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Introduction

This paper is concerned with orthogonality in normed spaces and geometric

structure of normed spaces as well as their dual spaces. The orthogonality

problem is to discuss the existence and properties of elements that are orthogonal

in an appropriate sense to a given closed subspace of a normed or Banach space,

and problems of this kind are important in connection with the geometry of normed

spaces. Our work is mainly devoted to two problems: The first aim is to seek

natural notions of orhtogonality in general normed spaces and the second purpose

is to investigate various geometric properties of Banach spaces as well as those of

incomplete normed spaces via the above notions of orthogonality.

Here we give a geometric interpretation of Riesz's Lemma in terms of duality

theory of normed spaces and make an attempt to generalize the notion of Birkhoff

orthogonality (see [2]) which is known as the most natural notion of orthogonality

in general normed spaces. So-called Riesz's Lemma states that given a proper

closed subspace M of a normed space X and a number ε e (0, 1) there is an element

xε of X satisfying | |xj = l and dist(xε, M)^l—ε. The standard use of Riesz's

Lemma indicates that the Lemma is solely employed to find an element of norm 1

at a positive distance from a given proper closed subspace of a normed space,

although the Lemma is directly related to the orthogonality problem in the

following sense: If ε = 0 can be taken in the Lemma, then the associated unit

vector x0 turns out to be orthogonal to M in the sense of Birkhoff.

On the other hand, the James theorem and the Bishop-Phelps theorem, both

of which are fundamental in Banach space theory, can be formulated as geometrical

results concerning the orthogonality problem. First the former theorem asserts

that a Banach space X is nonreflexive iff there is a hyperplane H in X such that

none of the elements of X is orthogonal to H. This means that it is impossible

to take ε = 0 in Riesz's Lemma if X is a nonreflexive Banach space. Now the

latter theorem ensures a geometric property which compensates for this situation.

Namely, the Bishop-Phelps theorem states that given a proper closed subspace M

of a nonreflexive Banach space we can find a hyperplane H which is as close as we

please to M and admits an element orthogonal to H. In other words, there is a

sequence of unit vectors xn, n = l, 2, 3,..., orthogonal respectively to hyperplanes
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Hn, n = l, 2, 3,..., which come close to M as n->oo in a certain sense. In this

paper we say that such a sequence is asymptotically orthogonal to M. This

observation leads us to a generalization of the Birkhoff orthogonality to closed

subspaces of Banach spaces. In terms of this new notion we establish an orthog-

onality theorem for proper closed subspaces of Banach spaces and give a

characterization of nonreflexivity of Banach spaces.

For incomplete normed spaces the Bishop-Phelps theorem is no longer valid

in general. In fact, there is an incomplete normed space X which contains a

proper closed subspace M with the property that none of the sequences of unit

vectors is asymptotically orthogonal to M in the above sense; and such situation

does happen even though the completion of X is reflexive. Hence it is an inter-

esting problem to explore other notions of asymptotic orthogonality which would

be adequate for general incomplete normed spaces. We here employ the geometric

aspect of Riesz's Lemma. Namely, given a proper closed subspace M of a normed

space X we choose a null sequence (εM) of positive numbers and a sequence (xn)

of unit vectors with dist(xn, M ) ^ l — εn for n = l, 2, 3,..., and we say that the

sequence (xn) is asymptotically orthogonal to M. We shall see that this asymp-

totic orthogonality is adequate to treat orthogonality problems in incomplete

normed spaces. An orthogonality theorem for proper closed subspaces of general

normed spaces is established by use of the generalized notion and reflexivity as well

as nonreflexivity of the completions of incomplete normed spaces are discussed.

Also, the structural difference between the unit ball of an incomplete normed space

and that of its completion is investigated in some detail. Moreover, it should

be mentioned that if a sequence (xn) of unit vectors is asymptotically orthogonal

to a proper closed subspace of a normed space X, then any weakstar cluster point

of (xn)9 viewed as a net in the second dual X**, has norm 1 and is orthogonal to

M in X** in the sense of Birkhoff.

In connection with the orthogonality problems as mentioned above, it is

interesting to investigate as to whether or not an incomplete normed space has

bounded linear functionals which do not achieve their norms. We here treat

important and typical classes of those incomplete normed spaces X such that

there exist functionals in X* which do not attain their norms.

If a Banach space X is nonreflexive, then X is regarded as a proper closed

subspace of its second dual Jf ** and it becomes another significant problem to

discuss the existence and properties of elements of X** orthogonal to X in the

sense of Birkhoff. If the orthogonality theorems as mentioned above would be

applied to this case, the fourth dual of X must be taken into account in order to

find elements orthogonal to X. These problems are therefore important in con-

nection with the structure of second dual spaces. We here introduce for a Banach

space X the set L(X) of all "left-orthogonal" elements to X and the set R(X) of

all "right-orthogonal" elements to X. Both of L(X) and R(X) are extremely
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complicated subsets of X** and their structures depend strongly upon the geo-
metric properties of X. The set L(X) is characterized by means of the duality
mapping of X**, while R(X) is related to the existence of the projection with norm
1 of X** onto X. Detailed properties of these sets are investigated and orthogonal
decompositions in a generalized sense of the second dual X** are discussed by
means of these sets. Moreover, using these results, we shall discuss the structure
of abstract (L) spaces and abstract (M) spaces. There are many open problems
concerning orthogonality in second dual spaces, and it is expected that significant
development will take place in this theory.

The present paper is organized as follows:
Section 1. Fundamental Results.
Section 2. Generalizations of Birkhoff's Orthogonality.
Section 3. Nonreflexive Banach Spaces and (£P)-Orthogonality.
Section 4. Incomplete Normed Spaces and (/^-Orthogonality.
Section 5. Orthogonality in Second Dual Spaces.

1. Fundamental results

We begin by preparing the following lemma that is fundamental in our
subsequent discussions.

LEMMA 1.1. Let X be a normed space, xeX, and letfe X*. Then we have

| /(x) |= dist(x, ker(/)) | |/ | | .

PROOF. It is sufficient to consider the case in which f(x) φ 0. Let υ e ker (/).
Then | | X - I ? M | / | | ^ | / ( X - I ; ) | = |/(JC)|. This means that dist(x, ker(/))• | | / | | ^
|/(x)|. To see the converse inequality, let yeX — ker(/). Then/(j>)τ£θ and

(i.i) \\y\\ = I/GO//(*)I II* - (*-(/(*)//O0)yll = I/O0//WI dist(x, ker(/))

since x-(f(x)lf(y))y eker(/). Therefore dist(x, ker(/))|/(j;)|^ \\y\\ |/(x)| for
any yeX, and we have dist (x, ker (/))||/|| ^ |/(x)|. q. e. d.

LEMMA 1.2. Let X be a normed space, M a proper closed subspace of X,
and let xeX. Then there is / e l * such that | |/| | = 1, Mcker(/) and
dist (x, M) = dist (x, ker (/)) =/(x).

PROOF. If x e M, then by the Hahn-Banach theorem there is/e X* such that
||/| | = 1 and Mcker(/); hence dist(x, M) = dist (x, ker (/))=/(x) = 0. Let
xeX — M. Then the Hahn-Banach theorem implies that there is geX* such
that M e ker (#), ^(x) = l and dist (x, M)=\\g\\~K Put/= \\g\\-ιg. Then | |/| | = 1,
Mczker(/), and dist(x, ker(/)) = |/(x)|=/(x) = | | ^ | | - 1 = dist (x, M) by Lemma
1.1. q.e.d.
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Lemma 1.2 is a geometric consequence of the Hahn-Banach theorem. Riesz's

lemma is obtained independently of the duality theory, although it is of some

interest to give a combined form of the lemma and Lemma 1.2:

PROPOSITION 1.3. Let X be a normed space, M a proper closed subspace

ofX, MΦ{0}, and let εe(0, 1). Then there is a pair (x,f) in XxX* such that

11*11 = 11/11 = 1, Mcker(/),

PROOF. Let yeX-M. Then d = άist(y, M)>0 and there is z e M such

that d(l + β/(l-ε))>| | j ;-z | |^d. Set x = (y-z)/\\y-z\\. Then ||x|| = l and

|| x — w | |^ l — ε for all weM, and this means that dist (x, M) ̂  1 — ε. Hence

Lemma 1.2 ensures that there is / e l * with | |/ | | = 1, Mcker(/) and /(x) =

dist (x, M) ̂  1 — ε. If dist (x, M) = 1 — ε then (x, /) is the desired pair. In case

dist(x, M ) > l - ε , we take x ' e M - { 0 } and define xt = [tx + (1 - t)x'~\/

||ix + ( l-Ox ' l | for ie[0, l ] . Since/(xo) = 0 and/(x 1 )>l-ε,/(x f ) = dist(x ί,M) =

1 — ε for some t. q. e. d.

If M = {0}, then ε = 0 can be taken in Proposition 1.3. We here recall the

notion of orthogonality in the sense of Birkhoff. An element x of a normed

spaceX is said to be orthogonal to an element yeX (denoted by x-Ly) if ||x + ocy\\ ^

||x|| for every scalar α. Likewise, x is said to be orthogonal to a subset M e l ,

and we write x±M if xly for every yeM. The above notion is related to the

problem of best approximation. Given an element xeX and a subset MczX,

an element me Mis said to be an element of best approximation of x (by elements

of M), if || x - m || = dist (x, M).

In particular, orthogonality to hyperplanes can be discussed via the theory

of bounded linear functional on normed spaces which do not achieve their norms.

Such functional may be studied through the duality mapping of X. The duality

mapping of X is a possibly multi-valued mapping F from X into X* which assings

to each x e l a closed convex subset of X* defined by F(x) = {feX*:f(x) =

II*II2=II/II2}. F(0) = {0}; and F(x) is non-empty for a n y x e l by the Hahn-

Banach theorem. A geometric interpretation of this fact is that for every point

x on the unit surface in X there exists at least one hyperplane which supports the

unit ball at x.

PROPOSITION 1.4. Let X be a normed space, M a proper closed subspace of

X, and let xeX — M. Then we have:

(a) An element meM is an element of best approximation of x iff

(x-m)lM.

(b) LetfeX*. Then x±keτ(f) ifffΦO and |/(x)| = | |/ | | ||x||.

(c) The element x is orthogonal to M iff there is geX* such that gφO,

g{χ)=\\g\\Λ\x\\ and
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(d) Let(xJ)εXxX*. ThenfsF(x) ifff(x)^0, \\f\\ = \\x\\ and x±ker(/).

Assertion (a) is readily seen from the definition of element of best approx-
imation. See [16, Lemma 1.14]. The proof of (b) is found in [10, Theorem 2.1]
and [6, Theorem 3 on page 25]. We here prove (b) and (c) via Lemmas 1.1 and
1.2.

PROOF. Let / e l * and fφO. Then it follows from Assertion (a) and
Lemma 1.1 that xlker(/) iff ||x|| = dist(x, ker(/))=|/(x)|/| |/ | | . This proves (b)
since x_l_ker(/) implies /V0. To show (c), assume x_LM. Then Lemma 1.2
ensures the existence of g e X* such that Mc:ker (g), \\g \\ = 1 and g(x) = dist (x, M)
= ||x||. Conversely, suppose that there is g e X* with the properties mentioned in
(c). Then xlker (#) by (b), and so x±M since Mcker(#). To show (d) it is
sufficient to consider the case in which x^O. If/eF(x), then/(x)>0, | |/| | =
||x||, and ||x + αy|| ^ \\x\\~1f(x + oίy) = \\x\\ for every scalar α and every yeker(/).
Conversely, if /(x)^0 and xlker (/) then /(x)= ||/| | ||x|| by (b). Hence, if in
addition | |/| | = ||x|| then/eF(x). q. e. d.

COROLLARY 1.5. Let X be a normed space. Iffe X* and f does not achieve
its norm, then no nonzero elements of X are orthogonal to ker(/). Conversely,
assume that there exists a proper closed subspace M such that none of the ele-
ments of X — M is orthogonal to M. Let g be any nonzero element of X* with
M e ker (g). Then g does not attain its norm.

PROOF. First note that/#O if/does not attain | |/| |. Suppose xlker (/)
for some x^O. Then it would follow from Proposition 1.4 (b) that |/(x)| =
11/11 ||x|| and/achieves its norm. This is a contradiction, and ker(/) admits no
nonzero elements orthogonal to it. Next, assume that there is a proper closed
subspace M such that none of the elements of X — M is orthtogoanl to M; and
let g e X*, g φθ and M e ker (g). Then Proposition 1.4 (a) implies that dist (y, M)
< 1 for y eX with \\y\\ = 1. Hence for each yeX with \\y\\ = 1 there exists veM
with | | > > - t ; | | < l , and so \g(y)\ = \g(y-v)\^\\g\\'\\y-v\\<\\g\\. This shows that

g does not attain its norm. q. e. d.

We now state a geometrical version of the James theorem.

THEOREM 1.6. Let X be a Banach space. Then the following are equiv-
alent:

( i ) X is reflexive.
(ii) For every proper closed subspace M of X there is an element x e X — M

such that dist(x, M)=||x| |.
(iii) For every proper closed subspace M ofX there is an element xeX — M

such that xJ-M.
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(iv) For every closed subspace M with codimension 1 there is a non-zero
element xeX with dist(x, M)= ||x|| (or equivalently, x±M).

The fact that (i) and (ii) are equivalent is stated in Diestel [7, p. 6]. We
here give the proof by use of Lemma 1.1.

PROOF. It is clear from Proposition 1.4 (a) that (ii) and (iii) are equivalent.
Assume that X is reflexive, and let M be any proper closed subspace of X. Then
there is/e X* with | |/| | = 1 and Mczker (/) and, by the reflexivity of X, there exists
x e X such that || x || = 1 and f(x) = 1. Hence 1 =/(*) =f(x - v) ̂  || x - v || for υ e M,
and so dist(x, M) = l. This shows that (i) implies (ii). Conversely, suppose
that (ii) holds. Let / be any element of X* with | |/| | = 1 and put M = ker(/).
Then M is a closed subspace of X with codimension 1, and so by condition (ii)
there exists SLΏXGX — M such that || x || = 1 and dist (x, M) = 1. Therefore Lemma
1.1 implies that |/(x)| = 1 = | |/| |. This means that every feX* achieves its norm.
The James theorem can now be applied to conclude that X is reflexive. q. e. d.

Structure and topological properties of the duality mapping of a nonreflexive
Banach space are extremely complicated in general. For a typical example of
such duality mapping we refer to the work of Hada, Hashimoto and Oharu [9].

We finally give an example which illustrates Proposition 1.3 and Theorem 1.6.

EXAMPLE. Let X be the subspace of C[0, 1] consisting of all continuous
functions x on [0, 1] such that x(0) = 0. We then define a linear functional / on

X byf(x) = \ x(s)ds for xe X, where the integral is taken in the sense of Riemann.

Then | |/| | = 1 and ker(/) = {xeX: Γ x(s)ds = 0}, although/ does not achieve its
Jo

norm 1. See [17, p. 96]. Therefore, it follows from Theorem 1.6 that there is
no point on the unit surface in X at unit distance from ker (/). In other words,
for every point x on the unit surface in X the origin 0 can not be an element of
best approximation of x. The closed subspace M = ker(/) is a well-known ex-
ample which shows that ε = 0 can not be taken in Proposition 1.3.

2. Generalizations of Birkhoff's orthogonality

If a Banach space X is nonreflexive, there is a proper closed subspace M of X
such that none of the elements of X is orthogonal to M. In this section we make
an attempt to generalize the notion of orthogonality in the sense of Birkhoff in
order to formulate a natural orthogonality theorem for arbitrary proper closed
subspace. Namely, we introduce two notions of asymptotically orthogonal
sequences to proper closed subspaces of a normed space in connection with the
Bishop-Phelps theorem and Riesz's Lemma and we investigate the relationship
between the two basic theorems in terms of the generalized notions of
orthogonality.
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DEFINITION 2.1. Let M be a proper closed subspace of a normed space X.
A sequence (xn) in X with | |xj =1 is said to be {BP)-orthogonal to M and we
write (xπ)±BPM, if it satisfies the following conditions:

(i) There is a sequence (/„) in X* with/„ e F(xn) for each n.
(ii) There exists feX* such that | |/| | = 1, Mcker (/), and lim | |/ π -/ | | =0.
If M is a proper closed subspace of X and x_LM for some x with ||x|| = l,

then the constant sequence (xn) with xn = x is orthogonal to M in the above sense.
In fact, Proposition 1.4 (c) implies that there i s / e Z * such that | |/| | = 1, M e
ker(/) and/(x)=l. Since dist(x, M)=||x| | = l, both conditions (i) and (ii) are
satisfied for the constant sequence (/„) in X* with fn = f. Moreover, we see from
Lemma 1.1 that conditions (i) and (ii) together imply lim dist (xπ, ker (/)) = 1
and limf(xn) — l. In this sense the (i?P)-orthogonality is regarded as a generali-
zation of the notion of Birkhoff orthogonality.

We then show that a strightforward extension of Theorem 1.6 to the case of
general Banach space is obtained in terms of (βP)-orthogonality. First we observe
the following fact which is an easy consequence of the definition of subreflexivity
and the Hahn-Banach theorem.

PROPOSITION 2.1. Let X be a normed space. Then X is subreflexίve iff
for every proper closed subspace M there is a sequence (xn) in X with | |xj = l
which is (BP)-orthogonal to M.

Thus the Bishiop-Phelps theorem implies the following orthogonality theorem.

THEOREM 2.2. Let X be an arbitrary Banach space. Then for every proper
closed subspace M there is a sequence (xn) in X with | |xj = l which is (BP)-
orthogonal to M.

Let (xπ) be a sequence in X. In what follows, we denote by ω*(xπ) the set of
all weak-star cluster points of (xw) which is viewed as a net in X**. The following
fact is useful in the subsequent arguments:

LEMMA 2.3. Let / e l * , | |/| | = 1, and let (xπ) be a sequence in X with
| |xj| = l. Then lim/(xπ) = l iff ω*(xπ)cF*(/), where F* denotes the duality
mapping of X*.

PROOF. First assume that lim/(xπ) = l, and let λeω*(xn). Then there is a
subsequence (xπ(fc)) such that l=lim/(xπ ( k )) = A(/). But | |λ | |^l, so l=λ(f)^
||A|| | | / | | ^ 1 . This means that λeF*(f). Conversely, suppose that ω*(xπ)c
JP*(/), and that there exists a subsequence (xM(fc)) and ε0 e (0, 1) such that/(xπ ( k ))^
1—ε0 for fc^l. Let Λ, e ω*(xπ(fc)). Then /L(/)^l —ε0. However, λeω*(xn)c
F*(f) by the hypothesis; hence A(/) = l. This is a contradiction, and it is con-
cluded that lim/(xπ) = 1. q. e. d.
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REMARK 2.1. In connection with Lemma 2.3, we see from Lemma 1.1 that
lim dist (xπ, ker(/)) = l iff lim |/(xM)| = l. This suggests that the Hahn-Banach
theorem and Lemma 1.1 together prove Riesz's Lemma in a different way. In
fact, let M be a proper closed subspace of X. Then there is fe X* with | |/| | = 1
and Mcker(/) by the Hahn-Banach theorem. Hence there is a sequence (xπ)
in X with 1 = ||/| | =lim/(xπ), and so it follows from Lemmas 1.1 and 1.2 that
that lim dist (xn, ker (/)) = 1. This gives another proof of Riesz's Lemma.

The next proposition gives a variant of Proposition 1.4 (d).

LEMMA 2.4. LetfeX*, \\f\\ =1, and let F* be the duality mapping of X*.
If λeF*(f), then λ±ker(f) in X**, where ker(/) is understood to be a subspace
of X** via the natural embedding of X into X**.

PROOF. Let/= κ*f where K* is the natural embedding of X* into χ***9 and
let F** denote the duality mapping of X**. Then λ e F*(f) iff/e F**(λ). Hence,
if λeF*(f) then /l±ker(/) in X** by Proposition 1.4 (d). Therefore, λeF*(f)
implies Λ,±ker (/) in X** since ker (/) c=ker (/). q. e. d.

The above observations lead us to another notion of orthogonality in normed
spaces.

DEFINITION 2.2. Let M be a proper closed subspace of a normed space X.
A sequence in X with | |xj = 1 is said to be (φ-orthogonal to M if there is an
/ e l * with | |/| | = 1 such that Mc=ker(/) and ω*(xπ)cF*(/); and we write
(xn)±RM.

By virtue of Lemma 2.4, (φ-orthogonality can be regarded as a generali-
zation of the Birkhoff orthogonality. The next result illustrates the asymptotic
orthogonality in the sense of Definition 2.2.

PROPOSITION 2.5. Let X be a Banach space, M a proper closed subspnce
of X, and let (xn) be a sequence in X with | |xj =1. If X is uniformly convex,
then the following are equivalent:

( i ) (xn)±RM.
(ii) lim \\xn — x\\=0 for some xeX; and xl.M.
(iii) lim dist (co{xfc: k^n}, M)= 1.

PROOF. Suppose (i). Then, by Lemma 2.3, there is/e X* such that | |/| | = 1,
Ma ker (/) and lim/(xπ) = l. Since X is reflexive, there is xeX with ||x|| = l
and/(x) = l. Hence x±M by Proposition 1.4 (d). Now lim/(2-1(xπ + x)) = l,
and so liminf μ ^ f o + x)!! = 1. This means that lim ||2-1(xn + x)|| = 1. The
uniform convexity of X then implies lim ||xw —x|| =0. Thus (ii) is obtained.
Conversely, let (ii) hold. Then one finds / e l * with | |/| | = 1, /(x) = l and
Mczker(/). Hence lim/(xπ) = l5 and (xn)LRM. If (ii) holds, then we have
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lim dist (co {xk: fc^n}, M) = dist(x, M) = l, which yields (iii). Finally, assume

that (iii) holds. Since ||2-1(xm + xπ)|| ^dist(2" 1 (x m + xπ), M) ̂  dist (co {xk:

k^m}9 M) for l ^ m ^ r c , we have limm π | |2"1(xm + xn)|| = 1. The uniform con-

vexity of X can then be applied to get limm π ||xm — x j = 0 . So, the limit x =

lim xn exists and dist(x, M) = lim dist (co {xk: fc^n}, M) = l ; hence xλM by

Proposition 1.4 (a). q. e. d.

The following result is directly derived form Definition 2.2 and Lemma 2.4

and it also justifies the notion of (Λ)-orthogonality.

PROPOSITION 2.6. Let M be a proper closed subspace of a normed space

X and (xn) a sequence in X with | | x j = l . If (xn)±RM, then every weakstar

cluster point λ of (xw), viewed as a net in X**, has norm 1 and is orthogonal to

M in X**. Moreover λ(f) = l.

We have seen that conditions (i), (ii) imply lim/(xπ) = l. Hence we infer

from Lemma 2.3 that (BP)-orthogonality implies (/^-orthogonality. Moreover,

as is seen from Proposition 2.1 and Theorem 4.1 below, Theorem 2.2 need not

be valid for incomplete normed spaces. However, we obtain the following

orthogonality theorem in terms of (#)-orthogonality.

THEOREM 2.7. Let X be a normed space. Then for any proper closed

subspace M of X there is a sequence (xn) in X with \\xn\\ = 1 such that (xn)±RM.

PROOF. Let M be a proper closed subspace of X. Then, as mentioned in

Remark 2.1, there exists a sequence (xn) in X and / e l * such that | |/ | | = 1,

M cz ker (/) and lim/(xπ) = 1. Hence ω*(xn) c F*(f). This means that (xn)±RM.

q. e. d.

Combining Proposition 2.6 and Theorem 2.7, we obtain the following result

that is parallel to Theorem 1.6, (iii).

COROLLARY 2.8. Let X be a normed space. Then for every proper closed

subspace M of X there is an element λeX** such that λLBM in X**.

We have thus introduced two generalized notions of orthogonality in normed

spaces. We expect that these notions will be applied to nonlinear functional

analysis.

Finally, in the remainder of this section, we make some observations which

suggest that problems on (φ-orthogonality to proper closed subspaces in normed

sapces can be passed to those on BirkhofΓs orthogonality in certain sequence

spaces.

Let X be a normed space and M a subspace of X. Let m{X) (resp. m(M))

be the space of all bounded sequences in X (resp. M). We now consider the
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mapping φ which assigns to each xeX a, sequence (xn) with xn = x. For (xn)e

m(X) we define

p defines a seminorm on the linear space m(X) and p~ι({0}) is a subspace of

m(X) which consists of sequences converging to 0. We denote the quotient-

space m{X)lp-1{{0}) by £ and define the subspace M={xe$: X3(xn),

(xn) e m(M)}. On £ one can define a norm by

\W\=p((Xn)l (xn)ex9xeX.

Also, let φ be the mapping which assigns to each xeX the element x with φ(x)ex.

Then ||000II =P(ψ(χ))= \\χ\\ ft>r xeX, and so X is isometrically embedded into £ .
On the other hand, m(X) becomes a normed space under the supremum norm

IIWII = supJIxJI, (xn)em(X).

The space m(X) equipped with the supremum norm is sometimes denoted by

£CO(X) and M is isometrically embedded into m(M) with respect to the above

norm since ||<jφ0lloo = IMI f° r ^ ^ M .
Employing the above spaces, we obtain the following result.

PROPOSITION 2.9. Let M be α proper closed subspace of a normed space

X and (xn) a sequence with \\xn\\ = l. Then the following are equivalent:

( i ) (xn)±RM.

(ii) There exists feX* such that ||/|[ = 1, M c k e r ( / ) , f(xn)^0 for n

sufficiently large, and (xn(fc))J_m(ker (/)) for any subsequence (xπ(fc)) of (xn).

(iii) There ίsfeX* such that \\f\\ = 1, M c k e r (f)J(xn)^0for n sufficiently

large, and £±(ker(/)) Λ for any ϋe% containing a subsequence of (xn), where

(ker (/)Γ = {xeX:x3 (xn), (xn) e m(ker (/))}.

To prove the above proposition, we need the following lemma.

LEMMA 2.10. We have:

(2.1) inf(yn)ew(M) lim i n f ^ \\xn + yn\\ = lim s u p ^ ^ inf^M ||xΛ + y\\.

(2.2) inf(yn)em(M) supπ ||JCB + yn\\ = supMinfyeM ||xπ + j ; | | .

PROOF. We here give the proof of (2.2). The relation (2.1) is similarly

verified. First, given ε > 0 and n, there is yε

neM such that infyeM ||xπ + ) i +

ε > \\Xn + Λ\\' Then (y*χ=ι e m(M) and

supM inf^M ||xπ + y\\ + ε ̂  supπ ||xn + yεj ^ inf(3,n)6m(M) supπ ||xn + yn\\.

Since ε > 0 is arbitrary, we infer that the left side of (2.2) is not greater than the
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right side. To show the converse inequality, we observe that infyeM ||xn

\\xn + yn\\ for every (yn)em(M). Hence supΛinf^M | |xB + ); | |^supn ||xn + ̂ ll for

(yn) e m(M), from which it follows that the left side of (2.2) does not exceed the

right side. Thus, we obtain the relation (2.2). q. e. d.

PROOF OF PROPOSITION 2.9. Suppose that (xn)lRM. Then there i s / e X *

such that 11/11 = 1, M c k e r ( / ) and limnf(xn) = l. Let (xn(k)) be any subsequence

of (xn). Since | |/ | | = 1, we have \\(xn(k)) + (yk)\\ao ^ supk \f(xnih))+f(yj\ =

sup* |/(xΛ(k))| = 1 for every (yk) e m(ker (/)). This means that (xπ(fc))±m(ker (/))

and (ii) is obtained. Conversely, assume that (ii) holds. In view of Lemma 2.3,

it is sufficient to show that \imnf(xn) = l. suppose there is a subsequence (xπ(fc))

and a constant c e (0, 1) such that 0 g f(xn(k)) ^ c for all k. Since (xM(fe))± m(ker (/))

in £™(X), Lemmas 2.10 and 1.1 imply that 1 = dist ((xn(fc)), m(ker (/)) = supfc

dist (xw(fc), ker(/)) = supfc/(xw(fc)). This is a contradiction, and we must have

limnf(xn) = 1. The equivalence between (i) and (iii) is similarly proved. q. e. d.

3. Nonreflexive Banach spaces and (BP)-orthogonality

We begin with the following theorem which is a restatement of Theorem 1.6.

THEOREM 3.1. Let X be a Banach space. Then the following are

equivalent:

( i ) X is nonreflexive.

(ii) There exists / e l * which does not achieve its norm.

(iii) There exists a proper closed subspace M such that none of the ele-

ments of X is orthogonal to M.

In contrast with the assertions of Theorem 3.1, we showed in the preceding

section that for every proper closed subspace M of X there is a sequence (xn)

such that H'xJI = 1 and (xn)±BP M even if X is a noreflexive Banach space. In

this section we discuss some typical properties characteristic to nonreflexive

Banach spaces.

First the following result is deduced from Theorem 2.7, Proposition 2.6

and Theorem 3.1.

THEOREM 3.2. Let X be a nonreflexive Banach space. Then there is a

proper closed subspace M of X and a sequence (xn) in X such that (xn)lBP M,

and every weak-star cluster point λ o/(xn), viewed as a net of X**, is orthogonal

to M in the second dual X** but never lies in X.

REMARK 3.1. It should be noted that the orthogonality theorems, Theorems

2.2 and 2.7, hold for proper closed subspaces of Banach or normed spaces, and

that Corollary 2.8 as well as Theorem 3.2 are fomulated in the second dual spaces
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even though the proper subspaces are contained in the original normed or Banach
spaces. It is also interesting to investigate elements of X** which is orthogonal
to the canonical embedding of X, and this problem will be discussed in Section 5.

THEOREM 3.3. A Banach space X is nonreflexiυe iff there is a proper closed
subspace M of codimension 1 such that any (BP)-orthogonal sequence to M does
not converge weakly to an element of X.

PROOF. Let X be reflexive and M an arbitrary subspace of X. Let (xn) be
any sequence in X which is (J5P)-orthogonal to M and let a sequence (/„) in X*
and an element fe X* satisfy conditions (i) and (ii) stated in Definition 2.1. Then
(xn) contains a subsequence (xπ(ί)) converging weakly to some element xeX.
Hence we have | /(x)- l | = |/(x)-/M ( O(xn ( O)|^|/(x-xM ( O)| + ||/-/M(/) | | for each i.
Since the right side goes to 0 as ΐ-»oo and | |x | |gl, it follows that/(x) = l and
||x|| = 1. This proves the "if" part. In order to prove the "only if" part assume
that X is nonreflexive and every proper closed subspace M of codimension 1
admits a (2?P)-orthogonal sequence (xn) which is weakly convergent in X. Now
let M be such a closed subspace, (xn)±BP M, and assume that the sequence (xn)
converges weakly to some xeX. Further, let fe X* and a sequence (/„) in X*
satisfy conditions (i) and (ii) in Definition 2.1. Then M = ker (/) since M c ker (/)
and codimM=l. Hence Lemma 1.1, together with conditions (i) and (ii),
implies that 1 ̂  f(xn) ^ dist (xw, M) for n sufficiently large. Thus /(x) =
\\mnf(xn) = l, and Proposition 1.4 ensures that x±M. Since M is an arbitrary
closed subspace of X with codimM = l, Theorem 1.6 can be applied to conclude
that X is reflexive. This is a contradiction, and the "only if" part is proved.

q. e. d.

Finally we give an example which illustrates the assertion of Theorem 3.2.

EXAMPLE. Let X be the real sequence space £ί. Then X* and X** are
respectively identified with the sequence space °̂° and the space ba of bounded,
finitely additive measures on the power set Σ of the set of all positive integers N.
We now take any monotone increasing sequence (ξk) with 0<ξ f c <l for keN
and limΛ£fc = l, and define a functional feX* by f(x) = Σξkηk for x = (ηk)e£ί.
The functional / does not achieve its norm since \f(x)\<^Σξk\ηk\<Σ\ηk\ = ||x||x
for x = (ηk)eX-{0} and | | / |L = ||«*)|L = 1. Hence, by Corollary 1.5, ker(/)s=
{xeX: x = (ηk), Σξkηk = O} admits no nonzero elements orthogonal to it. We
then find a sequence ((xπ, /„)) in X x X* with properties (i) and (ii) as mentioned
in Definition 2.1 and show that all of the weak-star cluster points in ba of the net
(xw) are purely finitely additive measures on Σ. For each ne N, we define xne X
by xn = (δn,k\ <$„,* being Kronecker's delta, and define fn = (ξn>k) by setting ξn>k = ξk

for l^k^n-1 and ξΛtk = l for k^n. Then lim | |/ π -/ | | 0 0 = l i m ( 1 - ^ = 0 and



Orthogonality in normed spaces 291

II*J l = II/niloo =/»W = 1 for all n e N. Let P be the set of all weak-star cluster
points of the net (xn) in ba. We demonstrate that P is precisely the set of all purely
finitely additive 0-1 measures. First let λ be any purely finitely additive 0-1
measure. Then we infer from Proposition 2.4 in [9] that for every g = (ξn)e £^
the value λ(g) is given as a cluster point of the bounded sequence (ζn). But g(xn) =
ζn for neN; hence it follows that λeP. In particular, ||A|| = 1 and Λ(/) = lim
f(xn) = \imξn = l. Next, let λ be any element of P. Then, by [9, Lemma 7.2],
λ is also a 0-1 measure since each xn is regarded as a point mass δn in the sense
that δn(E) = l if neE, δn(E) = 0 if nφE, and δn(g) = g(xn) = ζn for g = {ζn)eΓ.
See [9, page 77]. Hence it suffices to show that λ is purely finitely additive. Let
E be any finite set in Σ and let χE denote the sequence (yk) such that y k =l for
keE and γk — 0 for ke N—E. Then χEe β™ and (χE(xn)) forms a sequence such
that lim χE(xn) = 0. But λ(E) is a cluster point of the sequence (χE(xn))9 so λ(E) = 0.
Thus it follows from Propositions 2.1 and 2.2 of [9] that λ is purely finitely
additive. Finally, Theorem 3.2 implies that A±ker(/) in ba.

4. Incomplete normed spaces and (R)-orthogonality

In this section we discuss various orthogonality problems in incomplete
normed spaces. In case a normed space X is incomplete, orthogonality theorems
such as Theorems 1.6, 2.2, 3.1 and 3.3 are no longer obtained. We here make an
attempt to characterize reflexivity as well as nonreflexivity of the completions of
incomplete normed spaces in terms of (R)-orthogonality. Moreover, if a normed
space X is incomplete then Theorem 1.6 is not applicable; and it is a new problem
to investigate as to whether or not there exists a bounded linear functional on an
incomplete normed space which does not achieve its norm. In the latter half
of this section we shall find an important class of incomplete normed spaces X
such that there exist elements in X* which do not attain their norms.

The following result together with Proposition 2.1 shows that for an in-
complete normed space X, Theorem 2.2 need not be valid and in such a case one
can find/e X* which does not achieve its norm on X even though the completion
of X is reflexive.

THEOREM 4.1. Let X be a real normed space. Then X is incomplete iff
there is a normed space Y that is isomorphic to X but not subreflexive.

PROOF. The "if" part is obvious from the Bishop-Phelps theorem. In
order to prove the "only if" part, we employ the idea of Bishop and Phelps [4,
p. 31]. Let X be incomplete. Since X is a proper subspace of the completion
X there exists & in Jt-X such that ||ϋ|| = l. By the Hahn-Banach theorem,
one can find / in 1 * (= X*) such that || /1| = 1 =/(*). Let D = {$: j> e 1 , || $ \\ ^ 1
and/(j)) = 0}, C = {i: i = λx + (l-λ)p, peD and Ae[0, 1]}, and define 6 = Cu
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(-<ί) = {αx + j8j>:. |α| + |/?| ̂ l , peD}. Then it is easily seen that B is absolutely
convex, bounded, closed and the interior of B contains 0. Let B = B n Xι Then
B is also absolutely convex, bounded, closed and 0 is an interior point of B relative
to the subspace X. Hence the gauge function ||| ||| on % induced by 6 gives a
norm on £ that is equivalent to the original norm || |[. Hence there is α> 1
such that α||21| ̂  |||z||| ^ ||z|| for all z e l . We then denote by 7the space X with
the norm ||| |||. It is clear that X is isomorphic to 7. Regarding the above-
mentioned functional/as an element of 7* (= 7*), we will show that if |||/— g ||| ==
sup(/-^)(B)<l/2α and ge 7*, then |||^||| = g{x)>g(x) for every xeB. To this
end, we first note that g{x) > 0 and g(x - j>) > 0 for every p e D. In fact, \f(x -p)-
0(*- j>) |^2 | | /-0 | |^2α | | | /-# | | |< l for peD. Let t be any element of B. If
£ is represented as Z = λx + (l— λ)p for some $eΰ and λe[0, 1], then we have
g(z-*) = (1 -λ)g($-x)^0 and g(z)^g(x). Thus g(ϊ)^^(j^) for every ieβ
and f̂(Ĵ ) = sup g(B) = sup g(B)= |||^|||. Let x be any element of B. Suppose
first that x is represented as x=λx + (1 —/l)j) for some peD and λe [0, 1]. Since
x£B,xΦx and we have λ< 1. Hence we have 0(x) = (l~A)gf(j)-x) + ̂ (x)<^(x)
since ^(^ — x)<0. Next, if x is represented as x = λ{ — x) + (1 — λ)p ΐox some pep
and Λe[0, 1], then λ<\ by the same reason as above and we have g(x) =
(1 -λ)g(p-x)-2λg(x) + g(%)<g(x). Thus g(x) = sup^(5)>^(x) for every xeB,
and it is concluded that if | | | # - / | | | <l/2α and g e 7*, then ||]gr||| > όf(x) for every
xeB. This shows that 7is not subreflexive. q.e.d.

REMARK 4.1. Every pre-Hilbert space is subreflevive. Hence the above
theorem does not assert that no incomplete normed spaces are subreflexive.
However the theorem implies the following interesting fact: There are "many"
normed spaces such that the completions are reflexive but the normed spaces
themselves are not even subreflexive.

Theorem 4.1 suggests that (Λ)-orthogonality might be more adequate than
(J5P)-orthogonality to treat orthogonality problems in incomplete normed spaces.
In fact, we have the following result.

THEOREM 4.2. Let X be an incomplete normed space and let Hί be the
completion of X. Then the following are equivalent:

(i)' £ is reflexive.
(ii)' For every proper closed subspace M of X, there exists a Cauchy

sequence (xn) in X such that | |xj = 1 and lim dist (xM, M) = l.

PROOF. First assume that X is reflexive. Let M be any closed and proper
subspace M of X; hence the closure M in % of M is a proper subspace of %.
Then, by Theorem 1.6, there is an x e $ - M satisfying ||x|| = 1 and dist (£, M)= 1.
Hence one can choose a sequence (xn) in X so that ||xj| = 1 and lim ||xn —x|| =0.
Since M is dense in M, we have lim dist (xΛ, M) = lim dist (xM, jQ) = l. Thus (i)'
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implies (ii)'. Conversely, suppose that (ii)' holds and let / be any element of
1* with ll/ll =1. Let/ be the restriction of/ to X. Then feX*, \\f\\ = 1, and
M=Ξker(/)^Z. Hence condition (ii)' implies that there is a Cauchy sequence
(xn) in X with | |xj = 1 and limdistOc,,, M) = l. Thus the Cauchy sequence (xπ)
converges in % to some Ίt and, by Lemma 1.1, we have 1 = lim dist (xM, M) =
lim |/(xw)|=lim |/(xw)| —1/(^)|. This means that every element feX* attains
its norm, and so Theorem 1.6 can be applied to conclude that % is reflexive.

q. e.d.

REMARK 4.2. If % is weakly sequentially complete, then condition (ii)' can
be replaced by the following weaker condition:

(iiiy For every proper closed subspace M of X, there is a weak Cauchy
sequence (xM) in X which is (R)-orthogonal to M.

REMARK 4.3. In an incomplete normed space condition (ii) stated in Theorem
1.6 implies condition (ii)'. Hence if conition (ii) holds, then its completion is
reflexive. However the converse is not always true even if the incomplete normed
space is an inner product space. In fact, we infer from Proposition 4.6 below that
the converse does not hold whenever X is a pre-Hilbert space.

EXAMPLE. Let ί = {xeC[0, 1]: χ(0) = 0} and define an inner product on

X by (x, y) = \ x(s)y(s)ds for x, yeX, where the integral is taken in the sense of
Jo

Lebesque. Then X becomes an incomplete inner product space and the real

Hubert space X = I?(09 1) is understood to be the completion of X. Let M =

jzeC[0, 1]: {* z(s)ds = θ\. Then there is no element xeX such that x±M.
In fact, suppose that xeX, \\x\\ =(x, x) 1 / 2= 1, and (x, z) = 0 for all zeM. Then
x is orthogonal to the closure M of M, and Λ? is regarded as the set of all Lebesgue
measurable functions y on [0, 1] such that y2 is Lebesgue integrable over [0, 1]

r l
and \ y(s)ds = 0. We shall demonstrate that x(t) = a on (0, 1) for some oceR

Jo

with |α| = l, which contradicts the assumption that xeX. Suppose that x(^)<
x(t2) for some tl9 t2ε(0, 1), where we may assume that tί<ί2. Let 0<ε<
(x(t2)-x(t1))/3. Since xeC[0, 1], there is (5 = <5(ε)e(O, min {tl9 t2-tu l-t2})
such that \t — t'\<δ implies |x(0~x(ί')|<ε. We then define a step function y
on [0, 1] by setting y(s) = l/ljd for seltί-δ, t^δ], y(s)=-1/2^/1 for se
[*2 —<5, *2 + <5] and y(s)=0 otherwise. Then yeM, and so 0 = (x, y) =
Γδ

\ (x(tί + ξ)-x(t2 + ξ))dξ<-2δξ<0, a contradiction. This shows that x is
j-δ

constant on (0, 1). Let x(t) = oc on (0, 1). Then l = ||x|| = |α|. However this is
impossible because x e C[0, 1] and x(0) = G.

The next result is a restatement of Theorem 4.2 and corresponds to Theorem
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3.3. It may be of some interest to combine the assertion with Theorem 3.2.

COROLLARY 4.2. Let X be an incomplete normed space. Then % is non-
reflexive iff there is a proper closed subspace M of X such that any sequence
(xn) with (xn)±RM is not Cauchy in norm.

As mentioned in Corollary 1.5, the Birkhoff orthogonality to proper closed
subspaces of normed spaces can be studied through norm-attaining functional
on the normed spaces. In the rest of this section we discuss important and typical
classes of incomplete normed spaces X such that there exist functional in X*
which are not norm-attaining.

In what follows, let X be an arbitrary but fixed incomplete normed space and
let £ denote the completion of X. First suppose that X is nonreflexive. Then
Theorem 3.1 states that there i s / e £ * which does not achieve its norm. Hence
the restriction/of/to X belongs to X* and does not achieve its norm. It thus
suffices to consider the case in which X is reflexive. However it is extremely
difficult at this moment to study the reflexive case in a general setting. We here
treat two typical classes of incomplete normed spaces.

PROPOSITION 4.4. Let X be a real normed space. If there exists a strictly
increasing sequence (xn) of non-trivial closed subspaces of X such that X =
U nXn9 then there exists anfeX* which does not attain its norm.

By Baire's category theorem a normed space as mentioned in the above
proposition is necessarily incomplete and is known as a typical example of in-
complete normed spaces. To show this proposition, we need the following lemma.

LEMMA 4.5. Let X be a real normed space and Ya proper closed subspace
of X. Then for each η>0 and each geX* there is fηeX* such that fη(y) =
g(y) for ye Yand\\fη\\x=\\g\\γ + η.

Proof Let geX* and η>0. Choose any x o e X - Y a n d for every teR

define a linear functional gt on the direct sum Z = Y®\_xo~] by gt(ax0 + y) = oct + g(y)

for cue R and y e Y. Then each gt is continuous on Z. Moreover dist(x0, Y)>0

and \gt(<xx0 + y)-gΛ*Xo + y)\ = \<t-t')\^(\\ocx0 + y\\ldist(x0, Y))\t-t'\ for every
ί, t\ oceR and yeY; so that | | ^ - ^ | | z ^ | ί - ί Ί / d i s t ( x 0 , Y). Therefore | |^ t | |z

is continuous on R with respect to t. First we see in the same way as in the proof
of the Hahn-Banach theorem that there exists a toeR such that ||^ίo||z=ll^lly
Next, we have lim^oo ||^ίllz=oo. Hence the application of the mean-value
theorem implies that there exists t(η)e R such that ||^f(^)||z=::ll^llr + ̂  Hence by
the Hahn-Banach theorem one finds fηeX* such that fη(x)=zgt(η)(x) for all

q.e.d.

PROOF OF PROPOSITION 4.4: Take any f1eXf. Then by Lemma 4.5 there
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exists / 2 eXf such that \\f2\\x2=\\fi\\xί + ll2 and /2(x)=Λ(x) for x e l , In-
ductively we can choose for every n ^ l an/ π eXJ such that/M+I(x)=/Λ(x) for
xeXn and \\fn+i\\xn+ι = \\fn\\xn+ll2n We then define a functional / o n X by
putting f(x)=fn(x) if x e l π . The functional / is well-defined and we have
sup{|/(x)|: xeX, \\x\\=l} = sup\\fn\\Xn=\\f1\\Xί + l. Then/eX* and it remains
to show that / does not attain its norm. From the way of construction of the
functional /„, n ^ l , we see that \\f\\χ=\\f\\Xί + l> \\fn\\xn for n ^ l . Hence, if
xeX and ||x|| = 1 then xeXn for some n and |/(x)| = |/π(x)|<\\f\\χ9 which means
that / is not norm-attaining. q. e. d.

PROPOSITION 4.6. Let X be an incomplete normed space such that the
completion $ of X is strictly convex. Then there exists feX* which does not
achieve its norm.

PROOF. Take any element xet-X with ||*|| = 1. Then by the Hahn-
Banach theorem one finds /eJf*- {0} such that }{x) = ||/1| ||x \\ = || /1| Suppose
then that /(x)=| |/ | | for some xeX with ||x|| = l. Then, since xφx and %
is strictly convex, we would have | |/ | | =2- 1. | |/ | | + 2-1 | |/| | =f'1(2-1(x + £))^
11/11 p - ^ x + ̂ IMl/ll . But this is impossible, and it is concluded that /(x)<
jl/ll for every xeX with ||x|| = l. Let / be the restriction of/ to X. Then
11/11 = 11/11 and/(x)<| |/ | | forxeX with | |x | |=l . q.e.d.

REMARK 4.3. The above proof tells us more than the statement of Proposition
4.6, namely: To each point x in % — X there corresponds a funciotnal / e l *
that is not norm-attaining. This fact is interesting since many of well-known
function spaces are strictly convex. Finally, we note that there exists an incom-
plete normed space Zsuch that each fe X* achieves its norm. See James [12].

5. Orthogonality in second dual spaces

In this section we are concerned with the orthogonality in second dual spaces.
As mentioned in Remark 3.1, the orthogonality theorems we have established so
far are all formulated for proper closed subspaces of a given normed or Banach
space. However, if a Banach space X is nonreflexive, X itself is regarded as a
proper closed subspace of its second dual X** and it turns out to be a new inter-
esting problem to make a detailed study of elements of X** orthogonal to X.
In fact, if we wish to apply the orthogonality theorems established in the preceding
sections, we need to take account of the fourth dual X**** in order to find elements
orthogonal to X in the sense of Birkhoff. In this sense the above problem is im-
portant in connection with the study of the geometric structure of second dual
spaces.

In the first half of this section we introduce the set of all element x** eX**
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with X±x** as well as the set of all elements χ**e3ί** with x**.LX, and we
investigate the structure of X** via the two sets. In the latter half of this section
we discuss the orthogonality in the second duals of abstract (L) and abstract (M)
spaces which are known as typical nonreflexive Banach spaces. It will be shown
that there is a remarkable difference between abstract (L) and (M) spaces.

First we observe that Birkhoff orthogonality to splitting subspaces of normed
spaces is characterized in terms of projections to the subspaces with norm 1.

PROPOSITION 5.1. Let X be a Banach space. Suppose that X is represented
as the direct sum of two closed subspaces L and R, and that P^ is the projection
of X onto L. Then L1R iff \\PL\\ = 1.

Let X be a Banach space and let M be a proper closed subspace of X. For
the subspace M we define two subsets L(M) and R(M) by

= {xeX:x±v for veM},

R(M) = {xeX: v±x for veM},

respectively. In what follows, we say that M is (L)-complemented in X if L(M)
is a closed linear subspace of X and X = L(M)@M. Likewise, M is said to be
(R)-complemented in X if R(M) is a closed linear subspace of X and X=M@R(M).

Proposition 5.1 states that if M is (L)-complemented, then the norm of the
projection of X onto L(M) is 1. If M is (^-complemented, then the norm of the
projection of X onto M is 1. Also, both L(M) and R(M) are closed under scalar
multiplication and norm closed in X. Finally, it is easy to see that if X—Y@Z
and | |P y | | = l, then R(Y)^Z.

We then give two general results in conjunction with the above-mentioned
sets L(M) and R(M). Let X be a Banach space which is represented as the direct
sum of two closed subspaces Ύ and Z, i.e., X=Y®Z. We say that condition
(YH) holds for the decomposition X= YφZ, if

(YH) l|y + ̂ l=Ίlyll + ||z||- for J 6 7 and zeZ.

PROPOSITION 5.2. Suppose that (YH) holds for X = Y®Z. Then:

(a) zlYiffzeZ andylZiffyeY.

(b). LetxeXandx = y + z,yeY,zeZ. Then

YlxiffM ^ llzll and Z±xiff\\z\\ ^ \\y\\.

PROOF, (a): It is clear that zeZ implies z±Y, and that yeY implies
y±Z. Let z±yand z — u + υ be its decomposition. Then ||t?|| = |[z — u\\ ^ | |z | | =
||M + I;|| = ||II|| + ||I;|| by condition (YH). Hence w = 0 and z = veZ. Similarly,
ylZ implies y e Y.
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(b): We here give the proof of the first half since the latter half is similarly
proved. .Let Y±x, Then ||z|| = \\y + (-xM ^ \\y\\. Conversely, if. \\y\\ S \\z\\,
then fpr every weY and every scalar α we have ||w + αx|| = ||(w + αy) + αz|| =
llw+αyll+lαl ||z|| by (YH); and hence. ||w + ax\\^\\w\\-|α| ||y|| + |α| ||zH = |MI +
|α|(||z|| -\\y\\)^ \\w\\. This means that \\y\\S ||z|| implies Y±x. q.e.d.

The above results may be applied to our problem in the following way:

COROLLARY 5.3. Let X be a Banach space, and assume that there exist
linear subspaces Ύ and Z of X such that X=Y®Z and \\y + z\\ = \\y\\ + \\z\\ holds
for yeΎand zeZ. Then we have:

(a)' L(Y) = Z and L(Z) = Y.
(b)' // Y Φ {0} and Z Φ {0}, then Z % R(Y) and Y g R(Z).

PROOF. First, we observe that Y and Z are necessarily closed. Hence (a)'
is obtained by applying Proposition 5.2 (a) to the decomposition X—Y®Z.
Next, | |P y | | = l and | |PZ | | = 1 by assumption. As mentioned before, this implies
that R(Y)=>Z and R(Z)=>Y. The second assertion (b)' is now obvious from
Proposition 5.2 (b). q. e. d.

The next result is important in the subsequent discussions.

THEOREM 5.4. Suppose that X is represented as the direct sum of two closed
subspaces Yand Z, i.e., X= YφZ. Then we have:

(i) l / | | P y | | = l and R(Y) is convex, thenR(Y) = Z.

(ϋ) If II Pz II = 1 and K(Z) is convex, then R(Z) = Y.
Assume in addition that condition (YH) holds for the decomposition X=Y®Z.
Then we have:

(i)' IfR(Y) is convex, then R(Y)={0} and X= Y.
(ii)' // R(Z) is convex, then R(Z) = {0} and X = Z.

PROOF. Since R(Y) and R(Z) are closed under scalar multiplication, R(Y)
(resp. R(Z)) becomes a linear subspace if R(Y) (resp. R(Z)) is convex. We here
give only the proof of the first assertion (i). Assume that | |P y | | = 1, and let R(Y)
be convex and yeR(Y). Then Pγy-yekeτ(Pγ) = Z<=R(Y) by Corollary 5.3.
Hence Pγy e R(Y). But Pγy e Y, and so Pγy = 0. Thus y e ker (Rγ) = Z, and it is
concluded that R(Y)czZ and R(Y) = Z. We next prove (i)' in the second assertion
since (ii)' is obtained in the same way. Suppose that (YH) holds and R(Y) is
convex. Then | |P y | | = l, and R(Y) = Z by the assertion (i). Hence it follows
from Corollary 5.3 (b)' that either Y= {0} or Z = {0}. But YΦ {0} since | |P y | | = 1.
Hence Z must be {0} and ,R(y) = {0}. q.e.d.

Let K and K* be the canonical embedding of X into X** and that of X* into
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X***5 respectively. In what follows, we simply denote κ(X) and κ*(X) by X
and X*, respectively. In the subsequent arguments we often employ the Dixmier
decomposition of the third dual space X***: Let X be a nonreflexive Banach
space and define I i = {/el***: Xczkeτ(f)}. Then Dixmier's decomposition
theorem states that X*** = X*®X±. The Dixmier decomposition of Z***
implies X*±X since the projection of X*** onto X* has norm 1 and Proposition
5.1 can be applied. Hence L(XL)z>X* and R(X*)^X^. If in addition (YH)
holds for the decomposition I * * * = I * ® I 1 , then X*±X1, X^-IX* and we have
the relations L(Xλ) = X*, R(X*)^X\ L(X*) = XL and R(X±)BX* by Corollary
5.3. These facts might be applicable to the second duals of dual Banach spaces,
See also Theorem 5.9 below.

To discuss when X is (L)-complemented or (^-complemented in X**, it is
important to find useful characterizations of the elements of the sets L(X) and
R(X)inX**.

PROPOSITION 5.5. Let X be a nonreflexive Banach space. Let L(X) =
{μeX**: μlx for xeX} and let λeX**. Then the following two conditions
are equivalent:

( i ) λeL(X% i.e., \\λ + x\\ ̂  \\λ\\forxeX.
(ii) μ|| = sup{\f(λ)\:feX± and \\f\\ = 1}.

Moreover condition (ii) implies the following condition:
(iii) F**(A) ς£ X*, where f7** is the duality mapping ofX**.^

If in addition, (YH) holds for the Dixmier decomposition of χ***f then (iii)
implies (ii).

PROOF. Let λeL(X). We may assume that λφO since (ii) is trivial for
A = 0. Then λ£X, and so the application of Lemma 1.1 and the Hahn-Banach
theorem implies that there isfeX*** such that | |/| | = 1, X<=ker(f) and/(A) =
|| A ||, from which (ii) follows. Conversely, assume that (ii) holds. Then in view
of the Dixmier decomposition of X***, we have ||A + x| |^sup {\f(λ + x)\:feXL,
11/11 ^ 1} = II A II and we obtain (i). To show the second assertion, we observe that
(ii) holds iff F**(λ)[)XLΦ&. Hence it is obvious that (ii) implies (iii). Con-
versely, assume that (iii) and (YH) hold for the decomposition X*** = X*®Xλ.
LetfeF**(λ)-X* and consider the decomposition f=fx +/ 2, f1 e X*9 f2 e X1.
Then/ 2#0 and we have μ||2=/(A)=/1(A)+/2(A)^(||/1 | | + ||/2 | |) ||A|| = | |/| | ||A|| =
ll/p by (YH). Hence /2(A)=||/2M|A||. Put flf = ||/2||-

1||A||/2. Then g(λ) =
l|λ||2, ||flf|| = ||A|| and geX1, from which it is concluded that F**(λ) ΐ)Xλ¥=0 and
(ii) is obtained. q. e. d.

EXAMPLE. It might be of some interest to illustrate the above mentioned
results in the case where Z = c0, X* = ̂  and Z** = ̂ °°. Let λ = (ζX=ίeX**.
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Then we see from [9, Proposition 5.5] that AeL(Jf) iff ||A|| =lim sup, ,^ \ζn\. In

fact, in this particular case, conditions (i), (ii), (iii) and (iv): ||A|| =lim sup \ζn\ are

equivalent. First it follows from [9, Proposition 5.5] that (iii) and (iv) are

equivalent. Next, assume that ||A|| =limsup \ζn\. Then there is a subsequence

(ICii(jt)l) converging to ||A||. We then consider the infinite set σ = {n(k): keN}

and choose a free ultrafilter <% with σ e l Then the associated 0-1 measures,

say/, on 2N belongs to X and | |/ | | = 1. Moreover |/(A)|=lim |^ ( f c ) | = ||A||, and

(ii) is obtained. Thus, in view of Proposition 5.5, it is concluded that the above

four conditions are equivalent.

The next result gives a characterization of R(X).

PROPOSITION 5.6. Let X be a nonreflexive Banach space and B(X*) the

closed unit ball with center 0. Let R(X) = {μeX**: xlμfor xeX}andλeX**.

Then the following are equivalent:

( i ) ' λeR(X), i.e., \\λ + x\\ ^ \\x\\forxeX.

(ii)' ker(A) Π B(X*) is weakly-star dense in B(X*).

(iii)' ker(A) Π B(X*) is a norming set.

PROOF. The equivalence between (i)' and (ii)' is proved in [8, Lemma 2].

The equivalence between (ii)' and (iii)' is easily obtained. q. e. d.

Using the above characterization, Godefroy showed that R(X) is a weak-star

closed linear subspace of X** if any one of the following conditions is satsisfied:

(a) X* has the Radon-Nikodym property.

(b) X is separable and does not contain an isomorphic copy of β1.

(c) There is an equivalent norm on X and a dense subset M of X such that

the norm is Frechet differentiate at each point of M.

The next interesting result is given in [8, Theoreme 7].

PROPOSITION 5.7. Suppose that R(X) is a weak-star closed linear subspace

of X**. Then the following are equivalent:

(1°) X has a predual.

(2°) X is (R)-complemented in X**.

(3°) There is a projection of norm 1 of X** onto κ(X).

Moreover, in this case, any pair of preduals are isometric.

In the rest of this section we consider abstract (L) spaces and abstract (M)

spaces and investigate the sets L(X) and R{X) in their second dual. We shall

see that both of the sets L(X) and R(X) are considerably complicated even if X

is such a particular space.

Let S be a set, and I1 be a σ-field of subsets of S. Let Jί be a proper subfamily

of Σ which is closed under the formation of countable unions and has the property
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that NeJr

9 AaS, and ΛczN imply AeJί. For a Γ-measurable real-valued

function/(s) on S, we define the essential supremum of |/( )l (denoted by H/ID

be the infimum of the set of numbers α with {seS: \f(s)\ > α} e Jί if the set is non-

void. Othwrwise, we write i|/||"00 = oo1. Let L°°(S,' Σ, Jί) be the usual space

consisting of all measurable real-valued functions on S with finite norm |] fl^,

where two functions / and / ' are identified if \\f—//||oo=0. Under the usual

addition, scalar multiplication, and the norm || H ,̂ L 0 0^, Σ, Jr) becomes a real

Banach space. Let ba(S, Σ9 jί) be the space of all bounded and finitely additive

set functions on Σ which vanish on Jr. The norm of an element λ of ba (S9 Σ, Jί)

is defined by ||Λ|| =supEeΣλ(E) — ϊnίEeΣλ(E), and ba(S, Σ, Jί) becomes a Banach

space with this norm. It is well-known that ba (5, Σ, Jί} is identified with the dual

of L°°(S, Σ9 Jί). For λ, v e ba(S, Γ, JT)9 we write v^λ if v-λ^0. This is a

partial ordering in ba (S, Σ, J^) and the space ba (S, Σ9 JV) becomes a Banach lattice.

For any pair λ, v in ba(S, Σ, Jί~), we define new measures λAv and I v v by

(λ A v)(E) = infFcΈtFeΣ (λ(F) + A(£ n Fc)\ Ee Σ,

and λvv= — (( — A)Λ( — V)), respectively. A bounded real-valued measure μ

on I1 is said to be purely finitely additive if every countably additive measure λ

satisfying 0 ̂  λ(E) ̂ \μ\(E) for E e Σ is identically zero. In what follows we permit

ourselves the common abbreviations, c.a. measure and p.f.a. measure, in referring

respectively to the countably additive and purely finitely additive measures.

Basic to the study of the space ba (5, Σ, JΓ~) is the following

THEOREM 5.8. Every measure λ in ba(S,Σ, JΓ} is uniquely decomposed as

the sum of a c.a. measure λc and a p.f.a. measure λp in ba(S, Σ, Jf}. In this

case, wehave \\λ\\ = \\λc\\ + \\λp\\. If in particular λ ̂ 0 , then λc^0 and Ap^0.

We call the decomposition λ = λc + λp the Yosida-Hewitt decomposition of

λ. See [18]. For the proof of the second assertion we refer to [9, proposition

1.3]. Also, we denote by ca(S, Σ9 J^) and pfa (S, Σ, J^) the set all c.a. measures

in ba (S, Σ, Jί) and that of all p.f.a. measures in ba (S, Σ, Jί\ respectively. We

then give some characteristic properties of the above sets.

First both of the sets are closed linear subspaces of ba(S, Σ, JV). Hence we

can apply Theorem 5.8, Propositions 5.1 and 5.2 to get the following result.

THEOREM 5.9. Let ca (5, Σ9 jV), pfa (5, Σ, J^) be as above.

(i) ca(S, Σ, jr) ±.pfa(S, Σ, Jί) and pfa(S9 Σ, jr)±Ca(S,

(ii) Let λeba(S, Γ, Jί) and λ = λc + λp the YosidaΉewitt decomposition.

Then:

(a) λ 1 ca (S, Σ, Jί) iff λ e pfa (S, Σ9 Jί)

λ 1 pfa(S9 Σ9 jr)iffλeca(5, Σ,

(b) ca(S9Σ,^)lλiff\\λc\\S\\λp\\
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Assertion (ii)-(a) gives an extension of the result of Bilyeu and Lewis [1,

Lemma 2.1]. Assertion (ii) tells us that for λebα(S9 Σ, jr\ λepfα(S, Σ, jr)

implies cα(S9 Σ, J^)λλ but the converse is not necessarily true, and that

λecα(S, Σ, JV) implies pfα(S, Σ, J^)Xλ but the converse is not always valid.

Now let (S, Σ, JΓ} be a finite nonnegative complete measure space and let

jr = {EeΣ\ μ(E) = 0}. Then, by the Radon-Nikodym theorem, the space L^S,

Σ,vΓ) is (L)-complemented in its second dual space bα(S9 Σ, J^). However, if

L^S, Σ9 Jί) is infinite-dimentional then pfα(S,Σ,J^) is nontrivial and

L^S, Σ, JΓ) is never (R)-complemented by Corollary 5.3. Moreover, in this

case, Theorem 5.4 implies that both R{L\S, Σ, JT)) and R(pfα(S, Σ, jr)) are

nonconvex. Thus we have obtained fairly precise results concerning the structure

of the space bα (S, Σ, Jf).

We next treat the space of continuous functions on a compact Hausdorff

space. Let S be a compact Hausdorff space and let C(S) denote the space of all

continuous functions on S. The space C(S) is a Banach space under the supremum

norm and, by the Riesz representation theorem, its dual space can be identified

with the space J((S) of Radon measures (i.e., regular Borel measures) on S whose

norm is defined by the total variation. Our first result for the space C(S) is the

following.

THEOREM 5.10. Let S be α compact Hausdorff space consisting of infinitely

many points. Then there exists an element λ in C(S)** — C(S) such that λ is

orthogonal to C(S). Thus

PROOF. Since S is an infinite set, there is a Baire set B that is not open. We

then define λ: S-+R by λ(s) = l if seB and λ(s)= - 1 if seBc. Then λ is not

continuous, although it is Baire measurable. Therefore λe C(5)** — C(S) and

|μ||=suρS 6 S |A(s)| = l. We then demonstrate that λ±C(S). Since the boundary

dB of B is nonempty, we can take an soedB. Let x be any element of C(S).

Then there are three cases to check: (i) x(s o)>0, (ii) x(s o)<0, and (iii) x(so) = 0.

In the first case (i), the continuity of x implies that there exists a neighborhood

U(s0) of s0 such that x(s) > 0 for all s e U(s0). On the other hand, U(s0) n Bc ^ 0

hence we can take a point sι in U(s0) Π Bc. Then we have 1 <x(so) + 1 = lAC )̂ —

x(Si)|^ ||A — JC|| Similarly, we have ||A — x\\^l for the second case (ii). In the

third case (iii), one finds for every ε > 0 a neighborhood V(s0) of s0 such that

I x(s)\ ̂  ε for all s e V(s0). Take any point s2 e V(sΌ) n B ( Φ 0) . Then || λ - x \\ ̂

\λ(s2)-x(s2)\^\λ(s2)\-\x(s2)\^l-ε for all xeC(S). Consequently we obtain
| |A-x|| ^ 1 for all x e C(S). This shows that λ is orthogonal to C(S). q. e. d.

The following result shows that the space C(S) of real-valued continuous
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functions on a compact Hausdorff space is not ( L)-complemented in C(S)**

provided dim C(S)= oo.

THEOREM 5.11. Let S be a compact Hausdorff space consisting of infinitely

many points. Then there exist λ1 and λ2 e C(S)** -C(S) such that λ^CiS)

and λ2±C(S), but λί-\-λ2 is not orthogonal to C(S). Thus L(C(S)) is not linear

and C(S) is not (L)-complemented in C(S)**.

PROOF. We first notice that it suffices to show that there are two nonempty

Baire subsets Bt and B2 which are not clopen (i.e., not closed or not open) and

satisfy B1 n B2 = 0 and Bt u B2^S. In fact, assume that Bx and B2 are such

subsets of S. Hence we can define λt(s) = 1 if s e Bt and Af(s) = — 1 if s e Bc

i9 i = 1, 2.

Then we see in the same way as in the proof of Theorem 5.10 that 2 f e C(S)** —

C(S), d i s t ( 4 C(S))=1, i = l ,2 , and that d i s t (^+A 2 , C(S))£1£ \\λ1 + λ2\\ = 2 .

Thus λx±C(S)9 λ2±C(S), but λt+λ2 is not orthogonal to C(S). We then show

that there are Baire subsets B± and B2 as mentioned above. To this end, we

consider the following two cases: (i) S is disconnected, (ii) S is connected. In

the first case (i) we can take a nonempty and proper clopen subset B of S. The

set B is a Baire set, and it is easy to see that B is also a compact Hausdorff space

with respect to the relative topology. Also, we may assume without loss

of generality that B is infinite. Hence there exists a Baire subset Bι(^B which is

not open. If not, there would exist an infinite disjoint family of clopen subsets of

B, which contradicts the compactness of B. We then put B2 = B — B1. Then

Bί and B2 are both Baire, not clopen, and satisfy Bx Π B2 = 0 dinάB1 U B2 = B^S.

Finally assume that S is connected and choose any but'distinct elements sx and s2

of S. Then it follows from Urysohn's Theorem that there exists an xeC(S)

such that x(sj) = 0 and x(s2) = 1. Since S is connected, the range of x must contain

the closed interval [0, 1]. Put Bί = {seS: 0 ^ / ( s ) < 1/3} and B2 = {seS:

< 1}. Then Bί and B2 are the desired sets. q. e. d.

We now consider the set R(C(S)) in C(S)**. In contrast with the set L(C(S))

in C(5)**, the structure of R(C(S)) depends strongly upon the compact Hausdorff

space S.

First we see that R(C(S))Φ{0} if C(S) is infinite-dimensional. In fact, S is

not finite in this case and contains at least one point s0 which is not isolated.

Hence one can define a bounded Borel function λ by λ(s) = 1 if s = s0 and λ(s) = 0

if s^s0, and it is easily seen that C(S)J_λ.

If C(S) is identified with the space c of convergent sequences, then R(c) is a

1-dimensional subspace of ^°°. In fact, let K be the canonical mapping from c

into £°°. Then K assings to each x = (ζX=\ec with £o = u m £ π

 t r i e element

κ(*) = « o , £ i . € 2 > - ) e ^ ° L e t y = ̂ n)n=o^^ and suppose that \\κ(x) + y\\^

\\x\\ for xec. Let en = (δnfk)^=ί e c, where δn>k denotes Kronecker's delta. Then
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κ ( 0 = ($,.*)f-o for neN, where ^ , 0 = 0 ; and so |

θζn\ ̂ 2\\y\\ for θ e C with |0| = 1 by the hypothesis. Put 0 B = -ζJ\ζB\ if C / Ό and

θn = ί if ζn = 0. Then |0, | = 1, and so 2\\y\\-\ζn\ = \2\\y\\-\ζn\\ = \2\\y\\+θnζπ\^

2\\y\\. This implies ζn = 0 for neN. Conversely, if y = (ζB)n%oe£w and ζ n = 0

for we TV, then for every x=(ξn)^=1ec with ί o = u m £ π we have ||κ(x) + >Ί| =

max{|ξo + Col, l|x||}=ΊI*ll This shows that R(c)={y=(ζχ=o: ζn=0 for neN}.

Therefore, ^°°^c + Λ(c) and c is not (/^-complemented in °̂°.

In case S is the closed unit interval [0, 1], R(C(S)) is not a linear subspace

of £co. In fact, let λ be a function on [0, 1] which takes the value 1 at rational

points and the value 0 at irrational points. Then both λ and 1—λ are regarded as

elements of R(C(S)) in C(S)**, but the sum of A and 1 — λ, the constant function 1,

does not belong to R(C(S)).

Finally, we give a result concerning the orthogonality in the second duals of

abstract (L) spaces and abstract (M) spaces. A Banach lattice X is called an

abstract (L) space, if ||x + .y|| = IMI + Ibll whenever x, yeX and X Λ J ; = 0 ; and X

is called an abstract (M) space, if ||x + .y|| =max( | |x | | , ||j;||) whenever x9yeX

and xAy = 0. An element e^O of X is siad to be a weak unit of X if eΛx = 0

for xeX implies x = 0. An element e^.0 of X is said to be a strong unit of X

provided that ||x|| ^ 1 iff | x | ^ e . The space c0 is an example of an abstract (M)

space without a strong unit which has, however, a weak unit.

The following theorem is due to S. Kakutani ([13], [14]).

THE KAKUTANI'S REPRESENTATION THEOREM, (a) An abstract (L) space X

is order isometric to some Lebesgue space L^S, Σ, μ). If in addition X has a

weak unit, then μ can be chosen to be a finite measure.

(b) An abstract (M) space X is order isometric to a sublattice of C(S) for

some compact Hausdorff space S. If in addition X has a strong unit, then X

is order isometric to some C(S).

Applying the Kakutani's representation theorem to the previous results,

we obtain the following:

THEOREM 5.12. An infinite-dimensional abstract (L) space X is (L)-

complemented in the second dual space X**, but it is never (K)-complemented

in X**. An infinite-dimensional abstract (M) space X with a strong unit is

never (L)-complemented in its second dual X**, and it is not (R)-complemented

in general. Moreover, in both cases, L{X)Φ{0} and R(X)Φ{0).

Added in Proof. 1) Theorem 5.12 states that Proposition 5.7 is not appli-

cable to Banach spaces such as abstract (L) and (M) spaces. However some of

the well-known Banach spaces are (^-complemented in their second duals. Let
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/ and JT denote the James space and the James tree space, respectively. Then
it is seen from Propositions 5.6 and 5.7 that /*, JT and the odd dual spaces
jj(2n+i) (n^O) are examples of such spaces. The spaces J* and JΓare known
to be separable dual spaces which do not contain 4γ\ the dual spaces of /* and
/Γ(2Π+D have the RNP.

2) In connection with Theorem 1.6 it should be noted that a Banach space
X is reflexive iff for every Banach space Y containing X (isometrically) there is
a nonzero yeY such that y J_ X in Y.
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