Translator Disclaimer
July 2010 Sharp inequalities for the permanental dominance conjecture
Ryo Tabata
Hiroshima Math. J. 40(2): 205-213 (July 2010). DOI: 10.32917/hmj/1280754421

Abstract

For the normalized generalized matrix function $\overline d_{\chi}^{G} (A)$ for $3 \times 3$ positive semi-definite Hermitian matrices $A$, the permanental dominance conjecture $\per A \geq \overline d_{\chi}^{G} (A)$ is known to hold. In this paper, we show that this inequality is not sharp, and give a sharper bound.

Citation

Download Citation

Ryo Tabata. "Sharp inequalities for the permanental dominance conjecture." Hiroshima Math. J. 40 (2) 205 - 213, July 2010. https://doi.org/10.32917/hmj/1280754421

Information

Published: July 2010
First available in Project Euclid: 2 August 2010

zbMATH: 1215.15008
MathSciNet: MR2680656
Digital Object Identifier: 10.32917/hmj/1280754421

Subjects:
Primary: 15A15, 20A30

Rights: Copyright © 2010 Hiroshima University, Mathematics Program

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.40 • No. 2 • July 2010
Back to Top