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Abstract. Fairness and centredness of ideals in commutative rings, i.e., the relations

between assassins and weak assassins of a module, its small or large torsion submodule,

and the corresponding quotients, are studied. General criteria as well as more specific

results about idempotent or nil ideals are given, and several examples are presented.

Introduction

Let R be a ring1, and let a � R be an ideal. For an R-module M we

consider its small a-torsion submodule

GaðMÞ ¼ fx A M j bn A N : an � ð0 :R xÞg

and its large a-torsion submodule

GaðMÞ ¼ fx A M j a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0 :R xÞ

p
g:

This gives rise to subfunctors Ga ,! Ga ,! IdModðRÞ. If R is noetherian, the

two torsion functors coincide, but they need not do so in general. For an

R-module M we consider its assassin

AssRðMÞ ¼ fp A SpecðRÞ j bx A M : p ¼ ð0 :R xÞg

and its weak assassin

AssfRðMÞ ¼ fp A SpecðRÞ j bx A M : p A minð0 :R xÞg;

where minðaÞ denotes the set of minimal primes of an ideal a � R. So, we get

subsets AssRðMÞ � AssfRðMÞ � SpecðRÞ. If R is noetherian, the two subsets

of SpecðRÞ coincide, but they need not do so in general. In [6], the functors

Ga and Ga were investigated extensively. In [5], the relations between assassins
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1Throughout what follows, rings are understood to possess a unit element, not necessarily

di¤erent from 0, and to be commutative. In general, notation and terminology follow Bourbaki’s

Éléments de mathématique.



and weak assassins of GaðMÞ, M and M=GaðMÞ were studied. The goal of this

work is on one hand to extend the results from [5], and on the other hand to

study their analogues for large torsion functors.

Torsion functors, and especially their right derived cohomological functors

(i.e., local cohomology), are useful tools in commutative algebra and algebraic

geometry. If the ring R is noetherian, then they behave rather nicely (cf.

[3] for a comprehensive treatment from an algebraic point of view). Several

approaches to an extension of this theory to non-noetherian rings can be found

in the literature. However, in general torsion functors quickly start to behave

nastily; we refer the reader to [1], [4] and [7] for some examples.

In this article, we consider the following properties of an ideal a:

(1) a is fair, i.e., AssRðM=GaðMÞÞ ¼ AssRðMÞnVarðaÞ for any M;

(1) a is large fair, i.e., AssRðM=GaðMÞÞ ¼ AssRðMÞnVarðaÞ for any M;

(2) a is weakly fair, i.e., AssfRðM=GaðMÞÞ ¼ AssfRðMÞnVarðaÞ for any M;

(2) a is weakly large fair, i.e., AssfRðM=GaðMÞÞ ¼ AssfRðMÞnVarðaÞ for any M;

(3) a is weakly quasifair, i.e., AssfRðGaðMÞÞ ¼ AssfRðMÞ \ VarðaÞ for any M;

(3) a is weakly large quasifair, i.e., AssfRðGaðMÞÞ ¼ AssfRðMÞ \ VarðaÞ for

any M;

(4) a is half-centred, i.e., AssfRðMÞ \ VarðaÞ ¼ q for any M with GaðMÞ ¼ 0;

(5) a is centred, i.e., GaðMÞ ¼ M for any M with AssfRðMÞ � VarðaÞ.
If R is noetherian, all these statements hold, but none of them need hold

in general. We are interested in conditions on a under which some of these

properties hold, as well as in relations among these properties. In [6, 4.5] it

was shown for example that (4) holds if and only if Ga ¼ Ga.

We will see that the ‘‘large version’’ of (4) holds always and that the ‘‘large

version’’ of (5) is equivalent to (3). We will also see that (2) ) (3) ) (5) )
(3) ( (2). A further result will be the equivalence of (3), (4) and (5) providedffiffiffi
a

p
is maximal and Ga is a radical. Moreover, we will have a look at how the

above properties behave when we manipulate a, e.g., by taking its radical, or

by adding to it a further ideal with some of these properties.

After some rather general results and criteria in Section 2, we will have a

closer look at two special classes of ideals, namely idempotent ideals (Section 3)

and nil ideals (Section 4). Torsion functors with respect to such ideals behave

not too bad. We will be able to show, for example, that idempotent ideals

fulfil (1); as an application it will follow that any ideal in an absolutely flat ring

has all of the above properties. The case of nil ideals is more complicated,

but we will show that for the maximal ideal of a 0-dimensional local ring there

are at most five possibilities concerning fairness and centredness properties.

(Unfortunately, for one of these five classes the author was not able to decide

whether or not it is empty.) Finally, we will have a brief look at the behaviour

of the above properties under localisation in Section 5.
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Notation. We denote by SpecðRÞ the spectrum of R, by MaxðRÞ the set

of maximal ideals of R, by MinðRÞ the set of minimal prime ideals of R, and

by ModðRÞ the category of R-modules. For a set I we denote by R½ðXiÞi A I � the
polynomial algebra over R in the indeterminates ðXiÞi A I . We denote by VarðaÞ
the variety of a, by minðaÞ the set of minimal elements of VarðaÞ, and by

maxðaÞ the set of maximal element of VarðaÞ. For an R-module M we denote

by SuppRðMÞ the support of M.

1. Preliminaries

We collect basic facts about torsion functors, assassins, and weak assassins.

For details we refer the reader to [6], [2, Chapter IV] (especially Exercice

IV.1.17) and [8, 00L9, 0546].

(1.1) Setting

GaðMÞ :¼ fx A M j bn A N : an � ð0 :R xÞg

and

GaðMÞ :¼ fx A M j a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0 :R xÞ

p
g

for every R-module M yields subfunctors

Ga ,! Ga ,! IdModðRÞ

([6, 3.2]). The functors Ga and Ga are called the small a-torsion functor and the

large a-torsion functor; they need not be equal ([6, Section 4]).

(1.2) A) Both functors Ga and Ga are left exact, hence for an R-module

M and a sub-R-module N � M we have N \ GaðMÞ ¼ GaðNÞ and N \ GaðMÞ
¼ GaðNÞ ([6, 9.1 A), 9.2]).

B) We have Ga ¼ IdModðRÞ if and only if a is nilpotent, and Ga ¼ IdModðRÞ
if and only if a is nil. Moreover, Ga ¼ 0 if and only if Ga ¼ 0 if and only if

a ¼ R ([6, 3.6]).

C) If b � R is an ideal with a � b, then Gb and Gb are subfunctors of

Ga and Ga, respectively. Moreover, if b � R is an arbitrary ideal, then Ga ¼ Gb

if and only if
ffiffiffi
a

p
¼

ffiffiffi
b

p
. Furthermore, if n A N�, then Ga ¼ Ga n and Ga ¼ Ga n

([6, 3.4, 3.5]).

D) If b � R is an ideal, then Gaþb ¼ Ga � Gb and Gaþb ¼ Ga � Gb ([6,

3.3 D)]).

E) The functor Ga is a radical, i.e., GaðM=GaðMÞÞ ¼ 0 for every

R-module M. If R is noetherian or a is idempotent, then Ga is a radical;

it need not be so in general, but it may be so even if Ga 0Ga ([6, Section 5]).
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F) If p A SpecðRÞnVarðaÞ, then GaðR=pÞ ¼ GaðR=pÞ ¼ 0. If b � R is an

ideal with a � b, then GaðR=bÞ ¼ GaðR=bÞ ¼ R=b. If M is an R-module, then

SuppRðGaðMÞÞ � SuppRðGaðMÞÞ � VarðaÞ.
G) If R ! S is a morphism of rings, then Gað�0RÞ ¼ GaSð�Þ0R and

Gað�0RÞ ¼ GaSð�Þ0R as functors from ModðSÞ to ModðRÞ ([6, 3.7 A)]).

(1.3) An R-module M is said to be of bounded small a-torsion if there

exists n A N with anGaðMÞ ¼ 0, and of bounded large a-torsion if there exists

n A N with anGaðMÞ ¼ 0. If M is of bounded large a-torsion, then GaðMÞ ¼
GaðMÞ. If a is idempotent, then every R-module is of bounded small a-torsion

([6, 7.4 A), 7.5 a)]).

(1.4) Let M be an R-module. A prime ideal p � R is said to be asso-

ciated to M if there exists x A M with p ¼ ð0 :R xÞ, and weakly associated to

M if there exists x A M with p A minð0 :R xÞ. The sets AssRðMÞ and AssfRðMÞ
of associated and weakly associated primes of M are called the assassin of M

and the weak assassin of M ([2, IV.1]).

(1.5) A) Let M be an R-module. We have AssRðMÞ � AssfRðMÞ, with
equality if R or M is noetherian. Furthermore, M ¼ 0 if and only if AssfRðMÞ
¼ q ([8, 0589, 058A, 0588], [9, 1.2]).

B) If 0 ! L ! M ! N ! 0 is an exact sequence of R-modules, then

AssRðLÞ � AssRðMÞ � AssRðLÞ [AssRðNÞ

and

AssfRðLÞ � AssfRðMÞ � AssfRðLÞ [AssfRðNÞ

([8, 02M3, 0548]).

C) We have AssfRðR=aÞ � VarðaÞ. If p A SpecðRÞ, then AssRðR=pÞ ¼
AssfRðR=pÞ ¼ fpg.

D) If M is an R=a-module, then the isomorphism of ordered sets

VarðaÞ ! SpecðR=aÞ; p 7! p=a

induces by restriction and coastriction bijections

AssfRðM0RÞ ! AssfR=aðMÞ and AssRðM0RÞ ! AssR=aðMÞ

([8, 05BY, 05C8]).

(1.6) A) For a subset S � R there are canonical monomorphisms of

functors

rS
a : S�1Gað�Þ g GS�1aðS�1�Þ and rS

a : S�1Gað�Þ g GS�1aðS�1�Þ
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that need not be isomorphisms ([6, 8.2, 8.3 B)]). If S ¼ Rnp for some

p A SpecðRÞ, then they are also denoted by rp
a and rp

a .

B) For a subset S � R there is a bijection

fp A AssfRðMÞ j p \ S ¼ qg ! AssfS�1RðS�1MÞ; p 7! S�1p:

By restriction and coastriction it induces an injection

fp A AssRðMÞ j p \ S ¼ qg ! AssS�1RðS�1MÞ

that need not be surjective ([8, 05C9, 05BZ], [2, IV.1 Exercice 1 c)]). Note that

if N is an S�1R-module, then fp A AssRðN0RÞ j p \ S ¼ qg ¼ AssRðN0RÞ.

Proposition 1. If M is an R-module and N � M is a sub-R-module,

then2

AssRðM=NÞnVarð0 :R NÞ � AssRðMÞ

and

AssfRðM=NÞnVarð0 :R NÞ � AssfRðMÞ:

Proof. Let p A AssRðM=NÞnVarð0 :R NÞ. There exist x A MnN with p ¼
ðN :R xÞ and r A Rnp with rN ¼ 0. If s A ð0 :R rxÞ, then srx ¼ 0 A N, hence

sr A p, and thus s A p. If t A p, then trx ¼ rtx A rN ¼ 0, and thus t A ð0 :R rxÞ.
This shows that p ¼ ð0 :R rxÞ. It follows that p A AssRðMÞ.

Let p A AssfRðM=NÞnVarð0 :R NÞ. There exist x A MnN with p A
minðN :R xÞ and r A Rnp with rN ¼ 0. If s A ð0 :R rxÞ, then srx ¼ 0 A N, hence

sr A p, and thus s A p. This shows that ð0 :R rxÞ � p. Let q A SpecðRÞ with

ð0 :R rxÞ � q � p. If s A ðN :R xÞ, then sx A N, hence srx ¼ rsx ¼ 0, and thus

s A ð0 :R rxÞ � q. It follows that ðN :R xÞ � q, and minimality of p implies

q ¼ p. Therefore, p A minð0 :R rxÞ, and thus p A AssfRðMÞ. r

2. Fairness and centredness

In this section, we recall the fairness and centredness properties introduced

in [5]. Moreover, we introduce ‘‘large versions’’ of these fairness properties,

and we show that ‘‘large versions’’ of these centredness properties yield nothing

new. In the further results, there are three main themes. First, we are inter-

ested in how these properties behave under change of the supporting ideal.

Second, we look for implications between these properties. And third, we col-

lect criteria for some of these properties.

2The statement about assassins is part of [2, IV.1 Exercise 3].
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(2.1) A) Let M be an R-module. By [5, 3.1], we have the following

relations.

a) AssRðGaðMÞÞ ¼ AssRðMÞ \ VarðaÞ;
b) AssfRðGaðMÞÞ � AssfRðMÞ \ VarðaÞ;
c) AssRðM=GaðMÞÞ � AssRðMÞnVarðaÞ;
d) AssfRðM=GaðMÞÞ � AssfRðMÞnVarðaÞ.
The R-module M is called weakly a-quasifair if

AssfRðGaðMÞÞ ¼ AssfRðMÞ \ VarðaÞ;

a-fair if

AssRðM=GaðMÞÞ ¼ AssRðMÞnVarðaÞ;

and weakly a-fair if

AssfRðM=GaðMÞÞ ¼ AssfRðMÞnVarðaÞ:

(In view of 2.2, these notions could be called ‘‘weakly small a-quasifair’’, ‘‘small

a-fair’’ and ‘‘weakly small a-fair’’, but we stick to the less clumsy terminology

introduced in [5].)

B) The ideal a is called weakly quasifair, weakly fair, or fair, respectively

if every R-module is weakly a-quasifair, weakly a-fair, or a-fair, respectively.

C) By [5, 3.5], a is weakly quasifair, weakly fair, or fair respectively if

and only if every monogeneous R-module is weakly a-quasifair, weakly a-fair,

or a-fair, respectively.

Proposition 2. Let M be an R-module. Then:

a) AssRðGaðMÞÞ ¼ AssRðMÞ \ VarðaÞ ¼ AssRðGaðMÞÞ;
b) AssfRðGaðMÞÞ � AssfRðMÞ \ VarðaÞ;
c) AssRðM=GaðMÞÞ � AssRðMÞnVarðaÞ;
d) AssfRðM=GaðMÞÞ � AssfRðMÞnVarðaÞ.

Proof. We have AssRðGaðMÞÞ � AssRðMÞ and AssfRðGaðMÞÞ � AssfRðMÞ
(1.5 B)). Let p A AssfRðGaðMÞÞ. There exists x A GaðMÞ with ð0 :R xÞ � p.

For r A a there exists n A N with rnx ¼ 0, hence rn � ð0 :R xÞ � p and therefore

r A p. It follows a � p, hence AssRðGaðMÞÞ � AssfRðGaðMÞÞ � VarðaÞ (1.5 A)).

So, we have proven b) and the inclusion ‘‘�’’ at the first place in a). As

AssRðMÞ \ VarðaÞ ¼ AssRðGaðMÞÞ � AssRðGaðMÞÞ

(2.1 A) a), 1.1, 1.5 B)) we also get the inclusion ‘‘�’’ at the first place and the

second equality in a). Finally,

AssRðMÞ � AssRðGaðMÞÞ [AssRðM=GaðMÞÞ
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and

AssfRðMÞ � AssfRðGaðMÞÞ [AssfRðM=GaðMÞÞ

(1.5 B)), thus c) and d) follow from a) and b). r

(2.2) A) An R-module M is called weakly large a-quasifair if

AssfRðGaðMÞÞ ¼ AssfRðMÞ \ VarðaÞ;

large a-fair if

AssRðM=GaðMÞÞ ¼ AssRðMÞnVarðaÞ;

and weakly large a-fair if

AssfRðM=GaðMÞÞ ¼ AssfRðMÞnVarðaÞ:

B) The ideal a is called weakly large quasifair, weakly large fair, or large

fair, respectively if every R-module is weakly large a-quasifair, weakly large

a-fair, or large a-fair, respectively.

Proposition 3. The ideal a is weakly large quasifair, weakly large fair, or

large fair, respectively if and only if every monogeneous R-module is weakly large

a-quasifair, weakly large a-fair, or large a-fair, respectively.

Proof. Let M be an R-module. Suppose that every monogeneous

R-module is weakly large a-quasifair. Let p A AssfRðMÞ \ VarðaÞ. There exists

x A M with p A minð0 :R xÞ. It follows that

p A AssfRðhxiRÞ \ VarðaÞ ¼ AssfRðGaðhxiRÞÞ � AssfRðGaðMÞÞ

(1.5 B), 1.2 A)), and thus M is weakly large a-quasifair (Proposition 2 b)).

Next, suppose that every monogeneous R-module is large a-fair or weakly

large a-fair, respectively. Let p A AssRðM=GaðMÞÞ or p A AssfRðM=GaðMÞÞ,
respectively. There exists x A M with p ¼ ð0 :R xÞ or p A minð0 :R xÞ, respec-

tively, where x denotes the canonical image of x in M=GaðMÞ. Then,

hxiR=GaðhxiRÞG hxiR (1.2 A)), and thus

p A AssRðhxiRÞ ¼ AssRðhxiR=GaðhxiRÞÞ

¼ AssRðhxiRÞnVarðaÞ � AssRðMÞnVarðaÞ

or

p A AssfRðhxiRÞ ¼ AssfRðhxiR=GaðhxiRÞÞ

¼ AssfRðhxiRÞnVarðaÞ � AssfRðMÞnVarðaÞ;
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respectively (1.5 B)). Thus, M is large a-fair or weakly large a-fair, respec-

tively (Proposition 2 c), d)). r

Proposition 4. Let M be an R-module. Then:

a) AssfRðMÞ \ VarðaÞ ¼ q ) GaðMÞ ¼ 0 ) GaðMÞ ¼ 0 ) AssRðMÞ \ VarðaÞ
¼ q;

b) GaðMÞ ¼ M ) AssfRðMÞ � VarðaÞ , GaðMÞ ¼ M.

Proof. a) The first implication follows from Proposition 2 b) and 1.5 A),

the second from 1.1, and the third from 2.1 a). b) holds by [6, 4.2]. r

(2.3) A) The ideal a is called centred if

GaðMÞ ¼ 0 , AssfRðMÞ \ VarðaÞ ¼ q

for every R-module M, half-centred if

GaðMÞ ¼ M , AssfRðMÞ � VarðaÞ

for every R-module M, and well-centred if it is centred and half-centred.

(These notions could be called ‘‘small centred’’, ‘‘small half-centred’’ and ‘‘small

well-centred’’, but we will recognise this as superfluous in 2.4.)

B) By [6, 4.5], a is half-centred if and only if Ga ¼ Ga.

C) By B), 1.2 E) and [5, 4.4], a is well-centred if and only if a is centred

and Ga is a radical.

Proposition 5. a) The ideal a is centred if and only if AssfRðMÞ \ VarðaÞ
¼ q for every monogeneous R-module M with GaðMÞ ¼ 0.

b) The ideal a is half-centred if and only if GaðMÞ ¼ M for every mono-

geneous R-module M with AssfRðMÞ � VarðaÞ.

Proof. a) Suppose that AssfRðMÞ \ VarðaÞ ¼ q for every monogeneous

R-module M with GaðMÞ ¼ 0. Let M be an R-module with GaðMÞ ¼ 0. Let

p A AssfRðMÞ. There exists x A M with p A minð0 :R xÞ. Then, GaðhxiRÞ ¼ 0

(1.2 A)) and p A AssfRðhxiRÞ, hence p B VarðaÞ. It follows that a is centred.

The converse is clear.

b) Suppose that GaðMÞ ¼ M for every monogeneous R-module M with

AssfRðMÞ � VarðaÞ. Let M be an R-module with AssfRðMÞ � VarðaÞ. Let

x A M. Then, AssfRðhxiRÞ � AssfRðMÞ � VarðaÞ (1.5 B)), hence GaðhxiRÞ ¼
hxiR, and therefore x A GaðMÞ (1.2 A)). This shows that GaðMÞ ¼ M. It fol-

lows that a is half-centred. The converse is clear. r

Proposition 6. The following statements are equivalent:

( i ) a is weakly large quasifair;

(ii) GaðMÞ ¼ 0 , AssfRðMÞ \ VarðaÞ ¼ q for every R-module M.
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Proof. If (i) holds and M is an R-module with GaðMÞ ¼ 0, then

AssfRðMÞ \ VarðaÞ ¼ AssfRðGaðMÞÞ ¼ q, hence Proposition 4 a) yields (ii).

If (ii) holds and M is an R-module, then AssfRðM=GaðMÞÞ \ VarðaÞ ¼ q
(1.2 E)), hence

AssfRðMÞ \ VarðaÞ � AssfRðGaðMÞÞ [ ðAssfRðM=GaðMÞÞ \ VarðaÞÞ

¼ AssfRðGaðMÞÞ

(1.5 B)), and thus Proposition 2 b) yields (i). r

(2.4) As every ideal is ‘‘large half-centred’’ by Proposition 4 b) and ‘‘large

centredness’’ is equivalent to weak large quasifairness by Proposition 6, there is

no need to introduce large centredness notions. Therefore, we will stick to the

terminology for small centredness introduced in [5].

(2.5) A) Let b � R be an ideal and let M be an R=b-module. It fol-

lows from 1.5 D) and 1.2 G) that M is (large) ðaþ bÞ=b-fair, weakly (large)

ðaþ bÞ=b-fair, or weakly (large) ðaþ bÞ=b-quasifair, respectively if and only

if M0R is (large) a-fair, weakly (large) a-fair, or weakly (large) a-quasifair,

respectively.

B) Let b � R be an ideal. It follows from A) that if a is (large)

fair, weakly (large) fair, or weakly (large) quasifair, respectively, then so is

ðaþ bÞ=b.
C) Let b � R be an ideal. It follows from 1.5 D) and 1.2 G) that if a

is centred, half-centred, or well-centred, respectively, then so is ðaþ bÞ=b.
D) Let b � R be an ideal. It follows from C) and 2.3 B) that if Ga ¼ Ga,

then GðaþbÞ=b ¼ GðaþbÞ=b.

Proposition 7. For an R-module M we have the following implications:

M is weakly a-fair M is weakly large a-fairwww€

www€

M is weakly a-quasifair ¼¼¼) M is weakly large a-quasifair:

Proof. The left vertical implication holds by [5, 3.3]. For a weakly large

a-fair R-module M we have

AssfRðMÞ \ VarðaÞ � AssfRðGaðMÞÞ [ ðAssfRðM=GaðMÞÞ \ VarðaÞÞ

¼ AssfRðGaðMÞÞ [ ððAssfRðMÞnVarðaÞÞ \ VarðaÞÞ

¼ AssfRðGaðMÞÞ
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(1.5 B)), so the right vertical implication follows from Proposition 2 b). For

a weakly a-quasifair R-module M we have

AssfRðMÞ \ VarðaÞ ¼ AssfRðGaðMÞÞ � AssfRðGaðMÞÞ � AssfRðMÞ \ VarðaÞ

(1.5 B), 1.1), so the horizontal implication follows from Proposition 2 b).

r

Proposition 8. a) We have the following implications:

a is weakly fair a is weakly large fairwww€

www€

a is weakly quasifair ¼¼¼) a is centred ¼¼¼) a is weakly large quasifair:

b) If a is half-centred, we have the following implications:

a is weakly fair a is weakly large fairwww€

www€

a is weakly quasifair (¼¼) a is centred (¼¼) a is weakly large quasifair:

(¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼)

Proof. a) The vertical implications are clear by Proposition 7. The first

horizontal implication was shown in [5, 4.4] under the hypothesis that Ga is a

radical, but no use was made of this hypothesis. The second horizontal impli-

cation follows from Proposition 4 a) and Proposition 6. b) follows from a) and

2.3 B). r

(2.6) A) Let b � R be an ideal with a � b �
ffiffiffi
a

p
(e.g. a ¼ bn for some

n A N�, or b ¼
ffiffiffi
a

p
). Then, VarðaÞ ¼ VarðbÞ and Ga ¼ Gb (1.2 C)). Therefore,

an R-module M is large a-fair, weakly large a-fair, or weakly large a-quasifair,

respectively if and only if it is large b-fair, weakly large b-fair, or weakly large

b-quasifair, respectively. In particular, a is large fair, weakly large fair, or

weakly large quasifair if and only if b is so.

B) Let n A N�. Then, Ga ¼ Ga n (1.2 C)). Therefore, an R-module M

is a-fair, weakly a-fair, or weakly a-quasifair, respectively if and only if it is

an-fair, weakly an-fair, or weakly an-quasifair, respectively. In particular, a

is fair, weakly fair, or weakly quasifair if and only if an is so. Moreover, a is

half-centred, centred, or well-centred if and only if an is so.

Proposition 9. Let b � R be an ideal with a � b �
ffiffiffi
a

p
.

a) A weakly b-quasifair R-module is weakly a-quasifair.

b) If b is weakly quasifair, then so is a.

c) If b is half-centred, centred, or well-centred, then so is a.
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Proof. a) For a weakly b-quasifair R-module M we have

AssfRðMÞ \ VarðaÞ ¼ AssfRðMÞ \ VarðbÞ ¼ AssfRðGbðMÞÞ � AssfRðGaðMÞÞ;

and hence we get the claim. b) follows from a). c) holds since VarðaÞ ¼
VarðbÞ and Gb is a subfunctor of Ga. r

(2.7) The converses of Proposition 9 a) and b) need not hold. More pre-

cisely, if an R-module M is a-fair, weakly a-fair, or weakly a-quasifair, respec-

tively, then it need not be
ffiffiffi
a

p
-fair, weakly

ffiffiffi
a

p
-fair, or weakly

ffiffiffi
a

p
-quasifair,

respectively. Indeed, since every R-module is 0-fair and weakly 0-fair, it suf-

fices to exhibit 0-dimensional local rings whose maximal ideals, necessarily equal

to
ffiffiffi
0

p
, are not fair or not weakly quasifair (Proposition 8 a)). Such examples

were constructed in the proofs of [5, 3.8, 3.9]. (In 4.2 B) we will see that the

converses of Proposition 9 c) hold neither.)

Proposition 10. a) If a has a power of finite type, then it is well-centred

and weakly quasifair.

b) Ideals in noetherian rings are well-centred, fair, and weakly fair.

c) Noetherian R-modules are a-fair, weakly a-fair, large a-fair, and weakly

large a-fair.

Proof. a) By 2.6 B), we may suppose that a is of finite type. Then, a is

half-centred ([6, 4.4 c)]), hence Ga ¼ Ga is a radical (2.3 B), 1.2 E)), and a is

weakly quasifair ([5, 5.4]), thus well-centred (Proposition 8 a), 2.3 B)). b) fol-

lows from [5, 3.6] and a). c) follows from [5, 3.6] and [6, 4.6 d)]. r

(2.8) Examples A) The ideal R is well-centred, fair, and weakly fair

(1.2 B)).

B) An R-module M with GaðMÞ ¼ M is large a-fair and weakly large

a-fair; an R-module M with GaðMÞ ¼ M is a-fair, weakly a-fair, large a-fair,

and weakly large a-fair (1.1).

C) Nil ideals are large fair and weakly large fair; nilpotent ideals are

well-centred, fair, and weakly fair (B), 1.2 B), Proposition 10 a)).

D) If b � R is an ideal with a � b, then the R-module R=b is a-fair,

weakly a-fair, large a-fair, and weakly large a-fair (B), 1.2 F)).

E) If p A SpecðRÞ, the R-module R=p is a-fair, weakly a-fair, large a-fair,

and weakly large a-fair. Indeed, for p A VarðaÞ this holds by D), and for

p B VarðaÞ it follows from 1.5 C) and 1.2 F). In particular, if R is integral,

then the R-module R is a-fair, weakly a-fair, large a-fair, and weakly large

a-fair.

(2.9) If we wish to check whether a has some fairness or centredness

property, then by 2.1 C), Proposition 3 and Proposition 5, it su‰ces to consider
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R-modules of the form R=b for ideals b � R. By 2.8 D) and 1.2 F), we may

additionally suppose that a 6� b.

(2.10) In [5, 5.11 ð�Þ] we asked whether every ideal a such that Ga is a

radical is weakly quasifair, or even weakly fair. The answer to this is negative.

Indeed, by [6, 5.5 B)] and 2.3 B), there exist a ring R and an ideal a � R that

is not half-centred such that Ga is a radical. Then, a is not well-centred, hence

not weakly quasifair, and thus not weakly fair (Proposition 8 a), 2.3 B)).

Proposition 11. a) Suppose that GaðRÞ ¼ a. If R0 0, the R-module R

is not weakly a-fair. If a is prime, the R-module R is neither a-fair nor weakly

a-fair.

b) Suppose that GaðRÞ ¼ a. If R0 0, the R-module R is not weakly large

a-fair. If a is prime, the R-module R is neither large a-fair nor weakly large

a-fair.

Proof. Let F denote Ga or Ga. As F ðRÞ ¼ a, we have

AssRðR=F ðRÞÞ � AssfRðR=FðRÞÞ ¼ AssfRðR=aÞ � VarðaÞ

(1.5 A), C)). So, if the R-module R is weakly (large) a-fair, then AssfRðR=aÞ ¼
q, hence R=a ¼ 0, thus a ¼ R and therefore R ¼ 0. Moreover, if the

R-module R is (large) a-fair, then AssRðR=aÞ ¼ q, and thus a is not prime

(1.5 C)). r

Proposition 12. Let M be an R-module.

a) AssRðM=GaðMÞÞ \ VarðaÞ ¼ q.

b) If Ga is a radical, then AssRðM=GaðMÞÞ \ VarðaÞ ¼ q.

c) If a is well-centred, then AssfRðM=GaðMÞÞ \ VarðaÞ ¼ q.3

Proof. a) Applying 1.2 E) and Proposition 2 a) to the R-module

M=GaðMÞ yields

q ¼ AssRð0Þ ¼ AssRðGaðM=GaðMÞÞÞ ¼ AssRðM=GaðMÞÞ \ VarðaÞ

(1.2 E)) and thus the claim. b) holds by [5, 4.1]. c) As Ga is a radical (2.3 C)),

we have GaðM=GaðMÞÞ ¼ 0, so centredness implies AssfRðM=GaðMÞÞ \ VarðaÞ ¼
q. r

Proposition 13. Let b � R be an ideal.

a) If a and b are half-centred, then so is aþ b.

b) If a is centred and b is well-centred or weakly fair, then aþ b is centred.

c) If a and b are well-centred, then so is aþ b.

3By Proposition 10 a) this generalises [5, 5.3].
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Proof. a) follows from 1.2 D) and 2.3 B). b) Suppose that a is

centred and b is well-centred or weakly fair. Let M be an R-module

with GaþbðMÞ ¼ 0. Then, GaðGbðMÞÞ ¼ 0 (1.2 D)). Centredness of a

yields AssfRðGbðMÞÞ \ VarðaÞ ¼ q. The hypothesis on b implies that

AssfRðM=GbðMÞÞ \ VarðbÞ ¼ q (Proposition 12 c)). It follows that

AssfRðMÞ \ Varðaþ bÞ � ðAssfRðGbðMÞÞ [AssfRðM=GbðMÞÞÞ \ VarðaÞ \ VarðbÞ

� ðAssfRðGbðMÞÞ \ VarðaÞÞ [ ðAssfRðM=GbðMÞÞ \ VarðbÞÞ

¼ q

(1.5 B)). Thus, aþ b is centred. c) follows from a) and b). r

Proposition 14. Let M be an R-module. If GaðMÞ ¼ 0, then M is large

a-fair. If GaðMÞ ¼ 0, then M is a-fair.

Proof. This follows immediately from Proposition 2 a). r

Proposition 15. Let dimðRÞ ¼ 0, and let a �R be a proper ideal. If

GaðRÞ ¼ 0, then the R-module R is not weakly a-fair.

Proof. As dimðRÞ ¼ 0, every prime ideal is minimal over 0 ¼ ð0 :R 1Þ,
implying AssfRðRÞ ¼ SpecðRÞ. It follows

AssfRðRÞnVarðaÞ � SpecðRÞ ¼ AssfRðRÞ ¼ AssfRðR=GaðRÞÞ;

and thus the claim holds. r

Proposition 16. If
ffiffiffi
a

p
A MaxðRÞ, then:

a weakly fair ¼) a half-centred ¼) a weakly quasifair () a centred :

Proof. The hypothesis implies that VarðaÞ ¼ f
ffiffiffi
a

p
g. First, let a be

weakly fair. Let M be an R-module with AssfRðMÞ � f
ffiffiffi
a

p
g. If this inclusion

is proper, M ¼ 0 (1.5 A)), and otherwise,

AssfRðM=GaðMÞÞ ¼ AssfRðMÞnf
ffiffiffi
a

p
g ¼ q:

It follows that GaðMÞ ¼ M, hence a is half-centred. Next, let a be half-

centred. If M is an R-module with AssfRðMÞ \ VarðaÞ0q, then AssfRðMÞ ¼
f

ffiffiffi
a

p
g, hence half-centredness implies GaðMÞ ¼ M, and so M is weakly

a-quasifair. Therefore, a is weakly quasifair. Finally, let a be centred. Let

M be an R-module. We have

q � AssfRðGaðMÞÞ � AssfRðMÞ \ VarðaÞ � f
ffiffiffi
a

p
g

(2.1 A) b)). If the first inclusion is proper, then the second one is an equality.

If the first inclusion is an equality, then so is the second one by centredness and
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1.5 A). Thus, M is weakly a-quasifair. As weakly quasifair ideals are centred

(Proposition 8 a)), the claim is proven. r

Corollary 1. If
ffiffiffi
a

p
A MaxðRÞ and Ga is a radical, then:

a half-centred () a weakly quasifair () a centred:

Proof. This follows immediately from Proposition 16 and 2.3 B). r

Corollary 2. If the maximal ideal of a 0-dimensional local ring is weakly

quasifair or centred, then every ideal is weakly quasifair and centred.

Proof. This follows immediately from Proposition 16 and Proposition

9 b). r

Proposition 17. If every prime ideal in VarðaÞ is centred, then a is centred.

Proof. Let M be an R-module with AssfRðMÞ \ VarðaÞ0q. There

exists a centred p A AssfRðMÞ \ VarðaÞ. It follows 00GpðMÞ � GaðMÞ
(1.2 C)), hence GaðMÞ0 0. Therefore, a is centred. r

3. Idempotent ideals

In this section, we consider fairness and centredness properties of idem-

potent ideals, and—as an application—of ideals in absolutely flat rings. Our

main results are that idempotent ideals are fair, and that all ideals in an ab-

solutely flat ring share all the fairness and centredness properties.

Proposition 18. a) Let M be an R-module of bounded small a-torsion. If

AssRðM=GaðMÞÞ \ VarðaÞ ¼ q, then M is a-fair. If AssfRðM=GaðMÞÞ \ VarðaÞ
¼ q, then M is a-fair and weakly a-fair.

b) Let M be an R-module of bounded large a-torsion. Then, M is large

a-fair. If AssfRðM=GaðMÞÞ \ VarðaÞ ¼ q, then M is weakly large a-fair.

Proof. a) We prove both claims simultaneously. As there exists

n A N with GaðMÞ ¼ ð0 :M anÞ, we have ð0 :R GaðMÞÞ � VarðaÞ. Let p A
AssRðM=GaðMÞÞ or p A AssfRðM=GaðMÞÞ. By our hypothesis, p B VarðaÞ, hence
p B Varð0 :R GaðMÞÞ, and so Proposition 1 implies p A AssRðMÞnVarðaÞ or

p A AssfRðMÞnVarðaÞ. Thus, M is a-fair or weakly a-fair. This proves the

first claim, and together with 1.5 A) we get the remaining part of the second

claim. b) follows from a), 1.3 and Proposition 12 a). r

Corollary 3. If Ga is a radical, every R-module of bounded small

a-torsion is a-fair. If a is well-centred, every R-module of bounded small

a-torsion is a-fair and weakly a-fair.
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Proof. This follows immediately from Proposition 18 a) and Proposition

12 b), c). r

Corollary 4. Idempotent ideals are fair.4

Proof. If a is idempotent, every R-module is of bounded small a-torsion

and Ga is a radical (1.2 E), 1.3), so Corollary 3 yields the claim. r

Proposition 19. In an absolutely flat ring, every ideal is well-centred, fair

and weakly fair.5

Proof. Let a be an ideal in an absolutely flat ring R. Then, a is

half-centred ([6, 4.6 b)]) and fair (Corollary 4). Moreover, every prime

ideal is centred (Proposition 16), and thus a is centred (Proposition 17).

If M is an R-module, then M is of bounded small a-torsion (1.3) and

AssfRðM=GaðMÞÞ \ VarðaÞ ¼ q (Proposition 12 c)), hence M is weakly

a-fair (Proposition 18 a)). This shows that a is weakly fair, and thus the

claim is proven. r

(3.1) Examples A) Let K be a field, let

R :¼ K½ðXiÞi AN�=hX 2
i � Xi j i A Ni;

denote by Yi the canonical image of Xi in R for i A N, and let a :¼
hYi j i A NiR. Then, R is absolutely flat, and a is maximal and generated

by idempotents, but not by a single idempotent ([6, 1.7 C), D)]). It follows

that a is well-centred, fair and weakly fair (Proposition 19).

B) Let K be a field, let

R :¼ K½ðXiÞi AZ�=hX 2
i � Xiþ1 j i A Zi;

denote by Yi the canonical image of Xi in R for i A Z, and let a :¼
hYi j i A ZiR. Then, R is a 1-dimensional Bezout domain, and a is maximal

and idempotent, but neither generated by idempotents nor half-centred ([6,

1.7 C), E), 5.5 B)]). It follows that a is not centred, and therefore neither

weakly quasifair nor weakly fair (Corollary 1, Proposition 8 a)).

C) (cf. [6, 8.3 B)]) Let K be a field, let

R :¼ K ½ðXiÞi AN�=hX 2
i � Xi j i A N�i;

let Yi denote the canonical image of Xi in R for i A N, and let a :¼
hYi j i A N�iR. Then, a is generated by idempotents, hence idempotent, half-

centred and fair ([6, 4.6 a)], Corollary 4). Moreover, a A MinðRÞ. Indeed, a

is prime since R=aGK ½Y0�GK ½X0�. Let p A SpecðRÞ with p � a. Let i A N�.

4This generalises [5, 5.1].

5This generalises [5, 5.2].
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If Yi B p and 1� Yi B p, then we get the contradiction 0 ¼ Yið1� YiÞ B p. If

1� Yi A p, then 1� Yi A a, and we get the contradiction 1 ¼ 1� Yi þ Yi A a.

It follows that Yi A p, and therefore p ¼ a.

Let b :¼ hY i
0Yi j i A N�iR. Let f A Rnf0g with f a � b, so that there

occurs a monomial g in f . If Y
p
0 is the highest power of Y0 that divides

g, then we have fYpþ1 A b, hence gXpþ1 A b, and thus X
pþ1
0 Xpþ1 divides gXpþ1,

contradicting our choice of p. This shows that ðb :R aÞ ¼ 0, and hence—as a

is idempotent—GaðR=bÞ ¼ 0.

We show now that a is not weakly a-quasifair, and therefore neither

centred nor weakly fair (Proposition 8 b)). Let g A ðb :R Y0Þ. If there occurs

in g a monomial of the form Y l
0 with l A N, then there occurs in gY0 A b a

monomial of the form Y lþ1
0 with l A N, which is a contradiction. Thus, every

monomial occuring in g is a multiple of Yi for some i A N�, and therefore

g A a. This shows that ðb :R Y0Þ � a. As a A MinðRÞ, we get a A minðb :R Y0Þ
¼ minð0R=b :R ðY0 þ bÞÞ, hence a A AssfRðR=bÞ. As GaðR=bÞ ¼ 0, this implies

that R=b is not weakly a-quasifair (Proposition 6), and therefore our claim

holds.

Note that AssRðR=bÞ \ VarðaÞ ¼ q (Proposition 4 a)) and hence a A
AssfRðR=bÞnAssRðR=bÞ.

(3.2) A) If a is generated by a single idempotent, then it is well-centred,

fair and weakly fair (Proposition 10 a), Corollary 4, [6, 1.7 B)], [5, 5.5]).

B) If a is generated by idempotents, then it is half-centred and fair ([6,

4.6 a)], A)), but it need not be weakly quasifair, hence neither weakly fair nor

centred (Proposition 8 b), 3.1 C)).

C) If a is idempotent, then it is fair by A), but it need be neither weakly

large quasifair by B) nor half-centred by 3.1 B). Thus, it need be neither

weakly quasifair, nor weakly fair, nor weakly large fair, nor centred (Proposi-

tion 8 a)).

D) The observations in A)–C) give rise to the following questions:

ð�Þ Are idempotent ideals large fair?

ð��Þ Do there exist a ring R and an ideal a � R that is generated by

idempotents, fair, weakly quasifair, but not weakly fair?

4. Nil ideals

The next class of ideals we turn to are nil ideals. Clearly, they share

all large fairness properties, but for small fairness and centredness properties,

the situation is more intricate. We will see that for the maximal ideal of a

0-dimensional local ring there are at least four and at most five possibilities

concerning fairness and centredness.
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Proposition 20. Let a be nil.

a) The following statements are equivalent: (i) a is nilpotent; (ii) a is weakly

fair; (iii) a is weakly quasifair and Ga is a radical; (iv) a is well-centred; (v) a

is half-centred.

b) The ideal a is fair if and only if AssRðM=GaðMÞÞ ¼ q for every (mono-

geneous) R-module M.

c) The ideal a is weakly quasifair if and only if AssfRðGaðMÞÞ ¼ AssfRðMÞ for

every (monogeneous) R-module M.

d) The ideal a is centred if and only if GaðMÞ0 0 for every nonzero (mono-

geneous) R-module M.

Proof. First we note that VarðaÞ ¼ SpecðRÞ. a) ‘‘(i) , (ii)’’: The ideal

a is weakly fair if and only if AssfRðM=GaðMÞÞ ¼ q for every R-module

M, hence if and only if Ga ¼ IdModðRÞ (1.5 A)), thus if and only if a is nil-

potent (1.2 B)). ‘‘(i) ) (iii)’’ follows from Proposition 10 a) and 2.3 C).

‘‘(iii) ) (iv)’’ follows from Proposition 8 a) and 2.3 C). ‘‘(iv) ) (v)’’ is clear.

‘‘(v) ) (i)’’: If a is half-centred, then GaðMÞ ¼ M for every R-module M,

hence a is nilpotent (1.2 B)). b), c), d) follow immediately from 2.1 C) and

Proposition 5. r

Proposition 21. Let a be nil.

a) If a is idempotent and nonzero, it is neither half-centred nor centred.

b) If Ga is a radical, a is fair.6

Proof. a) As a is idempotent, Ga is a radical (1.2 E)). Moreover, a

is not nilpotent, hence not half-centred (Proposition 20 a)) and thus not cen-

tred (2.3 C)). b) Let M be an R-module. We have VarðaÞ ¼ SpecðRÞ and

GaðM=GaðMÞÞ ¼ 0, hence

AssRðM=GaðMÞÞ ¼ AssRðM=GaðMÞÞ \ VarðaÞ ¼ AssRðGaðM=GaðMÞÞÞ ¼ q

(2.1 A) a)), so Proposition 20 b) yields the claim. r

Proposition 22. Let R be a 0-dimensional local ring with maximal ideal a.

a) If GaðRÞ ¼ 0, then a is not centred. If, in addition, there exists an ideal

b � R with GaðR=bÞ ¼ a=b, then a is not fair.

b) If GaðRÞ ¼ a, then a is centred, but not fair.

Proof. a) The ideal a is not centred by Proposition 20 d). Concerning

the second claim, we have AssRððR=bÞ=GaðR=bÞÞ ¼ AssRðR=aÞ ¼ fag (1.5 C)),

hence a is not fair by Proposition 20 b). b) Let b � R be an ideal with b � a.

Then, 00 a=b ¼ GaðRÞ=b � GaðR=bÞ, hence GaðR=bÞ0 0. As GaðR=aÞ ¼ R=a

6This answers a special case of the still open part of [5, 5.11 ð�Þ].
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0 0 (1.2 F)) we get that GaðMÞ0 0 for every nonzero monogeneous R-module

M. Thus, a is centred (Proposition 20 d)). Finally, a is not fair by Proposi-

tion 11 a). r

(4.1) Examples A) Let K be a field, let

R :¼ K ½ðXiÞi AN�=hX 2
i j i A Ni;

let Yi denote the canonical image of Xi in R for i A N, and let a :¼
hYi j i A NiR. Then, R is a 0-dimensional local ring whose maximal ideal a

is nil but not nilpotent, and Ga is not a radical. We clearly have GaðRÞ ¼ 0,

and setting b :¼
P

i AN Yia
i � R we have GaðR=bÞ ¼ a=b. Thus, a is neither

fair nor centred ([6, 1.4 A), 5.4 A)], Proposition 22 a)).

B) Let K be a field, let

R :¼ K ½ðXiÞi AN�=hfXiXj j i; j A N; i0 jg [ fX iþ1
i j i A Ngi;

let Yi denote the canonical image of Xi in R for i A N, and let a :¼
hYi j i A NiR. Then, R is a 0-dimensional local ring whose maximal ideal a

is nil but not nilpotent, and Ga is not a radical. As GaðRÞ ¼ a it follows that

a is centred, but not fair ([6, 1.4 B), 5.4 B)], Proposition 22 b)).

C) Let K be a field, let

R :¼ K ½ðXiÞi AN�=hfX 2
i j i A Ng [ fXiXj j i; j A N; 2i < jgi;

let Yi denote the canonical image of Xi in R for i A N, and let a :¼
hYi j i A NiR. Then, R is a 0-dimensional local ring whose maximal ideal a

is nil but not nilpotent, and Ga is not a radical. As GaðRÞ ¼ a it follows that

a is centred, but not fair ([6, 1.5, 5.4 C)], Proposition 22 b)).

D) Let K be a field, let

R :¼ K ½ðXiÞi AN�=hX iþ1
i j i A Ni;

let Yi denote the canonical image of Xi in R for i A N, and let a :¼
hYi j i A NiR. Then, R is a 0-dimensional local ring whose maximal ideal a

is nil but not nilpotent, and Ga is not a radical. Moreover, we have GaðRÞ ¼ 0.

Indeed, if f A Rnf0g and n A N with anf ¼ 0, then there occurs a monomial g

in f , and we have Y n
k g ¼ 0 for all k A N with kb n, implying the contradiction

that Y kþ1�n
k divides g for every k A N with kb n. Setting

b :¼ hYiYj j i; j A N; i0 jiR;

we have GaðR=bÞ ¼ a=b. Thus, a is neither fair nor centred ([6, 5.4 D)], Prop-

osition 22 a)).

E) Let K be a field, let Q denote the additive monoid of positive rational

numbers, let R :¼ K ½Q� denote the algebra of Q over K, and let fea j a A Qg
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denote its canonical basis. Then, m :¼ hea j a > 0iR is a maximal ideal. We

consider S :¼ Rm and n :¼ mm. Then, S is a 1-dimensional valuation ring with

idempotent maximal ideal n. Let a :¼ e1
1

� �
S
, let T :¼ S=a, and let p :¼ n=a.

Then, T is a 0-dimensional local ring whose maximal ideal p is idempotent and

nonzero ([4, 2.2]). In particular, Ga is a radical (1.2 E)), and thus a is fair, but

not centred (Corollary 4, Proposition 20 a)).7

(4.2) A) Centred ideals whose small torsion functors are radicals are half-

centred (2.3 B)), and half-centred maximal ideals are centred (Proposition 16).

In general, half-centredness and centredness are independent. Indeed, there

exist well-centred ideals (Proposition 10 a)), half-centred ideals that are not

centred (3.1 C)), centred ideals that are not half-centred (4.1 B)), and ideals

that are neither half-centred nor centred (4.1 A)).

B) The converses of Proposition 9 c) need not hold. More precisely,

there exist a ring R and a well-centred ideal a � R such that
ffiffiffi
a

p
is neither

centred nor half-centred. Indeed, since the zero ideal in any ring is well-

centred, it su‰ces to exhibit a 0-dimensional local ring whose maximal idealffiffiffi
0

p
is neither centred nor half-centred, which we did in 4.1 A).

C) Since nil ideals share all the large fairness properties, the examples in

4.1 together with Proposition 8 and Proposition 20 a) show that if a is large

fair, weakly large fair and weakly large quasifair, then it need not have any of

the small fairness or centredness properties.

D) We saw in 2.1 C), Proposition 3 and Proposition 5 that fairness can

be checked on monogeneous R-modules. By 4.1 A), there exist a ring R and an

ideal a � R such that a is not fair, while the R-module R is a-fair (Proposition

14). Thus, fairness cannot be checked on the R-module R alone.

(4.3) Let R be a 0-dimensional local ring with maximal ideal a. By

Proposition 20 a) and Proposition 16, the fairness and centredness properties

of a are determined by whether it is nilpotent, fair, or centred. Thus, a lies in

precisely one of the five classes specified in the following table.

a nilpot. Ga radical a fair a w.fair a w.q.fair a centred a half-centred

I 3 3 3 3 3 3 3

II – – 3 – 3 3 –

III – – – – 3 3 –

IV – ? 3 – – – –

V – – – – – – –

7This extends [5, 3.9].
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(Note that all large fairness properties are always fulfilled.) It follows from

Proposition 20 a) and 4.1 that the classes I, III, IV and V are nonempty.

However, we do not know of an example in class II and thus are left with the

following question.

ð�Þ Does there exist a 0-dimensional local ring, whose maximal ideal a is

fair and centred, but not nilpotent?

Note that a positive answer to ð�Þ implies a negative answer to [5, 3.10

ð��Þ]. If the converse of Proposition 21 b) holds, then class II would indeed

be empty. Thus:

ð��Þ Suppose that a is a nil ideal (or even the maximal ideal of a

0-dimensional local ring). Does fairness of a imply that Ga is a

radical?

5. Localisation and delocalisation

While assassins and torsion functors do not behave nicely with respect to

localisation, weak assassins do so (1.6 A), B)). In this final section we exploit

this behaviour to prove elementary results on localisation and delocalisation of

radicality of torsion functors and of centredness and weak fairness properties

of ideals. Finally, we give a criterion for weak large quasifairness using local-

isation properties of large torsion functors.

Proposition 23. We consider the following statements: (1) Ga is a rad-

ical; (2) GS�1a is a radical for every subset S � R; (3) Gam is a radical for every

m A maxðaÞ.
We have (1) ) (2) ) (3). If rm

a (cf. 1.6 A)) is an isomorphism for every

m A maxðaÞ, we have (1) , (2) , (3).

Proof. ‘‘(1) ) (2)’’: Suppose that (1) holds. Let S � R be a subset,

and let M be an S�1R-module. Then,

GS�1aðM=GS�1aðMÞÞ0R ¼ GaðM0R=GaðM0RÞÞ ¼ 0

(1.2 G)). This implies (2). ‘‘(3) ) (1)’’: Suppose that rm
a is an isomorphism

for every m A maxðaÞ and that (3) holds. Let M be an R-module. If m A
maxðaÞ, then

GaðM=GaðMÞÞm ¼ GamðMm=GamðMmÞÞ ¼ 0

(1.6 A)). Together with 1.2 F) this implies (1). r

Proposition 24. Let P denote one of the properties of being half-centred,

centred, weakly quasifair, or weakly large quasifair. We consider the following

statements: (1) a has P; (2) S�1a has P for every subset S � R; (3) am has P

for every m A maxðaÞ.
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We have (1) ) (2) ) (3). If rm
a is an isomorphism for every m A maxðaÞ,

we have (1) , (2) , (3).

Proof. First, we prove the claim about half-centredness. ‘‘(1) ) (2)’’:

Suppose that a is half-centred. Let S � R be a subset, and let M be an S�1R-

module. Then,

GS�1aðMÞ0R ¼ GaðM0RÞ ¼ GaðM0RÞ ¼ GS�1aðMÞ0R
(1.2 G), 2.3 B)). This implies (2). ‘‘(3) ) (1)’’: Suppose that am is half-

centred and rm
a is an isomorphism for every m A maxðaÞ. Let M be an

R-module. If m A maxðaÞ, then

GaðMÞm ¼ GamðMmÞ ¼ GamðMmÞ ¼ GaðMÞm
(2.3 B)). Together with 1.2 F) this implies GaðMÞ ¼ GaðMÞ and therefore (1).

Second, we prove the claim about centredness. ‘‘(1) ) (2)’’: Suppose

that a is centred. Let S � R be a subset, and let M be an S�1R-module with

GS�1aðMÞ ¼ 0. Then, GaðM0RÞ ¼ GS�1aðMÞ0R ¼ 0 (1.2 G)), hence, by centred-

ness,

AssfS�1RðMÞ \ VarðS�1aÞG fp A AssfRðM0RÞ j p \ S ¼ qg \ VarðaÞ

� AssfRðM0RÞ \ VarðaÞ ¼ q

(1.6 B)). This implies (2). ‘‘(3) ) (1)’’: Suppose that am is centred and

rm
a is an isomorphism for every m A maxðaÞ. Let M be an R-module

with GaðMÞ ¼ 0. If m A maxðaÞ, then GamðMmÞGGaðMÞm ¼ 0, hence, by

centredness, AssfRm
ðMmÞ \ VarðamÞ ¼ q. Together with 1.6 B) this implies

AssfRðMÞ \ VarðaÞ ¼ q, and therefore (1) holds.

Third, we prove simultaneously the claims about weak quasifairness

and weak large quasifairness. For an ideal b we write Fb for Gb or Gb.

‘‘(1) ) (2)’’: Suppose that a is weakly (large) quasifair. Let S � R be a sub-

set. Let M be an S�1R-module. If P A AssfS�1RðS�1MÞ \ VarðS�1aÞ, then

there exists p A AssfRðMÞ \ VarðaÞ ¼ AssfRðFaðMÞÞ with p \ S ¼ q and

P ¼ S�1p A AssfS�1RðS�1FaðMÞÞ � AssfS�1RðFS�1aðS�1MÞÞ

(1.5 B), 1.6 A), B)), implying (2).

‘‘(3) ) (1)’’: Suppose that am is weakly (large) quasifair and that rm
a (or

rm
a ) is an isomorphism for every m A maxðaÞ. Let M be an R-module. Let

p A AssfRðMÞ \ VarðaÞ. If m A maxðaÞ with p � m, then

pm A AssfRm
ðMmÞ \ VarðamÞ ¼ AssfRm

ðFamðMmÞÞ ¼ AssfRm
ðFaðMÞmÞ

(1.6 B)), hence p A AssfRðFaðMÞÞ, implying (1). r
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Proposition 25. a) Let S � R be a subset such that rS
a (or rS

a ) is an

isomorphism. If a is weakly (large) fair, then so is S�1a.

b) Suppose that rm
a (or rm

a ) is an isomorphism for every m A MaxðRÞ.
Then, a is weakly (large) fair if and only if am is weakly (large) fair for every

m A MaxðRÞ.

Proof. For an ideal b we write Fb for Gb or Gb. a) Let M be an S�1R-

module. If

P A AssfS�1RðS�1M=FS�1aðS�1MÞÞ ¼ AssfS�1RðS�1ðM=FaðMÞÞÞ;

then there exists p A AssfRðM=FaðMÞÞ ¼ AssfRðMÞnVarðaÞ with p \ S ¼ q and

P ¼ S�1p A AssfS�1RðS�1MÞnVarðS�1aÞ (1.6 B)), implying the claim. b) Sup-

pose that am is weakly (large) fair for every m A MaxðRÞ. Let M be an

R-module, and let p A AssfRðM=FaðMÞÞ. If m A MaxðRÞ with p � m, then

pm A AssfRm
ððM=FaðMÞÞmÞ ¼ AssfRm

ðMm=FamðMmÞÞ ¼ AssfRm
ðMmÞnVarðamÞ;

hence p A AssfRðMÞnVarðaÞ (1.6 B)). Together with a) this yields the claim.

r

Proposition 26. If rp
a is an isomorphism for every p A VarðaÞ, then a is

weakly large quasifair.

Proof. Let M be an R-module with GaðMÞ ¼ 0. If p A VarðaÞ, then

GapðMpÞ ¼ GaðMÞp ¼ 0, hence AssfRp
ðMpÞ \ VarðapÞ ¼ q (Proposition 4 a)),

thus pp B AssfRp
ðMpÞ, and therefore p B AssfRðMÞ (1.6 B)). It follows that

AssfRðMÞ \ VarðaÞ ¼ q, and so Proposition 6 yields the claim. r
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