On meromorphic functions sharing three one-point or two-point sets CM

Manabu Shirosaki

(Received March 1, 2022)
(Revised January 6, 2023)

Abstract

We show that if three nonconstant meromorphic functions on the complex plane share three one-point or two-point sets CM, then there exist two of the meromorphic functions such that one of them is a Möbius transform of the other. The cases that all three sets are one-point and that all three sets are two-point are obtained by H. Cartan ([C1]) and by the author ([S4]), respectively.

1. Introduction

For nonconstant meromorphic functions f and g on \boldsymbol{C} and a finite set S in $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that f and g share $S \mathrm{CM}$ (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where we consider $1 / f$ and $1 / g$ for $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ if $f\left(z_{0}\right)=\infty$ and $g\left(z_{0}\right)=\infty$, respectively. Also, if $f^{-1}(S)=g^{-1}(S)$, then we say that f and g share S IM (ignoring multiplicities). In particular if S is a one-point set $\{a\}$, then we say also that f and g share a CM or IM.

In [C1], H. Cartan showed the following theorem:
Theorem A. Let f, g and h be nonconstant meromorphic functions on \boldsymbol{C} and let a_{1}, a_{2} and a_{3} be three distinct points in $\overline{\boldsymbol{C}}$. If f, g and h share $a_{j} C M$ for $j=1,2,3$, then at least two of f, g and h are identical.

On the other hand the author proved
Theorem B ([S3], see also [S2] and [ST]). Let $S_{1}, S_{2}, S_{3}, S_{4}$ be four onepoint or two-point sets in $\overline{\boldsymbol{C}}$. Suppose that S_{1}, S_{2}, S_{3} and S_{4} are pairwise disjoint. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share $S_{j} C M$ for $j=1, \ldots, 4$, then f is a Möbius transform of g, i.e., $f=(a g+b) /(c g+d)$ for some complex numbers a, b, c, d with $a d-b c \neq 0$.

[^0]Theorem B contains partially the result of Nevanlinna ([N1] and [N2]):
Theorem C. Let f and g be two distinct nonconstant meromorphic functions on \boldsymbol{C} and let a_{1}, \ldots, a_{4} be four distinct points in $\overline{\boldsymbol{C}}$. If f and g share each of $a_{1}, \ldots, a_{4} C M$, then f is a Möbius transform of g. Moreover, there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}$ and $a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

After Theorems A and B, the author proved in [S4]
Theorem D. Let S_{1}, S_{2} and S_{3} be pairwise disjoint two-point sets in $\overline{\boldsymbol{C}}$. If three nonconstant meromorphic functions f, g and h on \boldsymbol{C} share each of $S_{1}, S_{2}, S_{3} C M$, then one of f, g and h is a Möbius transform of one of the others.

However, this theorem does not contain the cases where one-point sets and two-point sets are mixed, differing from Theorem B, and so, in this paper we consider two cases: one is the case where three meromorphic functions on \boldsymbol{C} share two one-point sets and one two-point set in $\overline{\boldsymbol{C}} \mathrm{CM}$, and the other is the case where three meromorphic functions on \boldsymbol{C} share one one-point set and two two-point sets in $\overline{\boldsymbol{C}} \mathrm{CM}$. The results are as follows.

Theorem 1.1. Let S_{1} be a two-point set in $\overline{\boldsymbol{C}}$, and let S_{2} and S_{3} be two one-point sets in $\overline{\boldsymbol{C}}$. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three nonconstant meromorphic functions f, g and h on C share each of S_{1}, S_{2}, S_{3} $C M$, then one of f, g and h is a Möbius transform of one of the others.

Theorem 1.2. Let S_{1} and S_{2} be two two-point sets in $\overline{\boldsymbol{C}}$, and let S_{3} be a one-point set in $\overline{\boldsymbol{C}}$. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three nonconstant meromorphic functions f, g and h on C share each of S_{1}, $S_{2}, S_{3} C M$, then one of f, g and h is a Möbius transform of one of the others.

For the proofs of Theorem 1.1 and Theorem 1.2, by considering compositions $T \circ f, T \circ g, T \circ h$ of f, g, h and a suitable Möbius transformation T, it is enough to prove the following theorems in the case where all S_{j} are in C.

Theorem 1.3. Let S_{1} be a two-point set in \boldsymbol{C}, and let S_{2} and S_{3} be two one-point sets in C. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three nonconstant meromorphic functions f, g and h on C share each of S_{1}, S_{2}, S_{3} $C M$, then one of f, g and h is a Möbius transform of one of the others.

Theorem 1.4. Let S_{1} and S_{2} be two two-point sets in C, and let S_{3} be a one-point set in C. Suppose that S_{1}, S_{2}, S_{3} are pairwise disjoint. If three
nonconstant meromorphic functions f, g and h on C share each of S_{1}, S_{2}, S_{3} $C M$, then one of f, g and h is a Möbius transform of one of the others.

2. Preliminaries of proofs

In [S4], the following theorem is the key for the proof of Theorem D.
Theorem 2.1 (Theorem 6 in [S4]). Let $f=f_{1} / f_{0}, g=g_{1} / g_{0}$ and $h=h_{1} / h_{0}$ be nonconstant meromorphic functions on \boldsymbol{C}, where f_{0} and f_{1} are entire functions without common zero and so are g_{0} and g_{1}, and h_{0} and h_{1}. Let $P_{j}(z)=$ $z^{2}+a_{j} z+b_{j}(j=1,2,3)$ be polynomials such that $P_{j}(z)$ and $P_{k}(z)$ have no common zero for distinct j, k. Assume that there exist entire functions α_{j}, β_{j} without zeros such that

$$
\begin{equation*}
\alpha_{j}\left(f_{1}^{2}+a_{j} f_{1} f_{0}+b_{j} f_{0}^{2}\right)=g_{1}^{2}+a_{j} g_{1} g_{0}+b_{j} g_{0}^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{j}\left(f_{1}^{2}+a_{j} f_{1} f_{0}+b_{j} f_{0}^{2}\right)=h_{1}^{2}+a_{j} h_{1} h_{0}+b_{j} h_{0}^{2} \tag{2.2}
\end{equation*}
$$

for $j=1,2,3$. Then at least one of the following occurs: (A) α_{1} / α_{2} and α_{1} / α_{3} are constant; (B) β_{1} / β_{2} and β_{1} / β_{3} are constant; (C) $\left(\alpha_{1} / \beta_{1}\right) /\left(\alpha_{2} / \beta_{2}\right)$ and $\left(\alpha_{1} / \beta_{1}\right) /\left(\alpha_{3} / \beta_{3}\right)$ are constant; (D) α_{j} / α_{k} and β_{j} / β_{k} are constant for some $1 \leq$ $j<k \leq 3$.

Remark. Note that we do not assume that P_{j} has no double zeros in Theorem 2.1, and hence, it is possible to use it for the proof of our theorems.

Also, we use the following results.
Theorem 2.2 ([C2] and pp. 45-46 in [H]). Let f be a nonconstant meromorphic function on \boldsymbol{C} and a_{1}, \ldots, a_{q} distinct complex numbers. If all the zeros of $f-a_{j}$ have multiplicity at least $m_{j}(j=1, \ldots, q)$ and all the poles of f have order at least m_{0}, where $m_{0}, m_{1}, \ldots, m_{q}$ are fixed positive integers, then

$$
\sum_{j=0}^{q}\left(1-\frac{1}{m_{j}}\right) \leq 2 .
$$

For a nonconstant meromorphic function f on \boldsymbol{C}, we call $c \in \boldsymbol{C}$ a completely multiple value of f if all the zeros of $f-c$ have multiplicity at least 2 , and also, ∞ is defined to be a completely multiple value if f has no simple poles. Note that for an exceptional value c of f we can consider that all the zeros of $f-c$ have multiplicity greater than an arbitrarily large positive integer. Therefore, we get

Corollary 2.3. (i) A nonconstant meromorphic function on \boldsymbol{C} has at most four completely multiple values in $\overline{\boldsymbol{C}}$. (ii) A nonconstant meromorphic function on \boldsymbol{C} with one exceptional value has at most two completely multiple values in $\overline{\boldsymbol{C}}$ different from the exceptional value. (iii) A nonconstant meromorphic function on \boldsymbol{C} with two exceptional values has no completely multiple values in $\overline{\boldsymbol{C}}$ different from the exceptional values.

The following lemma is necessary for the proof of Theorem 1.4.
Lemma 2.4. Let $P_{j}(z)=z^{2}+a_{j} z+b_{j}(j=1,2)$ be two quadratic polynomials. Assume that each of them has two distinct zeros and that they have no common zeros. Let ξ_{j}, η_{j} be their zeros. Then for any $\tau \in \underset{\tilde{b}}{\boldsymbol{C}}\left\{\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right\}$, except finite specific values, the polynomials $\tilde{P}_{j}(z)=z^{2}+\tilde{a}_{j} z+\tilde{b}_{j}$ with zeros $\frac{1}{\tilde{\mathcal{A}}_{j}-\tau}$ and $\frac{1}{\eta_{j}-\tau}$ have different determinants, that is, $\tilde{\Delta}_{1} \neq \tilde{\Delta}_{2}$, where $\tilde{\Delta}_{j}:=\tilde{a}_{j}{ }^{2}-4 \tilde{b}_{j}$.

Proof. Put $\Delta_{j}:=a_{j}^{2}-4 b_{j}$. We have

$$
\tilde{a}_{j}=-\left(\frac{1}{\xi_{j}-\tau}+\frac{1}{\eta_{j}-\tau}\right)=\frac{a_{j}+2 \tau}{P_{j}(\tau)}, \quad \tilde{b}_{j}=\frac{1}{\xi_{j}-\tau} \cdot \frac{1}{\eta_{j}-\tau}=\frac{1}{P_{j}(\tau)}
$$

and, hence,

$$
\tilde{\Lambda}_{j}=\frac{\left(a_{j}+2 \tau\right)^{2}-4\left(\tau^{2}+a_{j} \tau+b_{j}\right)}{P_{j}(\tau)^{2}}=\frac{\Delta_{j}}{P_{j}(\tau)^{2}}
$$

So, $\tilde{\Delta}_{1}=\tilde{\Delta}_{2}$ implies that

$$
\begin{aligned}
\Delta_{1} P_{2}(\tau)^{2}-\Delta_{2} P_{1}(\tau)^{2}= & \left(\Delta_{1}-\Delta_{2}\right) \tau^{4}+2\left(a_{2} \Delta_{1}-a_{1} \Delta_{2}\right) \tau^{3} \\
& +\left(a_{2}^{2} \Delta_{1}-a_{1}^{2} \Delta_{2}+2 b_{2} \Delta_{1}-2 b_{1} \Delta_{2}\right) \tau^{2} \\
& +2\left(a_{2} b_{2} \Delta_{1}-a_{1} b_{1} \Delta_{2}\right) \tau+\left(b_{2}^{2} \Delta_{1}-b_{1}^{2} \Delta_{2}\right)
\end{aligned}
$$

is zero. If the conclusion of the lemma does not hold, then the above is a zero polynomial about τ. Then we have $\Delta_{1}=\Delta_{2}, a_{2} \Delta_{1}=a_{2} \Delta_{2}$ and $\left(a_{2}{ }^{2}+2 b_{2}\right) \Delta_{1}=$ $\left(a_{1}^{2}+2 b_{1}\right) \Delta_{2}$. As $\Delta_{1} \neq 0$, we get $a_{1}=a_{2}, b_{1}=b_{2}$, which is a contradiction. This completes the proof.

3. Proof of Theorem $\mathbf{1 . 3}$

Now, we start the proof of Theorem 1.3.
Let

$$
S_{1}=\left\{\xi_{1}, \eta_{1}\right\}=\left\{z ; z^{2}+a_{1} z+b_{1}=0\right\}
$$

and

$$
S_{j}=\left\{\xi_{j}\right\}=\left\{z ; z^{2}+a_{j} z+b_{j}=\left(z-\xi_{j}\right)^{2}=0\right\} \quad(j=2,3)
$$

be pairwise disjoint sets in \boldsymbol{C}, where $a_{1}=-\left(\xi_{1}+\eta_{1}\right), b_{1}=\xi_{1} \eta_{1}$ and $a_{j}=-2 \xi_{j}$, $b_{j}=\xi_{j}^{2}(j=2,3)$, and let f, g, h be nonconstant meromorphic functions on \boldsymbol{C} sharing each S_{j} CM. Then we can take $P_{j}(z)=z^{2}+a_{j} z+b_{j}$ in Theorem 2.1 and there exist some entire functions α_{j} without zeros satisfying (2.1) and (2.2) for $j=1,2,3$, where $f_{0}, f_{1}, g_{0}, g_{1}, h_{0}, h_{1}$ are as in Theorem 2.1. By Theorem 2.1, one of (A), (B), (C) and (D) holds.

First, we consider the case where (A) holds. Then α_{2} / α_{3} is a nonzero constant, and from

$$
\frac{\alpha_{2}}{\alpha_{3}} \cdot \frac{\left(f-\xi_{2}\right)^{2}}{\left(f-\xi_{3}\right)^{2}}=\frac{\left(g-\xi_{2}\right)^{2}}{\left(g-\xi_{3}\right)^{2}}
$$

we have

$$
c \frac{f-\xi_{2}}{f-\xi_{3}}=\frac{g-\xi_{2}}{g-\xi_{3}},
$$

which is the conclusion. Here, c is a nonzero constant such that $c^{2}=\alpha_{2} / \alpha_{3}$.
Similarly, we get the conclusion in each case (B) and (C).
Now, we consider the case (D). If $j=2, k=3$, then the conclusion is obtained in the same way as the above three cases. So, without loss of generality, we may assume that $j=1, k=2$. Then

$$
c \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{2} f+b_{2}}=\frac{g^{2}+a_{1} g+b_{1}}{g^{2}+a_{2} g+b_{2}}
$$

and

$$
c^{\prime} \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{2} f+b_{2}}=\frac{h^{2}+a_{1} h+b_{1}}{h^{2}+a_{2} h+b_{2}}
$$

hold, where $c:=\alpha_{1} / \alpha_{2}, c^{\prime}:=\beta_{1} / \beta_{2}$ are nonzero constants. If $c=1$ or $c^{\prime}=1$ or $c=c^{\prime}$, then we get the conclusion by a simple calculation. Now assume that $c \neq 1, c^{\prime} \neq 1$ and $c \neq c^{\prime}$. Then there is no $z \in \boldsymbol{C}$ such that $f(z)=g(z)=$ $h(z)=\xi_{3}$.

Now, we consider quadratic homogeneous polynomials $Q_{j}\left(w_{0}, w_{1}\right)=$ $w_{1}^{2}+a_{j} w_{1} w_{0}+b_{j} w_{0}^{2}(j=1,2)$. Then

$$
\begin{equation*}
Q_{1}\left(w_{0}, w_{1}\right)-\lambda Q_{2}\left(w_{0}, w_{1}\right)=(1-\lambda) w_{1}^{2}+\left(a_{1}-\lambda a_{2}\right) w_{1} w_{0}+\left(b_{1}-\lambda b_{2}\right) w_{0}^{2} \tag{3.1}
\end{equation*}
$$

has a double zero in the 1-dimensional complex projective space $\boldsymbol{P}^{1}(\boldsymbol{C})$ with the homogeneous coordinate system ($w_{0}: w_{1}$) if and only if

$$
\begin{aligned}
D & :=\left(a_{1}-\lambda a_{2}\right)^{2}-4(1-\lambda)\left(b_{1}-\lambda b_{2}\right)=\Delta_{2} \lambda^{2}-2\left(a_{1} a_{2}-2 b_{1}-2 b_{2}\right) \lambda+\Delta_{1} \\
& =-2\left(a_{1} a_{2}-2 b_{1}-2 b_{2}\right) \lambda+\Delta_{1}=0,
\end{aligned}
$$

where $\Delta_{j}=a_{j}{ }^{2}-4 b_{j}(j=1,2)$ are the discriminants of $P_{j}(z)=0$. By the assumption $\xi_{2} \notin S_{1}$, we see $a_{1} a_{2}-2 b_{1}-2 b_{2}=-2\left(\xi_{2}^{2}+a_{1} \xi_{2}+b_{1}\right) \neq 0$. Hence, the quadratic polynomial (3.1) has a double zero in $\boldsymbol{P}^{1}(\boldsymbol{C})$ if and only if $\lambda=\lambda_{0}:=\frac{\Lambda_{1}}{2\left(a_{1} a_{2}-2 b_{1}-2 b_{2}\right)}(\neq 0)$. By using $\alpha_{2}=\alpha_{1} / c$, we have

$$
\alpha_{1}\left\{Q_{1}\left(f_{0}, f_{1}\right)-\frac{\lambda_{0}}{c} Q_{2}\left(f_{0}, f_{1}\right)\right\}=Q_{1}\left(g_{0}, g_{1}\right)-\lambda_{0} Q_{2}\left(g_{0}, g_{1}\right)
$$

The right-hand side is a square of a linear homogeneous polynomial of g_{0} and g_{1}. If $Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{0}}{c} Q_{2}\left(w_{0}, w_{1}\right)=0$ expresses two distinct points in $\boldsymbol{P}^{1}(\boldsymbol{C})$, then f has two completely multiple values. The same thing holds for $Q_{1}\left(f_{0}, f_{1}\right)-\frac{\lambda_{0}}{c^{\prime}} Q_{2}\left(f_{0}, f_{1}\right)$. Note that $Q_{1}\left(w_{0}, w_{1}\right)-\lambda Q_{2}\left(w_{0}, w_{1}\right)$ and $Q_{1}\left(w_{0}, w_{1}\right)-$ $\mu Q_{2}\left(w_{0}, w_{1}\right)$ have no common zero if $\lambda \neq \mu$. By Corollary 2.3, the number of simple zeros, different from ξ_{3}, of one of two quadratic homogeneous polynomials

$$
Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{0}}{c} Q_{2}\left(w_{0}, w_{1}\right)
$$

and

$$
Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{0}}{c^{\prime}} Q_{2}\left(w_{0}, w_{1}\right)
$$

is at most two. However, it is impossible since $c \neq 1, c^{\prime} \neq 1$ and $c \neq c^{\prime}$. So, we complete the proof.

4. Proof of Theorem 1.4

Now, we give the proof of Theorem 1.4.
Let

$$
S_{j}=\left\{\xi_{j}, \eta_{j}\right\}=\left\{z ; z^{2}+a_{j} z+b_{j}=0\right\} \quad(j=1,2)
$$

and

$$
S_{3}=\left\{\xi_{3}\right\}=\left\{z ; z^{2}+a_{3} z+b_{3}=\left(z-\xi_{3}\right)^{2}=0\right\}
$$

be pairwise disjoint sets in \boldsymbol{C}, where $a_{j}=-\left(\xi_{j}+\eta_{j}\right), b_{j}=\xi_{j} \eta_{j}(j=1,2)$ and $a_{3}=-2 \xi_{3}, b_{3}=\xi_{3}{ }^{2}$, and let f, g, h be nonconstant meromorphic functions on \boldsymbol{C} sharing each S_{j} CM. By Lemma 2.4, we may assume that $\Delta_{1} \neq \Delta_{2}$, where
$\Delta_{j}=a_{j}{ }^{2}-4 b_{j}(j=1,2)$. Then we can take $P_{j}(z)=z^{2}+a_{j} z+b_{j}$ in Theorem 2.1 and there exist some entire functions α_{j} without zeros satisfying (2.1) and (2.2) for $j=1,2,3$, where $f_{0}, f_{1}, g_{0}, g_{1}, h_{0}, h_{1}$ are as in Theorem 2.1. By Theorem 2.1, one of (A), (B), (C) and (D) holds.

First, we consider the case where (A) holds. Then we have

$$
\frac{\alpha_{j}}{\alpha_{3}} \cdot \frac{f^{2}+a_{j} f+b_{j}}{f^{2}+a_{3} f+b_{3}}=\frac{g^{2}+a_{j} g+b_{j}}{g^{2}+a_{3} g+b_{3}} \quad(j=1,2) .
$$

Here, α_{j} / α_{3} are nonzero constants. If $\alpha_{1} / \alpha_{3}=1$ or $\alpha_{2} / \alpha_{3}=1$, then we have the conclusion by a simple calculation. Assume that $\alpha_{j} / \alpha_{3} \neq 1$ for $j=1,2$. Then there exists no $z \in \boldsymbol{C}$ such that $f(z)=g(z) \in \overline{\boldsymbol{C}} \backslash S_{3}$. Hence, by assumption, $f^{-1}\left(\xi_{j}\right)=g^{-1}\left(\eta_{j}\right), f^{-1}\left(\eta_{j}\right)=g^{-1}\left(\xi_{j}\right)(j=1,2)$. Consider the Möbius transformation T such that $T\left(\xi_{j}\right)=\eta_{j}, T\left(\eta_{j}\right)=\xi_{j}(j=1,2)$. Then f and $T \circ g$ share four values $\xi_{1}, \eta_{1}, \xi_{2}$ and $\eta_{2} \mathrm{CM}$, and we get the conclusion by Theorem C. Similarly, we get the conclusion in each case (B) and (C).

Now, we consider the case (D). First consider the case where $j=1$, $k=3$. Then we have

$$
c \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{3} f+b_{3}}=\frac{g^{2}+a_{1} g+b_{1}}{g^{2}+a_{3} g+b_{3}}
$$

and

$$
c^{\prime} \frac{f^{2}+a_{1} f+b_{1}}{f^{2}+a_{3} f+b_{3}}=\frac{h^{2}+a_{1} h+b_{1}}{h^{2}+a_{3} h+b_{3}},
$$

where $c:=\alpha_{1} / \alpha_{3}, \quad c^{\prime}:=\beta_{1} / \beta_{3}$. If $c=1$ or $c^{\prime}=1$ or $c=c^{\prime}$, we can get the conclusion. Otherwise, f, g and h take different values on $f^{-1}\left(S_{2}\right)$, or $f^{-1}\left(S_{2}\right)=\varnothing$. However, the former is impossible since $\sharp S_{2}=2$, and the latter is the case where f, g and h share three one-point sets $\left\{\xi_{2}\right\},\left\{\eta_{2}\right\}$, $\left\{\xi_{3}\right\}$ and one two-point set $S_{1} \mathrm{CM}$, which derives the conclusion by Theorem B.

The case where $j=2, k=3$ is the same as this one.
Finally, we consider the case where $j=1, k=2$. Then

$$
c \frac{P_{1}(f)}{P_{2}(f)}=\frac{P_{1}(g)}{P_{2}(g)}
$$

and

$$
c^{\prime} \frac{P_{1}(f)}{P_{2}(f)}=\frac{P_{1}(h)}{P_{2}(h)}
$$

hold, where $c:=\alpha_{1} / \alpha_{2}, c^{\prime}:=\beta_{1} / \beta_{2}$ are nonzero constants. If $c=1$ or $c^{\prime}=1$ or $c=c^{\prime}$, then we get the conclusion. Now assume that $c \neq 1, c^{\prime} \neq 1$ and $c \neq c^{\prime}$. Then there is no $z \in \boldsymbol{C}$ such that $f(z)=g(z)=h(z)=\xi_{3}$.

Now, we consider quadratic homogeneous polynomials $Q_{j}\left(w_{0}, w_{1}\right)=$ $w_{1}^{2}+a_{j} w_{1} w_{0}+b_{j} w_{0}^{2}(j=1,2)$. Then

$$
Q_{1}\left(w_{0}, w_{1}\right)-\lambda Q_{2}\left(w_{0}, w_{1}\right)=(1-\lambda) w_{1}^{2}+\left(a_{1}-\lambda a_{2}\right) w_{1} w_{0}+\left(b_{1}-\lambda b_{2}\right) w_{0}^{2}
$$

has a double zero in $\boldsymbol{P}^{1}(\boldsymbol{C})$ with the homogeneous coordinate system ($w_{0}: w_{1}$) if and only if $D:=\left(a_{1}-\lambda a_{2}\right)^{2}-4(1-\lambda)\left(b_{1}-\lambda b_{2}\right)=\Delta_{2} \lambda^{2}-2\left(a_{1} a_{2}-2 b_{1}-\right.$ $\left.2 b_{2}\right) \lambda+\Delta_{1}=0$. Since $\quad\left(a_{1} a_{2}-2 b_{1}-2 b_{2}\right)^{2}-\Delta_{1} \Delta_{2}=4 R\left(P_{1}, P_{2}\right) \neq 0$, where $R\left(P_{1}, P_{2}\right)$ is the resultant of P_{1} and P_{2}, there exist two distinct λ, say λ_{1} and λ_{2}, such that $D=0$ for $\lambda=\lambda_{1}, \lambda_{2}$. Trivially, $\lambda_{1}, \lambda_{2} \neq 0$. By using $\alpha_{2}=\alpha_{1} / c$, we have

$$
\alpha_{1}\left\{Q_{1}\left(f_{0}, f_{1}\right)-\frac{\lambda_{j}}{c} Q_{2}\left(f_{0}, f_{1}\right)\right\}=Q_{1}\left(g_{0}, g_{1}\right)-\lambda_{j} Q_{2}\left(g_{0}, g_{1}\right) \quad(j=1,2)
$$

The right-hand side is a square of a linear homogeneous polynomial of g_{0} and g_{1}. If $Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{j}}{c} Q_{2}\left(w_{0}, w_{1}\right)=0$ expresses two distinct points in $\boldsymbol{P}^{1}(\boldsymbol{C})$, then f has two completely multiple values. The same thing holds for $Q_{1}\left(f_{0}, f_{1}\right)-\frac{\lambda_{j}}{c^{\prime}} Q_{2}\left(f_{0}, f_{1}\right)$. Note that $Q_{1}\left(w_{0}, w_{1}\right)-\lambda Q_{2}\left(w_{0}, w_{1}\right)$ and $Q_{1}\left(w_{0}, w_{1}\right)-$ $\mu Q_{2}\left(w_{0}, w_{1}\right)$ have no common zero if $\lambda \neq \mu$. By Corollary 2.3, the number of simple zeros different from ξ_{3} of one of four quadratic homogeneous polynomials

$$
\begin{align*}
& Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{1}}{c} Q_{2}\left(w_{0}, w_{1}\right), \tag{4.1}\\
& Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{1}}{c^{\prime}} Q_{2}\left(w_{0}, w_{1}\right), \tag{4.2}\\
& Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{2}}{c} Q_{2}\left(w_{0}, w_{1}\right), \tag{4.3}\\
& Q_{1}\left(w_{0}, w_{1}\right)-\frac{\lambda_{2}}{c^{\prime}} Q_{2}\left(w_{0}, w_{1}\right) \tag{4.4}
\end{align*}
$$

is at most two. By (4.1) and (4.3), we see that $\lambda_{1} / c=\lambda_{2}$ or $\lambda_{2} / c=\lambda_{1}$ must hold. Without loss of generality, we may assume that $\lambda_{2} / c=\lambda_{1}$. In this case, since $\lambda_{2} / c^{\prime} \neq \lambda_{1}$, (4.4) has only simple zeros. Furthermore, if $\lambda_{1} / c=\lambda_{2}$, then $\lambda_{1} / c^{\prime} \neq \lambda_{2}$, and (4.2) has only simple zeros. If $\lambda_{1} / c \neq \lambda_{2}$, then (4.1) has only simple zeros.

In each case, the number of simple zeros different from ξ_{3} of one of (4.1), (4.2), (4.3) and (4.4) is greater than two, which contradicts Corollary 2.3. Thus, the proof of Theorem 1.4 is completed.

Acknowledgement

The author would like to thank the referee for his or her valuable suggestions.

References

[C1] H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup. 45 (1928), 255-346.
[C2] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica 7 (1933), 5-31.
[H] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[N1] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[N2] R. Nevanlinna, Le théorèm de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
[S1] M. Shirosaki, On meromorphic functions sharing three values and one set, Kodai Math. J., 29 (2006), 475-484.
[S2] M. Shirosaki, On meromorphic functions sharing a one-point set and three two-point sets, Kodai Math. J., 36 (2013), 56-68.
[S3] M. Shirosaki, On meromorphic functions sharing four two one-point sets CM, Kodai Math. J., 36 (2013), 386-395.
[S4] M. Shirosaki, On meromorphic functions sharing three two one-point sets CM, Hiroshima Math. J., 51 (2021), 139-154.
[ST] M. Shirosaki and M. Taketani, On meromorphic functions sharing two one-point sets and two two-point sets, Proc. Japan Acad., Ser. A, 83 (2007), 32-35.

Manabu Shirosaki
Department of Mathematics
Osaka Metropolitan University
Sakai 599-8531 Japan
E-mail: shirosaki@omu.ac.jp

[^0]: 2020 Mathematics Subject Classification. Primary 30D35; Secondary 30D30.
 Key words and phrases. Uniqueness theorem, Sharing sets, Nevanlinna theory.

