W and Z satisfy the following equations:

ðd1eða1=d1ÞxWxÞx þW eða1=d1Þxm1 � e2ða1=d1Þx 1þ b 1
y

� �
W

� �
¼ 0; 0 < x < L;

ðd2eða2=d2ÞxZxÞx þ Zðeða2=d2Þxm2 � e2ða2=d2Þxðcyþ 1ÞZÞ
¼ 0; 0 < x < L;

d1WxðxÞ ¼ bua1WðxÞ; d2ZxðxÞ ¼ bua2ZðxÞ; x ¼ 0;

d1WxðxÞ ¼ �bda1WðxÞ; d2ZxðxÞ ¼ �bda2ZðxÞ; x ¼ L;

8>>>>>>>><
>>>>>>>>:

ð3:10Þ

by the uniqueness of positive steady state of single system, we obtain that

1þ b 1
y

� �
W ¼ ~ww and ðcyþ 1ÞZ ¼ ~zz. Therefore,

~ww

~zz
¼ b and W þ bZ ¼ ~ww:

Then, one can easily check

mðd2eða2=d2Þx; eða2=d2Þxm2 � ceða1=d1Þxþða2=d2Þx ~wwÞ

¼ mðd2eða2=d2Þx; eða2=d2Þxm2 � eða1=d1Þxþða2=d2Þx~zzÞ ¼ 0

and

mðd1eða1=d1Þx; eða1=d1Þxm1 � beða1=d1Þxþða2=d2Þx~zzÞ

¼ mðd1eða1=d1Þx; eða1=d1Þxm1 � eða1=d1Þxþða2=d2Þx ~wwÞ ¼ 0;

which contradicts our assumption. Thus, h1 > 0.

By the similar way in [6], we can finish the proof of statements (iv1)–(iv4)

and we omit the details here.
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Now we prove the decomposition is mutually disjoint. To prove the

disjoint property, by definition, it su‰ces to show

ðSw [ ~SSwn ~SS z
wÞ \ ðSz [ ~SSzn ~SS z

wÞ ¼ q: ð3:11Þ

Multiplying the equation for ~ww by ~ww and integrating over ð0;LÞ, we obtain

that ðL
0

d1e
ða1=d1Þx ~ww2

x dx ¼
ðL
0

ðeða1=d1Þxm1 � e2ða1=d1Þx ~wwÞ~ww2 dx

� bda1e
ða1=d1ÞL ~ww2ðLÞ � bua1 ~ww

2ð0Þ: ð3:12Þ

By (3.12) and Hölder’s inequality, choosing ~ww as a test function in the

variational characterization for mðd1eða1=d1Þx; eða1=d1Þxm1 � beða1=d1Þxþða2=d2Þx~zzÞ, we

obtain that

mðd1eða1=d1Þx; eða1=d1Þxm1 � beða1=d1Þxþða2=d2Þx~zzÞ

¼ inf
00f AH 1ð0;LÞ

 Ð L
0 d1e

ða1=d1Þxf2
x dxþ

Ð L
0 ðbeða1=d1Þxþða2=d2Þx~zz� eða1=d1Þxm1Þf2 dxÐ L

0 f2 dx

þþbua1f
2ð0Þ þ bda1f

2ðLÞÐ L
0 f2 dx

!

a

Ð L
0 d1e

ða1=d1Þx ~ww2
x dxþ

Ð L
0 ðbeða1=d1Þxþða2=d2Þx~zz� eða1=d1Þxm1Þ~ww2 dxÐ L

0
~ww2 dx

¼
Ð L
0 ðbeða1=d1Þxþða2=d2Þx~zz� e2ða1=d1Þx ~wwÞ~ww2 dxÐ L

0
~ww2 dx

a

ðL
0

eða1=d1Þxþða2=d2Þx ~ww3 dx

� �2=3
� min
x A ½0;L�

eða1=d1Þx�ða2=d2Þx

�
"
b max

x A ½0;L�
eða1=d1Þx�ða2=d2Þx

ðL
0

eða1=d1Þxþða2=d2Þx~zz3 dx

� �1=3

�
ðL
0

eða1=d1Þxþða2=d2Þx ~ww3 dx

� �1=3#
�
ðL
0

~ww2 dx: ð3:13Þ

Similarly, choosing ~zz as a test function in the variational characterization

for mðd2eða2=d2Þx; eða2=d2Þxm2 � ceða1=d1Þxþða2=d2Þx ~wwÞ and by Hölder’s inequality, we

obtain that
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mðd2eða2=d2Þx; eða2=d2Þxm2 � ceða1=d1Þxþða2=d2Þx ~wwÞ

a

ðL
0

eða1=d1Þxþða2=d2Þx~zz3 dx

� �2=3
� min
x A ½0;L�

eða2=d2Þx�ða1=d1Þx

�
"
c max

x A ½0;L�
eða2=d2Þx�ða1=d1Þx

ðL
0

eða1=d1Þxþða2=d2Þx ~ww3 dx

� �1=3

�
ðL
0

eða1=d1Þxþða2=d2Þx~zz3 dx

� �1=3#
�
ðL
0

~zz2 dx: ð3:14Þ

Following from (3.13) and (3.14), one derives that

z2mðd1eða1=d1Þx; eða1=d1Þxm1 � beða1=d1Þxþða2=d2Þx~zzÞ
Ð L
0
~ww2 dx

ð
Ð L
0
~ww3 dxÞ2=3

þ
mðd2eða2=d2Þx; eða2=d2Þxm2 � ceða1=d1Þxþða2=d2Þx ~wwÞ

Ð L
0 ~zz2 dx

ð
Ð L
0
~zz3 dxÞ2=3

a bc
maxx A ½0;L� e

ða1=d1Þx�ða2=d2Þx

minx A ½0;L� eða1=d1Þx�ða2=d2Þx
� 1

 ! ðL
0

~zz3 dx

� �1=3
a 0: ð3:15Þ

Then mðd1eða1=d1Þx; eða1=d1Þxm1 � beða1=d1Þxþða2=d2Þx~zzÞ and mðd2eða2=d2Þx; eða2=d2Þxm2 �
ceða1=d1Þxþða2=d2Þx ~wwÞ can not be positive simultaneously.

Then by Lemma 3.1, Theorem 1.1 follows directly from the above

statements.

4. Proof of Theorem 1.2

Proof. We first verify that, if 1 < b1 < b2 and bd b 1=2, it holds that

t1ðb1d; b2a;mÞ > t1ðd; a;mÞ.
Without loss of generality, we assume that bu ¼ y and 1=2a bd < y.

By the Krein-Rutman theorem [11], there exists a principal eigen-pair ðt1ðb1d;
b2a;mÞ; v1ðb1d; b2a;mÞÞ for problem (1.7), where v1ðb1d; b2a;mÞ can be chosen

strictly positive on ð0;L�. For simplicify, we denote v1ðb1d; b2a;mÞ by v1. By

Lemma 2.3, we have that

t1ðb1d; b2a;mÞ > t1ðb1d; b1a;mÞ:

It is obvious that t1ðb1d; b1a;mÞ, v1 satisfy
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t1ðb1d; b1a;mÞ ¼
Ð L
0 ðb1djv1xj

2
eða=dÞx �mv21e

ða=dÞxÞdxþ bdb1ae
aL=dv21ðLÞÐ L

0 eða=dÞxv21 dx

>

Ð L
0 ðdjv1xj

2
eða=dÞx �mv21e

ða=dÞxÞdxþ bdae
aL=dv21ðLÞÐ L

0 eða=dÞxv21 dx

¼ t1ðd; a;mÞ: ð4:1Þ

From the above inequalities, one obtains that

t1ðb1d; b2a;mÞ > t1ðd; a;mÞ:

Hence, we have

t1ðd2; a2;mÞ < t1ðd1; a1;mÞ:

When bd b 1=2, by Lemma 2.3 (ii) and Lemma 2.4, there exists a critical

number a�
i > 0 ði ¼ 1; 2Þ such that

t1ðdi; ai;mÞ
< 0; if 0 < a < a�

i ;

¼ 0; if a ¼ a�
i ;

> 0; if a > a�
i :

8<
:

Recall that the semi-trivial steady state ð~uu; 0Þ exists if and only if t1ðd1; a1;mÞ <
0 and the semi-trivial steady state ð0; ~vvÞ exists if and only if t1ðd2; a2;mÞ < 0.

If a2 < a�
2 and a�

1 < a1, it holds that t1ðd2; a2;mÞ < 0a t1ðd1; a1;mÞ, then only

ð0; ~vvÞ exists. If a2 > a�, we obtain that t1ðd1; a1;mÞ > t1ðd2; a2;mÞ > 0, there-

fore both semi-trivial steady states do not exist. Statements (i1) and (i2) can

be obtained by using the standard upper and lower solution method; see [[32],

Lemma 5.1].

With regard to statement (i3), we have t1ðd2; a2;mÞ < t1ðd1; a1;mÞ < 0 if

a1 < a�, that is both ~uu and ~vv exist. Now, we would show that ð~uu; 0Þ is linearly
unstable. It su‰ces to show that t1ðd2; a2;m� c~uuÞ < 0. Actually, by Lemma

2.3, we have

t1ðd2; a2;m� c~uuÞa t1ðd2; a2;m� ~uuÞ < t1ðd1; a1;m� ~uuÞ ¼ 0;

which implies that ð~uu; 0Þ is linearly unstable.

Next, we consider the stability of ð0; ~vvÞ. It su‰ces to consider the sign of

t1ðd1; a1;m� b~vvÞ. On the one hand, we have t1ðd1; a1;mÞ < 0. On the other

hand, by (4.2)

t1ðd1; a1;m� ~vvÞ > t1ðd2; a2;m� ~vvÞ ¼ 0;

then there exists a constant b� A ð0; 1Þ such that
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t1ðd1; a1;m� b~vvÞ
< 0; for b A ð0; b�Þ;
¼ 0; for b ¼ b�;

> 0; for b A ðb�; 1�;

8><
>:

which implies that for ðb; cÞ A ð0; b�Þ � ð0; 1�, both semi-trivial steady states are

linearly unstable and for ðb; cÞ A ½b�; 1� � ð0; 1�, ð0; ~vvÞ is either linearly stable

ððb; cÞ A ðb�; 1� � ð0; 1�Þ or neutrally stable ððb; cÞ A fb�g � ð0; 1�Þ, but ð~uu; 0Þ is

always linearly unstable. By Theorem 1.1 and the assumption that ðb; cÞ A Pk0 ,

statement (i3) is valid.

If 0 < b2 < b1 < 1 and bd b 1=2, it holds that t1ðd1; a1;mÞ > t1ðd2; a2;mÞ.
By a similar way, statement (ii) can be established.

Finally we calculate the value of b�. We know that the stability of

ð0; ~vvÞ is determined which satisfies the following eigenvalue by the sign of

t1ðd1; a1;m� b~vvÞ ¼ 0 problem

d1vxx � a1vx þ ðm� b~vvÞvþ t1v ¼ 0; 0 < x < L;

d1vxðxÞ � a1vðxÞ ¼ bua1vðxÞ; x ¼ 0;

d1vxðxÞ � a1vðxÞ ¼ �bda1vðxÞ; x ¼ L;

8><
>: ð4:2Þ

rewrite (4.3) (with b ¼ b� and t1 ¼ 0) as

d1ðv0Þxx � a1ðv0Þx þmv0 ¼ b�~vvv0; 0 < x < L;

d1ðv0ÞxðxÞ � a1v0ðxÞ ¼ bua1v0ðxÞ; x ¼ 0;

d1ðv0ÞxðxÞ � a1v0ðxÞ ¼ �bda1v0ðxÞ; x ¼ L;

8><
>:

where v0 > 0 is the corresponding eigenfunction of t1ðd1; a1;m� b~vvÞ ¼ 0, which

is uniquely determined by the normalization kv0k2L2ð0;LÞ ¼ 1.

Let v0 ¼ v0e
�ða1=d1Þx. Then v0 satisfies

½d1eða1=d1Þxðv0Þx�x þmeða1=d1Þxv0 ¼ b�~vveða1=d1Þxv0; 0 < x < L;

d1ðv0ÞxðxÞ ¼ bua1v0ðxÞ; x ¼ 0;

d1ðv0ÞxðxÞ ¼ �bda1v0ðxÞ; x ¼ L:

8><
>:

By using variational formulation, we obtain

b� ¼ inf
00f AH 1ð0;LÞ

Ð L
0 ðd1f

2
xe

ða1=d1Þx �mf2eða1=d1ÞxÞdxþ bda1e
ða1=d1ÞLf2ðLÞ þ bua1f

2ð0ÞÐ L
0
~vveða1=d1Þxf2 dx

:

Similarly, we can obtain

c� ¼ inf
00f AH 1ð0;LÞ

Ð L
0 ðd2f

2
xe

ða2=d2Þx �mf2eða2=d2ÞxÞdxþ bda2e
ða2=d2ÞLf2ðLÞ þ bua2f

2ð0ÞÐ L
0
~uueða2=d2Þxf2 dx

:

The proof of Theorem 1.2 is completed.
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5. Numerical simulations

The purpose of this section is to study the global dynamics of system

(1.2) via numerical approach. To investigate the e¤ects of dispersal and the

inter-specific competition intensities on the competition outcomes, we set other

competition conditions to be the same, and hence in the following we assume

that

bu ¼ 1; bd ¼ 1

2
; L ¼ 1:

We shall implement the numerical simulations by the Matlab solver with the

following initial value

ðu0; v0Þ ¼ ð0:9þ 0:08 cosðpxÞ; 0:9� 0:08 sinðpxÞÞ:

As shown in Theorem 1.2, the critical advection rate a� plays a significant

role in determining the stability of steady states. As we know, the value of

a� changes as the value of mðxÞ as well as d changes, and our purpose is to

investigate the e¤ects of dispersal on the competition outcomes. In order to

determine the value of a�, we shall simply set mðxÞ ¼ 1 and numerically com-

pute by varying the di¤usion rates.

From the numerical result, we know that, a� ¼ 0:8324 when d ¼ 0:6,

a� ¼ 0:8164 when d ¼ 0:8 and a� ¼ 0:7978 when d ¼ 1. In the following,

we divide our numerical simulations into two broad categories: b2 > b1 > 1

and 0 < b2 < b1 < 1. The two broad categories also contain three cases,

respectively.

Fig. 5.1. The critical advection rate a� when d ranges from 0 to 1.
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Category I: b2 > b1 > 1.

Without loss of generality, we choose d1 ¼ 1 and d2 ¼ 0:8. By the above

numerical result of a�, if d1 ¼ 1 and d2 ¼ 0:8, we can obtain that a�
1 ¼ 0:7978

and a�
2 ¼ 0:8164.

For case 1: a2 < a�
2 and a�

1 < a1, the numerical simulations of spatial-

temporal patterns and the temporal evolutions for the two competing species

are plotted in Figure 5.2. As shown in Figure 5.2, as times goes by, the den-

sity of species u tends to 0 and the density of species v converge to corre-

sponding steady states, which imply that, species u will die out eventually

and species v will persist in the long run. The numerical simulations shown in

Figure 5.3 is for case 2: a2 > a�
2 . It can be seen that the densities of species

u and v both are convergent to 0, that is, the two competing species u and v

Fig. 5.2. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 1, d2 ¼ 0:8, a1 ¼ 0:9, a2 ¼ 0:7 and b ¼ c ¼ 0:5.

Fig. 5.3. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 1, d2 ¼ 0:8, a1 ¼ 1, a2 ¼ 0:9 and b ¼ c ¼ 0:5.

Table 5.1. The values of parameters for simulations:

case a1 a2 k0 b c

1 0.9 0.7 0.9753 0.5 0.5

2 1 0.9 0.8824 0.5 0.5

3 0.6 0.4 0.9048 0.8 0.5

0.6 0.4 0.9048 0.1 0.5
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both will extinct as time goes on. Case 3: a1 < a�
1 . In Figure 5.4, we choose

b ¼ 0:8 and c ¼ 0:5 and in Figure 5.5, we choose b ¼ 0:1 and c ¼ 0:5. From

Figure 5.4, we can see that, after a long time, species u goes extinct and species

v survive. Figure 5.5 shows that the densities of species u and v will converge

to their corresponding steady states, which means that, the two competing

species will coexist finally. From case 3, we can derive that there exists a

critical value for the inter-specific competition intensity (denoted by b�) in

system (1.9) which changes the stability of steady state. Moreover, when b lies

above the critical value c�, the semi-trivial steady state ð0; ~vvÞ is g.a.s, and the

coexistence steady state ðU ;VÞ is g.a.s when b lies below the critical value

b�. Then the numerical simulations shown in Figure 5.4 and Figure 5.5 verify

the results (i3) in Theorem 1.2.

Category II: 0 < b2 < b1 < 1.

Fig. 5.4. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 1, d2 ¼ 0:8, a1 ¼ 0:6, a2 ¼ 0:4, b ¼ 0:8 and c ¼ 0:5.

Fig. 5.5. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 1, d2 ¼ 0:8, a1 ¼ 0:6, a2 ¼ 0:4, b ¼ 0:1 and c ¼ 0:5.

Table 5.2. The values of parameters for simulations:

case a1 a2 k0 b c

4 0.5 0.9 0.9355 0.8 0.6

5 0.9 1 0.6065 0.8 0.6

6 0.3 0.6 0.9048 0.8 0.7

0.3 0.6 0.9048 0.8 0.1
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In this situation, for convenience, we set d1 ¼ 0:6 and d2 ¼ 1. In the same

way, by the above numerical result of a�, a�
1 ¼ 0:8324 and a�

2 ¼ 0:7978 when

d1 ¼ 0:6 and d2 ¼ 1.

For case 4: a1 < a�
1 and a�

2 < a2, the numerical simulations in Figure 5.6

demonstrate that the density of species v tends to 0 and the density of species

u converge to corresponding steady states after a period of time. It means

that species u would displace species v eventually and persist in the long run.

Figure 5.7 describes the case 5: a�
1 < a1. From Figure 5.7, we can see that

the densities of species u and v both converge to 0, which imply that both

species u and v die out in the end. Case 6: a2 < a�
2 . In Figure 5.8, we

choose b ¼ 0:8 and c ¼ 0:7 and in Figure 5.9, we choose b ¼ 0:8 and c ¼ 0:1.

Fig. 5.6. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 0:6, d2 ¼ 1, a1 ¼ 0:5, a2 ¼ 0:9, b ¼ 0:8 and c ¼ 0:6.

Fig. 5.7. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 0:6, d2 ¼ 1, a1 ¼ 0:9, a2 ¼ 1, b ¼ 0:8 and c ¼ 0:6.

Fig. 5.8. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 0:6, d2 ¼ 1, a1 ¼ 0:3, a2 ¼ 0:6, b ¼ 0:8 and c ¼ 0:7.

127Competition-di¤usion-advection system with general boundary conditions



It is shown in Figure 5.8 that species u can persist in the long run while species

v extinct. Instead, Figure 5.9 demonstrates that the densities of species u and v

reach a coexistence steady state, then the two competing species will coexist

eventually. In case 6, it implies that a critical value for the inter-specific

competition intensity exists (denoted by c�) for system (1.9) which changes the

stability of steady state of the system. Moreover, when c lies above the crit-

ical value c�, the semi-trivial steady state ð~uu; 0Þ is g.a.s, and the coexistence

steady state ðU ;VÞ is g.a.s when c lies below the critical value c�. Our

numerical simulations in Figure 5.8 and Figure 5.9 verify the results (ii3) in

Theorem 1.2.

6. Discussion

In this paper, we investigate the global dynamics of a general Lotka-

Volterra competition-di¤usion-advection system from river ecology. It is as-

sumed that the upstream and downstream ends allow individuals pass through,

and we use two parameters bu and bd to measure the loss rates of individuals at

the upstream and downstream ends, respectively. In mathematics, the bound-

ary conditions include the standard Neumann, Robin and Dirichlet types.

For this general model, we get rid of the condition that a1=d1 ¼ a2=d2
and make a discussion on the condition that bca k0. We obtain a complete

classification on all possible global dynamical behaviors of system (1.2); see

Theorem 1.1. This result generalizes [26] where the authors supposed that the

ratios of the di¤usion rates and advection rates for two competitors are the

same. Resting on this, we apply Theorem 1.1 to discuss a special situation in

which two species complete for the same resource, that is, m1 ¼ m2. When

bd b 1=2 and b1 > b2 > 1 or 0 < b1 < b2 < 1, a more clear picture on the

global dynamics of system (1.2) is obtained by regarding b1, b2, b and c as

variable parameters; see Theorem 1.2.

Although we have made some progress in understanding the general sys-

tem (1.2), there are still several significant problems left for further investiga-

Fig. 5.9. Numerical simulations of the asymptotic behavior of the solution for system (1.9) when

d1 ¼ 0:6, d2 ¼ 1, a1 ¼ 0:3, a2 ¼ 0:6, b ¼ 0:8 and c ¼ 0:1.
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tion. Firstly, in spite of relaxing the limits on the di¤usion rates and advection

rates for two competitors, the ranges of the inter-specific competition inten-

sities b and c correspondingly shrink. It is interesting to explore whether these

limits can be further relaxed. The second one refers to the picture on the

global dynamics of system (1.2), which, currently is obtained when bd is in

½1=2;þy�, b1 > b2 > 1 or 0 < b1 < b2 < 1, and identical growth rate. What

about the case of di¤ering growth rates. Moreover, on account of the mo-

notony property of eigenvalue with respect to the advection rate, the accurate

lower bound of parameter bd , at present, we know this bound should not be

greater than 1=2. But it is not determined the precise value. In addition,

what about the case of other values of b1 and b2. These questions all need to

be explored.
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