Translator Disclaimer
July 2012 Terminating $q$-Kampé de Fériet Series $\Phi^{1:3;\lam}_{1:2;\mu}$ and $\Phi^{2:2;\lam}_{2:1;\mu}$
Wenchang Chu, Nadia N. Li
Hiroshima Math. J. 42(2): 233-252 (July 2012). DOI: 10.32917/hmj/1345467072

Abstract

By means of the transformations of Sears and Watson for the terminating balanced $_4\phi_3$-series, we investigate the two terminating $q$-Kampé de Fériet series $\Phi^{1:3;\lam}_{1:2;\mu}$ and $\Phi^{2:2;\lam}_{2:1;\mu}$. Several reduction and summation formulae are established. They extend the corresponding known results about the double $q$-Clausen series.

Citation

Download Citation

Wenchang Chu. Nadia N. Li. "Terminating $q$-Kampé de Fériet Series $\Phi^{1:3;\lam}_{1:2;\mu}$ and $\Phi^{2:2;\lam}_{2:1;\mu}$." Hiroshima Math. J. 42 (2) 233 - 252, July 2012. https://doi.org/10.32917/hmj/1345467072

Information

Published: July 2012
First available in Project Euclid: 20 August 2012

zbMATH: 1257.33038
MathSciNet: MR2978304
Digital Object Identifier: 10.32917/hmj/1345467072

Subjects:
Primary: 33D15
Secondary: 05A15

Rights: Copyright © 2012 Hiroshima University, Mathematics Program

JOURNAL ARTICLE
20 PAGES


SHARE
Vol.42 • No. 2 • July 2012
Back to Top