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§1. Introduction

Let §>* be the zth reduced power operation mod /?, and let A be the Bock-
stein operation associated with the exact coefficient sequence: 0-+Zp->ZP2->
Zp-^0, where p is an odd prime and Zm denotes the cyclic group of order m.
Let Φh Φ'i and Φ^ (ί>l) be the stable secondary cohomology operations as-
sociated with the following Adem relations:

(l.i)

(1.2) (

(1.3) (Φ3A)φi~1 +

respectively, where ε = l if /? = 3, and ε = 0 if /?>3. For each space X and
each integer q > 0, the operation Φ^ for example, is a homomorphism:

)i{Φi; X)

where

^-1^-ι(X; Zp)

p-l)i-\X; Zp)-φiHq(X; Zp).

It is known Ql, Chapter 3] that the secondary operation associated with the
Adem relation is natural with respect to maps, that the operation is stable,
i.e., it commutes with suspension, and that it satisfies the second formula of
Peterson-Stein [9].

One of our purposes is to give some cup product formulas concerning
these operations Φh Φ\, Φ\. For example, we have the following

THEOREM 3.4. Let k and j be given integers with 0<j<k, and let u e Hι
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(X; Zp) and v e Hm(X; Zp) be mod p reductions of integral classes. If Φi(u)
for j<ί<;k and Φu-i{v) for 0^i<j are defined, then Φk(u\Jυ) is defined, and
we have

Φk(u\Jv) = Σ (Φί(u)\jφk-iυ)+Σi(3)iu\JΦk-i(v))

in Hl+m+2{p~l)\X; Zp) modulo the indeterminacy Q. (The definition of Q is
given in §3.)

In §2 we prove three formulas (Theorems 2.4, 2.10 and 2.16) concerning
mod/? functional cohomology operations associated with the relations (1.1-3).
Combining the results in §2 with the second formula of Peterson-Stein Q3,
Theorem 5.2], we have, in §3, Theorems 3.4, 3.11 and 3.14 which are our main
theorems. In §4 we discuss the operations Φh Φ\ and Φ\ in the infinite di-
mensional complex projective space CP°°. In §5 we calculate the values of
the operations on the Thorn class of the tangent bundle of the real 27i-dimen-
sional complex projective space CPn in case/? = 3 and n = 3r — 1, by the method
of Adem-Gitler \ΊΓ\. Using the results in §5, we study the mod 3 secondary
operations in CPn in §6.

We consider the double secondary cohomology operations ®{ associated
with the relations (1.1) and (1.3). Adams [ZJ has applied the double second-
ary operations associated with the relations of squaring operations to the
problem of vector fields on spheres, and Adem-Gitler [4] to the immersion
problem for real projective spaces. We have the results on ©z for the com-
plex projective space CP°° and the mod 3 lens space L°°(3) of infinite dimen-
sion in §7.

In §8 we apply the results in §7 to the stable vector field problem for
some (2n + l)-dimensional mod 3 lens^space 2/(3), and we have a non-immer-
sion theorem for Ln(3) as follows: Lw(3) cannot be immersed in (3rc —3' —1)-
dimensional Euclidean space for ra = 2 3sH-3' — 1 (s>t>l) (Theorem 8.4).

I would like to thank Professor M. Sugawara for valuable discussions
and kind criticisms.

§2. Formulas on mod p functional cohomology operations

2-1. We denote the Adem relation (1.1) by

(1.1) αf.& = 0, ai=ΦιΔ-(τi-l)Δ-Φ\ βi = (@i-\ Φ\ Δ\

where ί>l. (By these notations we mean that βi(w) = (^}i~1w, &>*&, Δw) and
α, (*, y, z) = Φ1Jx — (ί — ΐ)Jy—φiz.) Let k and j be given integers such that
0<j<k. Let Xand Y be spaces and/: X->Y be a map. Suppose that the
elements c e Hι(Y; Zp) and d e Hm(Y; Zp) satisfy the following conditions,
where Z>0 and m>0.
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(2.1) Jc = 0, Jd=0,

(2.2) f*Φ'c=0 for i=j,j + l,...,k,

(2.3) f*φ"-ίd=0 for i = O,l,.. ,/.

Then we can define the functional cohomology operations (α:, )//?, (c) for
j<i^k, (ptk-i)fβk-i(d) for 0<;i<j, and (ak)fβk(c\jd). Moreover, we have

THEOREM 2.4. (ah) s β k{cVJ d)

= Σ {((α/)/A(c))W^*-'/*<i} + 'Σ{5>'/
>=/+! (=0

in H1+m+2(-p-ιs>\X; Zp)/Q, where

ι+2ίp-Vk(Φk; X)

ί = 0

We may suppose that X is a subspace of Y and that / is the inclusion,
by the mapping cylinder construction. Consider the following exact se-
quence :

where;: Γ-*(F, X) is the inclusion and δ is the coboundary homomorphism.
Put q = l + 2(p-X)ί. Since f*φ'c = 0 for j<,i<>k by (2.2), it follows that there
is an element Xi e Hι+2{p-l)i(Y, X; Zp) such that

(2.5) j*xi = φic for £=7,7 + 1,..., k.

Similarly by (2.3) we have an element yk-i € Hm+2(p'1)(k~i)(Y, X; Zp) such that

(2.6) fyk_i = φ^d for £ = 0,1,...,/.

LEMMA 2.7. Let z{ denote Xi or y{. The following relations hold modulo
Image δ.

(2.7.1)

(2.7.2)
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(2.7.3) ^>3Zi-=-

PROOF. These formulas follow easily from the definition of z{ and the
Adem relations. Q. E. D.

PROOF OF THEOREM 2.4. By the Cartan formula and (2.1-3) we have
f*βk(c\Jd) = 0, and by (1.1) akβk(c\Jd) = 0. Thus (ak)fβk(c\Jd) is defined.
Similarly (αz )//9/(c) for j<ί<Jt, and (ak-dfβk-i(d) for 0<=ί<j are defined by
(2.1-3) and (1.1).

We consider the diagram 1, where each row is the cohomology exact se-
quence of the pair (F, X) and the coefficient group Zp is omitted.

*- >Hn(Y, X) '- >Hn(Y) f- >

θ θ ' θ
f

θ θ θ
8- >Hn+\Y, X) H >Hn+\Y)

Diagram 1

Consider the case n — L The functional operation (cti)fβi(c) is determin-
ed, modulo the indeterminacy, by

(2.8) d((ai)fβi(c)) = g)1Jχi-1- (i - l)Δxh

where δ is the coboundary homomorphism in the bottom of the diagram 1
and Xi is the element defined by (2.5). Similarly, in case n — m, (ak-dfβk-i(d)
is determined, modulo the indeterminacy, by

(2.9) δ((ak_dfβk-i(d)) = Φ1J yh_i_ i - (i - ί - 1 ) Δ yk^

where yk_i is the element defined by (2.6). Next, consider the case n = l + m
and ί = k in the diagram 1. We have

Σ(
ί=0

by (2.5-6) and the Cartan formulas. Put

Σ
ί=0
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i

Then j*γ=akβk(c\Jd) = 0 by (1.1) and (2.1). Thus we have δ((ak)fβk(c\Jd))
= y by the definition of the functional operation.

Let us calculate the element y by means of the Cartan formulas, the
Adem relations, (2.1) and (2.7.1). We have

Σ ( y ύ ( ) Σ
(=0 i=0

'Σ{
ί = 0

modulo Σ (Image δ\Jjφk~id) + ̂ {Δ^cKJ Image θ).

But by the naturality of cup products and (2.5-6) we have JxjKJjPk~Jd =
JxjVJfy^j = ΔxjKJyk_j=j*JxjVJyk_j =Jφjc\Jyk^, and Xj\jΔφk-jd =Φjc\J
Ayk-j. Therefore y is given, modulo the above indeterminacy, as follows:

y= Σ

{ y (
ί = 0

On the other hand, by the property of δ and (2.8-9), we see

SL Σ {((αO//?;(c))w/*^-< ^

= Σ
ij

-1)'ΣWcVdiia^dfβk-iid))} = y
0

modulo the indeterminacy. Hence we have the desired result. Q. E. D.

2-2. We denote the Adem relation (1.2) by

(1.2) α{/9{ = 0, α ; . - ^ 2 J
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β'i = (jP-\ §>i+\ Δ\ where i > 1.

Let k and / be given integers such that 0<j<k. Let X and F be spaces and
/ : X-+ Y be a map. Suppose that c e H'{ Y; Zp) and d e Hm{ Y; Zp) satisfy the
following conditions, where Z>0 and m>0.

(2.1) Jc = 0, Jd=0,

(2.2)' /*#>'c = 0 f o r i = ; , / + l , . . . , i + l,

(2.3)' f*g»-*d=Q for i = - 1 , 0 , . . . , / .

Then we can define the functional cohomology operations (α, )//?, (c) and
(α{)//9{(c) f»r / < » ^ * ; (ack-dfβt-άd) and «_,)//?£-,(d) for 0 ^ i < / ; and
(ak)fβk(c\jd) and (αί)//9ί(cW<ί). Furthermore, we have

THEOREM 2.10.

= Σ {((α{
ij

Σ

Σ ^ ^ ρ ( * - 1 ) ( * - / + 1 ) ( t f ί _ , X) + (i
z = 0

+ Σ1

+ Σ

PROOF. AS in the previous case, we see from (2.2-3)' that there exist
elements xieH'+w-vXY, X; zp) and yt.,eHm+2lp-1^k-li(Y, X; Zp) such that

(2.5)' j*Xi=φ{c for i =/, / + 1 , .., k +1,

(2.6)' fyk_,=φ>-'d fori = -l,0,.. .,/.

Then we notice that Lemma 2.7 holds in this case.
By the Cartan formula, (2.1) and (2.2-3)', we have f*β'k(c\Jd) = 0, and by

(1.2), a'kβ'k(c\Jd) = Q. Hence (a'k)fβ'k(c\jd) is defined. Similarly (a'{)fβ'i(c)
for j<i<:k, and (ak-i)fβk-{{d) for 0<Ξί</are defined, by (2.1), (2.2-3)' and
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(1.2).
We consider the diagram 2, where the coefficient group Zp is omitted.

* >Hn(Y, X) '- >Hn{Y) f- >

f* >ffn + 2(p-l)(i-l)-l/j£\ 8 ^jjn+2(p-l){i-l)/γ j£\ j*

θ θ θ
f* >ff» + 2(/>-l)(t + l ) - l / γ \ δ >fln + 2(p-l)(i + l)/γ χ \ _J^ ) j gn + 2(/)-l)(t + l)/ γ\ f*

θ θ ' θ
I ? >Hn+\Y, X) - ^ >Hn+\Y) f-

ι

γ X ) i* > Jfn + 2(p-l)(i + l) + l/ γ\ f*

Diagram 2
Consider the case ra = Z. The functional operation (α^)/β/(c) ίs determin-

ed, modulo the indeterminacy, by

(2.11)

where δ is the coboundary homomorphism in the bottom of the diagram 2
and %i is the element defined by (2.5)/. Similarly in case n = m, (a'k-dfβί-i(d)
is determined, modulo the indeterminacy, by

(2.12) tf((αί_0//9ί_*(^) = ^

where yk-i is the element defined by (2.6)/. Next, consider the case n = l + m
and ί = k in the diagram 2. We have

i=j+l i=0

i=j+l i=Q

by (2.5-6)r and the Cartan formulas. Put

Σ(
i=0

f = 0

= O by (1.2) and (2.1). Hence we have
^ / by the definition of the functional operation. Put

where
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Σ
j

f = 0

Let us calculate A and B by means of the Cartan formulas, the Adem
relations, (2.1), Lemma 2.7 and the next lemma.

LEMMA 2.13. The following congruence holds for any integers k and ί.

The proof is easy.
By calculations we obtain

modulo *Σ (Image δ\JJφk-'d),

k-i-ι- (A- i -ΐ)Jyk-i

-y-i
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modulo Σ (4^i#cW Image ί).

But by the naturality of cup products and (2.5-6)', we have Jx{\J§)k~i+1d
= Jφic\Jγk^i+1 and %i\jΔφk~uιd=φιc\JΔyk_i^ι for i=j andy + 1. Accord-
ing to Lemma 2.13, each of the sums of the coefficients of the corresponding
terms in A and B is zero. Therefore / is given, modulo the indeterminacy,
as follows:

On the other hand, by the property of S we have

k

Σ
1 = 0

= Σ

Σ
i=0

Then this is equal to y\ modulo the indeterminacy, by (2.8-9) and (2.11-12).
Therefore we get the desired result. Q. E. D.

2-3. We denote the Adem relation (1.3) by

(1.3) αj0i = O,

β*i==(§)<-\ &i+*9 eΦi+1$>\ Δ\ where ί>l.

Let k and j be integers such that 0<j<k. Let X and Fbe spaces a n d / :
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X->rbeamap. Assume that c e H'(Y; Zp) and deHm(Y;Zp) satisfy the
folowing conditions (Z>0, m>0).

(2.1) Jc = 0, Jd=0,

(2.2)" f*Φ'c = 0 for ί = /,/ +1, . . . ,* + 2,

(2.3)" f*φt-ld=0 for i = - 2 , - l , , ; ,

(2.14) ε f * φ < + ι φ 1 c = 0 for i=j + l,j + 2,...,k,

(2.15) εf*φ»-'+1φιd=0 for ι = 0, l,.. , y - l .

Then we can define (α()//?,(c), (α<)//9<(c) and (αθ/^;(c) for j<i<Jc; (ak-i)fβk-i
(d), (ficί-Wt-iid) and (ai_i)//9j_<(c0 for O^j<;; (at)fβt(c\Jd), (fic'h)fβ'h(c\Jd)
and (ai)fβ"k(c\Jd). Moreover, we have

THEOREM 2.16. (a"k)fβ"k(c\Jd)

= Σ U{aΰfβϊ{c))\j9k-if*d+(k-i+l){(a'i)fβ'i(c))yj9k-ί+1f*d
i =j +1 (

Σ1

ί=0

in H1+m+2ίp-iχk+2KX; Zt)/Q", where

. Z \JΓQ ,p). )φ,

Φy, X)\jφk-<f*d

_ ί X)
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+ "Σ {ff'+2<>-1>«+2>-1(X; Zp)\JΔΦk-{f*d\

i =j -1

ί = 1

PROOF. The method of the proof is the same as that of Theorem 2.10.
From (2.2-3)" we see that there are elements Xi e Hι+2(p~l)i(Y, X; Zp) and
yh-i e H^^-^-^iY, X; Zp) such that

(2.5)" j*xi = Φic for 1=7,7 + 1,..., £ + 2,
(2.6)" j*yk-i = ̂ k-id for ί = - 2 , - 1 , •-,/.

Notice that Lemma 2.7 holds in this case.
As is easily seen, all functional operations in the theorem are defined by

the assumptions.
We consider the diagram 3, where the coefficient group Zp is omitted.

n ~ \ X ) s > Hn(Y X ) J > H n ( Y ) f >£L* Hn~\X) s- > Hn(Y, X) J~ > Hn(Y)

i/9? m m
f* y Jjn + 2(p-l)(i-l)-l/j£\ S > jjn + 2(p-l)(i-l)/γ jg \ j* > ff» + 2(

Θ Θ ' Θ

Θ Θ θ
» + 2 ( / > - l ) ( / + 2 ) - l / γ \ δ > g j y » + 2 ( / > - l ) ( < + 2 ) / y - j y y J*^cJjn + 2(p-l)(i + 2)f γ \ f*

θ θ ' 0
* > ff«+i(y, X) ί! , Hn+\Y) f-

Diagram 3

Consider the case n = l. The functional operation (afifβϊCc) is determin-
ed, modulo the indeterminacy, by

(2.17)

where 5 is the coboundary homomorphism in the bottom of the diagram 3
and %i is the element defined by (2.5)". Similarly, in case n — m^ {cci-df^k-i
(d) is determined, modulo the indeterminacy, by

(2.18) ff((αίw)/fi^^)=^j*^^

where yk-i is the element defined by (2.6)r/. Next, consider the case n = l + m
and i = k in the diagram 3. We have
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y+2
Σ
> = 0

«=y+i <=o

Σ (xi+i\J§>t-{3>1d) + Σ (
i=i (=0

by (2.5-6)" and the Cartan formulas. Put

ί/)+ Σ'
< = o

Σ U, +
i l

- z Δ { Σ ( f ^ s
< = > + l ( = 0

+ Σ ( ^ +iW5P*-'^1rf)+ Σ
ij

^O by (1.3) and (2.1). Hence we have d((a%)fβ%(c\J
d)) = y».

We calculate γ" by means of the Cartan formulas, the Adem relations,
(2.1), Lemma 2.7 and the next lemma.

LEMMA 2.19. The following congruence holds for any integers k and ί.

( m o d / ) ) .

The proof is not difficult.
By tedious calculations we obtain

Σ
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modulo Σ (Image δKJJφk-*d) + JΣ(Jφic\J Image δ).

By the property of δ, (2.8-9), (2.11-12) and (2.17-18), we have the desired re-
sult, as in the proof of Theorem 2.10. Q. E. D.

§3. Formulas on mod p secondary cohomology operations

3-1. We denote by Φ{ the stable secondary cohomology operation as-
sociated with the Adem relation (1.1) of degree 2(p — l)i + l. Let k and/ be
given integers with 0<j<k. Let I b e a space. Assume that the elements
u e Hι(X\ Zp) and v e Hm(X\ Zp) have the following properties (Z>0, τn>0):

(3.1) u and υ are modp reductions of integral classes.

(3.2) §){u = 0 for i =j\ j +1,.. , A,

(3.3) ^)*-'i; = 0 for i = 0, 1, .,;.

Then we can define the secondary cohomology operations Φi(u) for j<i<^k,
Φk-iiv) for 0<^'<;, and Φk(u\Jv). Moreover, we have

THEOREM 3.4. Φk(u\Jv)= Σ
i=0

in Hι+m+2(p~l)k(X; Zp) modulo the indeterminacy Q.

If Φi(u) for j<i<;k and Φu-iiv) for 0 < S J < / are defined, clearly the condi-
tions (3.2-3) are satisfied. Therefore Theorem 3.4 is equivalent to the
theorem in §1.

The indeterminacy Q is given as follows. Let g: X->K(Z, I) and h: X—•
K(Z, m) be maps such that g*γ = u and h*/c = v, where γ and K are the mod p
reductions of the fundamental classes of Hι(K(Z, I) Z) and Hm(K(Z, m) Z)
respectively. Such maps g and h exist because of (3.1). Define a m a p / :

, ΐ) x K(Z, m) by /(*) = (g(x), h(x)) for each x e X. Then
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m+2(l>^k(K(Z, l)xK(Z, m); Zp)+Qι+m+2^1)k(Φk; X)

Σ {Ql+2ίl'-1)'(Φ

PROOF OF THEOREM 3.4. Let g, h and / be defined as above. Then

Properties (2.1-3) hold for Y=K(Z, l)xK{Z, m), c = r><l, d=lxκ by (3.1-3).
Hence we can define (α, )//9,(r x 1) for j<i<?k, («*_,•)/#*_,•(! XK) for 0<=i<j,
and (ak)fβk(r x ic), and we have

(3.5) (α»)/j9»(rxϊ)= Σ {(iai)fβi(j
i

Σ
> = 0

in H!+m+2(tl-1)k(X; Zt)/Q by Theorem 2.4.
On the other hand, the second formula of Peterson-Stein [3, Theorem

5.2]] implies that

(3.6) Φh(u\Jυ)=-(ah)fβh(jxκ)

modulo f*Hι+m+2<-"-1)k(K(Z, l)xK(Z, m); Zp) + Q!+m^p-vk(Φk; X),

(3.7) Φi(u)=-(ai)fβi(rxl)

modulo fW+'O-vWZ, l)xK(Z, m); Zp) + Qu2(p-1)i(Φi; X),

(3.8) «*-»(»)= -(α*_i)//9*-ί(l x *)

modulo f*Hm+2<p-1)("-t)(K(Z, l)xK(Z, m); Zp) + Qm+^'"^k-i\Φk.i , X).

Thus we have the desired formula with the indeterminacy Q from (3.5-8).
Q. E. D.

COROLLARY 3.9. Assume that the elements u e H'(X; Zp) and v e Hm

(X; Zp) (l>0,m>0) satisfy (3.1), and

(3.9.1) Φ'u=0 fori = l,2,...,k,

(3.9.2) m<2(A-l).

Then Φi(u) for l<ί<Jt and Φk(u^Jυ) are defined, and we have

Φk(u\Jv)= Σ (
1=2
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in Hι+m+2(p~1)k(X; Zp)/Qu where

; X)

PROOF. If we put 7 = 1, the conditions (3.2-3) are satisfied by (3.9.1-2).
Clearly, we have Φk(v) = 0 by (3.9.2). Since u\jQm+2(p-1)k(Φk;X) is contained
in Qi+m+z(p-vk(φk; x) by (3.9.1), the result follows immediately from Theorem
3.4. Q. E. D.

COROLLARY 3.10. Assume that the elements u e Hι(X; Zp) and υ e Hm

(X; Zp) (Z>0, 77i >0) satisfy (3.1), and

(3.10.1) Φ'u = 0 for ί = l, 2,..., A,

(3.10.2) ^ = 0 for ί = l,2,...,k.

Then Φk(u), Φk(v) and Φk(u\Jv) are defined, and we have

in Hι+m+2(p-vk(X; Zp)/Q2i where

Q2=f*Hι+m+2(p-1)k(K(Z, l)xK(Z, m); Zp) + Qι+m+2(p-1)k(Φk; X).

This result follows also from the formula of Adem [3, Theorem 8.4].

PROOF. The conditions (3.2-3) are satisfied by (3.10.1-2). Since ρ^2^-1)*
(Φk\X)\Jυ and u\jQm+2(p-1)k(Φk; X) are contained in Qι+m+2(p-^k(Φk; X) by
(3.10.1-2), the result follows from Theorem 3.4. Q. E. D.

3-2. Let us denote by Φ\ the secondary operation associated with the
Adem relation (1.2) of degree 2(p — l)(ι" +1) + 1 . Let h and j be integers with
0<j<k. Let X be a space. Suppose that u e Hι(X; Zp) and υ e Hm{X\ Zp)
(I > 0, 77i > 0) are mod p reductions of integral classes, and that they have the
following properties:

(3.2)' φ{u = 0 for i=y,7

(3.3/ φk-'υ = 0 for / = - l , 0,...,;.

Then we can define the secondary cohomology operations Φi(u) and Φ'i(u)
for j <i<=k; Φk-iiv) and Φr

k-i(y) for 0^i<j; and Φk(u\Jv) and Φ'k(u\Jυ).
Furthermore, we have

THEOREM 3.11. Φ'h(uKJv)= Σ {Φ'MKjφ^v + ψ-ί + l)Φi(u)\jφk-Mv}
y+i
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1 Ψ

in fr'+« +2(#-iκ*+i)(jsr; Zp)/Q!, where

Z, l)xK(Z, m); Zp)+Q1+m+2{t"1){k+ι\Φ'k; X)

* = 0

PROOF. The result follows from Theorem 2.10 and the second formula
of Peterson-Stein, as in the proof of Theorem 3.4, so we omit the details.

Q. E. D.

3-3. We denote by Φ\ the secondary operation associated with the
Adem relation (1.3) of degree 2(p — l)(£ + 2) + l. Let k and j be integers
with 0<j<k. Suppose that u 6 Hι(X; Zp) and υ e Hm(X; Zp) (Z>0, m>0) are
mod p reductions of integral classes, and that they have the following pro-
perties :

(3.2)" 5>'u = 0 for £=/,7

(3.3)" 5>*-ίi; = 0 for ί = - 2 , - I , . . . , / ,

(3.12) e§)i+1§>1u = 0 for £=7 + 1,7 + 2,..., Jfc,

(3.13) e$>k-i+1§>1v = 0 for £ = 0, 1,...,/-1.

Then we can define Φ/(H), <0<OO and @ϊ(u) tor j<ί<,k; Φk-i(v), Φk-i(v) and
Φl-i(v) for 0<Lί<j; Φk(μ\Jυ\ Φ'k(u\Jυ) and Φ%(u\Jυ). Moreover, we have

THEOREM 3.14. Φ%(u\Jv)

= Σ

JΣ

m fl-'+»+2(f-i)(*+2)(χ; Zp)/Q", where
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, m); Zp) + Qι+m+2(p-1)(k+2\Φ'k; X)

j I

<=o • -

+ Σ 1 {Hι+2ip-1Ki+2)-\X; Zt)\J Jφk-'υ}
>=j-ι

ί = l

PROOF. This result follows from Theorem 2.16 and the second formula
of Peterson-Stein. We omit the detailed proof. Q. E. D.

We have corollaries of Theorems 3.11 and 3.14 similar to Corollaries
3.9-10.

§4. Mod p secondary cohomology operations in complex projective space

Let CP°° denote the infinite dimensional complex projective space. The
cohomology algebra H*(CP~; Zp) is a polynomial algebra over Zp generated
by z e H2(CP°°\ Zp)~Zp, where z is the mod p reduction of a generator z0 of
H2(CP°°; Z)~Z. We are going to calculate the secondary cohomology opera-
tions Φh Φ'i9 and Φ\ 0*>l) in CP°° associated with the Adem relations (1.1-3).

LEMMA 4.1. / / ( ^ ) ^ 0 (mod/?), then Q2^2(p-^(φi; CP°°) = 0.

PROOF. Since φizn= ( ^ z ^ - ^ ^ O for a generator zn eH2n(CP~; Zp)9

and Hq(CP°°; Zp) = 0 for odd q, we get the desired result. Q. E. D.

LEMMA 4.2. If *'( ϊ + 1 ) Ξ Ξ 0 (modp), then ρ2«+2(*-iχ/+i)(0/; CP~) = 0.

PROOF. Since ίΦi+1zn = ί(. ™ V^+^-DO'+D = Q for a generator zn, and

Hq(CP~; Zp) = 0 for odd q, we have the above result. Q. E. D.
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LEMMA 4.3. / / ( ( p ~ 1 ) ( 2 ~ 1 ) ~ 1 ) G + 2 ) Ξ Ξ ° ( m o d P>> t h e n Q2n+2(p~1)ii+2)

(Φy, CP°°) = 0.

PROOF. Since ί^P~1^ι

2~
1^~1λφi+2zn = 0, the result follows similarly.

Q. E. D.

Let I and m be positive integers, and let g: CP™->K(Z, 21) and h:
CP°°-+K(Z, 2m) be maps such that g*γ = zι and h*ιc = zm, where γ and /c are
the mod p reductions of the fundamental classes of H2l(K(Z, 21) Z) and
H2m(K(Z, 2m) Z) respectively. Define a map / : CP°°-+K(Z, 21) x K(Z, 2m) by
f(x) = (g(x), h(x)) for each x e CP°°.

THEOREM 4.4. Let k and fbe integers such that 0<j<k, and I and m be
positive integers satisfying the following conditions:

(4.4.1) ( ! ) Ξ ° ( m o d ^ f o r i=J>J

(4.4.2) (k-ί)^° ( m o d ^ f o r i = 0> ^'"'J

Then we can define Φi(zι) for j<i<,k, Φk-i(zm) / o r O ^ K / , and Φk(zι+m).
Moreover, we have

Φk(zι+m)= Σ ( Φ i i '
ij

, 2l)xK(Z, 2m);

PROOF. We apply Theorem 3.4, setting X=CP% u = zι and v = zm. The
conditions (3.1-3) are satisfied by (4.4.1-2) and the definition of z. We have
Q2i+2(P-i)i(φi; CP°°) = O for /<;<:& by (4.4.1) and Lemma 4.1, ρzm+^-ixΛ-o
(Φk-i\ CP°°) = 0 for 0<,ί<j by (4.4.2) and Lemma 4.1. Therefore we get the
desired indeterminacy. Q. E. D.

In addition, if we assume that

(4.5)

then we see that the second term of the indeterminacy of Theorem 4.4,
2m + 2(p-l)k(φk; Cp-^ i g z e r o b y L e m m a 4_L

Now we investigate the first term of the indeterminacy.
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LEMMA 4.6. Let s and t be integers with 0<t<s, Nbe a positive integer,
and α = 0, 1 or 2. Set l=Nps+1, m=ps—pt and k=ps. Then we have

Z9 21) X K(Z, 2m) Zp) = 0.

PROOF. Since /=(#, h), we have, by the Kϋnneth formula,

Z9 21) X K(Z, 2m) Zp)

Z, 21); Zp)(g)h*H2l+2m+2(p-1)(k+a)-j(K(Z, 2m); Zp).

In case 0</<2Z, clearly HJ(K(Z, 2l);Zp) = 0.
In case j>2l, for the fundamental class γ a H2ι(K(Z, 21); Zp), we have

Jγ = 0, and g*φi

r = φi

z

ι = 0 for any i with 0<ί<ps+\ Then g*H2ι+2<p-l)i

(K(Z, 21); Zp) = 0. Since 2(p-l)(P

s+1-l)>2m + 2(p-l)(k + a), we have the
lemma in this case.

In case; = 2Z, we must show h*H2m+2{p-1){k+a\K(Z, 2m); Zp) = 0. For the
fundamental class K e H2m(K(Z, 2m); Zp\ clearly φkιc = 0, and h*9>i/c = §)izm = 0
for each i with 0<ί<p'. Put u=pq, where g is any integer such that t<,q<
s. Then we see easily h*9>i$>uκ = 0 for all i with pq+1<i<p\ As 2(^-1)
(ps — l+pq)^>2(p — ΐ)(k + ά)9 we get the desired result.

Finally, we consider the case/=0. Let / be any sequence {ίu *2, , in}
of positive integers, whose degree is 2l + 2(p-l)(k + a) and put φ^φ^φ1*
...φin. We are going to show h*Φτιc = 0. If iV^O (mod p — ΐ), there is no
sequence /such that degree ΦJιc = 2m + 2l + 2(p-l)(k + a) = 2m + 2(p-l)(h +
••• + £„), and so we have H2l+2m+2(p~1){k+a\K(Z, 2m); Zp) = 0. If TV̂ O (mod
p — 1), then ί'iH hϊw=α (mod p5) by the assumptions. Let

*/=Σ<p* (y = l, 2,..., JO

be the p-adic expansion of ih where O^αJ <jσ. Let r be the least integer
such that aJ

q — 0 for any q with ^<r and any /, and such that at least one of
the coefficients «£,..., an

r is non-zero. By M we denote the maximum of the
integers j with aJ

rΦ0.
In the rest of the proof, we use the symbol z\jΓ\ instead of zn. If r + 1 ^

ί, h*ΦI/c = Φiί...φi*(Kzt- - + Apr+1J) for some integers Kand^. Since 0<αf
<p, we have Φ'XzD + J / + 1 ] = 0, and hence h*ΦJ/c = 0. If r^5, clearly Λ*̂ 7/.;
= 0. If ί^r<5, there exists a positive integer R such that α̂ H \-a% = Rp,
because i'iH \-in^a(modps). Suppose a = Q. Take a positive integer Q
such that α?+1 + α?+ 2+ - +an

r<p andα? + α?+1 + + α ^ . Now we have
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for some integers H and G. In the above equalities the last binomial coeffici-
ent is congruent to zero modulop, since;? — 1 — αf a?+1<a®. Therefore
we get h*Φ[/c = 0. The proof in case α = l or 2 is similar. Q. E. D.

COROLLARY 4.7. Let s and t be integers with 0<ί<s, and Nbe a positive
integer. Set l = Nps+1, m=ps—pt and k=ps. Then Φi(zι) for l<i<ik and
Φk(zι+m) wre defined, and with zero indeterminacy we have

ι+m)= Σφk(zι+m)= Σ
i=2

PROOF. The conditions (4.4.1-2) for j = l and (4.5) are satisfied by the
assumptions. Since m<k — 1, we have Φk(zm) — 0. By (4.5) and Lemma 4.6
the indeterminacy is zero, and hence we have the desired result from Theo-
rem 4.4. (We may use also Corollary 3.9.) Q. E. D.

COROLLARY 4.8. Let s and N be positive integers. Put l = Nps+1 and k=ps.
Then Φi(zpk) and Φi(zι) are defined for Kί<;k, and with zero indeterminacy
we have

PROOF. If N=l, the result is trivial. Suppose JV>1. We apply Corol-
lary 3.10, setting X=CP°°, u = zpk and υ = zι~pk. The conditions (3.10.1-2) are
satisfied by the assumptions. Thus by Corollary 3.10, for any ί with l < ί ^ ,
Φi(zpk), Φi(zι~pk) and Φi(zι) are defined, and we have

It can be shown that the indeterminacy is zero. The result follows by in-
duction. Q. E. D.

THEOREM 4.9. Let h and j be integers such that 0<j<k, and I and m be
positive integers satisfying the following conditions:

(4.9.1)

(4.9.2) (^ .^OCii iod/O for i= -1,0,.-,/

Then we can define Φi(z') and Φ'i(z') for j<i<,k, Φk_i(zm) and Φi-iiz"1) for
0<:i<j, and Φk(z1+m) and Φ'k(z'+m). Moreover, we have



On Some Secondary Cohomology Operations 61

ij

f = 0

in H2l+2m+2(p-v(k+1KCP~; Zp) modulo

f*H2i+2m+2(p-i)(k+i)(K^ 2l) x K(Z, 2m); Zp) + Q2ι+2m+2(p-iχk+1\Φ'k; CP°°).

PROOF. Putting X= CP°°, u = zι and v = zm, we apply Theorem 3.11. The
indeterminacy is as above because of (4.9.1-2) and Lemmas 4.1-2. Q. E. D.

In addition, if we assume that

(4.10)

then we see that the second term of the indeterminacy of Theorem 4.9,
c p - ) ? i s z e r o b y L e m m a 42. Q. E. D.

THEOREM 4.11. Let k and j be integers such that 0</<λ;, and I and m be
positive integers satisfying the following conditions:

(4.11.1)

(4.11.2) (A^.)M>(mod/>) for i= -2, -1, . . . , /,

(4.11.3) e/( Z | ^~ 1 )^0(mod / >) for i=j+l, y + 2,..., k,

(4.11.4) ^ ( ^ ί f + ^ - O (modp) for i = 0, 1,. , - l .

Φ&z1), Φ^z1) and Φ\{zι) for j<i<Lk; Φk-i(zm\ Φ'k-i(zm)
andΦί-i(zm) for 0<,ί<j; Φk(zι+m), Φf

k(zι+m) and Φ%(zι+m). Moreover, we have

i=j

i-i+1 m

Σ1

« = o
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in H2U2m+2(p-iχk+2\CP~; Zp) modulo

l) X K(Z, 2m); Zp)+

PROOF. Putting X=CP™, u = zι and v = zm, we apply Theorem 3.14. By
(4.11.1-2) and Lemmas 4.1-3, we have the desired indeterminacy. Q. E. D.

Furthermore, if we assume that

(4.12)

then we see that the second term of the indeterminacy of Theorem 4.11,
ρ2/+2*.+2(ί-i)(*+2)(0ί; C P ~ ) 5 i s z e r o b y Lemma 4.3.

We obtain corollaries of Theorems 4.9 and 4.11 similar to Corollaries

4.7-8.

§5. Mod 3 secondary cohomology operations on the Thorn class of τ(CPn)

The next proposition is proved, using the second definition of the func-
tional cohomology operation [9, p. 292]].

PROPOSITION 5.1. Let f: X-+Y be a map, and q be a positive integer.
Suppose that the element c e Hq{Y; Zp) is the mod p reduction of an integral
class co c Hq(Y; Z) and satisfies that /*c = 0. Then the functional cohomology
operation Δfc is defined. Furthermore, there is an element d0 e Hq(X; Z)
such that f*co=pdo, and we have

Δfc = d{= the mod p reduction of d0).

Let CPn denote the complex protective space of real dimension 2n, and
let xo be a generator of H2(CPn; Z)^Z. The cohomology algebra H*(CPn;
Z) is a polynomial algebra over Z with relation x%

+1 = 0. Set μo = xoxl — l
x x0 e H2(CPn x CPn; Z). There is a map / : CPn x CPn->K(Z, 2) = CP°° such
that

(5.2) f*z0 = juo = xoxl — lxxo,

where zQ is a generator of H2(CP~; Z)^Z. Let x e H2(CPn; Zp\ z e H2(CP°°;
Zp\ jueH2(CPnxCPn; Zp) be the mod p reductions of x0eH2(CPn; Z),
zo e H2(CP~; Z), Ao e H2(CPn x CPn; Z) respectively. Then we have

PROPOSITION 5.3. Let n=ps+ι-l and k=ps (s>0). Then, for zn+i 6
H2n+2t(CP°°; Zp) (i>0), the functional cohomology operation Δfz

n+i is defined.
In addition, if p = 3, the following holds with zero indeterminacy:

Δfz
n+i= -juk+i~ι\J(xk x xk) ( e H2n+2i(CPn x CPn; Z3)).
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PROOF. Clearly, Jzn+i = 0. By (5.2), we have

(5.2)' / * * = /< = * x 1-1 x*,

so that f*zn+i = (x x 1-1 x x)n+i = (xn+1 x 1-1 x xn+1)(x x 1-1 x x)i-1 = 09 since
xn+1 = 0. Therefore Δfz

n+i is defined.
If p = 3, for n + l = 3s+1 = Sk, we have ju»+1 = {(Xo x 1-1 x xo)

k}3 = -S(xo

xl-lxxo)
k\J(xk

oxxk

Q) (mod 9). Hence f*zζ+i = ui

0-
1 Xβn

0

+1 = -S^g+ '^wOsg
x*g)(mod9). Therefore, by Proposition 5.1, we obtain Δfz

n+i= -βk+i~1VJ
(xkxxk). Since f*zn+i = 0 and Hq(CPnx CPn; Z3) = 0 for odd q, it follows
that the indeterminacy is zero. Q. E. D.

Let r = v(CPn) denote the tangent bundle of CPn, E the total space of r,
and π: E-^CPn the projection of r. Let δ>0 be a sufficiently small number.
Let E(δ) (resp. E0(δ)) be the set of the pairs (x, υ) e E, where x e CPn and
||v||<;0 (resp. ||v|| = ί ) . Let D be the diagonal in CPn x CPn. Define a map

e: (E(δ), E0(δ))->(CPn x CP", CPn x CPn-D)

by e(x, v) = (x, y) for (x, v) 6" E(δ), where y is the terminal point of the
geodesic in CPn which has the initial point x, the direction of the vector ΰ,
and the length \\v\\. Since e(x, 0) = (χ, x\ e(EQ(δ))CCPnx CPn-D. The
map e defines the isomorphism Q8, pp. 46-47]

ψ: H2n((CPn)τ; Zp)-+H2n(CPn x CPn, CPnxCPn-D; Zp\

where (CPn)τ denotes the Thorn complex of the tangent bundle r. Let
U e H2n((CPn)τ Zp) be the Thorn class of r. For the injection j : CPn x CPn->
(CPn x CP", CPn x CPn-D\ set U=j*φU. From the definition of the map β,
we have, for x{ e H2i(CPn; Zp\

(5.4) j*ψ(U\Jπ*xi) = UVJ(xi x 1).

According to [8, Theorem 15], U= Σ (xn~ι x χ*)
ί = 0

Suppose p=3. If n = Ss+1 — 1, we have

(5.5) f*zn = βn = (xxl-lxx)n=U,

for z e H2(CP~;Z3\ by (5.2)'.

Let Φi, Φ'i and Φ\ (ί>l) be the mod 3 secondary cohomology operations
associated with the following Adem relations (mod 3):

= 0,
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Let us calculate Φi(U), Φ'i(U) and Φ^U) by the method of Adem-Gitler

[4, §n

THEOREM 5.6. Let n = Ss+1-l and k = Ss (s>0). Let U=j*irU ( e H2n(CPn

x CPW; Z3)). ΓΛen 0;(£7) is defined for ί > l , and with zero indeterminacy we
have

φk(U) = -UVJ(x2kxl)φ0, and 0,(17) = 0, if iφk.

PROOF. Clearly, JΪ7=0. Since the mod 3 Pontrjagin class of CPn is
given by

(5.7) pi=

it follows thatpι = 0 for i>0. Thus we have

(5.8) $>'U=0 ίori>Oy

because ΦiU=j*ψ9>iU=j*ψφpi9 where φ: H4i(CPn; Z3)-+H4i+2n((CPn)τ Z3) is
the Thorn isomorphism (cf. [8, p. 120]). Therefore Φi(U) is defined for ί>l.
By (5.5) and (5.8), f*βi(zn) = 0 for i > l , so that (adfβ^) is defined for any
i>l. According to the second formula of Peterson-Stein [3, Theorem 5.2],
we have

(5.9) Φi(U)=-(adfβi(<z
n)

in H2n+u(CPnxCPn; Z3) modulo f*H2n+4i(CP~; Z3) + (?2 w + 4 i(^; CPnxCPn).

Since/*zΛ+2/ = 0 for i>0, it follows that f*H2i+u(CP~; Z3) = 0. Using the

Cartan formulas we can prove that ΦiH2\CP"xCP"; Z3) = 0 for any ;>0.

Thus Q2n+Ai(βi\ CPn x CPw) = 0. Now we have

by considering the definitions of functional operations. (Notice that each
term is well defined.) Therefore

(5.10) (adfβtz*) = ( .^ 1 )9λΔfz^2i-2 - (i -1) ( n. )

In case i = k, by (5.10), (5.9), (5.5) and Proposition 5.3, we obtain, with

zero indeterminacy,
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= Φ1{β3k-3\j{xk x xk))-β'ik-ι\J(xk x xk)= -βn\J(xk x **)

Now, by (5.9) and Proposition 5.3, we have

On the other hand, the naturality of Φ{ and (5.4) show that

= λ(UVJ{χ2i xl)) = λβn\J{x2i xl),

for some λ c Z3. Comparing the coefficients of xnxx2i on the right-hand

sides of the above two expressions of Φi(U), we have λ=a( _7~ ) f° r some

α e Z3. If ί<k, obviously λ = 0. If ί>k and (k + 2l'71}=£0 (mod 3), we have
\ n K j

i = mk for some m>1, and hence x2i = 0. Thus in case ίφk we obtain Φi(U)
= 0 with zero indeterminacy. Q. E. D.

THEOREM 5.11. Let n = 3s+1-l and k = Ss (s>0). Let U 6 H2n((CPn)τ Z3)
denote the Thorn class of the tangent bundle t = τ(CPn) of CPn. Then Φi(U) is
defined for ί > 1, and with zero indeterminacy we have

φk(U)=-U\j(π*x2kxl)φ0, and φi(U) = 0, if ίφk,

where π is the projection of the tangent bundle τ(CPn).

PROOF. JU=0 is clear. §)iU=φpi = 0 for Ϊ > 0 , by (5.7), where φ is the
Thorn isomorphism. Thus Φi(U) is defined for ί>l. By (5.4), Theorem 5.6
and the naturality of Φk, we see

= - U\J(χ2k x l) = -j*ψ{U\j(π*x2k x 1)).

Since j*ψ is a monomorphism, we have the first formula. It is easy to prove
that the indeterminacy is zero.

The second part is obtained similarly. Q. E. D.

THEOREM 5.12. Under the assumptions of Theorem 5.6, Φ'i(U) and Φ\(jJ)
are defined for ί > 1, and with zero indeterminacy we have
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= O and Φ*i(U) = 0 for any i>l.

PROOF. Since JU=0 and φiU=Q for ί>0 by (5.8), it follows that Φ^
is defined for ί > l . By (5.5) and (5.8), /*/?<(zw) = 0, and so (α{)/^KO i s

defined for ί > l . According to the second formula of Peterson-Stein [3,
Theorem 5.2], we have

(5.13) *Kϋ) = -(αί)/#0O

in H2n+4i+\CPnxCPn;Z3) modulo f*H2n+u+\CP°°; Z3) + Q2n+4i+\Φ'i; CPn x
CPn). Here we can see that the indeterminacy is zero, by the calculation
using the Cartan formulas. Now we have

iΦi+1)f(Φi-\ Φi+\ Δ)(zn)

= φ2Jfφ
i-1zn-2ί(ί-l)JfΦ

i+1zn

Therefore, by Proposition 5.3 and (5.13), we obtain

On the other hand, the naturality of Φ\ and (5.4) show that

for some λ eZ3. Comparing the coefficients of xnxx2i+2 on the right-hand
sides of the above two equalities, we get λ = 0.

The proof of the second part is quite similar. Q. E. D.

THEOREM 5.14. Under the assumptions of Theorem 5.11, Φ'i(U) and Φ"i(U)
are defined for ί > 1, and with zero indeterminacy we have

φ'.(U) = 0 and Φ»i(U) = 0 for any i>l.

PROOF. The theorem follows from Theorem 5.12 in the same way as
Theorem 5.11 follows from Theorem 5.6. Q. E. D.

§6. Mod 3 secondary cohomology operations in complex projective space

THEOREM 6.1. Let k = 3s (*>0). Then, for zu e H6k(CP~; Z3), Φi(z3k)
z<^) is defined, and with zero indeterminacy we have

Φk(z3k)=±z5\ and Φi(z3k) = 0 for l<i<k.
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PROOF. Put nτ=3s+1 —1 = 3& — 1. Let ζ be the real restriction of the
canonical complex line bundle over CPn. We use the same notation for
a vector bundle and its isomorphism class. Let Xζ denote the Thorn complex
of a vector bundle ζ over a complex X. According to [5, Proposition 4.3],
there exists a natural homeomorphism: CP2n+1/CPn^(CPn)(n+1)ξ, where
mξ = ξ(B ' •©£ (the m-fold Whitney sum of f). Furthermore, according to
[5, Lemma 2.4], there is a natural homeomorphism: (CPn)τ®2^S2(CPn)τ,
where SrY denotes the r-fold suspension of Y. As is well-known, (n + l)ξ

Let

φ: CP2n+ι/CPn-+S2(CPnY

denote the composite of the above homeomorphisms. Consider the diagram
4, where ; : CP2n+1-+CP°° is the inclusion, q: CP2n+1->CP2n+1/CPn is the pro-
jection, and ύ2 is the 2-fold suspension.

H2n+2(CP~', Z 3) ** >H2n+2+4k(CP°°; Z 3 )

if if
H2n+2(CP2n+1; Z 3 ) — * * >H2H+2+Ah(CP2H+1; Z 3 )

t?* t?*

H2n+2(CP2n+1/CPn; Z3)-®*-+H2n+2+4k(CP2n+1/CPn; Z 3 )

H2n+2(S2(CPn)τ; Z 3) -®λ—>H2n+2+4k(S2(CPn)τ; Z 3)

H2n((CPnY; Z 3) ** >H2n+4k((CPny; Z 3 )

Diagram 4

It is clear that /*, q*, φ* and σ2 are isomorphisms, and that each indetermi-
nacy of Φk is zero. The commutativity of the diagram 4 and Theorem 5.11
imply that (σ2)-\φ*)-1j*Φk(zn+1) = Φk(σ2)~\φ*)-\q*)-1j*zn+1= ±Φk(U)= =p U
\J(π*χ2k x ΐ)Φ0. Therefore we have φk(z

n+ι)= ±z5k.
The proof of the second part is similar. Q. E. D.

THEOREM 6.2. Let k = Ss (s>0). Then, for z3k e H6k(CP°°; Z3), Φ'tiz3*) and
Φϊ(z3k) ( K K έ ) are defined, and with zero indeterminacy we have

<^(*3*) = 0 and φ^(z3k) = 0 for l<i<^k.

PROOF. Using Theorem 5.14, we obtain the results, similarly as in the
proof of Theorem 6.1. Q. E. D.

THEOREM 6.3. Let s and t be integers with s > £ > 0 , and N be a positive
integer. Set l = N3s+\ ττι = 3 s - 3 ' and k = 3s. Then, for zι+m e H2l+2m(CP~;
Z3), Φk(zι+m) is defined, and with zero indeterminacy we have
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φk(zι+m)=±Nzι+m+2k.

PROOF. By Corollary 4.7, Φ{(zι) for l<i<Lk and Φk(zι+m) are defined, and

with zero indeterminacy we have Φk(zι+m) = Σ (Φi(zι)\J§)k'-izm). We can also
i=2

define Φi(z3k) for K i ^ i , and with zero indeterminacy we have Φi(zι) = NΦi
(z3k)\Jzι~3k, by Corollary 4.8. These results, combined with Theorem 6.1,
yield the desired formula. Q. E. D.

THEOREM 6.4. Under the assumptions of Theorem 6.3, Φf

k(zι+m) and Φ%
(zι+m) are defined, and with zero indeterminacy we have

φ'k(z

ι+m) = 0 and Φι(zι+m) = 0.

PROOF. The results follow from Lemma 4.6, Theorems 4.9, 4.11, 6.1 and

6.2. Q. E. D.

§7. Double secondary cohomology operations in complex
projective space and mod 3 lens space

Let §>* be the ith reduced power operation mod 3, and Δ be the Bockstein
operation associated with the exact coefficient sequence: 0—•Z^Zg—>Z3->0.
Let i=0 (mod 3). Consider the double secondary cohomology operation Θi
associated with the Adem relations:

(7.1)

(7.2)

where ai =
§>\ Φλ,Δ). Let Φi and Φ{ be the secondary cohomology operations associated
with the relations (7.1) and (7.2) respectively. Φ{ is the same one as in §§1-6
for p = S. As for Φh if Φi(w) is defined for some w e Hq(X; Z3), the operation
Φ'iiw) in §§1-6, for/? = 3, is defined. Moreover, we have

φi(w) = φ".(w) modulo Qq+u+8(Φy, X).

The double secondary cohomology operation ®, is a stable operation con-
structed as follows (cf. [4, §10]). Let π: E^K(Z3, q) be a fibre space deter-
mined by /?/. It is sufficient to construct Θi in the stable range. JLet <jr>4ϊ
+ 8, and choose elements α e Hq+4i(E; Z3) and b e Hq+Ai+8(E; Z3) associated
with (7.1) and (7.2) respectively. Let X be a space, and / : X->K(Z3, q) be a
characteristic map for a given element u e Hq(X; Z3). If /?;(&) = 0, there is a
map g: X^E such that πg=f. Define 0,(iO = (#*(α), #*(δ)) er Hq+Ai(X; Z 3 ) φ
Hq+U+8(X; Z3), where 0 denotes the direct sum. The indeterminacy
X) is given by
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u-\X', Z3) + (J®(2ί/S-l)Jφ2)dH«+4i-\X; Z3)

1))dH«+\X; Z3) + ( - 5 > ' φ 0 ) ^ ( X ; Z3),

where dH is the diagonal subgroup of

THEOREM 7.3. Let s and t be integers with s>t>0, and N be a positive
integer such that N^O (mod 3). Put l=N3s+1, m = 3s-3t and k = 3s. Then,
for zι+m e H2l+2m{CP"; Z3), Θk(zι+m) is defined, and with zero indeterminacy we
have

Θk(zι+m)=±(zι+m+2k,0).

PROOF. Under the assumptions, Φk, Φk and Φ% are defined for the ele-
ment zι+m with zero indeterminacy. Therefore Φk coincides with Φ%, and Θk

is identical with the pair (Φk, Φk) on zι+m. Thus the result follows from
Theorems 6.3-4. Q. E. D.

Let Ln(p) be the (2n + l)-dimensional standard lens space mod p, and
L°°(p) be \JnL

n(p). The cohomology algebra H*(L°°(p); Zp) is given by
ΛCyH®^[V], where y and w are generators of HιlL°°(p); ZP) = ZP and
H2(L°°(p); Zp)~Zp respectively, with relation: Δy=w.

THEOREM 7.4. Let s and t be integers with s>t>l, and N be a positive
integer such that N^O (mod 3). Put l=N3s+1, m = 3s-3t and k = 3s. Then,
for wι+m € H2ι+2m(L~(β); Z3), Θk(wι+m) is defined, and we have

Θk(wι+m)φ0

in H2l+2m+4k(L~(3); Z3)φH2l+2m+4k+8(L°°(3)', Z3) modulo Q(Θk; Z°°(3)).

PROOF. Let JO: LO O(3)->CP°O be the natural projection. Consider the
commutative diagram, where the coefficient group Z3 is omitted, and zι = ί
2m.

IP*

As is well-known, p* is an isomorphism in even degree when the coefficient
group is Zp, and p*z=w, for z e iy2(CP°°; Z3). Hence p*zι+m=wι+m. By the
commutativity of the diagram and Theorem 7.3, we have

θk(rf+m) = θk(p*zι+M)=p*θk(zl+M)= ±(wι+m+2k, 0)

modulo Q(&k\ i°°(3)). However, by the simple calculation we can see t h a t
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any element of Q(Θk; Z~(3)) has a form λ(wι+m+2\ -wι+m+2k+% where λ e Z3

(Here we need the assumption ί > l ) . Thus Q(Θk; L°°(β)) does not contain
±(wι+m+2\ 0). Q. E.D.

Let v be an ^-dimensional vector bundle over Zn(3), V e Hm((Ln(S))v; Z3)
be the mod 3 Thorn class of v. There exists a map / : (Ln(3))v-+K(Z, m) such
that /*/c= F, where A; 6 Hm(K(Z, m); Z3) is the mod 3 reduction of the funda-
mental class of iΓ(Z, m). Then we have

THEOREM 7.5. Lei & = 35 (s>0). Suppose that m<2k — 2 and that the first
Pontrjagin class mod 3,/?i(v), is zero. Then Θk(V) is defined. If, in addi-
tion, f*Hm+Ah(K(Z, m); Z3) = 0 and f*Hm+*k+\K(Z, m); Z3) = 0, then we have

modulo the indeterminacy Q(Θk; (Ln(S)Y).

PROOF. Clearly JV=0. Since m<2(Jfc-l), we have φk~1V=0 and ΦkV=
0. From the fact that/?i00 = 0, we have φ1V=φp1(v) = 09 where φ: H\Ln(3);
Z3)->Hm+\(Ln(3)y Z3) is the Thorn isomorphism. Therefore f*βk/c = βkf*fc
= (@*-\ ty\ @\ j)(V) = o, and hence the double secondary operation θk(f*ιc)
and the double functional operation (akQ)ak)f(βkιc> βkt) are defined, where
ak = $>ιJ + J + 0-Φk and ak = Φ3J + (2k/3-l)J@2-Jφk+ι + 0. According to
the second formula of Peterson-Stein for double operations (cf. [4, Theorem
10.8]), we have

θk(f*κ) = -(ak@ah)f(βhιc, βkιc)

modulo the total indeterminacy f*Hm+ik(K(Z,m);Z3)(§>f*Hm+4k+8(K(Z,m);
Z3) + Q(Θk; (2/(3))y). By the assumptions, the indeterminacy is reduced to

Since /9*A; = (5>*-1/C, Φhκ, Φιιc, JΛ) = (0, 0, Φιιc, 0) and ( O 0 ( - J ^ + 1 ) ) ( j , y)
= (0, — J ^ ^ + 1 j ) = (0, 0) for any element y of degree m + 4, we may choose
zero for (ak®ak)f(βkιc, βkic). Therefore we have@*(F) = 0 modulo Q(βk\

. Q.E.D.

LEMMA 7.6. Let s and t be integers with 0<t<s, m be an even integer>0
and N be an integer>Q. Set M=N3S+1 + Ss — St and k = 3s. Let v be an m-
dimensional vector bundle over Ln(S) such that the ίth Pontrjagin class mod 3
is given by

where v is a generator of H2(Ln(3) Z3). Then we have f*Hm+ik(K(Z, m) Z3)
= 0 and f*Hm+4k+\K(Z, m); Z8) = 0.
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PROOF. For the first part, any element of f*Hm+*k(K{Z,πι)\ Z3) (C
Hm+u((Ln(S)Y; Z3)) is of the form f*φrκ=φIf*κ = φIV=φiκ..φi«(V\ where
the degree of / = {ii, , iq} is 44. It is sufficient to prove ΦTV=O for admis-
sible /, that is, for the sequence {iu• ••, ίq} such that z,I>3j;+i for 7 = 1, 2,...,
^ — 1 . In case I={k}, ΦkV=φpk(v) = 0, sincepfe(v) = 0. In case / is decompo-
sable, it is clear that ΦTV=O f o r O < i β < 3 ' . If s-l = t9 obviously φrV=0.
So we may assume s — 2^>£. Let c be any integer with £<jc<^ — 2, and set
7=α s_i3 s" 1H hαi3 + α0? where 0<Ξαr<^2 for r = 0, 1, , 5 — 1 , and where at
least one of the integers αc +i,. , α5_i is non-zero. Then/;>3 C + 1 . Let π be
the projection of the tangent bundle of Ln(S). Put 3C = Z. Then we have

While, by calculation it can be proved that the coefficient of the above
value is congruent to zero modulo 3. Therefore we get §>jΦιV—0 for j^>31

= 3C + 1, and hence ΦΨ=0 for admissible /.
The second part is proved similarly. Q. E. D.

§8. Applications

Let -η be the real restriction of the canonical complex line bundle over
2/(3). On the number of linearly independent cross-sections of mη = -η@ • • - Q)TJ
(771-fold), we have the next result.

THEOREM 8.1. Let r, s and t be integers such that r — 1 > S > £ > 1 . Put
τι = 2 3 s + 3 / - l . Then (Sr-n-l)τ/ does not have 2 3 r + 3'-3τι independent
cross-sections.

PROOF. Suppose that (3 r — n — l)τ/ has b independent cross-sections,
where b=2 3r + 3f — 3n. Then there is a (2 3S —3)-dimensional vector bundle
v such that ( 3 r - τ ι - l ) ^ = vφό.

According to [6, Theorem 1], there is a natural homeomorphism: Lzr~x

(S)/L3r-n-2(β)^(Ln(3)Y3r-n-l)\ According to [5, Lemma 2.4], there is a
natural homeomorphism: (Ln(S)y®b^Sb(Ln(S)y. Thus we have a compo-
site homeomorphism:

<p: L3 r

We set Z = 3 r - 3 s + 1 - i V 3 s + 1 , m = 3s-Sf and k = Ss. Since N^O (mod 3),
by Theorem 7.4, Θk(wι+m) is defined for wι+m e H2l+2m(L~(3); Z3), and we have
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(8.2) Θk(wι+m)φ0 modulo Q(θk; L°°(3)).

Let /: i 3 r- 1(3)->i"(3) be the inclusion, g: L3r-ι(S)^L3r-\S)/L3r-"-\3)
be the projection, and ΰb be the ό-fold suspension. Now consider the dia-
gram 5, in which we denote L"(3), Z,~(3) and L3r-1(3)/Z,3r-"-2(3) by L", IT and
I respectively, the coefficient group Z3 is omitted, and q=2l + 2m.

a* ii*

IfiL3"-1) -^-^H"+ik(L3r-1)φH'ι+4k+8(L3r-1)/Q(Θk i 3 ' " 1 )

H\L) ^ >Hq+lk(L)®Hq+ik+\l)/Q(&k I )

\ΰb t?*

Hu-3((Lny)-^H6k-3((Lny)φH6k+5((Lny)/Q(Θk (L")")

Diagram 5

It is clear that the assumptions of Lemma 7.6 are satisfied, and hence by
Theorem 7.5, for Ve H2k-3((Ln(3)Y; Z3), Θk(V) is defined, and we have

(8.3) θk(V) = 0 modulo Q(βh; (LH(β)Y).

But, as is easily seen, each of the vertical homomorphisms is an isomor-
phism. Thus (8.2-3) give rise to a contradiction. Q. E. D.

THEOREM 8.4. Let s and t be integers with S > £ > 1 . // τι = 2 3 s + 3 ί — 1,
then Ln(S) cannot be immersed in Euclidean (Sn — 3' — ϊ)-space.

PROOF. Suppose that Ln(3) be immersed in Euclidean (3rc —3'—1)-
space, then (3W/2 — n — Y)η has 2 Sn'2 — 3ra + 3* independent cross-sections by
[7, Theorem 1]. This contradicts Theorem 8.1. Q. E. D.
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