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On the nonrealizability of braid groups by homeomorphisms

LEI CHEN

We show that the projection HomeoC.D2
n/!Bn does not have a section for n�6; ie

the braid group Bn cannot be geometrically realized as a group of homeomorphisms
of a disk fixing the boundary pointwise and n marked points in the interior as a
set. We also give a new proof of a result of Markovic (2007) that the mapping
class group of a surface of genus g cannot be geometrically realized as a group of
homeomorphisms when g � 2 .

37E30, 57M60

1 Introduction

Let Sb
gIm1;:::;mr

be a surface of genus g with r sets of marked points and b boundary
components such that the i th set contains mi points. We omit the index mi and b when-
ever they are zero. Let HomeoC.Sb

gIm1;:::;mr
/ be the group of orientation-preserving

homeomorphisms of Sb
gIm1;:::;mr

fixing b boundary components pointwise and r sets
of points setwise. Let Mod.Sb

gIm1;:::;mr
/ be the mapping class group of Sb

gIm1;:::;mr
;

ie
Mod.Sb

gIm1;:::;mr
/ WD �0.HomeoC.Sb

gIm1;:::;mr
//:

There is an associated projection

prb
gIm1;:::;mr

W HomeoC.Sb
gIm1;:::;mr

/!Mod.Sb
gIm1;:::;mr

/:

In this paper, we establish the following result:

Theorem 1.1 The projections pr0In , pr0In;1 and pr1
0In

do not have sections for n� 6.

The above theorem answers Question 3.11 in the survey of Mann and Tshishiku [11]
and generalizes Salter and Tshishiku [15]. Let � be the hyperelliptic involution as in
Figure 1.

Let Hg < Mod.Sg/ be the hyperelliptic mapping class group, ie the centralizer of
� 2Mod.Sg/. Markovic [12] proved that the whole mapping class group Mod.Sg/

cannot be realized geometrically; ie prg does not have a section. We have the following
generalization to the infinite-index subgroup Hg :
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�

Figure 1: The hyperelliptic involution � .

Corollary 1.2 The projection prg does not have a section over the subgroup Hg for
g � 2. In particular, prg has no section for g � 2.

This extends the result of Markovic and Saric [13] that H2 cannot be realized geo-
metrically and also gives a new proof of Markovic [12] that the mapping class group
cannot be realized.

Historic remark The Nielsen realization problem for Sb
gIm1;:::;mr

asks if there exists
a section of prb

gIm1;:::;mr
over a subgroup of Mod.Sb

gIm1;:::;mr
/. Nielsen (1943) posed

this question for finite subgroups first and Kerckhoff [9] showed that a lift always exists
for finite subgroups of Mod.Sg/. The first result on the Nielsen realization problem
for the whole mapping class group is a theorem of Morita [14] that there is no section
for the projection Diff2

C.Sg/!Mod.Sg/ when g � 18. Then Markovic [12] (further
extended by Markovic and Saric [13] on the genus bound) showed that prg does not have
a section for g � 2. Franks and Handel [8], Bestvina, Church and Suoto [1] and Salter
and Tshishiku [15] also obtained the nonrealization theorems for C 1 diffeomorphisms.
We refer the readers to the survey paper of Mann and Tshishiku [11] for more history
and previous ideas.

Idea of the proof Our proof essentially uses torsion elements (ie finite-order elements)
of the corresponding mapping class group. The main observation is that the torsion
elements in mapping class groups are not compatible with each other. By the Ahlfors
trick, which states that a torsion element in a mapping class group has a unique
realization up to conjugation, we reach a contradiction by finding a global fixed point.
To make use of our argument on a torsion-free group like the braid group Mod.S1

0In
/,

we use the minimal decomposition theory of Markovic [12] to modify the realization
and apply the same strategy.

Connection with Markovic’s work [12] To prove that pr0I6 and pr0I6;1 have no
sections, we only use the group structure and the Ahlfors trick. The difficulty in other
cases like pr1

0In
is the lack of torsion elements. For example, the braid group Mod.S1

0In
/
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is torsion-free. Markovic’s minimal decomposition theory gives us a tool to modify the
action to obtain a finite action. This is one of the novelties of this paper.

The difference between our work and [12; 13] lies in the final contradiction. They used
many relations, like the braid relation and chain relation, and directly use the Ahlfors
trick on torsion elements. We only make use of two special torsion elements. However,
instead of directly having torsion elements, we have to make torsion elements appear
by applying the minimal decomposition theory. The proof in this paper is conceivably
much simpler.

Structure of the paper In Section 2, we give a local argument showing that the
projection pr0I1;6 does not have a section using torsion elements. In Section 3, we
define minimal decomposition and prove Theorem 1.1 and Corollary 1.2 by using a
technical theorem which is a consequence of the minimal decomposition theory. We
then prove the technical theorem in Section 4.

Acknowledgements This project obtained ideas from a previous paper with Nick
Salter [4] about torsion elements of spherical braid group. The author thanks Benson
Farb, Nick Salter and Bena Tshishiku for asking the question about the lifting braid
group in the Oberwolfach 2016 conference on surface bundles; she thanks Benson
Farb, Dan Margalit and Nick Salter for discussions and comments on the paper. She
would also like to thank Vlad Markovic for very useful discussions and the anonymous
referee for suggestions on the paper.

2 A local argument

In this section, we give a local argument showing that the projection pr0I1;6 and pr0I6

do not have sections. The following is an old theorem of Ahlfors on the uniqueness of
Nielsen realization for finite subgroups; see eg Markovic [12, Proposition 1.1]. Let f 2
Mod.Sb

gIm1;:::;mr
/ be a finite-order mapping class. A homeomorphism representative

of f is a finite-order element h 2 HomeoC.Sb
gIm1;:::;mr

/ such that h is homotopic
to f and has the same order as f .

Proposition 2.1 (Ahlfors’ trick) Let f 2Mod.Sb
gIm1;:::;mr

/ be a finite-order map-
ping class; then f has a unique homeomorphism representative up to conjugation in
HomeoC.Sb

gIm1;:::;mr
/.
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In the following, we only need the genus 0 case of the Ahlfors trick, which goes back to
Brouwer [3], Eilenberg [6] and von Kerékjártó [10]; see also Constantin and Kolev [5].
For pr0I6 and pr0I6;1 , we have the following argument:

Theorem 2.2 The projections

pr0I6;1W HomeoC.S0I6;1/!Mod.S0I6;1/ and pr0I6W HomeoC.S0I6/!Mod.S0I6/

do not have sections.

Proof The above nonexistence follows from the incompatibility of finite-order ele-
ments in Mod.S0I6;1/ and Mod.S1

0I6
/. We prove the pr0I6;1 case first. We name the

marked points p0;p1; : : : ;p6 for both HomeoC.S0I6;1/ and Mod.S0I6;1/, where p0

is the point that is fixed globally. We consider the following two torsion elements in
Mod.S0I6;1/:

� ˛1 , the rotation of order 6 fixing p0 and no other marked points.

� ˛2 , the rotation of order 5 fixing p0 and p6 .

Now we assume that there exists a section s of pr0I6;1W HomeoC.S0I1;6/!Mod.S0I6;1/.

By the Ahlfors trick, a finite-order element of HomeoC.S0/ is conjugate to an actual
rotation. Then s.˛1/ has another fixed point, other than p0 ; we call this point A. We
know that A is not a marked point because ˛1 fixes no other marked points. The
goal of the proof is to show that A is a global fixed point for Mod.S0I6;1/, which
contradicts the fact that s.˛2/ only fixes p0 and p6 but not A. This follows from the
Ahlfors trick on s.˛2/.

For 0<k < 6, since s.˛k
1
/ is a nontrivial rotation, we know that Fix.s.˛k

1
//Dfp0;Ag.

If g 2Mod.S0I6;1/ commutes with ˛k
1

, then

s.g/.fp0;Ag/D s.g/
�
Fix.s.˛k

1 //
�
D Fix.s.g˛k

1 g�1//D Fix.s.˛k
1 //D fp0;Ag:

Since we also know that s.g/ fixes p0 , we obtain that s.g/ fixes A. Denote by
C.k/ the centralizer of ˛k

1
in Mod.S0I6;1/. The above discussion establishes the fact

that s.C.k// fixes A. Denote by G <Mod.S0I6;1/ the subgroup generated by C.2/

and C.3/. To finish our proof, all we need now is to show that G DMod.S0I6;1/.

Let �1 be the half twist in Mod.S0I6;1/ and ˛1 be the rotation as in Figure 2.

Define �i WD ˛
�i
1
�1˛

i
1

, which is also a half twist. First of all, Mod.S0I6;1/ is generated
by �1; : : : ; �5 . This can be seen from the fact that the braid group Mod.S1

0I6
/ is already
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p1

p2

�1

˛1

2�
6

p3

p4

p5 p6

Figure 2: The mapping class �1 and ˛1 in Mod.S0I6;1/ .

generated by �1; : : : ; �5 (see eg [7, page 246]) and that Mod.S0I6;1/ is the quotient
of Mod.S1

0I6
/ by the Dehn twist about the boundary component. Therefore, we know

that �i and ˛1 generate Mod.S0I6;1/.

Since ˛1 2C.2/, all we need to prove is that �3 2G. We prove this by explicitly writing
�3 as a product of elements in C.2/ and C.3/. By observation, �1�4; �2�5; �3�62C.3/

and �1�3�5; �2�4�6 2 C.2/. We now start with

˛1 D �1�2�3�4�5 2G:

Since �5�2 2G, we have that

�1�2�3�4�5.�5�2/
�1
2G:

By commutativity of �2 and �4 , we obtain

�1�2�3�
�1
2 �4 2G:

Applying the same calculation for �1�4 2G, we obtain

�1�2�3�
�1
2 ��1

1 2G:

Since �1�3�5 2G, we obtain

.�1�3�5/
�1�1�2�3�

�1
2 ��1

1 .�1�3�5/ 2G:

But we know that �5 commutes with every other element in the above equation, so we
obtain

��1
3 �2�3�

�1
2 �3 2G:
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Since �3�6 2G, we obtain

.�3�6/�
�1
3 �2�3�

�1
2 �3.�3�6/

�1
2G:

But we know that �6 commutes with every other element in the above equation, so we
obtain

�2�3�
�1
2 2G:

Since �2�5 2G, we obtain

.�2�5/
�1�2�3�

�1
2 .�2�5/ 2G:

But we know that �5 commutes with every other element in the above equation, so we
obtain

�3 2G:

This concludes the proof for the case pr1
0I6

For the case pr0I6 , we assume that pr0I6 has a section s . We name the marked points
p1; : : : ;p6 for both HomeoC.S0I6/ and Mod.S0I6/. We consider the following two
torsion elements in Mod.S0I6/:

� ˛1 , the rotation of order 6 fixing no marked points.

� ˛2 , the rotation of order 5 fixing p6 .

By the Ahlfors trick, a finite-order element of HomeoC.S0/ is conjugate to an actual
rotation. Then s.˛1/ has two fixed points A and B. The goal of the proof is to show
that the set fA;Bg is globally preserved by s.Mod.S0I6//, which contradicts the fact
that s.˛2/ cannot fix the set fA;Bg. If s.˛2/ fixes the set fA;Bg then, since the order
of s.˛2/ is odd, s.˛2/ fixes A and B pointwise. Therefore s.˛2/ fixes p6 , A and B,
which contradicts the Ahlfors trick, which says that s.˛2/ is an actual rotation.

For 0< k < 6, since s.˛k
1
/ is a nontrivial rotation, we know that Fix.s.˛k

1
//DfA;Bg.

If g 2Mod.S0I6/ commutes with ˛k
1

, then

s.g/.fA;Bg/D s.g/
�
Fix.s.˛k

1 //
�
D Fix.s.g˛k

1 g�1//D Fix.s.˛k
1 //D fA;Bg:

We denote by C.k/ the centralizer of ˛k
1

in Mod.S0I6/. The above discussion estab-
lishes the fact that s.C.k// preserves the set fA;Bg. We denote by G<Mod.S0I6/ the
subgroup generated by C.2/ and C.3/. To finish our proof, all we need now is to show
that G DMod.S0I6/, which follows the same computation as in the case pr0I6;1 .
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Remark The above argument does not give any information for the case of

pr0In;1W HomeoC.S0In;1/!Mod.S0In;1/

when n is a prime number. We need a stronger tool to deal with the general case.

3 General case

In this section, we prove Theorem 1.1. The local argument shows that the sections
of pr0I6 and pr0I6;1 do not exist. For n � 6, assume that pr1

0Wn
has a section E. Let

c be a simple closed curve in S1
0In

that surrounds 6 points. Let emW Mod.S1
0I6
/!

Mod.S1
0I6;n�6

/ be the embedding of the subgroup that consists of mapping classes that
are the identity map outside of c . Then we have the compositions of maps

�W Mod.S1
0I6/

em
�!Mod.S1

0I6;n�6/
E
�! HomeoC.S1

0I6;n�6/

forget
��! HomeoC.S1

0I6/
pinch
��! HomeoC.S0I6;1/;

where “forget” denotes the forgetful map forgetting the extra n� 6 marked points and
“pinch” denotes the action on the quotient space S1

0I6
=� that identifies the boundary

component.

By definition, the homomorphism � is almost a realization of pr0W6;1 except that the
center element of Mod.S1

0I6
/ (the Dehn twist Tb about the boundary component b )

does not map to the identity homeomorphism. We solve this problem by the minimal
decomposition theory established by Markovic [12]. The key idea is that the center
element is canonically semiconjugate to the identity.

3.1 Minimal decomposition

In this section, we recall a theory called minimal decomposition of surface homeo-
morphisms. This is established in the celebrated paper of Markovic [12], giving the
first proof that the mapping class group cannot be geometrically realized as homeo-
morphisms. We apply Markovic’s theory to modify the homomorphism � to an actual
section of pr0I6;1 .

We recall the definition of upper semicontinuous decomposition of a surface; see also
Markovic [12, Definition 2.1]. Let M be a surface.
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Definition 3.1 (upper semicontinuous decomposition) Let S be a collection of
closed, connected subsets of M. We say that S is an upper semicontinuous decompo-
sition of M if the following holds:

� If S1;S2 2 S, then S1\S2 D∅.

� If S 2 S, then S does not separate M, ie M �S is connected.

� We have M D
S

S2S S.

� If Sn 2 S for n 2N is a sequence that has the Hausdorff limit S0 then there
exists S 2 S such that S0 � S.

Now we define acyclic sets on a surface.

Definition 3.2 (acyclic sets) Let S �M be a closed, connected subset of M which
does not separate M. We say that S is acyclic if there is a simply connected open set
U �M such that S � U and U �S is homeomorphic to an annulus.

The easiest examples of an acyclic set are a point, an embedded closed arc or an
embedded closed disk in M. Let S �M be a closed, connected set that does not
separate M. Then S is acyclic if and only if there is a lift of S to the universal cover �M
of M which is a compact subset of �M. The following theorem is a classical result called
Moore’s theorem; see eg [12, Theorem 2.1]. Moore’s theorem is used to modify � .

Theorem 3.3 (Moore’s theorem) Let M be a surface and S be an upper semicon-
tinuous decomposition of M such that every element of S is acyclic. Then there is
a continuous map �W M !M that is homotopic to the identity map on M and such
that ��1.p/ 2 S for every p 2M. Moreover, we have that S D f��1.p/ j p 2M g.

We now recall the minimal decomposition theory. The following definition is [12,
Definition 3.1]

Definition 3.4 (admissible decomposition) Let S be a upper semicontinuous decom-
position of M. Let G be a subgroup of Homeo.M /. We say that S is admissible for
the group G if the following holds:

� Each f 2G preserves setwise every element of S.

� Let S 2 S. Then every point in every frontier component of the surface M �S

is a limit of points from M �S that belong to acyclic elements of S.

If G is a cyclic group generated by a homeomorphism f W M !M, we say that S is
an admissible decomposition of f .

Geometry & Topology, Volume 23 (2019)
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An admissible decomposition for G<Homeo.M / is called minimal if it is contained in
every admissible decomposition for G. We have the following theorem from Markovic
[12, Theorem 3.1]:

Theorem 3.5 (existence of minimal decomposition) Every group G < Homeo.M /

has a unique minimal decomposition.

Let b be the boundary component of S1
0I6

and Tb be the Dehn twist about b . The
following theorem is a modified version of Markovic [12, Lemma 5.1] for our case:

Theorem 3.6 Every element of the minimal decomposition S of �.Tb/ is acyclic
and marked points belong to different elements of S.

To make the whole proof easier to follow, we postpone the proof of Theorem 3.6 to the
next section.

3.2 The proof of Theorem 1.1

Now we use Theorem 3.6 to prove Theorem 1.1.

Proof Let S be the minimal decomposition of �.Tb/. By Theorems 3.6 and 3.3
(Moore’s theorem), the space S0I6;1=� is homeomorphic to S0I6;1 , where x�y if and
only if x and y belong to the same element of S. Since the minimal decomposition is
canonical, if f 2 HomeoC.S0I6;1/ commutes with �.Tb/, then f permutes elements
of S. Therefore f induces a homeomorphism of S0;6;1=�. Since Tb is the center of
Mod.S1

0I6
/, we obtain a new homomorphism �.�/W Mod.S1

0I6
/!HomeoC.S0;6;1=�/,

where �.�/.Tc/D id by the definition of admissible decomposition. This is a section
of pr0W6;1 , which contradicts the fact that pr0W6;1 has no section.

We now prove the cases pr0In and pr0In;1 , which is similar to the proof of case pr1
0In

.
For n � 6, assume that pr0Wn;1 or pr0In has a section E. Similarly we have the
compositions of maps

�W Mod.S1
0I6/

em
�!Mod.S0I6;n�6/

E
�! HomeoC.S0I6;n�6/

forget
��! HomeoC.S0I6/:

By the same argument as before, we obtain a homomorphism

�.�/W Mod.S0I6;1/! HomeoC.S0I6/:

Geometry & Topology, Volume 23 (2019)
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Even though �.�/ is not a realization that we have discussed, we still use the fixed-
point argument as in the case pr0I6 in the proof of Theorem 2.2 to show that such �.�/
does not exist. We sketch the proof in the following.

Notice that the 6 marked points in the domain of �.�/ correspond to the marked
points in HomeoC.S0I6/. Therefore �.�/.˛1/ fixes no marked points but two other
points A;B 2 S0I6 . By the same computation as in the proof of Theorem 2.2, we
show that the whole group �.�/.B1

0I6
/ fixes fA;Bg. However �.�/.˛2/ has order 5

and fixes fA;Bg, which implies that �.�/.˛2/ fixes A and B pointwise. However
�.�/.˛2/ also fixes one marked point. This is a contradiction.

3.3 Application to the Nielsen realization problem for the closed mapping
class group

Now we proceed to apply Theorem 1.1 to deal with the Nielsen realization problem
for Hg . The same strategy has also been used in [15].

Proof of Corollary 1.2 The subgroup Hg satisfies the exact sequence

1! Z=2!Hg!Mod.S0I2gC2/! 1:

Assume that Hg has a realization and that z� 2 HomeoC.Sg/ is the realization of � .
By the Ahlfors trick, z� is conjugate to the standard hyperelliptic involution, which
means that z� has 2gC2 fixed points. Denote by HomeoC.Sg/.z�/ the centralizer of z� .
Thus we have the exact sequence

1! Z=2! HomeoC.Sg/.z�/! HomeoC.S0I2gC2/! 1:

By Birman–Hilden theory [2] (see eg [7, Chapter 9.4]), we know that

�0.HomeoC.Sg/.z�//DHg:

We have the pullback diagram

HomeoC.Sg/.z�/ //

pr.Hg/

��

HomeoC.S0I2gC2/

pr0I2gC2

��

Hg
// Mod.S0I2gC2/

However, a section of pr.Hg/ gives a section of pr0I2gC2 , which contradicts Theorem
1.1.
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4 The proof of Theorem 3.6

To make the analysis easier, we take the hyperelliptic Z=2 branched covers pW S2I2!

S0I6;1 and p0W S2
2
! S1

0I6
as in Figures 3 and 4, so that we are working with a surface

of genus 2 with marked points and boundary components.

� P1

P2 P3 P4 P5

P6

p

P 1
0

P 2
0

p0

p1 p4

p2 p3

p5 p6

Figure 3: The projection pW S2I2! S0I6;1 .

� 0 P1

P2 P3 P4 P5

P6

p

b1

b2

b

p1 p4

p2 p3

p5 p6

Figure 4: The projection p0W S2
2
! S1

0I6
.

Let � and � 0 be the corresponding hyperelliptic involution of S2I2 and S2
2

. We use
the same letter to represent both a homeomorphism and its mapping class. We also
use the same letter to represent marked points in S2

2
and S2I2 and marked points

in S1
0I6

and S0I6;1 as in Figures 3 and 4. Let Homeo.S2;2/.�/ and Mod.S2
2
/.� 0/ be

the centralizer of � and � 0. We have the two short exact sequences

1! Z=2!Mod.S2
2 /.�

0/!Mod.S1
0I6/! 1

and
1! Z=2! Homeo.S2;2/.�/! Homeo.S0I6;1/! 1;

The homomorphism �W Mod.S1
0I6
/ ! Homeo.S0I6;1/ induces a homomorphism

�0W Mod.S2
2
/.� 0/!Homeo.S2;2/.�/. Let b1 and b2 be the two boundary components

of S2
2

and let F WD �0.Tb1Tb2/, which is a lift of �.Tb/ 2 Mod.S1
0I6
/. Let S 0 be
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the minimal decomposition of F. Since F commutes with � , we know that S 0

is � –invariant. Since F is a lift of �.Tb/, we know that p.S 0/ is an admissible
decomposition of �.Tb/. To prove that the admissible decomposition of �.Tb/

satisfies Theorem 3.6, we only need to show that p.S 0/ satisfies Theorem 3.6.

Let eW S1
1
� S2

2
be the embedding shown in Figure 5 and c be the boundary of the

subsurface e.S1
1
/.

c

e.S1
1 / S2

2

Figure 5: The embedding eW S1
1 ! S2

2 .

Lemma 4.1 The induced map of e on mapping class groups, EW Mod.S1
1
/ !

Mod.S2
2
/, has image in Mod.S2

2
/.� 0/.

Proof It is classical that Mod.S1
1
/ commutes with the elliptic involution. Therefore

the embedding image E.Mod.S1
1
// commutes with the hyperelliptic involution � . See

[7, pages 75–77] about centers of mapping class groups.

Therefore, we obtain the following theorem, which is the same as [12, Theorem 4.1]:

Theorem 4.2 There exists an admissible decomposition of S2I2 for F with the
following property: there exists a simple closed curve ˛ homotopic to c such that
if p 2 S2I2 belongs to the torus minus a disc (which is one of the two components
obtained after removing ˛ from S2;2 ), then the element of the decomposition that
contains p is acyclic.

Sketch proof We use the same Anosov map A0 on the 2–torus as in [12, Theorem 4.1]
and blow it up at the fixed point and extend to the identity outside of e.S1

1
/ to obtain

A 2 Homeo.S2
2
/. Let ŒA� be the corresponding mapping class. We know that ŒA�

commutes with Tb1Tb2 and Tb1Tb2 is the identity on the subspace S1
1

. By the global
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shadowing property of Anosov flow and [12, Lemma 4.14], the homeomorphism F

setwise preserves each element of the corresponding decomposition of �0.ŒA�/ which
has the property stated in the theorem.

We now prove the following lemma, which is similar to [12, Lemma 5.1]:

Lemma 4.3 The minimal decomposition of F consists of acyclic elements.

Proof The set of all points p 2 S2 such that the corresponding element Sp 2 S 0

is acyclic is denoted by MF . By the definition of minimal decomposition, x 2MF

if and only if there exists an admissible decomposition such that x belong to an
acyclic element. Therefore MF contains the torus minus a disc in Theorem 4.2. Let
M 0

F
be the connected component of MF that contains this torus minus a disc. By

[12, Proposition 2.1], the subset M 0
F

is an open subsurface with finitely many ends.

If M 0
F
¤ S2 , then let ˇn be a nested sequence that determines one end K of M 0

F
. By

Theorem 4.2, there exists a simple closed curve  �M 0
F

such that  is homotopic
to c . Since the center of Mod.S2/ is generated by hyperelliptic involution � , every
curve in S2 has a � –invariant representative.

Let ı0 be a simple closed curve in S2 such that i.ı0;  /¤ 0 and i.ı0; ˇn/¤ 0, where
i.�;�/ denotes the geometric intersection number. Find a � –invariant representative ı
of ı0 that avoids b1 and b2 . Then the mapping class Tı 2 Mod.S2

2
/ satisfies that

i.Tı. /; ˇn/¤ 0 and i.Tı. /;  /¤ 0 on S2 .

Since �0.Mod.S2
2
// commutes with F, we know that �0.Mod.S2

2
// permutes connected

components of MF . Therefore �0.Tı/. / is either contained in M 0
F

or is disjoint
from M 0

F
. However i.Tı. /;  /¤ 0 rules out the possibility that �0.Tı/. / is disjoint

from M 0
F

. Therefore �0.Tı/. /�M 0
F

. This contradicts the fact that �0.Tı/ intersects
each curve ˇn in the nested sequence converging to one end K .

Lemma 4.4 Marked points do not belong to the same element in p.S 0/.

Proof Points are named in Figures 3 and 4. If two marked points belong to one element
in p.S 0/, we claim that there exists S 2 S 0 such that Pi ;Pj 2 S for 1� i ¤ j � 6.
If there exists S 2 S 0 such that P1

0
;Pi 2 S for 1 � i � 6 and S 2 S 0, then since

� permutes elements of S 0, we know that P2
0
;Pi 2 S. Let f 2 Mod.S2

2
/.�/ be a

mapping class that permutes Pi and Pj . Since �0.f / preserves the set fP1
0
;P2

0
g,
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we know that �0.f / preserves S as well. Therefore Pi ;Pj 2 S for 1 � i ¤ j � 6.
Therefore, without loss of generality, we assume that there exists S 2 S 0 such that
P1;P2 2 S.

Since � preserves the minimal decomposition S 0 and S is acyclic, there exists an open
neighborhood U of S consisting of elements of S 0 such that U is simply connected
and nonseparating. Denote by U.S/ the connected component of U \ �.U / that
contains S. Since � permutes elements in S 0 and U consists of elements in S 0, we
know that �.U /\U consists of elements in S 0. Since each element in S 0 is connected,
a connected component of �.U / \ U also consists of elements in S 0. Since each
connected component of the intersection of two simply connected open subsets on a
surface is also simply connected, we know that U.S/ is simply connected, open, a
union of elements in S 0 and satisfies that S � U.S/ and �.U.S//D U.S/.

Since S contains P1 and P2 , we know that U.S/ contains P1 and P2 as well.
Therefore the projection p.U.S// contains a simple arc ˛ connecting p1 and p2 .
Since U.S/ is open, we can choose the arc ˛ so that ˛ does not pass other marked
points. However, the preimage of ˛ is a nontrivial loop. This can be seen from the
fact that, first of all, the preimage only depends on the isotopy type of the arc ˛ . At
least one simple arc connecting two marked points has preimage a nontrivial loop.
Since Mod.S1

0I6
/ acts transitively on simple arcs connecting two marked points by the

change of coordinate principle [7, Chapter 1.3], we know that the preimage of ˛ is
nontrivial as well.

Now we have all we need to prove Theorem 3.6:

Proof of Theorem 3.6 Since the image of each element of S 0 under p is also
connected and closed, we know that the minimal decomposition of �.Tb/ satisfies the
property as stated in Theorem 3.6 because p.S 0/ does.
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