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Abstract. In this paper, we are concerned with the existence and uniqueness of a

generalized solution to a double obstacle problem for Musielak-Orlicz Dirichlet energy

integral on metric measure spaces supporting a F-Poincaré inequality, as an extension

of Farnana (Nonlinear Anal. 73 (2010), pp. 2819–2830).

1. Introduction

Shanmugalingam [34] studied the p-Dirichlet energy integral in metric

measure spaces X ¼ ðX ; d; mÞ, and showed the existence of a minimizer in

Newtonian space N 1;pðX Þ which is defined in terms of p-weak upper gradients

of functions in X . For basic properties of N 1;pðXÞ, see [33]. We refer to e.g.

[10, 11, 16, 17, 24, 25, 31, 35] for Sobolev spaces on metric measure spaces.

See Kinnunen-Martio [20] and Mocanu [27] for the single obstacle problem on

Newtonian spaces.

Farnana [6] studied the double obstacle problem for p-Dirichlet energy

integrals in N 1;pðXÞ. The double obstacle problem in RN was studied in [4]

for the case p ¼ 2 and in [19, 22] for the case p > 1. For convergence prop-

erties of the obstacle problem in RN , see e.g. [21, 32]. Farnana [7] studied

continuous dependence on obstacles for the double obstacle problem on metric

measure spaces as an extension of [32], and studied generalized solutions of the

double obstacle problem.

Variable exponent Lebesgue spaces, Musielak-Orlicz spaces and Sobolev

spaces have attracted lots of attention to discuss nonlinear partial di¤erential

equations with non-standard growth conditions. For survey books, see [3, 5,

12]. Acerbi and Mingione [1] studied the existence and the regularity of min-
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imizers of the pð�Þ-Dirichlet energy integral on a bounded domain in RN .

Variable exponent Sobolev spaces with zero boundary values on RN was

studied in [13]. In the past two decades, variable exponent Sobolev spaces

on metric measure spaces have been studied by many researchers, see e.g. [8,

14, 15, 26]. Let W be a measurable set in X . Musielak-Orlicz Newtonian

spaces N 1;FðWÞ on X defined by a function Fðx; tÞ : X � ½0;yÞ ! ½0;yÞ were

introduced in [29]. In [30], Musielak-Orlicz-Sobolev spaces with zero bound-

ary values on X were studied, as an extension of [13, 18]. In [23], the single

obstacle problems for Musielak-Orlicz Dirichlet energy integral on X were

discussed.

In the previous paper [9], we proved the existence and uniqueness of a

solution to the double obstacle problem for a F-Dirichlet energy integral on a

bounded open set in X , as an extension of [6, 13, 23]. In [9], we also showed

the solution u of the double obstacle problem with obstacles c and j can be

obtained as the limit of the solutions uj of the double obstacle problem with

obstacles cj and jj converging to c and j respectively.

In the present paper, based on the idea by Farnana [6], we introduce gen-

eralized solutions of the fc; jg-problem in W for boundary values f B N 1;FðWÞ
or in the case where there is no Newtonian function between the obstacles c

and j with the given boundary values f . We prove the existence and unique-

ness of a generalized solution to the double obstacle problem for a F-Dirichlet

energy integral on a bounded open set in X (Theorem 3.4), as an extension of

[7, Theorem 4.4].

We also prove that generalized solutions u of the fc; jg-problem in W is

locally a solution of the Kc;j;u-obstacle problem in N 1;F and that u A N
1;F
loc ðWÞ

provided the two obstacles c and j are separated by a Newtonian function

(Theorem 3.7), as an extension of [7, Theorem 4.10].

Throughout this paper, let C denote various constants independent of the

variables in question and Cða; b; � � �Þ be a constant that depends on a; b; . . . .

2. Notation and preliminaries

We denote by ðX ; d; mÞ a metric measure space, where X is a set, d is a

metric on X and m is a nonnegative complete Borel regular outer measure on X

which is finite and positive for every open ball in X . For simplicity, we often

write X instead of ðX ; d; mÞ. For x A X and r > 0, we denote by Bðx; rÞ the

open ball centered at x with radius r. We denote by wE the characteristic

function of E � X .

We consider a function

Fðx; tÞ : X � ½0;yÞ ! ½0;yÞ
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satisfying the following conditions ðF1Þ–ðF4Þ:
ðF1Þ Fð�; tÞ is measurable on X for each tb 0 and Fðx; �Þ is continuous

on ½0;yÞ for each x A X ;

ðF2Þ Fðx; 0Þ ¼ 0 and Fðx; �Þ is a convex function on ½0;yÞ for every

x A X ;

ðF3Þ 0 < infx AB Fðx; 1Þa supx AB Fðx; 1Þ < y for every open ball B

in X ;

ðF4Þ there exists a constant Ad b 2 such that

Fðx; 2tÞaAdFðx; tÞ for all x A X and t > 0:

Note from ðF2Þ that Fðx; �Þ is increasing on ½0;yÞ for every x A X .

Further, note that ðF2Þ and ðF4Þ imply

aFðx; tÞaFðx; atÞa Ad

2
a log2 AdFðx; tÞ for ab 1: ð2:1Þ

For an example of Fðx; tÞ satisfying ðF1Þ, ðF2Þ, ðF3Þ and ðF4Þ, see

[23, Example 2.3].

Let W be a measurable set in X . For Fðx; tÞ satisfying ðF1Þ, ðF2Þ, ðF3Þ
and ðF4Þ, the associated Musielak-Orlicz space

LFðWÞ ¼
�
f : f is a measurable function on W such that

ð
W

Fðy; j f ðyÞjÞdmðyÞ < y

�

is a Banach space with respect to the norm

k f kLFðWÞ ¼ inf l > 0;

ð
W

Fðy; j f ðyÞj=lÞdmðyÞa 1

� �

if we identify functions which are equal m-a.e. (cf. [28]).

For a function u : W ! ½�y;y�, a nonnegative measurable function h

on W is said to be a F-weak upper gradient of u in W if

juðgð0ÞÞ � uðgðlgÞÞja
ð
g

h ds ð2:2Þ

holds for MF-a.e. g A GðWÞ, where GðWÞ is the family of all rectifiable curves

g : ½0; lg� ! W parameterized by arc length ds. Here, by saying that (2.2) holds,

we understand that
Ð
g
h ds is well-defined and

Ð
g
h ds ¼ y in case juðgð0ÞÞj ¼ y

or juðgðlgÞÞj ¼ y (cf. [2]). See [23] for the notion ‘‘MF-a.e.’’.
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The Musielak-Orlicz Newtonian space N 1;FðWÞ is defined to be the family

of all u A LFðWÞ having a F-weak upper gradient h A LFðWÞ in W. For u A
N 1;FðWÞ we define

kukN 1;FðWÞ ¼ kukLFðWÞ þ inf
h
khkLFðWÞ;

where the infimum is taken over all F-weak upper gradients h of u in W.

We say that hu A LFðWÞ is a minimal F-weak upper gradient of u A
N 1;FðWÞ in W if hu is a F-weak upper gradient of u in W and hu a h m-a.e. in W

for all F-weak upper gradients h A LFðWÞ of u in W. Note from [23, Lemma

3.6] that for u A N 1;FðWÞ, there exists a minimal F-weak upper gradient hu of

u in W and hu is unique up to sets of measure zero.

For u A N 1;FðWÞ, we set

r̂rF;WðuÞ ¼
ð
W

Fðy; juðyÞjÞdmðyÞ þ inf
h

ð
W

Fðy; hðyÞÞdmðyÞ

where the infimum is taken over all F-weak upper gradients h of u in W.

For E � W, we denote

sFðE;WÞ ¼ fu A N 1;FðWÞ : ub 1 on Eg

and define the F-capacity with respect to W by

cFðE;WÞ ¼ inf
u A sFðE;WÞ

r̂rF;WðuÞ:

In case sFðE;WÞ ¼ q, we set cFðE;WÞ ¼ y. If X ¼ W, we denote sFðE;WÞ
and cFðE;WÞ by sFðEÞ and cFðEÞ respectively.

Note that cFð�;WÞ is an outer measure; in particular, it is countably

subadditive (see [29, Proposition 4.5]). For E � W, cFðE;WÞa cFðEÞ. See

[23, Remark 4.2].

For a set E � W, we say that a property holds cFð�;WÞ-q.e. in E, if it

holds on E except of a set F � E with cFðF ;WÞ ¼ 0, where q.e. stands for

quasi-everywhere.

If u; v A N 1;FðWÞ and u ¼ v m-a.e. in W, then u ¼ v cFð�;WÞ-q.e. in W.

Moreover, if W is an open set in X , then u ¼ v cF-q.e. in W. See [23, Lemma

4.5].

We say that a function u is cF-quasicontinuous on E if, for any e > 0,

there is an open set G such that cFðGÞ < e and ujEnG is continuous.

Remark 2.1. If X is proper and continuous functions in X are dense in

N 1;FðXÞ, then every u A N 1;F
loc ðWÞ is cF-quasicontinuous in an open set W and cF

is an outer capacity. The proof can be carried out along the lines in the proof of

[2, Theorems 5.29 and 5.31].
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For E � X , we define

N
1;F
0 ðEÞ ¼ f f jE : f A N 1;FðX Þ and f ¼ 0 in XnEg:

By [23, Lemma 4.4], we have

N
1;F
0 ðEÞ ¼ f f jE : f A N 1;FðXÞ and f ¼ 0 cF-q:e: in XnEg:

See also [23, Lemma 5.1].

We say that X supports a F-Poincaré inequality if, for every open ball B

in X , there exist constants CPðBÞ > 0 and lb 1 such that

ku� uBkLFðBÞ aCPðBÞkhkLFðlBÞ

holds whenever h is a F-weak upper gradient of u on lB and u is integrable

on B, where uB ¼
Ð
B
u dm is the mean-value of u on B. For an example, see

[9, Example 2.6].

From now on, we assume that W is a bounded open set with cFðXnWÞ > 0.

For f A N 1;FðWÞ and c; j : W ! ½�y;y�, we define

Kc;j; f ðWÞ ¼ fu A N 1;FðWÞ : u� f A N 1;F
0 ðWÞ and ca ua j cF-q:e: in Wg:

A function u A Kc;j; f ðWÞ is called a solution of the Kc;j; f ðWÞ-obstacle problem

in N 1;FðWÞ if ð
W

Fðx; huðxÞÞdmðxÞa
ð
W

Fðx; hvðxÞÞdmðxÞ

for all v A Kc;j; f ðWÞ.
We shall need the following result from [9, Theorem 3.1], which is a

generalization of [6, 23].

Theorem 2.2. Assume that LFðWÞ is reflexive and X supports a

F-Poincaré inequality. Let f A N 1;FðWÞ and c; j : W ! ½�y;y�. If

Kc;j; f ðWÞ0q, then there exists a solution of the Kc;j; f ðWÞ-obstacle problem

in N 1;FðWÞ.
Further, if Fðx; �Þ is strictly convex for m-a.e. x A W, then the solution of the

Kc;j; f ðWÞ-obstacle problem in N 1;FðWÞ is unique (up to sets of cF-capacity zero).

From now on we assume that LFðWÞ is reflexive, X supports a F-Poincaré

inequality and Fðx; �Þ is strictly convex for m-a.e. x A W.

We need the following comparison principle from [9, Lemma 3.3].

Lemma 2.3. Let f ; f 0 A N 1;FðWÞ and c;c 0; j; j 0 : W ! ½�y;y�. Assume

that cac 0 and ja j 0 cF-q.e. in W and that ð f � f 0Þþ A N 1;F
0 ðWÞ. Let u be

a solution of the Kc;j; f ðWÞ-obstacle problem in N 1;FðWÞ and u 0 be a solution of

the Kc 0;j 0; f 0 ðWÞ-obstacle problem in N 1;FðWÞ. Then ua u 0 cF-q.e. in W.
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The following lemma is from [9, Lemma 5.1].

Lemma 2.4. Suppose fujg is a bounded sequence in N 1;FðWÞ and uj ! u

cF-q.e. in W. Then u A N 1;FðWÞ andð
W

Fðx; huðxÞÞdmðxÞa lim inf
j!y

ð
W

Fðx; huj ðxÞÞdmðxÞ: ð2:3Þ

3. Generalized solutions

In this section, we assume that X is proper and continuous functions in X

are dense in N 1;FðX Þ. We say that wj ! w cF-q.e. uniformly in W if there

exists a set E � W such that cFðEÞ ¼ 0 and wj ! w uniformly in WnE.
We say that u is a generalized solution of the fc; jg-problem in W if there

exist three sequences of functions fcjg
y
j¼1, fjjg

y
j¼1 and fujgyj¼1 such that c, j

and u are the cF-q.e. uniform limits in W of cj , jj and uj respectively, and for

every j A N the function uj is a solution of the Kcj ;jj ;uj ðWÞ-obstacle problem in

N 1;FðWÞ.
It is clear that if u is a generalized solution of the fc; jg-problem in W,

then u is cF-quasicontinuous in W by Remark 2.1, ca ua j cF-q.e. in W and

u is a generalized solution of the fc; jg-problem in W 0 for every W 0 �� W by

[9, Lemma 4.6].

The following lemma is needed.

Lemma 3.1 (cf. [7, Lemma 4.2]). Let fj; f A N 1;FðWÞ and cj; jj;c; j : W !
½�y;y�, j ¼ 1; 2; . . . , be such that fj ! f , cj ! c and jj ! j cF-q.e. uni-

formly in W. Let also uj be a solution of the Kcj ;jj ; fj ðWÞ-obstacle problem in

N 1;FðWÞ, j ¼ 1; 2; . . . , and u be a solution of the Kc;j; f ðWÞ-obstacle problem in

N 1;FðWÞ. Then uj ! u cF-q.e. uniformly in W.

Proof. Let e > 0. Then there exist a set E � W and a number j0 A N

such that cFðEÞ ¼ 0 and c� eacj acþ e, j� ea jj a jþ e, f � ea fj a

f þ e on WnE for every jb j0. Since uþ e is a solution of the Kcþe;jþe; fþeðWÞ-
obstacle problem in N 1;FðWÞ and u� e is a solution of the Kc�e;j�e; f�eðWÞ-
obstacle problem in N 1;FðWÞ, Lemma 2.3 shows that u� ea uj a uþ e cF-q.e.

in W. Thus uj ! u cF-q.e. uniformly in W. r

Lemma 3.2 (cf. [2, Theorem 2.36]). The space N 1;F
0 ðWÞ is a closed sub-

space of N 1;FðWÞ.

Proof. Let uj A N 1;F
0 ðWÞ for each j A N and u A N 1;FðWÞ such that

uj ! u in N 1;FðWÞ. Then uj ! v in N 1;FðX Þ for some v A N 1;FðX Þ with

v ¼ u cF-q.e. in W as we can consider uj to be identically zero outside W. Since
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there exists a subsequence of fujgyj¼1 which converges to v pointwise cF-q.e. in

X , v ¼ 0 cF-q.e. in XnW, so that, u A N
1;F
0 ðWÞ. r

Lemma 3.3 (cf. [7, Lemma 4.3]). Let u A N 1;FðWÞ. Assume that there

exists a cF-quasicontinuous function f : W ! ½�y;y� such that ua f cF-q.e. in

W and f ¼ 0 cF-q.e. on qW. Then uþ ¼ maxfu; 0g A N
1;F
0 ðWÞ.

Proof. By replacing u and f by uþ and fþ respectively if necessary

we may assume that ub 0 and f b 0. Assume that 0a ua f a 1 cF-q.e. in

W. Since f is cF-quasicontinuous in W, for every j A N there exists an open

set Gj such that f j
WnGj

is continuous and cFðGjÞ < 1=2 j . By the definition of

capacity we can find a decreasing sequence of nonnegative functions fhjg
y
j¼1

such that r̂rF;X ðhjÞ < 1=2 j�2 and hj b 1 in Gj. Since hj ! 0 in N 1;FðXÞ, replac-
ing fhjg

y
j¼1 by a subsequence if necessary, we may assume that hj ! 0 cF-q.e.

in X . Let

uj ¼ maxfu� 1=j � hj; 0g:

Then uj A N 1;FðWÞ for each j A N. Note that, as f ¼ 0 cF-q.e. on qW, we

may assume that f ðxÞ ¼ 0 for every x A qWnGj. Then, for every j A N, the

set

Fj ¼ fx A W : f ðxÞb 1=jgnGj

is compact and contained in W.

Next we show that uj A N
1;F
0 ðWÞ. To this end note first that

WnFj ¼ fx A W : f ðxÞ < 1=jg [ ðGj \WÞ:

Then for cF-q.e. x A fx A W : f ðxÞ < 1=jg we have uðxÞa f ðxÞ < 1=j. Thus

uðxÞ � 1=j � hjðxÞ < �hjðxÞa 0

and hence ujðxÞ ¼ 0. If cF-q.e. x A Gj \W then we get that

uðxÞa 1a hjðxÞa hjðxÞ þ 1=j

which implies that ujðxÞ ¼ 0. Then we conclude that uj ¼ 0 cF-q.e. on WnFj

and hence uj A N
1;F
0 ðWÞ. We will show below that uj ! u in N 1;FðWÞ which

shows that u A N
1;F
0 ðWÞ by Lemma 3.2.

To show that uj ! u in N 1;FðWÞ, let

Aj ¼ fx A W : 0 < uðxÞ < hjðxÞ þ 1=jg

and

Bj ¼ fx A W : uðxÞb hjðxÞ þ 1=jg:
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Then we have

uj � u ¼
�u in Aj;

0 in fx A W : uðxÞ ¼ 0g;
�1=j � hj in Bj:

8<
:

Since there is a set E � W such that cFðEÞ ¼ 0 and hj ! 0 in WnE we get

that
Ty

j¼1 AjnE ¼ q and mðAjÞ ! 0 as j ! y. The dominated convergence

theorem and the fact that hj ! 0 in N 1;FðWÞ imply thatð
W

Fðx; ujðxÞ � uðxÞÞdmðxÞ

¼
ð
Aj

Fðx; uðxÞÞdmðxÞ þ
ð
Bj

Fðx; hjðxÞ þ 1=jÞdmðxÞ

a

ð
Aj

Fðx; uðxÞÞdmðxÞ þ Ad

ð
W

Fðx; hjðxÞÞdmðxÞ þ
1

j

ð
W

Fðx; 1ÞdmðxÞ
� �

! 0

as j ! y by ðF4Þ and ðF3Þ andð
W

Fðx; huj�uðxÞÞdmðxÞ

¼
ð
Aj

Fðx; huðxÞÞdmðxÞ þ
ð
Bj

Fðx; hhj ðxÞÞdmðxÞ ! 0

as j ! y. Thus uj ! u in N 1;FðWÞ and hence u A N
1;F
0 ðWÞ.

Finally if f is unbounded, then for every k A N we have 0aminfu; kga
minf f ; kg and the above argument shows that minfu; kg A N

1;F
0 ðWÞ for all

k A N. As minfu; kg ! u in N 1;FðWÞ we get that u A N 1;F
0 ðWÞ. r

We shall show an existence and uniqueness result for generalized solutions

of the double obstacle problem, which is a generalization of [7, Theorem 4.4].

Theorem 3.4. Let c; j : W ! ½�y;y� be such that ca j cF-q.e. in W

and f : W ! ½�y;y� be a cF-quasicontinuous function on W such that ca f a

j cF-q.e. in W. Assume that there exist fj A N 1;FðWÞ such that fj is a cF-

quasicontinuous function on W and fj ! f cF-q.e. uniformly in W. Then there

exists a unique up to sets of cF-capacity zero, cF-quasicontinuous function

u : W ! ½�y;y� that is a generalized solution of the fc; jg-problem in W and

is such that u ¼ f cF-q.e. on qW.

Remark 3.5. Let f A N 1;FðWÞ be a cF-quasicontinuous function on W and

let u be a solution of the Kc;j; f ðWÞ-obstacle problem in N 1;FðWÞ. Let u ¼ f

366 Toshihide Futamura and Tetsu Shimomura



on qW. Then u A N 1;FðWÞ and u is a cF-quasicontinuous function on W by

Remark 2.1.

Proof of Theorem 3.4. Since fj ! f cF-q.e. uniformly in W, there exists

an increasing sequence fkjgyj¼1 such that j fkj � f j < 2�3�j cF-q.e. in W. Let
~ffj ¼ fkj þ 2�1�j. Then we see that ~ffj A N 1;FðWÞ, ~ffj decreases cF-q.e. uniformly

to f in W and 0a ~ffj � f a 2�j cF-q.e. in W. Hence we may assume without

loss of generality that fj decreases cF-q.e. uniformly to f in W and 0a fj � f a

2�j cF-q.e. in W. It follows that

ca f a fj a f þ 2�j
a jþ 2�j cF-q:e: in W:

Since fj A Kc;jþ2�j ; fj ðWÞ, there exists a solution uj of the Kc;jþ2�j ; fj ðWÞ-
obstacle problem in N 1;FðWÞ by Theorem 2.2. Let uj ¼ fj on qW. Then

uj is cF-quasicontinuous on W by Remark 3.5. Fix k A N. Since jþ 2�j a

jþ 2�k and fj a fk cF-q.e. in W for all jb k, Lemma 2.3 implies that for

all jb k

uj a uk cF-q:e: in W: ð3:1Þ

Further, we see that uj þ 2�k is a solution of the Kcþ2�k ;jþ2�jþ2�k ; fjþ2�k ðWÞ-
obstacle problem in N 1;FðWÞ and fk a f þ 2�k a fj þ 2�k cF-q.e. in W.

Lemma 2.3 again implies that for all jb k

uk a uj þ 2�k cF-q:e: in W: ð3:2Þ

Together with uj ¼ fj a fk ¼ uk a f þ 2�k a fj þ 2�k ¼ uj þ 2�k cF-q.e. in qW

for all jb k, (3.1) and (3.2) imply that for all jb k

uj a uk a uj þ 2�k cF-q:e: in W: ð3:3Þ

It follows from (3.3) that u1 b u2 b � � � cF-q.e. in W. Let uðxÞ ¼ limj!y ujðxÞ
for cF-q.e. x A W and define u arbitrarily elsewhere. Then letting j ! y
in (3.3), we get that ua uk a uþ 2�k cF-q.e. in W. This shows that uk ! u

cF-q.e. uniformly in W and u is cF-quasicontinuous on W.

We next prove the uniqueness. Assume that u1 and u2 are generalized

solutions of the fc; jg-problem in W such that u1, u2 are cF-quasicontinuous

on W and u1 ¼ u2 ¼ f cF-q.e. on qW. By definition there exist six sequences

fc1; jg
y
j¼1, fj1; jg

y
j¼1, fu1; jg

y
j¼1, fc2; jg

y
j¼1, fj2; jg

y
j¼1 and fu2; jgyj¼1 such that u1; j is

a solution of the Kc1; j ;j1; j ;u1; j ðWÞ-obstacle problem in N 1;FðWÞ, u2; j is a solution

of the Kc2; j ;j2; j ;u2; j ðWÞ-obstacle problem in N 1;FðWÞ, and c1; j ! c, j1; j ! j,

u1; j ! u1, c2; j ! c, j2; j ! j and u2; j ! u2 cF-q.e. uniformly in W. We may

assume without loss of generality that jc1; j � c2; jja 2�j, jj1; j � j2; jja 2�j ,
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ju1; j � u1ja 2�j and ju2; j � u2ja 2�j cF-q.e. in W. It follows that

u2; j � u1; j � 21�j
a ju2; j � u2j þ ju2 � u1j þ ju1 � u1; jj � 21�j

a ju2 � u1j

cF-q.e. in W. As ju2 � u1j is cF-quasicontinuous on W and ju2 � u1j ¼ 0 cF-q.e.

on qW, Lemma 3.3 shows that ðu2; j � u1; j � 21�jÞþ A N
1;F
0 ðWÞ. Further, we see

that u1; j þ 21�j is a solution of the Kc1; jþ21� j ;j1; jþ21� j ;u1; jþ21� j ðWÞ-obstacle prob-

lem in N 1;FðWÞ, c2; j ac1; j þ 21�j and j2; j a j1; j þ 21�j cF-q.e. in W. Hence

we obtain by Lemma 2.3

u2; j a u1; j þ 21�j

cF-q.e. in W. Letting j ! y we get u2 a u1 cF-q.e. in W. Similarly we get

u1 a u2 cF-q.e. in W, and hence u1 ¼ u2 cF-q.e. in W. r

Lemma 3.6 (cf. [7, Remark 4.7]). Let u be a generalized solution of the

fc; jg-problem in W. For every open set W 0 �� W, there exists a sequence

fujgyj¼1 such that uj A N 1;FðW 0Þ is a solution of the Kc;jþ2�j ;uj ðW 0Þ-obstacle
problem in N 1;FðW 0Þ and uj decreases to u cF-q.e. uniformly in W 0.

Proof. By definition there exist three sequences of functions fcjg
y
j¼1,

fjjg
y
j¼1 and f~uujgyj¼1 such that c, j and u are the cF-q.e. uniform limits in

W of cj , jj and ~uuj respectively, and for every j A N the function ~uuj is a solu-

tion of the Kcj ;jj ; ~uuj ðWÞ-obstacle problem in N 1;FðWÞ. By [9, Lemma 4.6], ~uuj A
N 1;FðW 0Þ is a solution of the Kcj ;jj ; ~uuj ðW

0Þ-obstacle problem in N 1;FðW 0Þ for

every open set W 0 �� W. Then the proof of Theorem 3.4 with W ¼ W 0, fj ¼ ~uuj
and f ¼ u implies that there exist a solution uj of the Kc;jþ2�j ;uj ðW 0Þ-obstacle
problem in N 1;FðW 0Þ, j ¼ 1; 2; . . . , and a generalized solution v of the fc; jg-
problem in W 0 such that uj decreases to v cF-q.e. uniformly in W 0 and v ¼ u

cF-q.e. on qW 0. Since u is a generalized solution of the fc; jg-problem in W 0,

we have v ¼ u cF-q.e. in W 0 by uniqueness of Theorem 3.4. r

We shall show that if the two obstacles are separated by a Newtonian

function then, locally, the generalized solution is the solution by Theorem 2.2.

Theorem 3.7. Let c; j : W ! ½�y;y� be two functions such that there

exists v A N 1;F
loc ðWÞ with ca va j cF-q.e. in W. Let u be a generalized solu-

tion of the fc; jg-problem in W. Then u A N
1;F
loc ðWÞ and u is a solution of the

Kc;j;uðW 0Þ-obstacle problem in N 1;FðW 0Þ for all W 0 �� W.

Proof. For W 0 �� W, Lemma 3.6 implies that there exists a sequence

fujgyj¼1 such that uj A N 1;FðW 0Þ is a solution of the Kc;jþ2�j ;uj ðW 0Þ-obstacle
problem in N 1;FðW 0Þ and uj decreases to u cF-q.e. uniformly in W 0. As W 0 is

bounded we have uj ! u in LFðW 0Þ and hence fujgyj¼1 is bounded in LFðW 0Þ.
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If we can show that fhujg
y
j¼1 is bounded in LFðBÞ for all balls B �� W then

Lemma 2.4 implies that u A N
1;F
loc ðWÞ.

To this end, let B ¼ Bðx0;RÞ �� B 0 ¼ Bðx0;R 0Þ � W 0 such that R 0 a 1.

Let next 0 < r1 < r2 aR 0, Bj ¼ Bðx0; rjÞ, j ¼ 1; 2, and

hðxÞ ¼ min
r2 � dðx0; xÞ

r2 � r1
; 1

� �
þ
A N

1;F
0 ðB2Þ:

Note that wB1
a ha 1 and

hh a
1

r2 � r1
wB2nB1

:

Set vj ¼ hvþ ð1� hÞuj ¼ uj þ hðv� ujÞ A N 1;FðB 0Þ. By [2, Lemma 2.18], we

have that

hvj a ð1� hÞhuj þ hhv þ jv� ujjhh

m-a.e. in B 0. Further, since ca va j and ca uj a jþ 2�j, we have ca vj a

jþ 2�j. This together with the fact that vj ¼ uj on qB2 implies that vj A
Kc;jþ2�j ;uj ðB2Þ. Using the fact that uj is a solution of the Kc;jþ2�j ;uj ðB2Þ-
obstacle problem in N 1;FðB2Þ and ðF4Þ, we have that

ð
B1

Fðx; huj ðxÞÞdmðxÞ

a

ð
B2

Fðx; huj ðxÞÞdmðxÞ

a

ð
B2

Fðx; hvj ðxÞÞdmðxÞ

aA2
d

�ð
B2

Fðx; ð1� hðxÞÞhuj ðxÞÞdmðxÞ þ
ð
B2

Fðx; jvðxÞ � ujðxÞjhhðxÞÞdmðxÞ

þ
ð
B2

Fðx; hðxÞhvðxÞÞdmðxÞ
�

aA2
d

 ð
B2nB1

Fðx; huj ðxÞÞdmðxÞ þ
ð
B2

Fðx; jvðxÞ � ujðxÞj=ðr2 � r1ÞÞdmðxÞ

þ
ð
B2

Fðx; hvðxÞÞdmðxÞ
!
:

Hence, by (2.1) and the fact that fujgyj¼1 is bounded in LFðW 0Þ
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ð
B1

Fðx; huj ðxÞÞdmðxÞ

aA2
d

 ð
B2nB1

Fðx; huj ðxÞÞdmðxÞ

þ Ad

2ðr2 � r1Þ log2 Ad

ð
W 0

Fðx; jvðxÞ � ujðxÞjÞdmðxÞ

þ
ð
W 0

Fðx; hvðxÞÞdmðxÞ
!

aA2
d

ð
B2nB1

Fðx; huj ðxÞÞdmðxÞ þ
C1

ðr2 � r1Þ log2 Ad
þ C2

 !
:

Adding A2
d times the left-hand side to both sides we obtain

ð1þ A2
dÞ
ð
B1

Fðx; huj ðxÞÞdmðxÞ

aA2
d

ð
B2

Fðx; huj ðxÞÞdmðxÞ þ
C1

ðr2 � r1Þ log2 Ad
þ C2

 !
:

After dividing by 1þ A2
d we get, with y ¼ A2

d=ð1þ A2
dÞ < 1, thatð

B1

Fðx; huj ðxÞÞdmðxÞa y

ð
B2

Fðx; huj ðxÞÞdmðxÞ þ
C1y

ðr2 � r1Þ log2 Ad
þ C2y:

Applying [2, Lemma 7.18] we obtain thatð
B1

Fðx; huj ðxÞÞdmðxÞaC
C1y

ðr2 � r1Þ log2 Ad
þ C2y

 !

for 0 < r1 < r2 aR 0. By choosing r1 ¼ R and r2 ¼ R 0 we see that fhujg
y
j¼1 is

bounded in LFðBÞ. By Lemma 2.4, u A N 1;FðBÞ, and hence u A N 1;F
loc ðWÞ.

Since u A Kc;j;uðW 0Þ, there exists a solution ~uu of the Kc;j;uðW 0Þ-obstacle
problem in N 1;FðW 0Þ by Theorem 2.2. Further, by Lemma 3.1, we have

uj ! ~uu cF-q.e. uniformly in W 0, and hence ~uu ¼ u cF-q.e. in W 0 and u is a

solution of the Kc;j;uðW 0Þ-obstacle problem in N 1;FðW 0Þ. r
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no. 688, xþ101 pp.
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