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ABSTRACT. This paper discusses an invariance principle for a Brownian motion with

drift coefficient /c/4 in a white noise environment under the assumption that K is

large. Our method clarifies the relation between the environment-wise invariance

principle discussed in [7] and the present result (the invariance principle in random

environment).

Introduction

Let W be the space of continuous functions on R vanishing at 0 that is
equipped with the Wiener measure P. For an element w e W let us denote by
wκ the element of W defined by wκ(x) = w(x) — (κx/2) where K: is a given
positive constant. For w e W, Pw denotes the probability measure on Ω =
C[0, oo ) such that Xx = {ω(i),t > 0,PW} is a diffusion process with generator

starting at 0, where ω(t) is the value of a function ω(e fl) at time t. We
regard ω(t) as a process defined on the probability space { W x Ω, £?} where
9(dwdω) — P(dw)Pw(dω). Then symbolically

dω(t) = dB(t}+^dt-^w'((o(i)}dt,

where B(t) is a standard Brownian motion independent of the white noise
{H/(X)}. We call the process X = {ω(i),t > 0,0*} a Brownian motion with
drift in a white noise environment; in [2] [6] [7] it is called a diffusion process in
a Brownian environment with drift. The present authors obtained some limit
theorems for X in [2] (see [8] for further results; see also [6] for a brief survey
on related problems), which are analogous to those of [3] and [5]; however,
some problems remain open. The present paper is a continuation of [7] and
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discusses the central limit theorem, or more precisely speaking, invariance
principle in random environment in the case K > 2.

We set

Mx(= M(x)) = 2 Γ dy Γ ew*W-"*W dz,
JO J-OO

x E R,

μ(t) = the inverse function of {Mx, x e R}, / e R,

Tx(= T(x)) = inf{t > 0 : ω(t) > x},x> 0.

We use also the following notation:

ω(t) = max{ω(s) : 0 < s < t}, ω(t) = mf{ω(s) : s > t},(ω e Ω),

A = 64(κ - \γ2(κ - 2)' 1 - \6γ~2(2γ - I)" 1,

B = 64(κ - 1 Γ V - 2)-1 = 8Γ3(2y - I ) ' 1 ,

C = A + B = 64κ(κ - \)-\κ - 2)-1 - 8(2y + l)γ~3(2γ - I ) ' 1 .

The following theorem was proved in [7].

THEOREM A (Environment-wise invariance principle, see [7]). When K > 2,
we have the following:

(i) For almost all w e W with respect to P, the process

I VAλ ' '

converges in law to a Brownian motion as λ —> oo (in the sense of convergence of
probability measures on the Skorohod space}.

(ii) For almost all w, the process

(ω(λt)-μ(λt) _ n

converges in law to a Brownian motion as λ —> oo (in the sense of convergence of
probability measures on C[0, oo)). The same is true when ω(λt) is replaced by
either of ω(λt) and ω(λt).

Our main theorems are the following (K > 2 is assumed throughout).

THEOREM 1. (i) The process

(M^-λmx \
< = = — , x E R, P }
I VBλ )

converges in law to a Brownian motion as λ —> oo.
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(ii) The process

•* 1
' /

converges in law to a Brownian motion as λ —> oo.

THEOREM 2 (Invariance principle in random environment}, (i) The process

(Tλx-λmx > \

I y/Cλ ' * " ' J

converges in law to a Brownian motion as λ —> oo.

(ii) 7%e process

(ω(λt)-λm~lt _ π

converges in law to a Brownian motion as λ —> oo. The same is true when ω(λt)
is replaced by either of ω(λt) and ω(λt).

As in [7] we introduce a one parameter family of measure preserving
transformations θt, tεR, on (W,P) defined by (θtw)(x) = w(x +1) - w(i),
x e R. Clearly θtθs = θt+s and {θt} is ergodic. Set

(0.1) /o(w)=[ e-w ®Λ.
J-oo

Then Θ,f0 =fo(θ,w) = f_n g^W-^W ds and we have the following (see [7]):

(0.2) Ew{Tx} = Mx = 2 Γ θyfo dy;
Jo

the first equality of (0.2) holds for x > 0 and the second one holds for x e R.

(0.3) Varw{7i} = 8 Γ θygdy for x > 0 (g(w) = f e-
w^(θtf0)

2dί).

JO J-α>

(0.4) E{f0} = γ-l,E{f*} = 2γ-l(2γ - I ) ' 1 .

(0.5) E{Vaτw(Tx)} = Ax for x > 0.

(0.6) Var{Mx} = Bx + 0(1), Λ: ̂  oo, (Var = variance).

It was also observed in [7] that
(0.7) dθtf0 = θtfo dw(t) - (γθtf0 - 1) dt,
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so θtfo is a stationary diffusion process obtained as the unique stationary
positive solution of the stochastic differential equation (0.7). Therefore

(0.8) 0,/o -/o - f 0,/o * Φ ) ~ λ f θsfds,
Jo Jo

where / =/o - γ~l.

1. Proof of Theorem 1

For the proof of Theorem 1 we need some lemmas.

LEMMA 1 ([7]). r 1 / 2 max{^/ 0 : \s\ < t} — > 0 as t -* oo.

LEMMA 2 ([7]). For αwy positive constants c\,

Mt+u -Mt = mu(\ + o(l)) + 0(VΪ), |*| < c\λ, u e R,

where 0(1) represents a general term that tends to 0 as A — > oo uniformly in (t,u)
such that \t\ < c\λ and weR, /0r almost all w; 0(\/I) is a term that can be
expressed as 0(l)\//ϊ.

To prove (i) of Theorem 1 it is enough to consider JJ θyfdy by virtue of
(0.2). Making habitual use of t to indicate time we write

(i.i) -= esfds = - e,adw(s) - (^/o -/o).

By the ergodicity of {θt} and also by (0.4) we see that the quadratic variation
of the stochastic integral term in (1.1) tends to Bt/4 as λ — > oo, a.s., so the
stochastic integral term itself converges in law to {(B/4)l/2w(ή,t > 0,JP} as
Λ,— »oo. The second term of the right hand side of (1.1) is negligible
by Lemma 1. Therefore Xf = {λ~l/2 $ θsfds,t > 0} converges in law to
{(B/4)l/2w(t),t > 0}, so does JTf = {λ~l/2 J~λ' θsfds,t> 0} because of the
reversibility of the diffusion θtf. Now the assertion (i) of Theorem 1 follows
from the fact that X% and X^ are asymptotically independent as λ — > oo.

To proceed let ξ = λm and put

(1.2) βλ(t) = (BλΓ ' (Mλt - λmή, βλ(t) = (m~3BξΓ f (μ(ξt) - ξm-lt).

Then the assertion of (ii) of Theorem 1 follows immediately from the following
Lemma.

LEMMA 3. For any tQ > 0 and ε > 0

lim pί sup
A^°° 1 M έ fc
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PROOF. From the second equality of (1.2) we have λmt =
t)m~l\/Bλ) and hence

(BλΓl/2{M(λt + βλ(t)m-lVBX) - M(λt}} = -βλ(t\

so an application of Lemma 2 yields βλ(t)(l +0(1)) + 0(1) = ~/̂ W> where
o(l) is a term tending to 0 uniformly on each finite ^-interval as λ —> oo,
a.s. This implies the lemma.

The following observation will lead to another proof of (ii) of Theorem
1. If v(t) denotes the inverse function of J0* θyfody, then v(t) = μ(2t) and the
derivative v'(i), which equals to l/θv(ήfo, is a stationary diffusion process
obtained from 0,/o by changing time and scale.

2. The proof of Theorem 2

We give the proof of the part (i). Taking an arbitrary positive sequence
{λn,n = 1,2, ...} tending to oo, we denote by P^ the probability law of
the process {λ~l/2(TλnX - λnmx),x > 0,^}. Note that />M is a probability
measure on the Skorohod space D = Z>[0, oo). For the proof of the part (i) it
is enough to show that pM converges to the probability law of the process
{\/Cw(jc),x > 0,P} as n -> oo. We first prove that the sequence [P(n\n > 1}
is tight. If Q$ denotes the probability law of the process {λ~l/2(TλnX - MλnX),
x > O,PH,}, then Q$ -> βι(P-a.s.) by Theorem A and hence βW = J Qw}P(dw)
also converges to Q\ as n — > oo where Q\ is the probability law (on D) of the
process {\fAw(x),x > O,/*}. All the convergence here is to be understood as
the convergence of probability measures on D. Therefore for any ε > 0 there
exists a compact set KI a D such that Q(n\K{} < ε2 for all n > 1. We then
have P{Ln} < ε where Ln = {H> : Q(^(KC

{) > ε} = {w : Q(J}(Kι) <l-ε}. We
also introduce, for each fixed w, an element φn(w) of Ω which is defined to
be the function λl

t/
2(M^nX — λnmx) of x. Then Poφ~l —> Q2 as n — > oo by

Theorem 1 where Qι is the probability law (on Ω) of the process {-\/Bw(x),
x > 0,P}. We can thus find a compact set KI c Ω such that Po φ~l(K2) < ε
for all n > 1. We now put K = {w\ -f W2 : w\ e K\, W2 e K2}. Then K is a
compact subset of D. Since

TλnX - λnmx TλnX - MλnX MλnX - λnmx

^/~λn \fλn ^/λn

we have
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= lκ(wl + φn

f ( l -
* 2 nL<

which proves that {P^, n > 1} is tight. Therefore, for the proof of Theorem 2
it is enough to show that

(2.1) Jim

for any function / of the form

f(w)
ί * 1

= exp\ V^ϊ Σ αM*f) f >
I 7=1 J

where α/ e R and // > 0, 1 < j < k. For such an / the left hand side of (2.1)
equals

Mm

= lim [ { [
π - > 0 0 J » r U D

which also equals the right hand side of (2.1). This completes the proof of (i)
of Theorem 2.

The part (ii) of Theorem 2 can be proved in a way similar to the above by
making use of Theorem A and Theorem 1.

3. Supplement to the proof of (i) of Theorem A

The proof of Theorem A was given in [7]; however, some details in the
proof of the part (i) were omitted. It will be worth supplementing them.

The proof of Theorem A given in [7] proceeds as follows. Let τ^ =
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Tk — Tfc-i, τ> = τk — Ew{τk}, k> I. Then it was proved that, for almost all
w, {τk,k > I,PW} is a sequence of independent random variables satisfying the
Lindeberg condition. Therefore the central limit theorem holds for Tn with
respect to PW) for almost all w. Note that Ew{Tn} = Mn and Varvv{7'n} ~ An
as n —> oo (P-a.s.). Now the rest of the proof, whose detail was omitted in [7],
is given as follows.

Let tnk = Vzrw{τk}/Varw{Tn}, ζnk = (An)~ll2{Tk - Mk}> \<k<n, and
tnQ = ζnQ = 0. For each fixed w we construct a piece-wise linear function ξn(x),
0 < x < 1, with vertexes (ΣJLo tφ ζnk), 0<k<n. We regard {£„(*),
0 < j t < 1,PW} as a process with time parameter x. Then by Theorem 3.1
of [5], for almost all w, the process {£„(.*),0 < x < l,Pw} converges in law to
a Brownian motion as n —> oo. We now modify ξn(x) slightly, namely, we
consider a piece-wise linear function ηn(x) with vertexes (k/n,ζnk), 0 < k < n.
Then ηn(x) can be represented as ηn(x) = ξn(φn(x)) where φn(x) is the piece-

wise linear function with vertexes k/n, Σ *nj } •> 0 < k < n. On the other hand
V y=o /

it is easy to see that, for each fixed x, φn —> x as n —> oo for almost all w. This
combined with the fact that φ is increasing implies that φn —> x uniformly as

n —» oo (P-a.s.). Therefore

the process {ηn(x),0 < x < l,Pw} converges in law
to a Brownian motion as n —> oo for almost all w.

We finally prove that the process {(Aλ)~l/2(Tλx - Mλx),x ε [0, l],Λv}
converges in law to a Brownian motion as λ —> oo for almost all w; the time
interval [0,1] can be replaced by an arbitrary interval [0, to] with a minor
modification of the proof. Given x e (0,1] and an integer n > 1 we take
the integer k such that (k- l)/n < x < k/n. Then Tnx - Mnx > Tk-\-
Mk > VAnηn(x) — τk — mk where mk = Mk — Mk_\. Similarly Tnx — Mnx <
\fAnηn(x) + τk + mk and hence

^/Anηn(x} - (τk -f mk) < Tnx - Mnx < VAnηn(x) -f (τk 4- mk).

This implies that for x e [0, 1]

(3.2) vΉnηn(x) - (τn + mn) < Tnx - Mnx < VAnηn(x) -f (τn 4- mn),

where τn = max{τA; : 1 < k < n} and mn = max{mA; : 1 <k<n}. Next, given
λ > 0 let n = n(λ) be the integer such that n - 1 < λ < n. Then T(n-\)x—
Mfo < Tχx — Mχx < Tnx — MΛX, which combined with (3.2) implies
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- (τn-ι + mn-\) - (Mλx - M(/ί_1)jc)

<T^- Mλx < VAήηn(x) + (τn + mn) + (Mnx - Mλx).

Since M^ - M(n-\}x and Mnx — Mχx are dominated by 2mn, we obtain

(3.3)

On the other hand we can prove that for almost all w

(3.4) P j l i m *„/>/» = θ) = l,
k/l— KX> J

(3.5) lim /Ha/V/i = 0.
-

In fact, it is easy to see that {τk,k> 1,0*} is stationary and ergodic. Since
n

τ\ is integrable we have n~λ J ^ τ | ^^ const, as n — > oo (^-a.s.) and hence
w"1^ -> 0, namely, w"1/2^ -> 0 (^-a.s.). This implies «~1/2τπ -> 0 (^-a.s.) and
hence (3.4). (3.5) can be proved in a similar manner. By virtue of (3.1), (3.4)
and (3.5) the processes of the leftmost and rightmost hands of (3.3) converge in
law to a Brownian motion as λ — * oo. Therefore (3.3) implies the assertion for
(Aλ)~l/2(Tλx - Mλx) that we wanted to prove.
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