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Virtual fundamental classes for moduli spaces
of sheaves on Calabi–Yau four-folds

DENNIS BORISOV

DOMINIC JOYCE

Let .X ; !�
X
/ be a separated, �2–shifted symplectic derived C–scheme, in the

sense of Pantev, Toën, Vezzosi and Vaquié (2013), of complex virtual dimension
vdimCX D n 2 Z , and Xan the underlying complex analytic topological space. We
prove that Xan can be given the structure of a derived smooth manifold Xdm , of real
virtual dimension vdimRXdm D n . This Xdm is not canonical, but is independent
of choices up to bordisms fixing the underlying topological space Xan . There is
a one-to-one correspondence between orientations on .X ; !�

X
/ and orientations

on Xdm .

Because compact, oriented derived manifolds have virtual classes, this means that
proper, oriented �2–shifted symplectic derived C–schemes have virtual classes, in
either homology or bordism. This is surprising, as conventional algebrogeometric
virtual cycle methods fail in this case. Our virtual classes have half the expected
dimension.

Now derived moduli schemes of coherent sheaves on a Calabi–Yau 4–fold are
expected to be �2–shifted symplectic (this holds for stacks). We propose to use
our virtual classes to define new Donaldson–Thomas style invariants “counting”
(semi)stable coherent sheaves on Calabi–Yau 4–folds Y over C , which should be
unchanged under deformations of Y .
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1 Introduction

This paper will relate two apparently rather different classes of “derived” geometric
spaces. The first class is derived C–schemes X , in the derived algebraic geometry of
Toën and Vezzosi [34; 36], equipped with a �2–shifted symplectic structure !�

X
in

the sense of Pantev, Toën, Vaquié and Vezzosi [31]. Such .X ; !�
X
/ are the expected

structures on 4–Calabi–Yau derived moduli C–schemes.

The second class is derived smooth manifolds Xdm , in derived differential geometry.
There are several different models available: the derived manifolds of Spivak [32] and
Borisov and Noël [3; 4] (which form 1–categories DerManSpi , DerManBoNo ), and
Joyce’s d-manifolds [18; 19; 20] (a strict 2–category dMan) and m-Kuranishi spaces
[21, Section 4.7] (a weak 2–category mKur).

As it is known that equivalence classes of objects in all these higher categories are in
natural bijection, these four models are interchangeable for our purposes. But we use
theorems proved for d-manifolds or (m-)Kuranishi spaces.

Here is a summary of our main results, taken from Theorems 3.15, 3.16 and 3.24 and
Propositions 3.17 and 3.18 below.

Theorem 1.1 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme, in the

sense of Pantev et al [31], with complex virtual dimension vdimC X D n in Z, and
write Xan for the set of C–points of X D t0.X/, with the complex analytic topology.
Suppose that X is separated, and Xan is second countable. Then we can make
the topological space Xan into a derived manifold Xdm of real virtual dimension
vdimRXdm D n, in the sense of any of Borisov and Noel [3; 4], Joyce [18; 19; 20; 21]
and Spivak [32].

There is a natural one-to-one correspondence between orientations on .X ; !�
X
/, in the

sense of Section 2.4, and orientations on Xdm, in the sense of Section 2.6.

The (oriented) derived manifold Xdm above depends on arbitrary choices made in its
construction. However, Xdm is independent of choices up to (oriented) bordisms of
derived manifolds which fix the underlying topological space.

All the above extends to (oriented) �2–shifted symplectic derived schemes

.�W X !Z; !�X=Z/

over a base Z which is a smooth affine C–scheme of pure dimension, yielding an (ori-
ented) derived manifold �dmW Xdm!Zan over the complex manifold Zan associated
to Z, regarded as an (oriented) real manifold.
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In Section 2.5 we give a short definition of Kuranishi atlases K on a topological space X .
These are families of “Kuranishi neighbourhoods” .V;E; s;  / on X and “coordinate
changes” between them, based on work of Fukaya, Oh, Ohta and Ono [14; 15] in
symplectic geometry. The hard work in proving Theorem 1.1 is using .X ; !�

X
/ to

construct a Kuranishi atlas K on Xan . Then we use results from Borisov and Noel [3; 4]
and Joyce [18; 19; 20; 21] to convert .Xan;K/ into a derived manifold Xdm .

Readers of this papers do not need to understand derived manifolds, if they do not
want to. They can just think in terms of Kuranishi atlases, as is common in symplectic
geometry, without passing to derived manifolds.

We prove Theorem 1.1 using a “Darboux theorem” for k–shifted symplectic derived
schemes by Brav, Bussi and Joyce [6]. This paper is related to the series Ben-Bassat,
Brav, Bussi and Joyce [2], Brav, Bussi and Joyce [6], Brav, Bussi, Dupont, Joyce and
Szendrői [5], Bussi, Joyce and Meinhardt [7] and Joyce [22], mostly concerning the
�1–shifted (3–Calabi–Yau) case.

An important motivation for proving Theorem 1.1 is that compact, oriented derived
manifolds have virtual classes, in both bordism and homology. As in Sections 3.6–3.7,
from Theorem 1.1 we may deduce:

Corollary 1.2 Let .X ; !�
X
/ be a proper, oriented �2–shifted symplectic derived

C–scheme, with vdimC X D n. Theorem 1.1 gives a compact, oriented derived
manifold Xdm with vdimRXdm D n. We may define a d-bordism class ŒXdm�dbo

in the bordism group Bn.�/, and a virtual class ŒXdm�virt in the homology group
Hn.XanIZ/, depending only on .X ; !�

X
/ and its orientation.

Let X be a derived C–scheme, Z a connected C–scheme, �W X ! Z be proper,
and Œ!X=Z � a family of oriented �2–shifted symplectic structures on X=Z, with
vdimC X=Z D n. For each z 2 Zan we have a proper, oriented �2–shifted sym-
plectic C–scheme .Xz; !�

Xz
/ with vdimXz D n. Then ŒXz1dm�dbo D ŒX

z2
dm�dbo and

{
z1
� .ŒX

z1
dm�virt/ D {

z2
� .ŒX

z2
dm�virt/ for all z1; z2 2 Zan, with {z�.ŒX

z
dm�virt/ 2 Hn.XanIZ/

the pushforward under the inclusion {z W Xzan ,!Xan .

So, proper, oriented �2–shifted symplectic derived C–schemes .X ; !�
X
/ have virtual

classes. This is not obvious; in fact it is rather surprising. Firstly, if .X ; !�
X
/ is

�2–shifted symplectic then X D t0.X/ has a natural obstruction theory LX jX !LX
in the sense of Behrend and Fantechi [1], which is perfect in the interval Œ�2; 0�. But
the Behrend–Fantechi construction of virtual cycles [1] works only for obstruction
theories perfect in Œ�1; 0�, and does not apply here.

Secondly, our virtual cycle has real dimension vdimC X D
1
2

vdimRX , which is half
what we might have expected. A heuristic explanation is that one should be able to
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make X into a “derived C1–scheme” XC
1

(not a derived manifold), in some sense
similar to Lurie [27, Section 4.5] or Spivak [32], and .XC

1

; Im!�
X
/ should be a

“real �2–shifted symplectic derived C1–scheme”, with Im!�
X

the imaginary part
of !�

X
. There should be a morphism XC

1

!Xdm which is a “Lagrangian fibration”
of .XC

1

; Im!�
X
/. So vdimRXdmD

1
2

vdimRX
C1D

1
2

vdimRX , as for Lagrangian
fibrations � W .S; !/! B we have dimB D 1

2
dimS .

The main application that we intend for these results, motivated by Donaldson and
Thomas [13] and explained in Sections 3.8–3.9, is to define new invariants “counting”
(semi)stable coherent sheaves on Calabi–Yau 4–folds Y over C , which should be
unchanged under deformations of Y . These are similar to Donaldson–Thomas invariants
found in Joyce and Song [25], Kontsevich and Soibelman [26] and Thomas [33] and
could be called “holomorphic Donaldson invariants”, as they are complex analogues of
Donaldson invariants of 4–manifolds; see Donaldson and Kronheimer [12].

Pantev, Toën, Vaquié and Vezzosi [31, Section 2.1] show that any derived moduli
stack M of coherent sheaves (or complexes of coherent sheaves) on a Calabi–Yau
m–fold has a .2�m/–shifted symplectic structure !�M , so in particular 4–Calabi–Yau
moduli stacks are �2–shifted symplectic. Given an analogue of this for derived moduli
schemes, and a way to define orientations upon them, Corollary 1.2 would give virtual
classes for moduli schemes of (semi)stable coherent sheaves on Calabi–Yau 4–folds,
and so enable us to define invariants.

It is well known that there is a great deal of interesting and special geometry, related to
string theory, concerning Calabi–Yau 3–folds and 3–Calabi–Yau categories: mirror
symmetry, Donaldson–Thomas theory, and so on. One message of this paper is that there
should also be special geometry concerning Calabi–Yau 4–folds and 4–Calabi–Yau
categories, which is not yet understood.

During the writing of this paper, Cao and Leung [8; 9; 10] also proposed a theory of
invariants counting coherent sheaves on Calabi–Yau 4–folds, based on gauge theory
rather than derived geometry. We discuss their work in Section 3.9.

Section 2 provides background material on derived schemes, shifted symplectic struc-
tures upon them, Kuranishi atlases, and derived manifolds. The heart of the paper is
Section 3, with the definitions, main results, shorter proofs, and discussion. Longer
proofs of results in Section 3 are deferred to Sections 4–6.

Acknowledgements We would like to thank Yalong Cao, Conan Leung, Bertrand
Toën, Gabriele Vezzosi, and a referee for helpful conversations. This research was
supported by EPSRC Programme Grant EP/I033343/1.
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2 Background material

We begin with some background material and notation needed later. Some references are
Toën and Vezzosi [34; 36] for Sections 2.1–2.2, Pantev, Toën, Vezzosi and Vaquié [31]
and Brav, Bussi and Joyce [6] for Section 2.3, and Spivak [32], Borisov and Noël [3; 4]
and Joyce [18; 19; 20; 21; 23; 24] for Section 2.6.

2.1 Commutative differential graded algebras

Definition 2.1 Write cdgaC for the category of commutative differential graded C–
algebras in nonpositive degrees, and cdgaop

C for its opposite category. In fact cdgaC

has the additional structure of a model category (a kind of 1–category), but we only
use this in the proof of Theorem 3.1 in Section 4. In the rest of the paper we treat
cdgaC , cdgaop

C just as ordinary categories.

Objects of cdgaC are of the form � � � ! A�2 d
�!A�1 d

�!A0 . Here Ak for k D
0;�1;�2; : : : is the C–vector space of degree-k elements of A, and we have a C–
bilinear, associative, supercommutative multiplication Ak �Al �!AkCl for k; l 6 0,
an identity 1 2 A0 , and differentials dW Ak! AkC1 for k < 0 satisfying

d.a � b/D .da/ � bC .�1/ka � .db/

for all a 2 Ak , b 2 Al . We write such objects as A� or .A�; d/.

Here and throughout we will use the superscript “ � ” to denote graded objects (eg
graded algebras or vector spaces), where � stands for an index in Z, so that A� means
.Ak W k 2 Z/. We will use the superscript “ � ” to denote differential graded objects
(eg differential graded algebras or complexes), so that A� means .A�; d/, the graded
object A� together with the differential d.

Morphisms ˛W A�! B� in cdgaC are C–linear maps ˛k W Ak ! Bk for all k 6 0

commuting with all the structures on A� , B� .

A morphism ˛W A�! B� is a quasi-isomorphism if Hk.˛/W Hk.A�/!Hk.B�/ is
an isomorphism on cohomology groups for all k 6 0. A fundamental principle of
derived algebraic geometry is that cdgaC is not really the right category to work in,
but instead one wants to define a new category (or better, 1–category) by inverting
(localizing) quasi-isomorphisms in cdgaC .

We will call A� 2 cdgaC of standard form if A0 is a smooth finitely generated C–
algebra of pure dimension, and the graded C–algebra A� is freely generated over A0

by finitely many generators in each degree i D �1;�2; : : : . Here we require A0 to
be smooth of pure dimension so that .SpecA0/an is a complex manifold, rather than a
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disjoint union of complex manifolds of different dimensions. This is not crucial, but
will be convenient in Section 3.

Remark 2.2 Brav, Bussi and Joyce [6, Definition 2.9] work with a stronger notion
of standard form cdgas than us, as they require A� to be freely generated over A0 by
finitely many generators, all in negative degrees. In contrast, we allow infinitely many
generators, but only finitely many in each degree i D�1;�2; : : : .

The important thing for us is that since standard form cdgas in the sense of [6] are also
standard form in the (slightly weaker) sense of this paper, we can apply some of their
results [6, Theorems 4.1, 4.2, 5.18] on the existence and properties of nice standard
form cdga local models for derived schemes.

Definition 2.3 Let A� 2 cdgaC , and write D.modA/ for the derived category of
dg-modules over A� . Define a derivation of degree k from A� to an A�–module M �

to be a C–linear map ıW A�!M � that is homogeneous of degree k with

ı.fg/D ı.f /gC .�1/kjf jf ı.g/:

Just as for ordinary commutative algebras, there is a universal derivation into an
A�–module of Kähler differentials �1A� , which can be constructed as I=I 2 for I D
Ker.mW A�˝A�! A�/. The universal derivation ıW A�!�1A� is given by ı.a/D
a ˝ 1 � 1 ˝ a 2 I=I 2 . One checks that ı is a universal degree-0 derivation, so
that ı ıW Hom�A�.�

1
A� ;M

�/! Der�.A;M �/ is an isomorphism of dg-modules.

Note that �1A� D ..�
1
A�/
�; d/ is canonical up to strict isomorphism, not just up to quasi-

isomorphism of complexes, or up to equivalence in D.modA/. Also, the underlying
graded vector space .�1A�/

� , as a module over the graded algebra A� , depends only
on A� and not on the differential d in A� D .A�; d/.

Similarly, given a morphism of cdgas ˆW A�! B� , we can define the relative Kähler
differentials �1

B�=A�
.

The cotangent complex LA� of A� is related to the Kähler differentials �1A� , but is
not quite the same. If ˆW A� ! B� is a quasi-isomorphism of cdgas over C , then
ˆ�W �

1
A�˝A

� B�!�1B� may not be a quasi-isomorphism of B�–modules. So Kähler
differentials are not well behaved under localizing quasi-isomorphisms of cdgas, which
is bad for doing derived algebraic geometry.

The cotangent complex LA� is a substitute for �1A� which is well behaved under local-
izing quasi-isomorphisms. It is an object in D.modA/, canonical up to equivalence.
We can define it by replacing A� by a quasi-isomorphic, cofibrant (in the sense of model
categories) cdga B� , and then setting LA� D .�1B�/˝B� A

� . We will be interested
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in the pth exterior power ƒpLA� , and the dual .LA�/_ , which is called the tangent
complex, and written TA� D .LA�/_ .

There is a de Rham differential ddRW ƒ
pLA�!ƒpC1LA� , a morphism of complexes,

with ddR
2 D 0W ƒpLA� !ƒpC2LA� . Note that each ƒpLA� is also a complex with

its own internal differential dW .ƒpLA�/k! .ƒpLA�/kC1 , and ddR being a morphism
of complexes means that d ı ddRD ddRı d.

Similarly, given a morphism of cdgas ˆW A�!B� , we can define the relative cotangent
complex LB�=A� .

As in [6, Section 2.3], an important property of our standard form cdgas A� in
Definition 2.1 is that they are sufficiently cofibrant that the Kähler differentials �1A�
provide a model for the cotangent complex LA� , so we can take �1A� D LA� , without
having to replace A� by an unknown cdga B� . Thus standard form cdgas are convenient
for doing explicit computations with cotangent complexes.

A morphism ˆW A�!B� of cdgas will be called quasifree if ˆ0W A0!B0 is a smooth
morphism of C–algebras of pure relative dimension, and as a graded .A�˝A0 B

0/–
algebra B� is free and finitely generated in each degree. Here if A� is of standard
form and ˆ is quasifree then B� is of standard form, and a cdga A� is of standard
form if and only if the unique morphism C! A� is quasifree. We will only consider
quasifree morphisms when A� , B� are of standard form.

If ˆW A�! B� is a quasifree morphism then the relative Kähler differentials �1
B�=A�

are a model for the relative cotangent complex LB�=A� , and therefore we can take
�1
B�=A�

D LB�=A� . Thus quasifree morphisms are a convenient class of morphisms
for doing explicit computations with cotangent complexes.

2.2 Derived algebraic geometry and derived schemes

Definition 2.4 Write dStC for the 1–category of derived C–stacks (or D�–stacks)
defined by Toën and Vezzosi [36, Definition 2.2.2.14; 34, Definition 4.2]. Objects X
in dStC are 1–functors

X W fsimplicial commutative C–algebrasg ! fsimplicial setsg

satisfying sheaf-type conditions. There is a spectrum functor

SpecW cdgaop
C ! dStC :

A derived C–stack X is called an affine derived C–scheme if X is equivalent in dStC

to SpecA� for some cdga A� over C . As in [34, Section 4.2], a derived C–stack X
is called a derived C–scheme if it may be covered by Zariski open Y � X with Y
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an affine derived C–scheme. Write dSchC for the full 1–subcategory of derived
C–schemes in dStC , and dSchaff

C � dSchC for the full 1–subcategory of affine
derived C–schemes. See also Toën [35] for a different but equivalent way to define
derived C–schemes, as an 1–category of derived ringed spaces.

We shall assume throughout this paper that all derived C–schemes X are locally finitely
presented in the sense of Toën and Vezzosi [36, Definition 1.3.6.4]. Note that this is
a strong condition, for instance it implies that the cotangent complex LX is perfect
[36, Proposition 2.2.2.4]. A locally finitely presented classical C–scheme X need not
be locally finitely presented as a derived C–scheme. A local normal form for locally
finitely presented derived C–schemes is given in [6, Theorem 4.1].

There is a classical truncation functor t0W dSchC ! SchC taking a derived C–
scheme X to the underlying classical C–scheme X D t0.X/. On affine derived
schemes dSchaff

C the functor t0 maps SpecA�! SpecH 0.A�/D Spec.A0=d.A�1//.

Toën and Vezzosi show that a derived C–scheme X has a cotangent complex LX [36,
Section 1.4; 34, Sections 4.2.4–4.2.5] in a stable 1–category Lqcoh.X/ defined in [34,
Section 3.1.7, Section 4.2.4]. We will be interested in the pth exterior power ƒpLX ,
and the dual .LX /_ , which is called the tangent complex TX . There is a de Rham
differential ddRW ƒ

pLX !ƒpC1LX .

Restricted to the classical scheme X D t0.X/, the cotangent complex LX jX may
Zariski locally be modelled as a finite complex of vector bundles

ŒF�m! F 1�m! � � � ! F 0�

on X in degrees Œ�m; 0� for some m>0. The (complex) virtual dimension vdimC X is
vdimC X D

Pm
iD0.�1/

i rankF�i . It is a locally constant function vdimC X W X!Z,
so is constant on each connected component of X . We say that X has (complex)
virtual dimension n 2 Z if vdimC X D n.

When X DX is a classical scheme, the homotopy category of Lqcoh.X/ is the trian-
gulated category Dqcoh.X/ of complexes of quasicoherent sheaves. These LX , TX
have the usual properties of (co)tangent complexes. For instance, if f W X ! Y is a
morphism in dSchC there is a distinguished triangle

f �.LY /
Lf // LX // LX=Y // f �.LY /Œ1�;

where LX=Y is the relative cotangent complex of f .

Now suppose A� is a cdga over C , and X a derived C–scheme with X ' SpecA�

in dSchC . Then we have an equivalence of triangulated categories Lqcoh.X/ '

D.modA/, which identifies cotangent complexes LX 'LA� . If also A� is of standard
form then LA� '�1A� , so LX '�

1
A� .
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Bussi, Brav and Joyce [6, Theorem 4.1] prove:

Theorem 2.5 Suppose X is a derived C–scheme (as always, assumed locally finitely
presented), and x 2X . Then there exists a standard form cdga A� over C and a Zariski
open inclusion ˛W SpecA� ,!X with x 2 Im˛.

See Remark 2.2 on the difference in definitions of “standard form”. Bussi et al also
explain [6, Theorem 4.2] how to compare two such standard form charts SpecA� ,!X ,
SpecB� ,!X on their overlap in X , using a third chart. We will need the following
conditions on derived C–schemes and their morphisms.

Definition 2.6 A derived C–scheme X is called separated, or proper, or quasicom-
pact, if the classical C–scheme X D t0.X/ is separated, or proper, or quasicom-
pact, respectively, in the classical sense, as in Hartshorne [16, pages 80, 96, 100].
Proper implies separated. A morphism of derived schemes f W X ! Y is proper if
t0.f /W t0.X/! t0.Y / is proper in the classical sense [16, page 100].

We will need the following nontrivial fact about the relation between classical and
derived C–schemes. As in Toën [35, Section 2.2, page 186], a derived C–scheme X
is affine if and only if the classical C–scheme X D t0.X/ is affine.

Recall that a morphism ˛W X ! Y in SchC (or ˛W X ! Y in dSchC ) is affine if
whenever ˇW U ! Y is a Zariski open inclusion with U affine (or ˇW U ! Y is
Zariski open with U affine), the fibre product X �˛;Y;ˇ U in SchC (or homotopy
fibre product X �h

˛;Y;ˇ
U in dSchC ) is also affine. Since X is affine if and only if

X D t0.X/ is affine, we see that a morphism ˛W X ! Y in dSchC is affine if and
only if t0.˛/W t0.X/! t0.Y / is affine.

Now let X be a separated derived C–scheme. Then X D t0.X/ is a separated classical
C–scheme, so [16, page 96] the diagonal morphism �X W X ! X �X is a closed
immersion. But closed immersions are affine, and �X D t0.�X / for �X W X!X�X
the derived diagonal morphism, so �X is also affine. That is, X has affine diagonal.
Therefore if U1;U2 ,! X are Zariski open inclusions with U1 , U2 affine, then
U1 �

h
X
U2 ,!X is also Zariski open with U1 �hX U2 affine. Thus, finite intersections

of open affine derived C–subschemes in a separated derived C–scheme X are affine.

2.3 The shifted symplectic geometry of Pantev, Toën, Vaquié and Vezzosi

Next we summarize parts of the theory of shifted symplectic geometry, as developed by
Pantev, Toën, Vaquié and Vezzosi in [31]. We explain them for derived C–schemes X ,
although Pantev et al work more generally with derived stacks.
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Given a (locally finitely presented) derived C–scheme X and given p > 0, k 2 Z,
Pantev et al [31] define complexes of k–shifted p–forms ApC.X ; k/ and k–shifted
closed p–forms Ap;cl

C .X ; k/. These are defined first for affine derived C–schemes
Y D SpecA� for A� a cdga over C , and shown to satisfy étale descent. Then for
general X , k–shifted (closed) p–forms are defined as a mapping stack; basically, a
k–shifted (closed) p–form ! on X is the functorial choice for all Y , f of a k–shifted
(closed) p–form f �.!/ on Y whenever Y D SpecA� is affine and f W Y !X is a
morphism.

Definition 2.7 Let Y 'SpecA� be an affine derived C–scheme, for A� a cdga over C .
A k–shifted p–form on Y for k 2 Z is an element !A� 2 .ƒpLA�/k with d!A� D 0
in .ƒpLA�/kC1 , so that !A� defines a cohomology class Œ!A� �2Hk.ƒpLA�/. When
p D 2, we call !A� nondegenerate, or a k–shifted presymplectic form, if the induced
morphism TA�

!A� ���!LA� Œk� is a quasi-isomorphism.

A k–shifted closed p–form on Y is a sequence !�A� D .!0A� ; !
1
A� ; !

2
A� ; : : : / such

that !mA� 2 .ƒ
pCmLA�/k�m for m > 0, with d!0A� D 0 and d!1CmA� C ddR!

m
A� D 0

in .ƒpCmC1LA�/k�m for all m> 0. Note that if !�A� D .!
0
A� ; !

1
A� ; : : : / is a k–shifted

closed p–form then !0A� is a k–shifted p–form.

When p D 2, we call a k–shifted closed 2–form !�A� a k–shifted symplectic form if
the associated 2–form !0A� is nondegenerate (presymplectic).

If X is a general derived C–scheme, then Pantev et al [31, Section 1.2] define k–
shifted 2–forms !X , which may be nondegenerate (presymplectic), and k–shifted
closed 2–forms !�

X
, which have an associated k–shifted 2–form !0

X
, and where !�

X

is called a k–shifted symplectic form if !0
X

is nondegenerate (presymplectic). We will
not go into the details of this definition for general X .

The important thing for us is this: if Y � X is a Zariski open affine derived C–
subscheme with Y ' SpecA� then a k–shifted 2–form !X (or a k–shifted closed
2–form !�

X
) on X induces a k–shifted 2–form !A� (or a k–shifted closed 2–

form !�A� ) on Y in the sense above, where !A� is unique up to cohomology in
the complex ..ƒ2LA�/�; d/, and !X nondegenerate/presymplectic implies !A� non-
degenerate/presymplectic (or where !�A� is unique up to cohomology in the complex�Q

m>0.ƒ
2CmLA�/��m; dC ddR

�
, and !�

X
symplectic implies !�A� symplectic).

It is easy to show that if X is a derived C–scheme with a k–shifted symplectic
or presymplectic form, then k 6 0, and the complex virtual dimension vdimC X

satisfies vdimC X D 0 if k is odd, and vdimC X is even if k � 0 mod 4 (which
includes classical complex symplectic schemes when k D 0), and vdimC X 2 Z if
k � 2 mod 4. In particular, in the case k D�2 of interest in this paper, vdimC X can
take any value in Z.
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The main examples we have in mind come from Pantev et al [31, Section 2.1]:

Theorem 2.8 Suppose Y is a Calabi–Yau m–fold over C, and M a derived moduli
stack of coherent sheaves (or complexes of coherent sheaves) on Y . Then M has a
natural .2�m/–shifted symplectic form !M .

In particular, derived moduli schemes and stacks on a Calabi–Yau 4–fold Y are
�2–shifted symplectic.

Bussi, Brav and Joyce [6] prove “Darboux theorems” for k–shifted symplectic derived
C–schemes .X ; !X / for k < 0, which give explicit Zariski local models for .X ; !X /.
We will explain their main result for k D �2. The next definition is taken from [6,
Example 5.16] (with notation changed, 2qj sj in place of sj ).

Definition 2.9 A pair .A�; !A�/ is called in �2–Darboux form if A� is a standard
form cdga over C , and !A� 2 .ƒ2LA�/�2D .ƒ2�1A�/

�2 with d!A�D0 in .ƒ2LA�/�1

and ddR!A� D 0 in .ƒ3LA�/�2 , so that !�A� WD .!A� ; 0; 0; : : : / is a �2–shifted closed
2–form on A� , such that:

(i) A0 is a smooth C–algebra of dimension m, and there exist x1; : : : ; xm in A0

forming an étale coordinate system on V D SpecA0 .

(ii) The commutative graded algebra A� is freely generated over A0 by elements
y1; : : : ; yn of degree �1 and z1; : : : ; zm of degree �2.

(iii) There are invertible elements q1; : : : ; qn in A0 such that

(1) !A� D ddRz1 ddRx1C � � �C ddRzm ddRxm

C ddR.q1y1/ ddRy1C � � �C ddR.qnyn/ ddRyn:

(iv) There are elements s1; : : : ; sn 2 A0 satisfying

(2) q1.s1/
2
C � � �C qn.sn/

2
D 0 in A0;

such that the differential d on A� D .A�; d/ is given by

(3) dxi D 0; dyj D sj ; dzi D
nX

jD1

yj

�
2qj

@sj

@xi
C sj

@qj

@xi

�
:

Here the only assumptions are that A0 , x1; : : : ; xm are as in (i) and we are given
q1; : : : ; qn , s1; : : : ; sn in A0 satisfying (2), and everything else follows from these.
Defining A� as in (ii) and d as in (3), then A� D .A�; d/ is a standard form cdga
over C , where to show that d ı dzi D 0 we apply @=@xi to (2). Clearly ddR!A� D 0,
as ddRı ddRD 0. We have
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d!A� D
mP
iD1

.dıddRzi / ddRxiC
nP

jD1

.dıddR.qjyj // ddRyjC.dıddRyj / ddR.qjyj /

D� ddR

mP
iD1

dzi ddRxi�ddR

nP
jD1

Œd.qjyj / ddRyjCdyj ddR.qjyj /�

D� ddR

mP
iD1

nP
jD1

yj

�
2qj

@sj

@xi
Csj

@qj

@xi

�
ddRxi�ddR

nP
jD1

Œqj sj ddRyjCsj ddR.qjyj /�

D� ddRı ddR

nP
jD1

Œ.qj sj /yjCsj .qjyj /�D 0;

using (1) and d ı ddRxi D 0 for degree reasons in the first step, d ı ddRD � ddRı d
and ddRı ddRD 0 in the second, (3) in the third, dsj D

Pn
iD1.@sj =@xi / ddRxi and

similarly for qj in the fourth, and ddRı ddRD 0 in the fifth. Hence !�A� is a �2–shifted
closed 2–form on A� .

The action TA�
!A� ���!LA� Œ�2� is given by

!A� �
@

@xi
D� ddRzi C

nX
jD1

@qj

@xi
yj ddRyj ;

!A� �
@

@yj
D 2qj ddRyj �

mX
iD1

yj
@qj

@xi
ddRxi ; !A� �

@

@zi
D ddRxi :

By writing this as an upper triangular matrix with invertible diagonal (since the qj
are invertible), we see that !A� � is actually an isomorphism of complexes, so a quasi-
isomorphism, and !�A� is a �2–shifted symplectic form on A� .

The main result of Bussi, Brav and Joyce [6, Theorem 5.18] when k D�2 yields:

Theorem 2.10 Suppose .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme.

Then for each x 2X D t0.X/ there exists a pair .A�; !A�/ in �2–Darboux form and
a Zariski open inclusion ˛W SpecA� ,! X such that x 2 Im˛ and ˛�.!�

X
/ ' !A�

in A2;cl
C .SpecA�;�2/. Furthermore, we can choose A� minimal at x, in the sense

that mD dimH 0.TX jx/ and nD dimH 1.TX jx/ in Definition 2.9.

2.4 Orientations on k–shifted symplectic derived schemes

If X is a derived C–scheme (always assumed locally finitely presented), with classical
C–scheme X D t0.X/, the cotangent complex LX jX restricted to X is a perfect
complex, so it has a determinant line bundle det.LX jX / on X .

The following notion is important for �1–shifted symplectic derived schemes, 3–
Calabi–Yau moduli spaces, and generalizations of Donaldson–Thomas theory:
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Definition 2.11 Let .X ; !�
X
/ be a �1–shifted symplectic derived C–scheme (or more

generally k–shifted symplectic, for k <0 odd). An orientation for .X ; !�
X
/ is a choice

of square root line bundle det.LX jX /1=2 for det.LX jX /.

Writing Xan for the complex analytic topological space of X , the obstruction to
existence of orientations for .X ; !�

X
/ lies in H 2.XanIZ2/, and if the obstruction

vanishes, the set of orientations is a torsor for H 1.XanIZ2/.

This notion of orientation, and its analogue for “d-critical loci”, are used by Ben-
Bassat, Brav, Bussi, Dupont, Joyce, Meinhardt and Szendrői in a series of papers [2;
5; 6; 7; 22]. They use orientations on .X ; !�

X
/ to define natural perverse sheaves,

D–modules, mixed Hodge modules, and motives on X . A similar idea first appeared
in Kontsevich and Soibelman [26, Section 5] as “orientation data” needed to define
motivic Donaldson–Thomas invariants of Calabi–Yau 3–folds.

This paper concerns �2–shifted symplectic derived schemes, and 4–Calabi–Yau moduli
spaces. It turns out that there is a parallel notion of orientation in the �2–shifted case,
needed to construct virtual cycles.

To define this, note that determinant line bundles det.E�/ of perfect complexes E�

satisfy detŒ.E�/_� Š Œdet.E�/��1 , and det.E�Œk�/ Š Œdet.E�/�.�1/
k

. If .X ; !�
X
/

is a k–shifted symplectic derived C–scheme, then TX ' LX Œk�, where TX '
.LX /

_ . Restricting to X and taking determinant line bundles gives det.LX jX /�1 Š
det.LX jX /.�1/

k

. If k is odd this is trivial, but for k even, this gives a canonical
isomorphism of line bundles on X :

(4) �X ;!�X
W Œdet.LX jX /�˝

2

!OX ŠO˝
2

X :

The next definition is new, so far as the authors know.

Definition 2.12 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme (or more

generally k–shifted symplectic, for k < 0 with k � 2 mod 4). An orientation for
.X ; !�

X
/ is a choice of isomorphism oW det.LX jX /!OX such that o˝ oD �X ;!�X ,

for �X ;!�X as in (4).

Writing Xan for the complex analytic topological space of X , the obstruction to
existence of orientations for .X ; !�

X
/ lies in H 1.XanIZ2/, and if the obstruction

vanishes, the set of orientations is a torsor for H 0.XanIZ2/.

This definition makes sense for k–shifted symplectic derived C–schemes with k even,
but when k� 0 mod 4 (including the classical symplectic case kD 0) there is a natural
choice of orientation o, so we restrict to k � 2 mod 4.
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At a point x 2Xan , we have a canonical isomorphism

det.LX jx/ŠƒtopH 0.LX jx/˝ Œƒ
topH�1.LX jx/�

�
˝ƒtopH�2.LX jx/:

Now H�1.LX jx/ŠH
1.TX jx/

� , and !0
X
jx gives H 0.LX jx/ŠH

�2.LX jx/
� , so we

see that ƒtopH 0.LX jx/Š Œƒ
topH�2.LX jx/�

� . Thus we have a canonical isomorphism

(5) det.LX jx/ŠƒtopH 1.TX jx/:

Write Qx for the nondegenerate, symmetric C–bilinear pairing

(6) H 1.TX jx/�H
1.TX jx/

Qx WD!
0
X jx ��������!C:

The determinant detQx is an isomorphism ŒƒtopH 1.TX jx/�
˝2! C , and detQx

corresponds to �X ;!�X jx under the isomorphism (5). There is a natural bijection

(7) forientations on .X ; !�X / at x g Š fC–orientations on .H 1.TX jx/;Qx/g:

To see this, note that if .e1; : : : ; en/ is an orthonormal basis for .H 1.TX jx/;Qx/ then
e1 ^ � � � ^ en lies in ƒtopH 1.TX jx/ with detQx W Œe1 ^ � � � ^ en�˝

2

7! 1. Orientations
for .X ; !�

X
/ at x give isomorphisms �W ƒtopH 1.TX jx/!C with �2 D detQx , and

these correspond to orientations for .H 1.TX jx/;Qx/ such that �W e1 ^ � � � ^ en 7! 1

if .e1; : : : ; en/ is an oriented orthonormal basis.

2.5 Kuranishi atlases

We now define our notion of Kuranishi atlases on a topological space X . These are a
simplification of m-Kuranishi spaces in [21, Section 4.7], which in turn are based on
the “Kuranishi spaces” of Fukaya, Oh, Ohta and Ono [14; 15].

Definition 2.13 Let X be a topological space. A Kuranishi neighbourhood on X is a
quadruple .V;E; s;  / such that:

(a) V is a smooth manifold.

(b) � W E! V is a real vector bundle over V , called the obstruction bundle.

(c) sW V !E is a smooth section of E , called the Kuranishi section.

(d)  is a homeomorphism from s�1.0/ to an open subset RD Im in X , where
Im D f .x/ j x 2 s�1.0/g is the image of  .

If S � X is open, by a Kuranishi neighbourhood over S , we mean a Kuranishi
neighbourhood .V;E; s;  / on X with S � Im �X .
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Definition 2.14 Let .VJ ; EJ ; sJ ;  J /, .VK ; EK ; sK ;  K/ be Kuranishi neighbour-
hoods on a topological space X , and S � Im J \ Im K �X be open. A coordinate
change ˆJK W .VJ ; EJ ; sJ ;  J / ! .VK ; EK ; sK ;  K/ over S is a triple ˆJK D

.VJK ; �JK ; y�JK/ satisfying:

(a) VJK is an open neighbourhood of  �1J .S/ in VJ .

(b) �JK W VJK ! VK is a smooth map.

(c) y�JK W EJ jVJK ! ��JK.EK/ is a morphism of vector bundles on VJK .

(d) y�JK.sJ jVJK /D �
�
JK.sK/.

(e)  J D  K ı�JK on s�1J .0/\VJK .

(f) If x 2 S , and we set vJ D  �1J .x/ 2 VJ and vK D  �1K .x/ 2 VK , then the
following is an exact sequence of real vector spaces:

(8) 0! TvJVJ
dsJ jvJ˚d�JK jvJ
�����������!EJ jvJ˚TvKVK

�y�JK jvJ˚dsK jvK
�����������!EK jvK ! 0:

We can compose coordinate changes: if

ˆJK D .VJK ; �JK ; y�JK/W .VJ ; EJ ; sJ ;  J /! .VK ; EK ; sK ;  K/;

ˆKL D .VKL; �KL; y�KL/W .VK ; EK ; sK ;  K/! .VL; EL; sL;  L/

are coordinate changes over SJK , SKL , then

ˆKL ıˆJK WD .VJK \�
�1
JK.VKL/; �KL ı�JK j���; �

�
JK.
y�KL/ ı y�JK j���/W

.VJ ; EJ ; sJ ;  J /! .VL; EL; sL;  L/

is a coordinate change over SJK \SKL .

Definition 2.15 A Kuranishi atlas K of virtual dimension n on a topological space X
is data KD .A; �; .VJ ; EJ ; sJ ;  J /J2A; ˆJK;J�K2A/, where:

(a) A is an indexing set (not necessarily finite).

(b) � is a partial order on A, where by convention J �K only if J ¤K.

(c) .VJ ; EJ ; sJ ;  J / is a Kuranishi neighbourhood on X for each J 2 A, with
dimVJ � rankEJ D n.

(d) The images Im J � X for J 2 A have the property that if J;K 2 A with
J ¤K and Im J \ Im K ¤¿ then either J �K or K � J .

(e) ˆJK D .VJK ; �JK ; y�JK/W .VJ ; EJ ; sJ ;  J /! .VK ; EK ; sK ;  K/ is a coordi-
nate change for all J;K 2 A with J �K , over S D Im J \ Im K .

(f) ˆKL ıˆJK DˆJL for all J;K;L 2 A with J �K � L.

(g)
S
J2A Im J DX .
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We call K a finite Kuranishi atlas if the indexing set A is finite.

If X has a Kuranishi atlas then it is locally compact. In applications we invariably
impose extra global topological conditions on X , for instance X might be assumed
to be compact and Hausdorff; or Hausdorff and second countable; or metrizable; or
Hausdorff and paracompact.

We will also need a relative version of Kuranishi atlas in Section 3.7. Suppose Z is a
manifold, and � W X!Z a continuous map. A relative Kuranishi atlas for � W X!Z

is a Kuranishi atlas K on X as above, together with smooth maps $J W VJ ! Z

for J 2A, such that $J js�1J .0/D � ı J W s
�1
J .0/!Z for all J 2A, and $J jVJK D

$K ı�JK W VJK !Z for all J �K in A.

Definition 2.16 Let X be a topological space with a Kuranishi atlas K (Definition 2.15).
For each J 2 A we can form the C1 real line bundle ƒtopT �VJ ˝ƒ

topEJ over VJ ,
where ƒtop. � � � / means the top exterior power. Thus we can form the restriction

.ƒtopT �VJ ˝ƒ
topEJ /js�1J .0/! s�1J .0/;

considered as a topological real line bundle over the topological space s�1J .0/.

If J �K in A then for each vJ in s�1J .0/\VJK with �JK.vJ /D vK in s�1K .0/ we
have an exact sequence (8). Taking top exterior powers in (8) (and using a suitable
orientation convention) gives an isomorphism

ƒtopT �vJVJ ˝ƒ
topEJ jvJ Šƒ

topT �vKVK ˝ƒ
topEK jvK :

This depends continuously on vJ , vK , and so induces an isomorphism of topological
line bundles on s�1J .0/\VJK

.ˆJK/�W .ƒ
topT �VJ ˝ƒ

topEJ /js�1J .0/\VJK
Š! �JK j

�
���.ƒ

topT �VK ˝ƒ
topEK/:

If J � K � L in A then as ˆKL ıˆJK D ˆJL by Definition 2.15(f), we see that
.ˆKL/� ı .ˆJK/� D .ˆJL/� in topological line bundles over s�1J .0/\VJK \VJL .

An orientation on .X;K/ is a choice of orientation on the fibres of the topological real
line bundle .ƒtopT �VJ ˝ƒ

topEJ /js�1J .0/ on s�1J .0/ for all J 2A, such that .ˆJK/�
is orientation-preserving on s�1J .0/\VJK for all J �K in A.

An equivalent way to think about this is that there is a natural topological real line
bundle KX !X called the canonical bundle with given isomorphisms

�J W .ƒ
topT �VJ ˝ƒ

topEJ /js�1J .0/!  �J .KX /

for J 2A, such that �J js�1J .0/\VJK D �
�
JK.�K/ ı .ˆJK/� for all J �K in A, and an

orientation on .X;K/ is an orientation on the fibres of KX .
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Remark 2.17 (a) Our Kuranishi atlases are based on Joyce’s “m-Kuranishi spaces”
[21, Section 4.7]. They are similar to Fukaya, Oh, Ohta and Ono’s “good coordi-
nate systems” [14, Lemma A1.11; 15, Definition 6.1], and McDuff and Wehrheim’s
“Kuranishi atlases” [28; 29]. Our orientations are based on [15, Definition 5.8] and [14,
Definition A1.17].

There are two important differences with [14; 15; 28; 29]. Firstly, [14; 15; 28; 29]
use Kuranishi neighbourhoods .V;E; �; s;  /, where � is a finite group acting equi-
variantly on V , E , s and  maps s�1.0/=� ! X . This is because their Kuranishi
spaces are a kind of derived orbifolds, not derived manifolds.

Secondly, [14; 15; 28; 29] each use a more restrictive notion of coordinate change
ˆJK D .VJK ; �JK ; y�JK/, in which �JK W VJK ,! VK must be an embedding, and
y�JK W EJ jVJK ,!��JK.EK/ an embedding of vector bundles, so that dimVJ 6 dimVK
and rankEJ 6 rankEK . In the Kuranishi atlases we construct later, �JK W VJK! VK
will be a submersion, and y�JK W EJ jVJK ! ��JK.EK/ will be surjective, so that
dimVJ > dimVK and rankEJ > rankEK . That is, our coordinate changes actually
go the opposite way to those in [14; 15; 28; 29].

(b) Similar structures to Kuranishi atlases are studied [14; 15; 21; 28; 29] because it
is natural to construct them on many differential-geometric moduli spaces. Broadly
speaking, any moduli space of solutions of a smooth nonlinear elliptic PDE on a
compact manifold should admit a Kuranishi atlas. References [14; 15; 28; 29] concern
moduli spaces of J –holomorphic curves in symplectic geometry.

2.6 Derived smooth manifolds and virtual classes

Readers of this paper do not need to know what a derived manifold is. Here is a brief
summary of the points relevant to this paper:

� “Derived manifolds” are derived versions of smooth manifolds, where “derived” is
in the sense of derived algebraic geometry.

� There are several different versions, due to Spivak [32], Borisov and Noel [3; 4] and
Joyce [18; 19; 20; 21], which form 1–categories or 2–categories. They all include
ordinary manifolds Man as a full subcategory.

� All these versions are roughly equivalent. There are natural one-to-one correspon-
dences between equivalence classes of derived manifolds in each theory.

� Much of classical differential geometry generalizes nicely to derived manifolds:
submersions, orientations, transverse fibre products, . . . .
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� Given a Hausdorff, second countable topological space X with a Kuranishi atlas K
of dimension n, we can construct a derived manifold X with topological space X
and dimension vdimX D n, unique up to equivalence. Orientations on .X;K/ are in
one-to-one correspondence with orientations on X .

� Compact, oriented derived manifolds X have virtual classes ŒX �virt in homology or
bordism, generalizing the fundamental class ŒX�2HdimX .X IZ/ of a compact oriented
manifold X .

� These virtual classes are used to define enumerative invariants such as Gromov–
Witten, Donaldson, and Donaldson–Thomas invariants. Such invariants are unchanged
under deformations of the underlying geometry.

� Given a compact Hausdorff topological space X with an oriented Kuranishi atlas K ,
we could construct the virtual class ŒX �virt directly from .X;K/, as in [14; 15; 28; 29],
without going via the derived manifold X .

Readers who do not want to know more details can now skip forward to Section 3.

2.6.1 Different definitions of derived manifold The earliest reference to derived
differential geometry we are aware of is a short final paragraph by Jacob Lurie [27,
Section 4.5]. Broadly following [27, Section 4.5], Lurie’s student David Spivak [32] con-
structed an1–category DerManSpi of “derived manifolds”. Borisov and Noël [4] gave
a simplified version, an 1–category DerManBoNo , and showed that DerManSpi '

DerManBoNo .

Joyce [18; 19; 20] defined 2–categories dMan of “d-manifolds” (a kind of derived
manifold), and dOrb of “d-orbifolds” (a kind of derived orbifold), and also strict
2–categories of d-manifolds and d-orbifolds with boundary dManb , dOrbb and with
corners dManc , dOrbc , and studied their differential geometry in detail. Borisov [3]
constructed a 2–functor F W �2.DerManBoNo/! dMan, where �2.DerManBoNo/ is
the 2–category truncation of DerManBoNo , and proved that F is close to being an
equivalence of 2–categories.

All of [3; 4; 18; 19; 20; 27; 32] use “C1–algebraic geometry”, as in Joyce [17], a
version of (derived) algebraic geometry in which rings are replaced by “C1–rings”,
and define derived manifolds to be special kinds of “derived C1–schemes”.

In [21; 23; 24], Joyce gave an alternative approach to derived differential geometry based
on the work of Fukaya et al [14; 15]. He defined 2–categories of “m-Kuranishi spaces”
mKur, a kind of derived manifold, and “Kuranishi spaces” Kur, a kind of derived
orbifold. Here m-Kuranishi spaces are similar to a pair .X;K/ of a Hausdorff, second
countable topological space X and a Kuranishi atlas K in the sense of Section 2.5.
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Joyce [24] will define equivalences of 2–categories dMan'mKur and dOrb'Kur,
showing that the two approaches to derived differential geometry of [18; 19; 20]
and [21] are essentially the same.

2.6.2 Orientations on derived manifolds Derived manifolds have a good notion
of orientation, which behaves much like orientations on ordinary manifolds. Some
references are Joyce [20, Section 4.8; 19, Section 4.8; 18, Section 4.6] for d-manifolds,
Joyce [24] for m-Kuranishi spaces, and Fukaya, Oh, Ohta and Ono [15, Section 5; 14,
Section A1.1] for Kuranishi spaces in their sense.

For any kind of derived manifold X , we can define a (topological or C1 ) real line
bundle KX over the topological space X called the canonical bundle. It is the deter-
minant line bundle of the cotangent complex LX . For each x 2 X we can define a
tangent space TxX and obstruction space OxX , and then

KX jx Šƒ
topT �x X ˝Rƒ

topOxX :

An orientation on X is an orientation on the fibres of KX . In a similar way to (7), at a
single point x 2X we have a natural bijection

(9) forientations on X at x g Š forientations on T �x X ˚OxX g:

If .V;E; s;  / is a Kuranishi neighbourhood on X and v 2 s�1.0/� V with  .v/D
x 2X , then there is a natural exact sequence

(10) 0 // TxX // TvV
dsjv // Ejv // OxX // 0:

Taking top exterior powers in (10) gives an isomorphism

KX jx Šƒ
topT �x X ˝Rƒ

topOxX Šƒ
topT �v V ˝Rƒ

topEjv;

and thus, with a suitable orientation convention, a natural bijection

forientations on X at x g Š forientations on T �v V ˚Ejv g:

2.6.3 Kuranishi atlases and derived manifolds The next theorem relates topolog-
ical spaces with Kuranishi atlases to derived manifolds. The assumption that X is
Hausdorff and second countable is just to match the global topological assumptions in [4;
18; 19; 20; 21; 32]. For the last part we restrict to (a) and (b) as orientations have not been
written down for the theories of (c) and (d), although this would not be very difficult.

Theorem 2.18 Let X be a Hausdorff, second countable topological space with a
Kuranishi atlas K of dimension n in the sense of Section 2.5. Then we can construct

(a) an m-Kuranishi space X in the sense of Joyce [21, Section 4.7];
(b) a d-manifold X in the sense of Joyce [18; 19; 20];
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(c) a derived manifold in the sense of Borisov and Noël [4]; and

(d) a derived manifold in the sense of Spivak [32].

In each case X has topological space X and dimension vdimX D n, and X is
canonical up to equivalence in the 2–categories mKur, dMan or 1–categories
DerManBoNo , DerManSpi . In cases (a) and (b) there is a natural one-to-one cor-
respondence between orientations on K, and orientations on X in Joyce [18; 19; 20;
24].

If also Z is a manifold, � W X !Z is continuous, and .K; f$J j J 2 Ag/ is a relative
Kuranishi atlas for � W X !Z, then we can construct a morphism of derived manifolds
�W X !Z, canonical up to 2–isomorphism, with continuous map � .

Proof Part (a) follows from [21, Theorem 4.67] in the m-Kuranishi space case,
and part (b) from [20, Theorem 4.16], in each case with topological space X , and
vdimX D n, and X canonical up to equivalence in mKur, dMan. Part (c) then
follows from (b) and Borisov [3], and part (d) from (c) and Borisov and Noël [4]. The
one-to-one correspondences of orientations can be proved by comparing Definition 2.16
with Section 2.6.2. The last part also follows from [20, Theorem 4.16].

2.6.4 Bordism for derived manifolds We now discuss bordism, following [20, Sec-
tion 4.10], [19, Section 15] and [18, Section 13].

Definition 2.19 Let Y be a manifold, and k 2N . Consider pairs .X; f /, where X
is a compact, oriented manifold with dimX D k , and f W X ! Y is a smooth map.
Define an equivalence relation � on such pairs by .X; f /� .X 0; f 0/ if there exists a
compact, oriented .kC1/–manifold with boundary W , a smooth map eW W !Y , and a
diffeomorphism of oriented manifolds j W �XtX 0!@W , such that f tf 0D eıiW ıj ,
where �X is X with the opposite orientation, and iW W @W ,!W is the inclusion map.

Write ŒX; f � for the �–equivalence class (bordism class) of a pair .X; f /. Define
the bordism group Bk.Y / of Y to be the set of all such bordism classes ŒX; f � with
dimX D k . It is an abelian group, with zero 0Y D Œ¿;¿�, addition ŒX; f �CŒX 0; f 0�D
ŒX tX 0; f tf 0�, and inverses �ŒX; f �D Œ�X; f �.

Define …hom
bo W Bk.Y /!Hk.Y IZ/ by …hom

bo W ŒX; f � 7! f�.ŒX�/, where H�.�IZ/ is
singular homology, and ŒX� 2Hk.X IZ/ is the fundamental class.

When Y is the point �, the maps f W X !�, eW W !� are trivial, and we can omit
them, and consider Bk.�/ to be the abelian group of bordism classes ŒX� of compact,
oriented, k–dimensional manifolds X .
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As in Conner [11, Section I.5], bordism is a generalized homology theory. Results of
Thom, Wall and others in [11, Section I.2] compute the bordism groups Bk.�/. We
define d-manifold bordism by replacing manifolds X in ŒX; f � by d-manifolds X :

Definition 2.20 Let Y be a manifold, and k 2 Z. Consider pairs .X ;f /, where
X 2 dMan is a compact, oriented d-manifold with vdimX D k , and f W X ! Y is a
1–morphism in dMan.

Define an equivalence relation � between such pairs by .X ;f /� .X 0;f 0/ if there is a
compact, oriented d-manifold with boundary W with vdimW D kC1, a 1–morphism
eW W ! Y in dManb , an equivalence of oriented d-manifolds j W �X tX 0! @W ,
and a 2–morphism �W f t f 0 ) e ı iW ı j , where iW W @W ! W is the natural
1–morphism.

Write ŒX ;f � for the �–equivalence class (d-bordism class) of a pair .X ;f /. De-
fine the d-bordism group dBk.Y / of Y to be the set of d-bordism classes ŒX ;f �
with vdimX D k . As for Bk.Y /, it is an abelian group, with zero 0Y D Œ¿;¿�,
addition ŒX ;f �C ŒX 0;f 0� D ŒX tX 0;f t f 0�, and �ŒX ;f � D Œ�X ;f �. Define
…dbo

bo W Bk.Y /! dBk.Y / for k > 0 by …dbo
bo W ŒX; f � 7! ŒX; f �. When Y is a point �,

we can omit f W X !�, and consider dBk.�/ to be the abelian group of d-bordism
classes ŒX � of compact, oriented d-manifolds X .

In [18, Section 13.2] we show that B�.Y / and dB�.Y / are isomorphic. See [32,
Theorem 2.6] for an analogous (unoriented) result for Spivak’s derived manifolds.

Theorem 2.21 For any manifold Y , we have that dBk.Y / D 0 for k < 0 and that
…dbo

bo W Bk.Y /! dBk.Y / is an isomorphism for k > 0.

The main idea of the proof of Theorem 2.21 is that (compact, oriented) d-manifolds X
can be turned into (compact, oriented) manifolds zX by a small perturbation. By
Theorem 2.21, we may define a projection …hom

dbo W dBk.Y /! Hk.Y IZ/ for k > 0

by …hom
dbo D …hom

bo ı .…
dbo
bo /
�1. We think of …hom

dbo as a virtual class map, and call
ŒX �virt D…

hom
dbo .ŒX ;f �/ the virtual class. Virtual classes are used in several areas of

geometry to construct enumerative invariants using moduli spaces, for example in [14,
Section A1; 15, Section 6] for Fukaya, Oh, Ohta and Ono’s Kuranishi spaces, and in
Behrend and Fantechi [1] in algebraic geometry.

2.6.5 Virtual classes for derived manifolds in homology If X is a compact, ori-
ented derived manifold of dimension k 2Z we can also define a virtual class ŒX �virt in
the homology Hk.X IZ/ of the underlying topological space X , for a suitable homology
theory. By [20, Corollary 4.30] or [19, Corollary 4.31] or [18, Theorem 4.29], we
can choose an embedding f W X ,! Rn for n� 0. If Y is an open neighbourhood
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of f .X/ in Rn then Section 2.6.4 defines …hom
dbo .ŒX ;f �/ in Hk.Y IZ/. We also have

a pushforward map f�W Hk.X IZ/!Hk.Y IZ/.

If X is a Euclidean neighbourhood retract (ENR), we can choose Y so that it retracts
onto f .X/, and then f�W Hk.X IZ/!Hk.Y IZ/ is an isomorphism, so we can define
the virtual class ŒX �virt D .f�/

�1 ı…hom
dbo .ŒX ;f �/ in ordinary homology Hk.X IZ/.

This ŒX �virt is independent of the choices of f , n, Y .

General derived manifolds may not be ENRs. In this case we use a trick that the
authors learned from McDuff and Wehrheim [29, Section 7.5]. Choose a sequence
Rn � Y1 � Y2 � � � � of open neighbourhoods of f .X/ in Rn with f .X/D

T
i>1 Yi .

Now Steenrod homology H St
� .�IZ/ (see Milnor [30]) is a homology theory with

the nice properties that (i) H St
� .Yi IZ/ Š H�.Yi IZ/ as Yi is a manifold and (ii) as

f .X/D
T
i>1 Yi there is an isomorphism with the inverse limit:

(11) H St
k .f .X/IZ/Š lim

 �
i>1H

St
k .Yi IZ/:

Čech homology LH�.�IQ/ over Q (the dual Q–vector spaces to Čech cohomology
LH�.�IQ/) has the same limiting property. Then writing fi D f W X ! Yi , so that
…hom

dbo .ŒX ;fi �/ 2Hk.Yi IZ/ŠH
St
k
.Yi IZ/, using (11) we may form the inverse limit

lim
 �

i>1…
hom
dbo .ŒX ;fi �/ in H St

k
.f .X/IZ/, so that

ŒX �virt WD .f�/
�1
�
lim
 �

i>1…
hom
dbo .ŒX ;fi �/

�
is a virtual class in H St

k
.X IZ/, or similarly in LHk.X IQ/. Here ŒX �virt is independent

of the choices of f , n, Yi .

For the examples in this paper, X is the complex analytic topological space of a proper
C–scheme, and therefore an ENR. Then H St

k
.X IZ/ŠHk.X IZ/ and LHk.X IQ/Š

Hk.X IQ/, and the virtual class lives in ordinary homology.

3 The main results

We now give our main results. We begin in Section 3.1 with a general existence result
for a special kind of atlas for �W X !Z , where X is a separated derived C–scheme
and Z a smooth affine classical C–scheme, an atlas in which the charts are spectra
of standard form cdgas, the coordinate changes are quasifree, and composition of
coordinate changes is strictly associative.

Sections 3.2–3.5 build up to our primary goal, Theorems 3.15 and 3.16 in Section 3.5,
which show that to a separated, �2–shifted symplectic derived C–scheme .X ; !�

X
/

with vdimC X D n and complex analytic topological space Xan , we can build a

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds 3253

Kuranishi atlas K on Xan , and so construct a derived manifold Xdm with topological
space Xan , with vdimRXdmD n. In Section 3.6 we show that orientations on .X ; !�

X
/

and on .Xan;K/ and on Xdm correspond, and prove that for .X ; !�
X
/ proper and

oriented, the bordism class ŒXdm� 2 dBn.�/ is a “virtual cycle” independent of choices.

Section 3.7 extends Sections 3.2–3.6 to families .�W X!Z; Œ!X=Z �/ over a connected
base C–scheme Z , and shows that the bordism class ŒXzdm� 2 dBn.�/ associated to
a fibre ��1.z/ is independent of z 2Zan . Finally, Sections 3.8–3.9 discuss applying
our results to define Donaldson–Thomas style invariants “counting” coherent sheaves
on Calabi–Yau 4–folds, and motivation from gauge theory.

3.1 Zariski homotopy atlases on derived schemes

Derived schemes and stacks, discussed in Section 2.2, are very abstract objects, and
difficult to do computations with. But standard form cdgas A� , B� and quasifree
morphisms ˆW A�!B� in Section 2.1 are easy to work with explicitly. Our first main
result, proved in Section 4, constructs well-behaved homotopy atlases for a derived
scheme X , built from standard form cdgas and quasifree morphisms.

Theorem 3.1 Let X be a separated derived C–scheme, ZDSpecB be a smooth clas-
sical affine C–scheme for B a smooth C–algebra of pure dimension, and �W X !Z

be a morphism. Suppose we are given data f.A�i ;˛i ; ˇi / j i 2I g, where I is an indexing
set and for each i 2 I , A�i 2 cdgaC is a standard form cdga, and ˛i W SpecA�i ,!X is
a Zariski open inclusion in dSchC , and ˇi W B!A0i is a smooth morphism of classical
C–algebras such that the following diagram homotopy commutes in dSchC W

(12)

SpecA�i

Specˇi
,,

˛i

// X

�
��

SpecB DZ

Here we regard ˇi as a morphism B! A�i . Then we can construct the following data:

(i) For all finite subsets ¿¤ J � I , a standard form cdga A�J 2 cdgaC , a Zariski
open inclusion ˛J W SpecA�J ,! X , with image Im˛J D

T
i2J Im˛i , and a

smooth morphism of classical C–algebras ˇJ W B!A0J , such that the following
diagram homotopy commutes in dSchC W

(13)

SpecA�J

SpecˇJ
,,

˛J

// X

�
��

SpecB DZ

When J D fig for i 2 I we have A�
fig
D A�i , ˛fig D ˛i , and ˇfig D ˇi .
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(ii) For all inclusions of finite subsets ¿ ¤ K � J � I , a quasifree morphism of
standard form cdgas ˆJK W A�K ! A�J with ˇJ D ˆJK ı ˇK W B ! A0J , such
that the following diagram homotopy commutes in dSchC W

(14)
SpecA�J

˛J ,,

SpecˆJK
// SpecA�K

˛K
��

X

If ¿¤ L�K � J � I then ˆJL DˆJK ıˆKLW A�L! A�J .

3.2 Interpreting Zariski atlases using complex geometry

Given a �2–shifted symplectic derived C–scheme .X ; !�
X
/ satisfying certain con-

ditions, we will construct a derived manifold structure Xdm on the complex analytic
topological space Xan underlying X . To do this, we need a change of language: we
have to pass from talking about derived schemes X , cdgas A� , etc, to talking about
smooth manifolds V , vector bundles E! V , smooth sections sW V !E , as Xdm will
be built by gluing together such local Kuranishi models .V;E; s/.

Therefore we now rewrite part of the output A�J , ˇJ W B! A0J , ˆJK W A�J ! A�K of
Theorem 3.1 in terms of complex manifolds V , holomorphic vector bundles E! V ,
and holomorphic sections sW V !E . In Section 3.5 we will pass to certain real vector
bundles EC DE=E� to define Xdm .

First we interpret standard form cdgas A� 2 cdgaC using holomorphic data. We discuss
only data from degrees 0, �1, �2 in A� , as this is all we need, but one could also
define vector bundles G;H; : : : over V corresponding to M�3;M�4; : : : , and many
vector bundle morphisms, satisfying certain equations.

Definition 3.2 Let A� D . � � � ! A�2 d
�! A�1 d

�! A0/ be a standard form cdga
over C , as in Section 2.1. Then A0 is a finitely generated smooth C–algebra, so
V alg WD SpecA0 is a smooth affine C–scheme, assumed of pure dimension, as in
Section 2.1. Now any C–scheme S has an underlying complex analytic space San ,
which is a complex manifold if S is smooth and of pure dimension.

Write V for the complex manifold .V alg/an associated to V alg D SpecA0 .

As A� is of standard form, the graded C–algebra A� is freely generated over A0 by a
series of finitely generated free A0–modules M�1 � A�1 , M�2 � A�2; : : : . Thus
A�1 ŠM�1 , A�2 ŠM�2˚ƒ2

A0
M�1 , and so on, giving

(15) M�1 D A�1; M�2 Š A�2=ƒ2
A0
A�1; : : : :
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Hence, the M i are determined by A� as A0–modules up to canonical isomorphism,
although for i 6 �2 the inclusions M i ,! Ai involve an arbitrary choice.

Now finitely generated free A0–modules M are those of the form M Š H 0.C alg/

for C alg ! V alg D SpecA0 a trivial algebraic vector bundle. Write Ealg ! V alg ,
F alg! V alg for the trivial algebraic vector bundles (unique up to canonical isomor-
phism) with M�1 Š H 0..Ealg/�/, M�2 Š H 0..F alg/�/. That is, we set Ealg D

Spec Sym�
A0
.M�1/, and so on. Write E ! V , F ! V for the holomorphic vector

bundles corresponding to Ealg , F alg .

We now have isomorphisms

(16)

A0 ŠH 0.OV alg/;

A�1 ŠH 0..Ealg/�/;

A�2 ŠH 0..F alg/�/˚H 0.ƒ2.Ealg/�/:

Thus dW A�1 ! A0 is identified with an A0–module morphism H 0..Ealg/�/ !

H 0.OV alg/, that is, a morphism .Ealg/�!OV alg of algebraic vector bundles, which
is dual to a morphism OV alg Š O�V alg ! Ealg , ie a section salg 2 H 0.Ealg/ of Ealg .
Write s 2H 0.E/ for the corresponding holomorphic section.

Similarly, write t algW Ealg! F alg for the algebraic vector bundle morphism dual to
the component of dW A�2! A�1 mapping H 0..F alg/�/!H 0..Ealg/�/ under (16),
and write t W E! F for the corresponding morphism of holomorphic vector bundles.
Then d ı dD 0 implies that t ı s D 0W OV ! F .

We should also consider how this data E , F , s , t depends on the choice of inclusion
M�2 ,!A�2 . Here E , F are independent of choices up to canonical isomorphism, and
s is independent of choices. Changing the inclusion M�2 ,!A�2 is equivalent to choos-
ing an algebraic vector bundle morphism 
 algW ƒ2Ealg! F alg and identifying M�2

with the image of id˚.
 alg/�W H 0..F alg/�/ ,!H 0..F alg/�/˚H 0.ƒ2.Ealg/�/. Writ-
ing 
 W ƒ2E! F for the corresponding holomorphic morphism, this changes t to zt ,
where

(17) zt D t C 
 ı .�^ s/:

Notice that t jvW Ejv! F jv is independent of choices at v 2 V with s.v/D 0.

Next suppose X is a derived C–scheme and ˛W SpecA� ,! X a Zariski open in-
clusion. Write X D t0.X/ for the classical C–scheme, and Xan for the set of C–
points of X equipped with the complex analytic topology. (One can give Xan the
structure of a complex analytic space, but we will not use this.) Then t0.SpecA�/
is the C–subscheme .salg/�1.0/ � V alg , so ˛ D t0.˛/ is a Zariski open inclusion
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.salg/�1.0/ ,!X . Write  W s�1.0/ ,! Xan for the corresponding map of C–points.
Then  is a homeomorphism with an open set RD Im �Xan . Note that .V;E; s;  /
is a Kuranishi neighbourhood on Xan , in the sense of Section 2.5.

As we explained in Sections 2.1–2.2, if A� is a standard form cdga then it is easy
to compute the cotangent complex LA� '�1A� , and this also can be identified with
the cotangent complex LSpecA� of the derived scheme SpecA� . Let v 2 s�1.0/� V
with  .v/ D x 2 Xan . Then v is a C–point of SpecA� and x a C–point of X
with ˛.v/ D x , so L˛jvW LX jx ! LSpecA� jv is a quasi-isomorphism, and induces
an isomorphism on cohomology. One can show that LSpecA� jv is represented by the
complex of C–vector spaces

(18) � � � // F j�v
t j�v // Ej�v

dsj�v // T �v V
// 0;

with T �v V in degree 0. Dualizing to tangent complexes and taking cohomology, we
get canonical isomorphisms

H 0.T˛jv/W Ker.dsjvW TvV !Ejv/!H 0.TX jx/;(19)

H 1.T˛jv/W
Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
!H 1.TX jx/:(20)

Now suppose that ZDSpecB is a smooth classical affine C–scheme of pure dimension,
�W X ! Z is a morphism, and ˇW B ! A0 is a smooth morphism of C–algebras,
such that as for (12)–(13) the following homotopy commutes:

(21)
SpecA�

Specˇ ,,

˛
// X
�
��

SpecB DZ

Then Zan is a complex manifold, and � alg WD SpecˇW V alg ! Z is a smooth mor-
phism of C–schemes, and � WD .� alg/anW V ! Zan is a holomorphic submersion of
complex manifolds. We can form the relative cotangent complexes LX=Z , LSpecA�=Z
and dual relative tangent complexes TX=Z , TSpecA�=Z , and (21) gives morphisms
L˛W LX=Z! LSpecA�=Z , T˛W TSpecA�=Z! TX=Z .

Write T .V=Zan/DKer.d� W TV !��.TZan// for the relative tangent bundle of V=Zan .
It is a holomorphic vector subbundle of TV of rank dimV �dimZ , as � is a holomor-
phic submersion. Let v2 s�1.0/�V with  .v/Dx 2Xan and �.v/D�.x/D z 2Zan .
Then as in (18), LSpecA�=Z jv is represented by the complex of C–vector spaces

� � � // F j�v
t j�v // Ej�v

dsj�v // T �v .V=Zan/ // 0;
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with T �v .V=Zan/ in degree 0. As for (19)–(20) we get canonical isomorphisms

H 0.T˛jv/W Ker.dsjvW Tv.V=Zan/!Ejv/!H 0.TX=Zjx/;(22)

H 1.T˛jv/W
Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
!H 1.TX=Zjx/:(23)

Example 3.3 Suppose .A�; !A�/ is in �2–Darboux form, in the sense of Definition 2.9,
with coordinates x1; : : : ; xm , y1; : : : ; yn , z1; : : : ; zm , and 2–form !A� in (1), depend-
ing on invertible functions q1; : : : ; qn 2 A0 .

Let V , E , F , s , t be as in Definition 3.2. Then V is a smooth C–scheme of
dimension m, with étale coordinates .x1; : : : ; xm/, so that TV is a trivial vector
bundle with basis of sections @=@x1; : : : ; @=@xm . Also E is a trivial vector bundle of
rank n, with basis e1 WD @=@y1; : : : ; en WD @=@yn , and F is trivial of rank m, with
basis @=@z1; : : : ; @=@zm . Using the first line of !A� in (1), it is natural to identify
F Š T �V by identifying @=@zi Š ddRxi for i D 1; : : : ; m.

The natural section s 2H 0.E/ is sD s1e1C� � �Csnen . Write �1; : : : ; �n for the basis
of sections of E� dual to e1; : : : ; en , so that �j Š ddRyj . Motivated by the second
line of !A� in (1), define Q D q1�1 ˝ �1 C � � � C qn�n ˝ �n in H 0.S2E�/. Then
Q is a natural nondegenerate quadratic form on the fibres of E , and (2) implies that
Q.s; s/D 0.

Identifying F D T �V , from (3) we see that t W E! F is given by

(24) t .ej /D

mX
iD1

�
2qj

@sj

@xi
C sj

@qj

@xi

�
ddRxi D 2qj ddRsj C sj ddRqj

for j D 1; : : : ; n. Then t ı s D 0 follows from applying ddR to Q.s; s/D 0.

What will matter later is that we have a complex manifold V , a holomorphic vector
bundle E!V , a section s 2H 0.E/, and a nondegenerate holomorphic quadratic form
Q 2H 0.S2E�/ with Q.s; s/D 0, such that the classical complex analytic topological
space .SpecH 0.A�//an is s�1.0/� V .

Next we interpret quasifree morphisms of standard form cdgas ˆJK W A�K ! A�J , as in
Theorem 3.1(ii), in terms of complex geometry.

Definition 3.4 Let ˆJK W A�K!A�J be a quasifree morphism of standard form cdgas
over C , as in Section 2.1. Let V alg

J , Ealg
J , F alg

J , salg
J , t alg

J , VJ , EJ , FJ , sJ , tJ be as
in Definition 3.2 for A�J , and let V alg

K , Ealg
K ; : : : ; tK be as for A�K .

Then �alg
JK WD Specˆ0JK W V

alg
J D SpecA0J ! V

alg
K D SpecA0K is a C–scheme mor-

phism. Write �JK W VJ ! VK for the corresponding holomorphic map. The quasifree
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condition on ˆJK implies d�alg
JK W .�

alg
JK/
�.T �V

alg
K /! T �V

alg
J is injective, and thus

d�JK W ��JK.T
�VK/! T �VJ is injective, that is, �JK W VJ ! VK is a submersion of

complex manifolds.

Now ˆ�1JK W A
�1
K ! A�1J induces an A0J –linear map

.ˆ�1JK/�W A
�1
K ˝A0K

A0J ! A�1J ;

which under (16) corresponds to an algebraic vector bundle morphism

.�
alg
JK/
�..E

alg
K /�/! .E

alg
J /
�:

Write �alg
JK W E

alg
J ! .�

alg
JK/
�.E

alg
K / for the dual morphism, and �JK W EJ ! ��JK.EK/

for the corresponding morphism of holomorphic vector bundles. It is surjective, as
ˆJK is quasifree. Then d ıˆ�1JK Dˆ

0
JK ı d implies that

(25) �JK.sJ /D �
�
JK.sK/ 2H

0.��JK.EK//:

By (15) we have a natural composition of morphisms

H 0..F
alg
K /�/ŠM�2K ŠA

�2
K =ƒ2

A0K
A�1K

.ˆ�2JK/�����!A�2J =ƒ2
A0J
A�1J ŠM

�2
J ŠH

0..F
alg
J /�/:

The induced A0J –linear map corresponds to a natural algebraic vector bundle morphism
.�

alg
JK/
�..F

alg
K /�/! .F

alg
J /� . Write �alg

JK W F
alg
J ! .�

alg
JK/
�.F

alg
K / for the dual morphism,

and �JK W FJ ! ��JK.FK/ for the corresponding morphism of holomorphic vector
bundles. It is surjective, as ˆJK is quasifree.

These �alg
JK , �JK are independent of choices, as they depend on the canonical isomor-

phism M�2ŠA�2=ƒ2
A0
A�1 rather than on the noncanonical inclusion M�2 ,!A�2

in Definition 3.2. However, ˆ�2JK need not map M�2K � A�2K to M�2J � A�2J , and
so under the isomorphisms (16) need not map H 0..F

alg
K /�/!H 0..F

alg
J /�/. Write

ı
alg
JK W ƒ

2E
alg
J ! .�

alg
JK/
�.F

alg
K / for the algebraic vector bundle morphism dual to the

component of ˆ�2JK mapping H 0..F
alg
K /�/! H 0.ƒ2.E

alg
J /
�/, and ıJK W ƒ2EJ !

��JK.FK/ for the corresponding morphism of vector bundles. Then dıˆ�2JK Dˆ
�1
JK ıd

implies that

(26) �JK ı tJ C ıJK ı .�^ sJ /D �
�
JK.tK/ ı�JK W EJ ! ��JK.FK/:

Therefore �JK , �JK do not strictly commute with tJ , tK , which is not surprising,
since tJ , tK depend on arbitrary choices as in (17). But notice that �JK jv ı tJ jv D
tK j�JK.v/ ı�JK jv at v 2 VJ with sJ .v/D 0.

Next suppose that we are given Zariski open inclusions ˛J W SpecA�J ,! X and
˛K W SpecA�K ,!X into a derived C–scheme X , such that (14) homotopy commutes,
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and let

 J W s
�1
J .0/ ,!Xan;  K W s

�1
K .0/ ,!Xan

be as in Definition 3.2. As the classical truncation of (14) commutes, we see that

(27)  J D  K ı�JK js�1J .0/W s
�1
J .0/!Xan:

Suppose vJ 2 s�1J .0/ � VJ with �JK.vJ / D vK 2 s
�1
K .0/ � VK and  J .vJ / D

 K.vK/D x 2Xan . As (14) homotopy commutes, the corresponding morphisms of
tangent complexes TSpecA�J

, TSpecA�K
, TX commute up to homotopy, so restricting

to vJ , vK , x and taking homology gives strictly commuting diagrams. Thus using
(19)–(20), we see that the following diagrams commute:

Ker.dsJ jvJ W TvJVJ !EJ jvJ /

.d�JK jvJ /jKer.���/

��

H0.T˛J jvJ /

**

Ker.dsK jvK W TvKVK !EK jvK /
H0.T˛K jvK /

// H 0.TX jx/

(28)

Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvK /

.�JK jvJ /�
��

H1.T˛J jvJ /

))Ker.tK jvK W EK jvK ! FK jvK /

Im.dsK jvK W TvKVK !EK jvK /

H1.T˛K jvK /
// H 1.TX jx/

(29)

Now suppose that ZDSpecB is a smooth classical affine C–scheme of pure dimension,
�W X !Z is a morphism, and ˇJ W B! A0J , ˇK W B! A0K are smooth morphisms
of C–algebras, such that (13) homotopy commutes for J , K, and ˇJ DˆJK ıˇK . As
in Definition 3.2 we have holomorphic submersions �J W VJ !Zan , �K W VK !Zan ,
with �J D �K ı �JK W VJ ! Zan as ˇJ D ˆJK ı ˇK . Let vJ 2 s�1J .0/ � VJ with
�JK.vJ / D vK 2 s

�1
K .0/ � VK , and  J .vJ / D  K.vK/ D x 2 Xan , and �J .vJ / D

�K.vK/D �.x/D z 2Zan . Then using (22)–(23), we see that the following diagrams
commute:

Ker.dsJ jvJ W TvJ .VJ =Zan/!EJ jvJ /

.d�JK jvJ /jKer.���/

��

H0.T˛J jvJ /

++

Ker.dsK jvK W TvK .VK=Zan/!EK jvK /
H0.T˛K jvK /

// H 0.TX=Z jx/

(30)

Geometry & Topology, Volume 21 (2017)



3260 Dennis Borisov and Dominic Joyce

Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJ .VJ =Zan/!EJ jvK /

.�JK jvJ /�
��

H1.T˛J jvJ /

**
Ker.tK jvK W EK jvK ! FK jvK /

Im.dsK jvK W TvK .VK=Zan/!EK jvK /

H1.T˛K jvK /
// H 1.TX=Z jx/

(31)

Applying Definitions 3.2 and 3.4 to the conclusions of Theorem 3.1 yields:

Corollary 3.5 In the situation of Theorem 3.1, write Xan for the set of C–points
of X D t0.X/, regarded as a topological space with the complex analytic topology.
Then we obtain the following data in complex geometry:

(i) For all finite subsets ¿ ¤ J � I , a complex manifold VJ , a holomorphic sub-
mersion �J W VJ ! Zan, holomorphic vector bundles EJ ; FJ ! VJ , a holomorphic
section sJ W VJ ! EJ , and a homeomorphism  J W s

�1
J .0/ ! RJ � Xan, where

RJ � Xan is open, with � ı J D �J js�1J .0/W s
�1
J .0/!Zan . These image subsets

satisfy RJ D
T
i2J Rfig .

By making an additional arbitrary choice we also obtain a morphism of holomorphic
vector bundles tJ W EJ ! FJ , with tJ ı sJ D 0. Different choices tJ , ztJ are related
by (17). The restrictions tJ jvJ W EJ jvJ ! FJ jvJ for vJ 2 s�1J .0/ are independent of
choices. For each vJ 2 s

�1
J .0/ with  J .vJ /D x 2 Xan, there are canonical isomor-

phisms (19)–(20) writing H i .TX jx/ for i D 0; 1 and (22)–(23) writing H i .TX=Z jx/
for i D 0; 1 in terms of VJ , EJ , FJ , sJ , tJ , �J at vJ .

(ii) For all inclusions of finite subsets ¿¤K � J � I , a holomorphic submersion
�JK W VJ ! VK , and surjective morphisms of holomorphic vector bundles �JK W EJ !
��JK.EK/ and �JK W FJ ! ��JK.FK/. These satisfy �J D �K ı�JK W VJ !Zan, and
�JK.sJ /D �

�
JK.sK/, and  J D  K ı�JK js�1J .0/W s

�1
J .0/!Xan .

If tJ , tK are possible choices in (i) then �JK , �JK , tJ , tK are related as in (26). If
vJ 2 s

�1
J .0/ with �JK.vJ /D vK 2 s�1K .0/, this implies that

�JK jvJ ı tJ jvJ D tK jvK ı�JK jvJ W EJ jvJ ! FK jvK :

If vJ 2 s�1J .0/� VJ with �JK.vJ /D vK 2 s�1K .0/� VK and  J .vJ /D K.vK/D
x 2Xan, then (28)–(31) commute.

If ¿¤L�K � J � I then �JLD�KLı�JK , �JLD��JK.�KL/ı�JK , and �JLD
��JK.�KL/ ı �JK .
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3.3 Subbundles E� �E and Kuranishi neighbourhoods

Throughout Sections 3.3–3.6, when we apply Theorem 3.1 we take B DC , so that Z
is the point � D Spec C , and the data � , ˇi , ˇJ , �J is trivial, so we omit it.

Suppose .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme, A� a standard form

cdga over C , and ˛W SpecA� ! X a Zariski open inclusion. Then Definition 3.2
defines complex geometric data V , E , F , s , t ,  , R , such that .V;E; s;  / is a
Kuranishi neighbourhood on the topological space Xan of X .

However these are not the Kuranishi neighbourhoods we want: they depend only
on X , not on !�

X
, and in general two such neighbourhoods .VJ ; EJ ; sJ ;  J / and

.VK ; EK ; sK ;  K/ are not compatible over their intersection RJ \RK in Xan (eg the
virtual dimensions dimR VJ � rankREJ and dimR VK � rankREK may be different),
so we cannot glue them to make Xan into a derived manifold.

The basic problem is that the rank of E may be too large; for instance, we can modify A�

to replace E , F , s , t by zE D E ˚G , zF D F ˚G , zs D s ˚ 0, zt D t ˚ idG for
some holomorphic vector bundle G ! V . Our solution is to choose a real vector
subbundle E� �E satisfying some conditions involving !�

X
, and set EC DE=E�

to be the quotient bundle and sC D sCE� in C1.EC/ to be the quotient section.
The conditions on E� imply that s�1.0/ D .sC/�1.0/, so .V;EC; sC;  C/ is also
a Kuranishi neighbourhood on Xan . Under good conditions we can make two such
.VJ ; E

C

J ; s
C

J ;  
C

J /, .VK ; E
C

K ; s
C

K ;  
C

K / compatible over RJ\RK , and glue these local
models to make Xan into a derived manifold.

We define the class of subbundles E� �E we are interested in:

Definition 3.6 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

virtual dimension vdimC X D n, and suppose A� 2 cdgaC is of standard form and
˛W A� ,! X is a Zariski open inclusion. Define complex geometric data V , E , F ,
s , t and  W s�1.0/ Š�!R �Xan as in Definition 3.2, and suppose R¤¿. Then for
each v 2 s�1.0/ with  .v/D x 2Xan , (20) gives an isomorphism from a vector space
depending on V , E , F , s , t at v to H 1.TX jx/.

Equation (6) defined a quadratic form Qx on H 1.TX jx/. Define

(32) zQvW
Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
�

Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
!C

to be the nondegenerate complex quadratic form identified with Qx in (6) by the
isomorphism H 1.T˛jv/ in (20).
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Consider pairs .U;E�/, where U � V is open and E� is a real vector subbundle
of EjU . Given such .U;E�/, we write ECDEjU =E� for the quotient vector bundle
over U , and sC 2C1.EC/ for the image of sjU under the projection EjU!EC , and
 C WD js�1.0/\U W s

�1.0/\U!Xan . We say that .U;E�/ satisfies condition .�/ if:

.�/ For each v 2 s�1.0/\U , we have

Im.dsjvW TvV !Ejv/\E
�
jv D f0g in Ejv;(33)

t jv.E
�
jv/D t jv.Ejv/ in F jv;(34)

and the natural real linear map

(35) …vW E
�
jv \Ker.t jvW Ejv! F jv/!

Ker.t jvW Ejv! F jv/

Im.dsjvW TvV !Ejv/
;

which is injective by (33), has image Im…v a real vector subspace of dimension
exactly half the real dimension of Ker.t jv/= Im.dsjv/, and the real quadratic
form Re zQv on Ker.t jv/= Im.dsjv/ from (32) restricts to a negative definite real
quadratic form on Im…v .

We say .U;E�/ satisfies condition .�/ if

.�/ .U;E�/ satisfies condition .�/ and s�1.0/\U D .sC/�1.0/� U .

In this case, .U;EC; sC;  C/ is a Kuranishi neighbourhood on Xan .

Observe that if v 2 s�1.0/\U with  .v/Dx 2Xan then using (19)–(20) and (33)–(35)
we find there is an exact sequence

(36) 0 // H l.TX jx/ // TvU // ECjv // H l.TX jr/= Im…v // 0:

Hence

(37) dimR U�rankRE
C
D dimRH

0.TX jx/�dimRH
1.TX jx/CdimR Im…v

D 2 dimCH
0.TX jx/�dimCH

1.TX jx/

D dimCH
0.TX jx/�dimCH

1.TX jx/CdimCH
2.TX jx/

D vdimC X D n:

Here in the second step we use dimR…v D
1
2

dimRH
1.TX jx/ by .�/ and (20),

in the third that H 0.TX jx/ Š H 2.TX jx/
� as .X ; !�

X
/ is �2–shifted symplectic

(or �2–shifted presymplectic will do), and in the fourth that TX is perfect in the
interval Œ0; 2� as .X ; !�

X
/ is �2–shifted symplectic (or presymplectic).

Equation (37) says that the Kuranishi neighbourhood .U;EC; sC;  C/ has real virtual
dimension dimU � rankEC D nD vdimC X D

1
2

vdimRX . Note that this is half the
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virtual dimension we might have expected, and the real virtual dimension can be odd,
even though X , V , E , s; : : : are all complex.

Here are some important properties of such U , E� , EC , sC , proved in Section 5.

Theorem 3.7 In the situation of Definition 3.6, with X , !�
X

, A� , ˛, V , E , F ,
s , t ,  fixed, we have:

(a) If the conditions in .�/ hold at some v 2 s�1.0/\U , then they also hold for
all v0 in an open neighbourhood of v in s�1.0/\U .

(b) Suppose C �V is closed, and .U;E�/ satisfies condition .�/ with C � U � V .
(We allow C D U D ¿.) Then there exists . zU ; zE�/ satisfying .�/ with
C [ s�1.0/� zU � V , and an open neighbourhood U 0 of C in U \ zU such
that E�jU 0 D zE�jU 0 .

(c) If .U;E�/ satisfies .�/, the closed subsets s�1.0/\U and .sC/�1.0/ in U �V
coincide in an open neighbourhood U 0 of s�1.0/\U in U . Hence .U 0; E�jU 0/
satisfies condition .�/, and .U 0; ECjU 0 ; s

CjU 0 ;  
C/ is a Kuranishi neighbour-

hood on Xan . Thus, we can make .U;E�/ satisfying .�/ also satisfy .�/ by
shrinking U , without changing RD Im in Xan .

The next example proves Theorem 3.7(c) near v 2 s�1.0/\U in a special case, when
.A�; !A�/ is in �2–Darboux form and minimal at v . The general case in Section 5.3
is proved by reducing to Example 3.8.

Example 3.8 Suppose that .X ; !�
X
/ is a �2–shifted symplectic derived C–scheme

and that x 2 Xan . Then Theorem 2.10 gives a pair .A�; !A�/ in �2–Darboux form
and a Zariski open inclusion ˛W SpecA� ,!X which is minimal at x 2 Im˛, with
˛�.!�

X
/' !A� in A2;cl

C .SpecA�;�2/.

Example 3.3 describes the data V , E , F , s , t associated to A� in Section 3.2,
and defines a nondegenerate quadratic form Q 2 H 0.S2E�/ with Q.s; s/ D 0

using !A� . As x 2 Im˛ there is v 2 s�1.0/ � V with ˛.v/ D x , and .A�;˛/

minimal at x means that dsjv D 0, so that t jv D 0 by (24). Thus in (20) we have
Ker.t jv/= Im.dsjv/DEjv , identified with H 1.TX jx/. Since ˛�.!�

X
/' !A� , the

quadratic form zQv on Ker.t jv/= Im.dsjv/DEjv in (32) is Qjv .

Given a pair .U;E�/ as in Definition 3.6 with v 2 U , the map …v in (35) is just the
inclusion E�jv ,!Ejv . So .�/ at v says that E�jv is a real vector subspace of Ejv
with dimRE

�jv D
1
2

dimREjv D dimC Ejv , such that ReQjv is negative definite
on E�jv .
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As this is an open condition, there exists an open neighbourhood U 0 of v in U such that
ReQjU 0 is negative definite on E�jU 0 . Define a real vector subbundle zEC of EjU 0 to
be the orthogonal subbundle of E�jU 0 with respect to the nondegenerate real quadratic
form ReQjU 0 . Then EjU 0 D zEC ˚E�jU 0 , so we can write sjU 0 D zsC ˚ s� , for
zsC2C1. zEC/ and s�2C1.E�jU 0/. The projection EjU 0!ECjU 0DEjU 0=E

�jU 0

restricts to an isomorphism zEC!ECjU 0 , which maps zsC 7! sCjU 0 .

Because ReQ is the real part of a complex form, it has the same number of positive
as negative eigenvalues. Thus ReQjU 0 is positive definite on zEC . Now

(38) 0DReQ.s; s/jU 0 DReQ.zsCCs�; zsCCs�/DReQ.zsC; zsC/CReQ.s�; s�/;

using ReQ.zsC; s�/D 0 as zEC , E�jU 0 are orthogonal with respect to ReQjU 0 .

For each u 2 U 0 , we now have

sC.u/D 0 ” zsC.u/D 0 ” ReQ.zsC; zsC/ju D 0

” ReQ.s�; s�/ju D 0 ” zsC.u/D s�.u/D 0 ” s.u/D 0;

using zEC ! ECjU 0 an isomorphism mapping zsC 7! sCjU 0 in the first step, ReQ
positive definite on zEC in the second, (38) in the third, ReQ negative definite on E�jU 0
in the fourth, and sjU 0 D zsC˚ s� in the fifth.

This proves there exists an open neighbourhood U 0 of v in U such that s�1.0/\U 0D
.sC/�1.0/\U 0 , which is Theorem 3.7(c), except that U 0 is a neighbourhood of v
rather than of s�1.0/\U .

Remark 3.9 Pairs .U;E�/ satisfying .�/ will be used to prove our main result,
constructing a derived manifold structure Xdm on the complex analytic topological
space Xan of a �2–shifted symplectic derived C–scheme .X ; !�

X
/.

Our construction apparently uses less than the full �2–shifted symplectic structure !�
X

on X . In particular, conditions .�/ and .�/ only involve the nondegenerate pair-
ings !0

X
jx on H 1.TX jx/ in (6), which depend only on the presymplectic structure !0

X
,

not the symplectic structure !�
X
D .!0

X
; !1
X
; : : : /. The proofs of Theorem 3.7(a),(b)

in Sections 5.1–5.2 also use only !0
X

rather than !�
X

.

However, the proof of Theorem 3.7(c) in Section 5.3 involves !�
X

, as it uses the
existence of a minimal �2–Darboux form presentation for .X ; !�

X
/ near each x 2Xan ,

as in Theorem 2.10. The authors do not know whether Theorem 3.7(c) holds for
�2–shifted presymplectic .X ; !0

X
/ which are not symplectic.
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3.4 Comparing .UJ ;E�J /, .UK ;E
�

K
/ under ˆJK

Section 3.3 discussed how to use standard form charts ˛W SpecA�!X on .X ; !�X /
to choose pairs .U;E�/, and so define Kuranishi neighbourhoods .U;EC; sC;  C/
on Xan . We now explain how to pull back such pairs .UK ; E�K/ along a quasifree
morphism ˆJK W A

�

K ! A�J , and construct coordinate changes between the Kuranishi
neighbourhoods .UJ ; ECJ ; s

C

J ;  
C

J /, .UK ; E
C

K ; s
C

K ;  
C

K /.

Definition 3.10 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

vdimC X D n, and suppose ˆJK W A
�

K ! A�J is a quasifree morphism of stan-
dard form cdgas over C and ˛J W SpecA�J ,! X , ˛K W SpecA�K ,! X are Zariski
open inclusions such that (14) homotopy commutes. Define complex geometric data
VJ , EJ , FJ , sJ , tJ ,  J , RJ , VK , EK , FK , sK , tK ,  K , RK , �JK , �JK , �JK
in Definitions 3.2 and 3.4, and suppose RJ ¤¿, so RK ¤¿ as RJ �RK �Xan .

Consider pairs .UJ ; E�J / for A�J and .UK ; E�K/ for A�K satisfying condition .�/ in
Definition 3.6. We say that .UJ ; E�J / and .UK ; E�K/ are compatible if �JK.UJ /�UK
and �JK jUJ .E

�
J /� �JK j

�
UJ
.E�K/� �JK j

�
UJ
.EK/.

For compatible pairs .UJ ; E�J / and .UK ; E
�
K/, define a vector bundle morphism

�CJK W E
C

J ! �JK j
�
UJ
.ECK / on UJ by the commutative diagram with exact rows:

0 // E�J

�JK jE�
J

��

// EJ jUJ

�JK jUJ
��

// ECJ
//

�
C

JK
��

0

0 // �JK j
�
UJ
.E�K/

// �JK j
�
UJ
.EK/ // �JK j

�
UJ
.ECK /

// 0

Let vJ 2 s�1J .0/ � UJ � VJ with �JK.vJ / D vK 2 s
�1
K .0/ � UK � VK and

 J .vJ /D K.vK/Dx 2Xan . Consider the diagram, with rows (36) for .UJ ; E�J /, vJ
and .UK ; E�K/, vK :

(39)

0 // H 0.TX jx/

id
��

// TvJUJ
dsCJ jvJ

//

d�JK jvJ
��

ECJ jvJ

�
C

JK jvJ
��

// H 1.TX jx/= Im…vJ

id
��

// 0

0 // H 0.TX jx/ // TvKUK
dsCK jvK

// ECK jvK
// H 1.TX jx/= Im…vK

// 0

Here if we regard Im…vJ , Im…vK from (35) as subspaces of H 1.TX jx/ using (20),
compatibility �JK.E

�
J jvJ / � E�K jvK and (29) imply that Im…vJ � Im…vK , so

Im…vJ D Im…vK as they have the same dimension by .�/, and the right-hand
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column of (39) makes sense. From (25), (28) and (29) we see that (39) commutes.
Elementary linear algebra then gives an exact sequence

(40) 0! TvJUJ
dsCJ jvJ˚d�JK jvJ
�����������!ECJ jvJ˚TvKUK

��
C

JK jvJ˚dsCK jvK
�����������!ECK jvK! 0:

From (40) and Definition 2.14, we deduce:

Corollary 3.11 In the situation of Definition 3.10, if .UJ ; E�J / and .UK ; E
�
K/ are

compatible and satisfy .�/ then, in the sense ofSection 2.5,

.UJ ; �JK jUJ ; �
C

JK/W .UJ ; E
C

J ; s
C

J ;  J /! .UK ; E
C

K ; s
C

K ;  K/

is a coordinate change of Kuranishi neighbourhoods on Xan .

Lemma 3.12 In the situation of Definition 3.10, fix .UK ; E
�
K/ satisfying .�/ for

A�K , ˛K . Set U 0JK D ��1JK.UK/ � VJ . Then E 0JK WD �JK j
�1
U 0JK

.E�K/ is a vector
subbundle of EJ jU 0JK , as �JK is surjective. Choose a complementary real vector
subbundle E 00JK , so that EJ jU 0JK DE

0
JK ˚E

00
JK .

Choose a connection r on EJ , so that rsJ W TVJ !EJ is a vector bundle morphism.
Now Ker.d�JK W TVJ ! ��JK.TVK// is a vector subbundle of TVJ , as d�JK is sur-
jective, and rsJ is injective on Ker d�JK near s�1J .0/, so E 000JK WD .rsJ /ŒKer d�JK �
is a vector subbundle of EJ near s�1J .0/ in VJ .

Then .UJ ; E�J / satisfies .�/ for A�J , ˛J and is compatible with .UK ; E
�
K/ if and

only if UJ is open in U 0JK , and E�JK is a vector subbundle of E 0JK jUJ satisfy-
ing EJ jUJ D E�JK ˚E

00
JK jUJ ˚E

000
JK jUJ near s�1J .0/ \ UJ in UJ . Alternatively,

identifying E 0JK with EJ jU 0JK=E
00
JK , this condition may be written as E 0JK jUJ D

E�JK ˚ Œ.E
00
JK ˚E

000
JK/=E

00
JK �jUJ near s�1J .0/\UJ .

Proof We deduce rsJ is injective on Ker d�JK at vJ 2 s�1J .0/ using (28), check
that .�/ for UJ , E�J is equivalent to EJ DE�JK˚E

00
JK˚E

000
JK at each vJ 2 s�1J .0/,

and note that both are open conditions.

Lemma 3.12 shows we can always pull back .UK ; E�K/ satisfying .�/ along submer-
sions �JK W VJ!VK : we just have to choose a complement E�J to .E 00JK˚E

000
JK/=E

00
JK

in E 0JK on some small open neighbourhood UJ of s�1J .0/ in U 0JK , for instance, the
orthogonal complement with respect to any metric on E 0JK . By Theorem 3.7(c),
making UJ smaller, we can suppose .UJ ; E�J / satisfies .�/.

3.5 Constructing Kuranishi atlases and derived manifolds

Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with vdimC X D n in Z,

and write Xan for the complex analytic topological space. Suppose X is separated and
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Xan is a paracompact topological space. (Paracompactness is automatic if X is proper,
or quasicompact, or of finite type, or if Xan is second countable.) We will construct a
Kuranishi atlas on Xan , in the sense of Section 2.5.

First choose a family f.A�i ;˛i / j i 2 I g, where A�i 2 cdgaC is a standard form cdga, and
˛i W SpecA�i ,!X a Zariski open inclusion in dSchC for each i in I , an indexing set,
such that fRi WD .Im˛i /an j i 2 I g is an open cover of the complex analytic topological
space Xan . This is possible by Theorem 2.5. If X is quasicompact (since X is locally
of finite type, this is equivalent to X being of finite type) then we can take I to be
finite.

Apply Theorem 3.1 to get data A�J 2 cdgaC , ˛J W SpecA�J ,!X for finite ¿¤ J � I
and quasifree ˆJK W A�K ! A�J , for all finite ¿¤K � J � I .

Use the notation of Section 3.2 to rewrite A�J , ˆJK in terms of complex geometry. As
in Corollary 3.5, this gives data VJ , EJ , FJ , sJ , tJ ,  J , RJ for all finite ¿¤J � I ,
and �JK , �JK , �JK for all finite ¿¤K � J � I .

For brevity we write AD fJ j¿¤ J � I and J is finiteg. The proof of the next result
in Section 6.1 is based on McDuff and Wehrheim [29, Lemma 7.1.7].

Proposition 3.13 Suppose Z is a paracompact, Hausdorff topological space and
fRi j i 2 I g an open cover of Z . Then we can choose closed subsets CJ �Z for all
finite ¿¤ J � I , satisfying:

(i) CJ �
T
i2J Ri for all J .

(ii) Each z 2Z has an open neighbourhood Uz �Z with Uz \CJ ¤¿ for only
finitely many J .

(iii) CJ \CK ¤¿ only if J �K or K � J .

(iv)
S

¿¤ J � I finite CJ DZ .

In our case, Xan is Hausdorff and second countable. It is also locally compact, as
it is locally homeomorphic to closed subsets s�1J .0/ of complex manifolds VJ . But
Hausdorff, locally compact and second countable imply that X is paracompact and
normal. Thus Proposition 3.13 applies to Z DXan with the open cover fRi j i 2 I g,
and we can choose closed subsets CJ �RJ D

T
i2J Ri �Xan for all J 2A satisfying

conditions (i)–(iv).

The next proposition, proved in Section 6.2 using Theorem 3.7 and Lemma 3.12,
chooses pairs .UJ ; E�J / satisfying .�/, as in Section 3.3, with .UJ ; E�J /, .UK ; E

�
K/

compatible near CJ \CK under the quasifree morphism ˆJK W A
�

K ! A�J .
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Proposition 3.14 In the situation above, we can choose .UJ ; E�J / satisfying condi-
tion .�/ for VJ ; EJ ; : : : for each J 2 A, such that  �1J .CJ /� UJ � VJ , and setting
SJ D  J .s

�1
J .0/\ UJ / so that SJ is an open neighbourhood of CJ in Xan, then

for all J;K 2 A, we have SJ \ SK ¤ ¿ only if J � K or K � J , and if K ¨ J

then there exists open UJK � UJ with s�1J .0/\ UJK D  
�1
J .SJ \ SK/ such that

.UJK ; E
�
J jUJK / is compatible with .UK ; E�K/, in the sense of Section 3.4.

We can now prove two of the central results of this paper.

Theorem 3.15 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

complex virtual dimension vdimC X D n in Z, and write Xan for the set of C–points
of X D t0.X/ with the complex analytic topology. Suppose that X is separated,
and Xan is a paracompact topological space. Then we can construct a Kuranishi
atlas K on Xan of real dimension n, in the sense of Section 2.5. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof In the discussion from the beginning of Section 3.5 up to Proposition 3.14, we
have the following:

(i) A Hausdorff, paracompact topological space Xan .

(ii) An indexing set I , where we write AD fJ j¿¤ J � I and J is finiteg.

(iii) An open cover fSJ j J 2 Ag of Xan , such that SJ \SK ¤¿ for J;K 2 A only
if J �K or K � J .

(iv) For each J 2 A, a Kuranishi neighbourhood .UJ ; ECJ ; s
C

J ;  
C

J / on Xan with
dimUJ � rankECJ D n, constructed as in Section 3.3 from .UJ ; E

�
J / satisfying .�/,

with Im CJ D SJ �Xan .

(v) For all J;K 2 A with K ¨ J , a coordinate change of Kuranishi neighbourhoods
over SJ \SK , as in Corollary 3.11,

.UJK ; �JK jUJK ; �
C

JK/W .UJ ; E
C

J ; s
C

J ;  
C

J /! .UK ; E
C

K ; s
C

K ;  
C

K /;

since .UJK ; E�J jUJK / is compatible with .UK ; E�K/.

(vi) For all J;K;L2A with L¨K¨J , Corollary 3.5 implies that �JLD�KLı�JK
and �CJL D �

�
JK.�

C

KL/ ı�
C

JK on UJK \UJL\��1JK.UKL/.

This is a Kuranishi atlas K in the sense of Definition 2.15, where the partial order �
on A is J �K if K ¨ J . If X is quasicompact then we can take I finite, so A and K
are finite.
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Combining Theorems 2.18 and 3.15 yields:

Theorem 3.16 Let .X ; !�
X
/ be a �2–shifted symplectic derived C–scheme with

complex virtual dimension vdimC X D n in Z, and write Xan for the set of C–points
of X D t0.X/ with the complex analytic topology. Suppose that X is separated, so
that Xan is Hausdorff, and also that Xan is a second countable topological space, which
holds if and only if X admits a Zariski open cover fXc j c 2C g with C countable and
each Xc a finite type C–scheme.

Then we can make the topological space Xan into a derived manifold Xdm with real
virtual dimension vdimRXdmD n, in any of the senses (a) Joyce’s m-Kuranishi spaces
mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noël’s derived manifolds DerManBoNo [3; 4], or (d) Spivak’s derived manifolds
DerManSpi [32], all discussed in Section 2.6.

We will discuss the dependence of Xdm on choices made in the constructions in
Section 3.6. Note that Xdm in Theorem 3.16 has dimension vdimRXdmD vdimC X D
1
2

vdimRX , which is exactly half what we might have expected.

3.6 Orientations, bordism classes and virtual classes

Work in the situation of Theorems 3.15 and 3.16, so that we have a �2–shifted
symplectic derived C–scheme .X ; !�

X
/ with complex analytic topological space Xan ,

a Kuranishi atlas K on Xan , and a derived manifold Xdm . The next proposition, proved
in Section 6.3, justifies our notions of orientation in Sections 2.4–2.6.

Proposition 3.17 In the situation of Theorems 3.15 and 3.16, there are canonical
one-to-one correspondences between

(a) orientations on .X ; !�
X
/ in the sense of Section 2.4;

(b) orientations on .Xan;K/ in the sense of Section 2.5; and
(c) orientations on Xdm in the sense of Section 2.6.2.

Next we consider how the derived manifold Xdm in Theorem 3.16 depends on choices
made in the construction. Once we have chosen the Kuranishi atlas K in Theorem 3.15,
Theorem 2.18 shows thatXdm is determined uniquely up to equivalence in its 2–category
or 1–category. However, constructing K involves many arbitrary choices, and the
next proposition, proved in Section 6.4 using the material of Section 3.7, explains how
Xdm depends on these.

Proposition 3.18 In the situation of Theorem 3.16, for .X ; !�
X
/ and n fixed, the

derived manifold Xdm depends on choices made in the construction only up to bordisms
of derived manifolds which fix the underlying topological space Xan .
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That is, if Xdm , X 0dm are possible derived manifolds in Theorem 3.16, then we can
construct a derived manifold with boundary Wdm with topological space Xan � Œ0; 1�

and vdimWdm D nC 1, and an equivalence of derived manifolds @Wdm 'Xdm tX
0
dm,

topologically identifying Xdm with Xan�f0g and X 0dm with Xan�f1g. We regard Wdm

as a bordism from Xdm to X 0dm .

This bordism Wdm is compatible with orientations in Proposition 3.17. That is, given
an orientation on .X ; !�

X
/, we get natural orientations on Xdm , X 0dm , Wdm, and an

equivalence of oriented derived manifolds @Wdm'�XdmtX
0
dm, where �Xdm is Xdm

with the opposite orientation.

Combining this with material in Sections 2.6.4–2.6.5 yields:

Corollary 3.19 Suppose .X ; !�
X
/ is a proper �2–shifted symplectic derived C–

scheme, with vdimC X D n, and with an orientation in the sense of Section 2.4. Then
Theorem 3.16 constructs a compact derived manifold Xdm with vdimRXdm D n, and
Proposition 3.17 defines an orientation on Xdm .

Although Xdm depends on arbitrary choices, the d-bordism class ŒXdm�dbo in Bn.�/
from Section 2.6.4 and the virtual class ŒXdm�virt in Hn.XanIZ/ from Section 2.6.5 are
independent of these, and depend only on .X ; !�

X
/ and its orientation.

3.7 Working relative to a smooth base C–scheme Z

Let Z D SpecB be a smooth classical affine C–scheme, which we now assume is
connected. Then the set Zan of C–points of Z is a complex manifold, and hence a real
manifold. In this section we will show that all of Sections 3.1–3.6 also works relatively
over the base Z . To do this, we will need a notion of a family .�W X !Z;!X=Z/ of
�2–shifted symplectic derived C–schemes over the base Z .

To understand the next definition, recall from Remark 3.9 that if .X ; !�
X
/ is �2–shifted

symplectic, then the derived manifold Xdm constructed in Section 3.5 does not de-
pend on the whole sequence !�

X
D .!0

X
; !1
X
; : : : /, but only on the nondegenerate

pairings !0
X
jx on H 1.TX jx/ for x 2 Xan , and therefore only on the cohomology

class Œ!0
X
� 2H�2.LX /. We require that choices of !1

X
; !2
X
; : : : should exist (they

are needed to apply Theorem 2.10, which is used in the proof of Theorem 3.7(c)), but
Xdm does not depend on them.

Definition 3.20 Let X be a derived C–scheme, Z D SpecB a smooth, connected,
classical affine C–scheme, and �W X ! Z a morphism. A family of �2–shifted
symplectic structures on X=Z is Œ!X=Z � 2H�2.LX=Z/, such that if z 2Zan , writing
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XzD��1.z/DX�h
�;Z;z� for the fibre of � over z and Œ!X=Z �jXz 2H�2.LXz / for

the restriction of Œ!X=Z � to Xz , then there should exist a �2–shifted symplectic struc-
ture !�

Xz
D .!0

Xz
; !1
Xz
; : : : / on Xz such that Œ!X=Z �jXz D Œ!0Xz � in H�2.LXz /.

That is, a family of �2–shifted symplectic structures on X=Z is a �2–shifted rela-
tive 2–form Œ!X=Z � on X=Z , which on each fibre Xz extends to a closed 2–form
which is �2–shifted symplectic. We will explain how to extend the arguments of
Sections 3.3–3.6 to the relative case. Here is the analogue of Definition 3.6:

Definition 3.21 Let X be a derived C–scheme, ZDSpecB a smooth, classical, affine
C–scheme of pure dimension, �W X !Z a morphism, and Œ!X=Z � in H�2.LX=Z/
a family of �2–shifted symplectic structures on X=Z . Write dimC Z D k and
vdimC X D n C k . Suppose A� 2 cdgaC is of standard form, ˛W A� ,! X is a
Zariski open inclusion, and ˇW B! A0 is a smooth morphism of C–algebras, such
that (21) homotopy commutes. Define complex geometric data V , � , E , F , s , t
and  W s�1.0/ Š�! R � Xan as in Definition 3.2, and suppose R ¤ ¿. Then for
each v 2 s�1.0/ with  .v/ D x 2 Xan and �.v/ D �.x/ D z 2 Zan , (23) gives
an isomorphism from a vector space depending on V , � , Zan , E , F , s , t , � at v
to H 1.TX=Zjx/.

As in (6), the relative 2–form Œ!X=Z � induces a pairing

(41) H 1.TX=Z jx/�H
1.TX=Zjx/

Qx WD!
0
X=Z jx �

����������!C;

which is nondegenerate because Qx , under the equivalence TX=Z jx ' TXz jx , is
identified with the pairing induced by a �2–shifted symplectic form !�

Xz
on Xz , as

in Definition 3.20. Define

(42) zQvW
Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
�

Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
!C

to be the nondegenerate complex quadratic form identified with Qx in (41) by the
isomorphism H 1.T˛jv/ in (23).

Consider pairs .U;E�/, where U � V is open and E� is a real vector subbundle
of EjU . Given such .U;E�/, we write ECDEjU =E� for the quotient vector bundle
over U , and sC 2C1.EC/ for the image of sjU under the projection EjU!EC , and
 C WD js�1.0/\U W s

�1.0/\U !Xan . We say that .U;E�/ satisfies condition .�/ if

.�/ For each v 2 s�1.0/\U , we have

Im.dsjvW Tv.V=Zan/!Ejv/\E
�
jv D f0g in Ejv;(43)

t jv.E
�
jv/D t jv.Ejv/ in F jv;(44)
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and the natural real linear map

(45) …vW E
�
jv \Ker.t jvW Ejv! F jv/!

Ker.t jvW Ejv! F jv/

Im.dsjvW Tv.V=Zan/!Ejv/
;

which is injective by (43), has image Im…v a real vector subspace of dimension
exactly half the real dimension of Ker.t jv/= Im.dsjv/, and the real quadratic
form Re zQv on Ker.t jv/= Im.dsjv/ from (42) restricts to a negative definite real
quadratic form on Im…v .

We say .U;E�/ satisfies condition .�/ if

.�/ .U;E�/ satisfies condition .�/ and s�1.0/\U D .sC/�1.0/� U .

In this case, .U;EC; sC;  C/ is a Kuranishi neighbourhood on Xan .

Observe that if v 2 s�1.0/\U with  .v/Dx 2Xan then using (22)–(23) and (43)–(45)
we find as for (36) that there is an exact sequence

(46) 0 // H 0.TX=Z jx/ // Tv.V=Zan/ // ECjv // H 1.TX=Z jx/= Im…v // 0:

Hence as for (37) we have

dimR U � dimRZan� rankRE
C

D dimRH
0.TX=Zjx/� dimRH

1.TX=Zjx/C dimR Im…v

D 2 dimC H
0.TX=Z jx/� dimC H

1.TX=Z jx/

D dimC H
0.TX=Zjx/� dimC H

1.TX=Z jx/C dimC H
2.TX=Zjx/

D vdimC X � dimC Z D n:

Thus the Kuranishi neighbourhood .U;EC; sC;  C/ has virtual dimension

dimU � rankEC D nC 2k D 1
2
.vdimRX � dimRZan/C dimRZan;

which is the real dimension of the base Zan , plus half the real virtual dimension of the
fibres Xz .

Note that essentially the only important difference between Definitions 3.6 and 3.21 is
that TvV in (32), (33) and (35) is replaced by Tv.V=Zan/ in (42), (43) and (45).

Theorem 3.22 Theorem 3.7 holds with Definition 3.21 in place of Definition 3.6.

Proof In the proofs of Theorem 3.7(a),(b) in Sections 5.1–5.2, we replace dsjvW TvV !
Ejv by dsjvW Tv.V=Zan/!Ejv throughout, and no other changes are needed.
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For part (c), fix z 2Zan , so that Definition 3.20 gives a �2–shifted symplectic derived
C–scheme .Xz; !�

Xz
/ with Œ!X=Z �jXzD Œ!0Xz � in H�2.LXz /. Consider the complex

submanifolds V z D ��1.z/ in V and U z D U \V z in U , and write Ez, F z, sz, tz

for the restrictions of E , F , s , t to V z , and E˙z , sCz ,  Cz for the restrictions
of E˙ , sC ,  C to U z . Then .Xz; !�

Xz
/, V z , Ez; : : : satisfy Definition 3.6, so

Theorem 3.7(c) shows .sz/�1.0/\U z and .sCz/�1.0/ coincide near .sz/�1.0/\U z

in U z . Hence .s�1.0/ \ U/ \ ��1.z/ and ..sC/�1.0// \ ��1.z/ coincide near
.s�1.0/\U/\ ��1.z/ in U . As this holds for all z 2Zan ,we have that s�1.0/\U
and .sC/�1.0/ coincide near s�1.0/\U in U , and the theorem follows.

When we extend Section 3.4 to the relative case, in the analogue of Definition 3.10 we
also include data �W X!ZD SpecB and smooth ˇJ W B!A0J , ˇK W B!A0K with
ˇJ D ˆJK ı ˇK and (13) homotopy commuting for J , K. We obtain an analogue
of (39) with rows (46) rather than (36), and so as for (40) we get an exact sequence

0!TvJ.UJ =Zan/
dsCJ jvJ˚d�JK jvJ
����������!ECJ jvJ˚TvK.UK=Zan/

��
C

JK jvJ˚dsCK jvK
����������!ECK jvK!0:

But by taking the direct sum of this with idW TzZan! TzZan in the second and third
positions, we see that this implies (40) is exact, and the analogue of Corollary 3.11
follows. The relative analogue of Lemma 3.12, in which we replace TVJ , TVK by
T .VJ =Zan/, T .VK=Zan/, is immediate.

For Section 3.5, we prove the following relative analogue of Theorem 3.15:

Theorem 3.23 Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X !Z a morphism, and Œ!X=Z � a family
of �2–shifted symplectic structures on X=Z, with dimC Z D k and vdimC X D

nC k . Write Xan , Zan for the sets of C–points of X D t0.X/, Z with the complex
analytic topology, and suppose Xan is paracompact. Then we can construct a relative
Kuranishi atlas .K; f$J j J 2 Ag/ for �anW Xan ! Zan of real dimension nC 2k,
as in Definition 2.15, with $J W UJ ! Zan a submersion. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof First choose a family f.A�i ;˛i ; ˇi / j i 2 I g, where A�i 2 cdgaC is a standard
form cdga, and ˛i W SpecA�i ,! X is a Zariski open inclusion in dSchC for each i
in I , an indexing set, and ˇi W B! A0i is a smooth morphism of classical C–algebras
such that (12) homotopy commutes, with fRi WD .Im˛i /an j i 2 I g an open cover of
the complex analytic topological space Xan . This is possible by a relative version of
Theorem 2.5, easily proved by modifying the proof of [6, Theorem 4.1] to work over the
base Z D SpecB . Apply Theorem 3.1 to get data A�J 2 cdgaC , ˛J W SpecA�J ,!X ,
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ˇJ W B!A0J for finite ¿¤ J � I and quasifree morphisms ˆJK W A�K!A�J , for all
finite ¿¤K � J � I .

Use the notation of Section 3.2 to rewrite A�J , ˇJ , ˆJK in terms of complex geom-
etry. As in Corollary 3.5, this gives data VJ , �J , EJ , FJ , sJ , tJ ,  J , RJ for all
finite ¿¤ J � I , and �JK , �JK , �JK for all finite ¿¤K � J � I . Note that the
holomorphic submersions �J W VJ ! Zan with �J D �K ı �JK for K � J were not
used in Sections 3.3–3.6 as there Zan was the point �, but now we need them.

Proposition 3.14 now also holds in our relative situation. Its proof in Section 6.2
uses Theorem 3.7 and Lemma 3.12, which as above hold in the relative situation
with Definition 3.21 and T .VJ =Zan/ in place of Definition 3.6 and TVJ . As in
the proof of Theorem 3.15, we have now constructed a Kuranishi atlas K on Xan ,
with dimension nC 2k . Setting $J WD �J jUJ W UJ ! Zan for J 2 A, we see that
.K; f$J j J 2 Ag/ is a relative Kuranishi atlas for �an , with $J a submersion. If X
is quasicompact we can take I finite, so A and K are finite.

We then deduce the following relative analogue of Theorem 3.16:

Theorem 3.24 (i) Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X!Z a morphism, and Œ!X=Z � a family of
�2–shifted symplectic structures on X=Z, with dimC Z D k and vdimC X D nC k .
Write Xan , Zan for the sets of C–points of X D t0.X/, Z with the complex analytic
topology, and suppose Xan is second countable.

Then we can make the topological space Xan into a derived manifold Xdm with real
virtual dimension vdimRXdm D nC 2k, in any of the senses (a) Joyce’s m-Kuranishi
spaces mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noël’s derived manifolds DerManBoNo [3; 4], or (d) Spivak’s derived manifolds
DerManSpi [32], all discussed in Section 2.6.

(ii) We can also define a morphism of derived manifolds �dmW Xdm ! Zan, with
underlying continuous map �anW Xan!Zan .

(iii) For each z 2 Zan, the fibre Xzdm D �
�1
dm .z/ D Xdm ��dm;Zan;z � is a derived

manifold with vdimRX
z
dmD n. From Definition 3.20, XzD��1.z/ has a �2–shifted

symplectic structure !�
Xz

, and both Xzdm , Xz have (complex analytic) topological
space ��1an .z/�Xan . Then Xzdm is up to equivalence a possible choice for the derived
manifold associated to .Xz; !�

Xz
/ in Theorem 3.16.

Proof Parts (i) and (ii) follow from Theorems 2.18 and 3.23. For (iii), if z 2Zan then
as �J W VJ !Zan is a holomorphic submersion for J 2 A, the fibre V zJ WD �

�1
J .z/ is
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a complex submanifold of VJ . Setting U zJ D UJ \V
z
J and writing EzJ , F zJ , szJ , tzJ

for the restrictions of EJ , FJ , sJ , tJ to V zJ , and E�zJ , ECzJ , sCzJ ,  CzJ for the
restrictions of E�J , ECJ , sCJ ,  CJ to U zJ , we see I , A, V zJ , EzJ , F zJ , szJ , tzJ , U zJ ; : : :
are a possible choice for the data I , A, VJ , EJ ; : : : in the application of Theorems
3.15 and 3.16 to .Xz; !�

Xz
/. But from facts about fibre products of derived manifolds

in [18; 19; 20; 24] we see that the derived manifold Xzdm DXdm ��dm;Zan;z � may be
constructed from the data I , A, U zJ , ECzJ , sCzJ ,  CzJ ; : : : , as above. The theorem
follows.

Next we discuss orientations, generalizing Section 2.4 and Section 3.6 to the relative
case. Here is the analogue of Definition 2.12:

Definition 3.25 Let X be a derived C–scheme, Z D SpecB a smooth, connected,
classical affine C–scheme, �W X ! Z a morphism, and Œ!X=Z � 2 H�2.LX=Z/ a
family of �2–shifted symplectic structures on X=Z . Then as in (4), Œ!X=Z � induces
a canonical isomorphism of line bundles on X D t0.X/:

�X=Z;!X=Z W Œdet.LX=Z jX /�
˝2
!OX ŠO˝

2

X :

An orientation for .�W X ! Z; Œ!X=Z �/ is an isomorphism oW det.LX=Z jX /! OX
such that o˝ oD �X=Z;!X=Z .

Here is the relative analogue of Proposition 3.17. In parts (b) and (c), we could also
use notions of relative orientation for .Xan;K/! Zan and Xdm! Zan . But as Zan

is a complex manifold with a natural orientation, these are equivalent to absolute
orientations for .Xan;K/, Xdm , so we do not bother. The proof is an easy modification
of that in Section 6.3.

Proposition 3.26 In the situation of Theorems 3.23 and 3.24, there are canonical
one-to-one correspondences between

(a) orientations on .�W X !Z; Œ!X=Z �/ in the sense of Definition 3.25;

(b) orientations on .Xan;K/ in the sense of Section 2.5; and

(c) orientations on Xdm in the sense of Section 2.6.2.

The relative analogue of Proposition 3.18 does hold, but we will not prove it, as we
do not need it. The next theorem says that the virtual classes ŒXdm�dbo , ŒXdm�virt

of a proper oriented �2–shifted symplectic derived C–scheme .X ; !�
X
/ defined in

Corollary 3.19 are unchanged under deformation in families. Note that it is essential
that the base C–scheme Z be connected in Theorem 3.27.
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Theorem 3.27 Let X be a separated derived C–scheme, Z D SpecB a smooth,
connected, classical affine C–scheme, �W X ! Z a proper morphism, and Œ!X=Z �

a family of �2–shifted symplectic structures on X=Z, equipped with an orientation,
with dimC Z D k and vdimC X D nC k .

For each z 2 Zan we have a proper, oriented �2–shifted symplectic C–scheme
.Xz; !�

Xz
/ with vdimXz D n, and thus Corollary 3.19 defines a d-bordism class

ŒXzdm�dbo 2 dBn.�/ and a virtual class ŒXzdm�virt 2 Hn.X
z
anIZ/, which depend only

on .Xz; !�
Xz
/. Then ŒXzdm�dbo D ŒXz

0

dm�dbo and {z�.ŒX
z
dm�virt/ D {z

0

� .ŒX
z0

dm�virt/ for
all z; z0 2 Zan, where {z�.ŒX

z
dm�virt/ 2 Hn.XanIZ/ is the pushforward under the in-

clusion {z W Xzan ,!Xan .

Proof Theorem 3.24 constructs a derived manifold Xdm with vdimXdmDnC2k and
a morphism �dmW Xdm!Zan , which is proper as � is proper, and Proposition 3.26
gives an orientation on Xdm .

Let z; z0 2Zan . As Z is connected we can choose a smooth map 
 W Œ0; 1�!Zan with

.0/D z and 
.1/D z0 . The fibre product

Wdm DXdm ��dm;Zan;
 Œ0; 1�

exists as a derived manifold with boundary by [19, Section 7.5; 18, Section 7.6] and
Joyce [24], with vdimWdmD nC1, and Wdm is compact as Œ0; 1� is and �dm is proper,
and oriented since Xdm , Zan , Œ0; 1� are. As @Xdm D @Zan D¿, the boundary is

@Wdm DXdm ��dm;Zan;
 @Œ0; 1�DX
z
dm tX

z0

dm;

where Xzdm , Xz
0

dm are the fibres of �dmW Xdm!Zan at z , z0 .

Since @Œ0; 1�D �f0g t f1g in oriented 0–manifolds, we have @Wdm D �X
z
dm tX

z0

dm
in oriented derived manifolds. Therefore Definition 2.20 gives ŒXzdm�dbo D ŒX

z0

dm�dbo

in dBn.�/. By Theorem 3.22(c), Xzdm , Xz
0

dm are outcomes of Theorem 3.16 applied
to .Xz; !�

Xz
/, .Xz

0

; !�
Xz
0 /, so ŒXzdm�dbo , ŒXz

0

dm�dbo are the d-bordism classes associated
to .Xz; !�

Xz
/, .Xz

0

; !�
Xz
0 / in Corollary 3.19. A similar argument works for the

homology classes.

Remark 3.28 The assumptions that Z is smooth, classical and affine, and X is
separated, in Theorem 3.27 are easily removed; we can work over a base Z which is a
general classical or derived C–scheme, provided it is connected.

To see this, suppose �W X !Z is a proper morphism of derived C–schemes with Z
connected, and Œ!X=Z �2H�2.LX=Z / is a family of �2–shifted symplectic structures
on X=Z equipped with an orientation, extending Definitions 3.20 and 3.25 to general Z
in the obvious way.
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Suppose z; z0 2Zan . As Z is connected we can find a sequence zDz0; z1; : : : ; zNDz0

of points in Zan , and a sequence of smooth, connected, affine curves C 1; : : : ; CN

over C with morphisms � i W C i ! Z , such that � i .C i / contains zi�1 , zi for
i D 1; : : : ; N . Then X i DX �h

�;Z ;�i
C i is a derived C–scheme, and Œ!X=Z � pulls

back to a family Œ!X i=C i � of oriented �2–shifted symplectic structures on X i=C i .
Applying Theorem 3.27 to .X i ! C i ; Œ!X i=C i �/ we see ŒXzi�1dm �D ŒX

zi
dm� in dBn.�/

for i D 1; : : : ; N , so that

ŒXzdm�dbo D ŒX
z0
dm�dbo D ŒX

z1
dm�dbo D � � � D ŒX

zN
dm �dbo D ŒX

z0

dm�dbo:

The same argument works for virtual classes ŒXzdm�virt in homology.

We took Z to be smooth above to avoid defining families �dmW Xdm!Z of derived
manifolds over a base Z which is not a (derived) manifold.

3.8 “Holomorphic Donaldson invariants” of Calabi–Yau 4–folds

We now outline how the results of Sections 3.1–3.7 can be used to define new enu-
merative invariants of (semi)stable coherent sheaves on Calabi–Yau 4–folds Y , which
we could call “holomorphic Donaldson invariants”, and which should be unchanged
under deformations of Y . A related programme using gauge theory has recently been
proposed by Cao and Leung [8; 9; 10], which we discuss in Section 3.9.

We begin by discussing Donaldson–Thomas invariants DT˛.�/ of Calabi–Yau 3–folds,
introduced by Thomas [33]. Suppose Z is a Calabi–Yau 3–fold over C with an
ample line bundle OZ.1/, which defines a Gieseker stability condition � on coherent
sheaves on Z , and ˛ 2H even.ZIQ/. Then one can form coarse moduli C–schemes
M˛

st.�/, M˛
ss.�/ of �–(semi)stable coherent sheaves on Z of Chern character ˛ , with

M˛
st.�/�M˛

ss.�/ Zariski open, and M˛
ss.�/ proper.

Thomas [33] showed that M˛
st.�/ carries an “obstruction theory” �W E�! LM˛

st .�/

of virtual dimension 0, in the sense of Behrend and Fantechi [1]. Thus, if there are
no strictly �–semistable sheaves in class ˛ , so that M˛

st.�/DM˛
ss.�/ and M˛

st.�/ is
proper, then [1] gives a virtual count DT˛.�/D ŒM˛

st.�/�virt 2 Z. Thomas proved that
DT˛.�/ is unchanged under continuous deformations of Z .

Later, Joyce and Song [25] extended the definition of DT˛.�/ to invariants DT˛.�/2Q
for all ˛ 2H even.ZIQ/, dropping the condition that there are no strictly �–semistable
sheaves in class ˛ , and proved a wall-crossing formula for DT˛.�/ under change
of stability condition � . At about the same time, Kontsevich and Soibelman [26]
defined a motivic generalization of Donaldson–Thomas invariants (assuming existence
of “orientation data” as in Section 2.4), and proved their own wall-crossing formula
under change of � .
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Thomas [33] called his invariants DT˛.�/ “holomorphic Casson invariants”, though
they are now generally known as Donaldson–Thomas invariants. Here Casson invariants
are integer invariants of oriented real 3–manifolds ZR which are homology 3–spheres,
which “count” flat connections on ZR .

This followed a programme of Donaldson and Thomas [13], which starting with some
well-known geometry in real dimensions 2, 3 and 4, aimed to find analogues in complex
dimensions 2, 3 and 4; so the complex analogues of homology 3–spheres, and flat
connections upon them, are Calabi–Yau 3–folds, and holomorphic vector bundles (or
coherent sheaves) upon them.

Donaldson invariants [12] are invariants of compact, oriented 4–manifolds YR , defined
by “counting” moduli spaces M˛

inst of SU.2/–instantons E on YR with c2.E/D ˛ 2
Z. In contrast to Casson and Donaldson–Thomas invariants, the (virtual) dimension
d˛ of M˛

inst need not be zero. Oversimplifying/lying a bit, one first constructs an
orientation on M˛

inst [12, Section 5.4]. Then we have a virtual class ŒM˛
inst�virt 2

Hd˛ .M˛
instIZ/. For each ˇ 2 H2.YRIZ/ we construct a natural cohomology class

�.ˇ/ 2 H 2.M˛
instIZ/, with �.ˇ1 C ˇ2/ D �.ˇ1/C �.ˇ2/. Then if d˛ D 2k , we

define Donaldson invariants D˛.ˇ1; : : : ; ˇk/D .�.ˇ1/[� � �[�.ˇk// � ŒM˛
inst�virt 2Z

for all ˇ1; : : : ; ˇk 2H2.YRIZ/. We can think of D˛ as a Z–valued homogeneous
degree-k polynomial on H2.YRIZ/.

We propose, following [13], to define “holomorphic Donaldson invariants” of Calabi–
Yau 4–folds. The gauge theory ideas which were the primary focus of [13] will be
discussed in Section 3.9; here we work in the world of (derived) algebraic geometry.
Suppose Y is a Calabi–Yau 4–fold over C (ie Y is smooth and projective with
H i .OY /DC if i D 0; 4 and H i .OY /D 0 otherwise), and ˛D .˛0; ˛2; ˛4; ˛6; ˛8/2
H even.Y IQ/. As above we can form coarse moduli C–schemes M˛

st.�/ �M˛
ss.�/

of Gieseker (semi)stable coherent sheaves on Y of Chern character ˛ , with M˛
ss.�/

proper.

To make contact with the work of Sections 3.1–3.7, we need to show:

Claim 3.29 There is a �2–shifted symplectic derived C–scheme .M˛
st.�/; !

�/,
natural up to equivalence, with classical truncation t0.M˛

st.�// D M˛
st.�/, of vir-

tual dimension vdimC M˛
st.�/ D d˛ WD 2 � deg.˛ [ x̨ [ td.TY //8, where x̨ D

.˛0;�˛2; ˛4;�˛6; ˛8/, and td.�/ is the Todd class.

Pantev et al [31, Section 2.1] prove the analogue of Claim 3.29 in the context of
(derived) Artin stacks, but we want to reduce to (derived) schemes. Roughly this
means factoring out the C� stabilizer groups at each point of the �–stable derived
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moduli stack. Actually, it should not be difficult to extend Sections 3.1–3.7 to derived
algebraic C–spaces rather than derived C–schemes, and then it would be enough to
construct M˛

st.�/ as a derived algebraic C–space.

Next we would need to answer:

Question 3.30 Does .M˛
st.�/; !

�/ in Claim 3.29 have a natural orientation, in the
sense of Section 2.4, possibly depending on some choice of data on Y ?

Following the argument of Donaldson [12, Section 5.4], Cao and Leung prove an
orientability result [10, Theorem 2.2], which should translate to the statement that if the
Calabi–Yau 4–fold Y has holonomy SU.4/ with H�.Y IZ/ torsion-free, and M˛

st.�/

is a derived moduli scheme of coherent sheaves on Y , then orientations on M˛
st.�/

exist, though they do not construct a natural choice.

If both these problems are solved, then Theorem 3.16 makes M˛
st.�/an into a derived

manifold M˛
st.�/dm of real virtual dimension d˛ , which is oriented by Proposition 3.17.

If there are no strictly �–semistable sheaves in class ˛ then M˛
st.�/dm is also compact,

and has a d-bordism class ŒM˛
st.�/dm�dbo in dBd˛ .�/ and virtual class ŒM˛

st.�/dm�virt

in Hd˛ .M˛
st.�/anIZ/.

If d˛D0 then ŒM˛
st.�/dm�dbo2dB0.�/ŠZ is the virtual count we want. But if d˛>0

we should aim to find suitable cohomology classes on M˛
st.�/an and integrate them

over ŒM˛
st.�/dm�virt , as for Donaldson invariants above.

Claim 3.31 One can define natural cohomology classes �.ˇ/ on M˛
st.�/an depending

on homology classes ˇ on Y , which can be combined with ŒM˛
st.�/dm�virt to give

integer invariants, in a similar way to Donaldson invariants.

If M˛
st.�/ is a fine moduli space, there is a universal sheaf E on M˛

st.�/�Y , with Chern
classes ci .E/ 2H 2i .M˛

st.�/an�Y IQ/Š
L
kH

2i�k.M˛
st.�/anIQ/˝Hk.Y IQ/, and

we can make �i .ˇ/ 2H 2i�k.M˛
st.�/anIQ/ by contracting ci .E/ with ˇ 2Hk.Y IQ/.

Using the results of Section 3.7, we should be able to prove that the resulting invariants
are unchanged under continuous deformations of Y .

This would take us to the same point as Thomas [33] in the Calabi–Yau 3–fold case:
we could “count” moduli spaces M˛

st.�/ for those classes ˛ containing no strictly
�–semistable sheaves, and get a deformation-invariant answer. Many questions would
remain, for instance, how to count strictly �–semistables, wall-crossing formulae as
in [25; 26], computation in examples, and so on.

We hope to return to these issues in future work.
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3.9 Motivation from gauge theory and “SU.4/ instantons”

Finally we discuss some ideas of Donaldson and Thomas [13], which were part of the
motivation for this paper, and the work of Cao and Leung [8; 9; 10].

Let Y be a Calabi–Yau 4–fold over C , regarded as a compact real 8–manifold Y
with complex structure J , Ricci-flat Kähler metric g , Kähler form ! and holomorphic
volume form �. Fix a complex vector bundle E! Y of rank r > 0 with Hermitian
metric h and Chern character ch.E/ D ˛ , and as in [8; 9] assume for simplicity
that c1.E/ D 0. Consider connections r on E preserving h that have curvature
F 2 C1.End.E/˝C .ƒ

2T �Y ˝R C//. The splitting

ƒ2T �Y ˝R C D h!iC˚ƒ
1;1
0 T �Y ˚ƒ2;0T �Y ˚ƒ0;2T �Y

induces a corresponding decomposition F D F ! ˚F 1;10 ˚F 2;0˚F 0;2 .

We call r a Hermitian–Einstein connection if F ! D F 2;0 D F 0;2 D 0. There is a
splitting r D @E ˚ N@E , where N@E gives E the structure of a holomorphic vector
bundle on .Y; J /, as F 0;2 D 0. The Hitchin–Kobayashi correspondence says that
if .E; N@E / is a holomorphic vector bundle and is slope-stable, then N@E extends to a
unique Hermitian–Einstein connection r D @E˚ N@E preserving h. Also, holomorphic
vector bundles on Y are algebraic. Thus, studying moduli spaces M˛

alg-vb of stable
algebraic vector bundles is roughly equivalent to studying moduli spaces M˛

HE of
Hermitian–Einstein connections, modulo gauge.

As a system of PDEs, the Hermitian–Einstein equations are overdetermined: there are
8r2 unknowns, 13r2 equations and r2 gauge equivalences, with 8r2� 13r2� r2 < 0.
Algebraically, this corresponds to the fact that the natural obstruction theory on Malg-vb

is not perfect, so we cannot form virtual classes.

Using �, g we can define real splittings

ƒ2;0T �Y Dƒ
2;0
C
T �Y ˚ƒ2;0� T �Y and ƒ0;2T �Y Dƒ

0;2
C
T �Y ˚ƒ0;2� T �Y

and corresponding decompositions

F 2;0 D F
2;0
C
˚F 2;0� and F 0;2 D F

0;2
C
˚F 0;2� :

Following Donaldson and Thomas [13, Section 3], we call r an SU.4/–instanton
if F ! D F 2;0

C
D F

0;2
C
D 0. This gives 8r2 unknowns, 7r2 equations and r2 gauge

equivalences, with 8r2� 7r2� r2 D 0. It is a determined elliptic system, so that we
can hope to define virtual classes. This is special to Calabi–Yau 4–folds, a complex
analogue of instantons on real 4–manifolds.
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Writing M˛
SU.4/ for the moduli space of SU.4/–instantons, we have M˛

HE �M˛
SU.4/ ,

as the SU.4/ instanton equations are weaker than the Hermitian–Einstein equations.
Now ˛ D ch.E/ 2

L4
pD0H

p;p.Y / if E admits Hermitian–Einstein connections.
Conversely, as in [13, page 36], if ˛ 2

L
pH

p;p.Y / then one can use L2–norms
of components of F to show that any SU.4/–instanton is Hermitian–Einstein. Thus,
either M˛

HE DM˛
SU.4/ , or M˛

HE D¿.

However, the equality M˛
HE DM˛

SU.4/ holds only at the level of sets, or topological
spaces. Since M˛

HE is defined by more equations, if we regard M˛
HE , M˛

SU.4/ as
(derived) C1–schemes, for instance, then M˛

HE ¨ M˛
SU.4/ .

In the setting of Sections 3.1–3.6, we should compare M˛
HE (a Calabi–Yau 4–fold

moduli space, without a virtual class, equivalent to an algebraic moduli scheme M˛
alg-vb )

with the �2–shifted symplectic derived C–scheme .X ; !�
X
/, and M˛

SU.4/ (an elliptic
moduli space, hopefully with a virtual class, equal to M˛

HE on the level of topological
spaces) with the derived manifold Xdm . It was these ideas from Donaldson and
Thomas [13] that led the authors to believe that one could modify a �2–shifted
symplectic derived C–scheme to get a derived manifold with the same topological
space, and so define a virtual class.

Donaldson and Thomas [13] envisaged using gauge theory to define invariants of
Calabi–Yau 4–folds “counting” moduli spaces M˛

SU.4/ , and also invariants of compact
Spin.7/–manifolds “counting” moduli spaces of “Spin.7/–instantons”.

This would require finding suitable compactifications M˛
SU.4/ of the moduli spaces

M˛
SU.4/ , and giving them a nice enough geometric structure to define virtual classes,

which is a formidably difficult problem in gauge theory in dimensions > 4. A huge
advantage of our approach is that, working in algebraic geometry, with moduli spaces
of coherent sheaves rather than vector bundles, we often get compactness of moduli
spaces for free, without doing any work.

Cao and Leung [8; 9; 10] also aim to define enumerative invariants of Calabi–Yau
4–folds Y , which they call “DT4–invariants”, and their ideas overlap with ours. As
for our outline in Section 3.8, their general theory is still rather incomplete, but they
prove many partial results, and do computations in examples.

Given a vector bundle moduli space M˛
alg-vb ŠM˛

HE ŠM˛
SU.4/ in topological spaces,

assuming it is compact, and with an orientation (compare Question 3.30), Cao and Leung
[9, Section 5] define a virtual class ŒM˛

SU.4/�virt for M˛
SU.4/ , and contract this with some

cohomology classes �.ˇ/ (compare Claim 3.31) to get integer invariants, which they
prove are unchanged under deformations of Y . All this involves fairly standard material
from gauge theory.
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They also discuss the case in which one has a compact moduli space of coherent sheaves
M˛

coh-sh , which contains the vector bundle moduli space M˛
alg-vb as an open subset.

They want to define a virtual class for M˛
coh-sh , as we want to, and they can do this

under the assumptions that either M˛
coh-sh is smooth, or (in our language) that the

�2–shifted symplectic derived scheme .M˛
coh-sh; !

�/ is locally of the form T �X Œ2�

for X a quasismooth derived C–scheme.

To compare our work with theirs, given M˛
alg-vb � M˛

coh-sh as above, assuming
Claim 3.29, our Theorem 3.16 gives M˛

coh-sh the structure of a derived manifold, but
one depending on arbitrary choices. By topologically identifying M˛

alg-vb ŠM˛
SU.4/ ,

in effect Cao and Leung make M˛
alg-vb into a derived manifold, canonically up to

equivalence (though depending on the Kähler metric g and holomorphic volume
form �). However, there seems no reason why their derived manifold structure
on M˛

alg-vb �M˛
coh-sh should extend smoothly to M˛

coh-sh . This is a reason why our
approach may in the end be more effective.

4 Proof of Theorem 3.1

In this proof we write cdgaC for the ordinary category of cdgas over C , and cdga1C
for the 1–category of cdgas over C , defined using the model structure on cdgaC .
All objects in cdgaC are fibrant. A cdga A is cofibrant if it is a retract of a cdga A0

which is almost-free, that is, free as a graded commutative algebra. If �W A ! B

is a morphism in cdgaC then �W A! B is also a morphism in cdga1C . However,
morphisms �W A!B in cdga1C may not correspond to morphisms A!B in cdgaC

unless A is cofibrant.

The spectrum functor Spec maps .cdgaC/
op! dSchC and .cdga1C /

op! dSchC , and
.cdga1C /

op! dSchC is an equivalence with the full 1–subcategory of dSchC with
affine objects. So, morphisms �W A! B in cdga1C are essentially the same thing as
morphisms SpecB! SpecA in dSchC .

Let �W X ! Z D SpecB and f.A�i ;˛i ; ˇi / j i 2 I g be as in Theorem 3.1. Our
task is to construct a standard form cdga A�J D .A�J ; d/, a Zariski open inclusion
˛J W SpecA�J ,! X , and a morphism ˇJ W B ! A0J for all finite ¿ ¤ J � I , and a
quasifree morphism ˆJK W A

�

K!A�J for all finite ¿¤K � J � I , satisfying certain
conditions. We will do this by induction on increasing k D jJ j. Here is our inductive
hypothesis:

Hypothesis 4.1 Let k D 1; 2; : : : be given. Then:

(a) We are given finite subsets SnJ for all ¿ ¤ J � I with jJ j 6 k and for all
nD�1;�2; : : : .
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(b) For all ¿ ¤ J � I with jJ j 6 k we have A0J D
Nover B
i2J A0i as a smooth C–

algebra of pure dimension, where the tensor products are over B using ˇi W B! A0i
to make A0i into a B–algebra, so that if J D fi1; : : : ; ij g then

(47) A0J D Ai1 ˝B Ai2 ˝B � � � ˝B Aij :

The morphism ˇJ W B!A0J is induced by (47) and the ˇi W B!A0i for i 2 J , and is
smooth as the ˇi are.

(c) For all ¿¤ J � I with jJ j6 k , as a graded C–algebra, A�J is freely generated
over A0J by generators

F
¿¤K�J S

n
K in degree n for nD�1;�2; : : : .

(d) For all ¿¤K � J � I with jJ j6 k , the morphism ˆ0JK W A
0
K!A0J in degree 0

is the morphism

A0K D
O

B
i2K

A0i D

�O
B

i2K

A0i

�
˝B

� O
B

i2JnK

B

�
!

O
B

i2J

A0i D A
0
J

induced by the morphisms idW A0i ! A0i for i 2 K and ˇi W B ! A0i for i 2 J nK.
Then ˆJK W A�K ! A�J is the unique morphism of graded C–algebras acting by ˆ0JK
in degree 0, and mapping ˆJK W 
 7! 
 for each 
 2 SnL for ¿¤L�K � J � I and
nD�1;�2; : : : , so that 
 is a free generator of both A�K over A0K and A�J over A0J .

Note that ˆ0JK W A
0
K ! A0J is a smooth morphism of C–algebras of pure relative

dimension, since idW A0i ! A0i and ˇi W B ! A0i are. Also ˆJK maps independent
generators

F
¿¤L�K S

n
L of A�K over A0K to independent generators of A�J over A0J .

Hence ˆJK W A�K ! A�J is quasifree.

Clearly ˇJ Dˆ0JK ıˇK DˆJK ıˇK W B! A0J .

Also, if ¿¤L�K�J � I with jJ j6K then clearly ˆ0JLDˆ
0
JKıˆ

0
KLW A

0
L!A0J ,

and ˆJL DˆJK ıˆKLW A�L! A�J .

(e) For all ¿ ¤ J � I with jJ j 6 k and all n D �1;�2; : : : , we are given
maps ınJ W S

n
J ! AnC1J .

(f) Let ¿¤ J � I with jJ j6 k . Define dW A�J ! A�C1J uniquely by the conditions
that d satisfies the Leibnitz rule, and

(48) d
 DˆJK ı ınK.
/ for all ¿¤K � J; n6 �1 and 
 2 SnK :

We require that d ı dD 0W A�J ! A�C2J , so that A�J D .A
�
J ; d/ is a cdga.

This defines A�J D .A
�
J ; d/ as a standard form cdga over C . Observe if ¿¤K�J � I

with jJ j 6 k then as ˆJK W A�K ! A�J is a morphism of graded C–algebras with
ˆJK ıd
D dıˆJK.
/ for all 
 in the generating sets

F
¿¤L�K S

n
L for A�K over A0K ,
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we have ˆJK ı dD d ıˆJK W A�K ! A�C1J , and so ˆJK W A�K ! A�J is a morphism
of cdgas.

(g) For all ¿ ¤ J � I with jJ j 6 k , we are given a Zariski open inclusion
˛J W SpecA�J ,! X , with image Im˛J D

T
i2J Im˛i , such that (13) homotopy

commutes.

If ¿¤K � J � I with jJ j6 k then (14) homotopy commutes.

Remark 4.2 (i) In Hypothesis 4.1, the only actual data required are the finite sets SnJ
in (a), the maps ınJ W S

n
J !AnC1J in (e), and the morphisms ˛J W SpecA�J ,!X in (g).

Also, the only statements requiring proof are that d ı d D 0 in (f), and that ˛J is
a Zariski open inclusion with image

T
i2J Im˛i , and that (13) and (14) homotopy

commute in (g). All of (b), (c), (d) are definitions and deductions.

(ii) Most of the conclusions of Theorem 3.1 are immediate from the definitions
in (a)–(g): that A�J is a standard form cdga, and ˇJ W B ! A0J is smooth, and
ˆJK W A

�

K ! A�J is quasifree, and ˇJ DˆJK ıˇK , and ˆJL DˆJK ıˆKL .

For the first step in the induction, we prove Hypothesis 4.1 when k D 1. Then the
only subsets ¿ ¤ J � I with jJ j 6 k are J D fig for i 2 I , and the only subsets
¿¤K � J � I with jJ j6 k are J DK D fig for i 2 I .

As in Theorem 3.1 we are given data f.A�i ;˛i ; ˇi / j i 2 I g, where A�i is a standard
form cdga, so that A�i is freely generated over A0i by finitely many generators in each
degree nD�1;�2; : : : , as in Definition 2.1. For each i 2 I and each nD�1;�2; : : :
choose a subset Sn

fig
�Ani , as in part (a) for J D fig, such that A�i is freely generated

over A0i by
F
n6�1 S

n
fig

. Set A�
fig
D A�i and ˇfig D ˇi , so that parts (b) and (c) hold

for J D fig.

Part (d) is a definition, and when k D 1 only says that when J DK D fig we have
ˆfigfig D idW A�

fig
! A�

fig
. For (e), define

ın
figW S

n
fig! AnC1

fig
D AnC1i by ın

fig.
/D d
;

using d in the cdga A�i D .A
�
i ; d/. Given (e), part (f) says that the differentials d in

A�
fig
D .A�

fig
; d/ and A�i D .A

�
i ; d/ agree, consistent with setting A�

fig
D A�i , so that

d ı dD 0 in A�
fig

as A�i is a cdga.

For (g), if i 2 I define ˛fig D ˛i W A
�

fig
D A�i ! X . Then the assumptions on

f.A�i ;˛i ; ˇi / j i 2 I g in Theorem 3.1 imply that ˛fig is a Zariski open inclusion,
with image Im˛fig D Im˛i , and (13) homotopy commutes for J D fig as (12)
does. The only ¿¤ K � J � I with jJ j 6 k D 1 are J D K D fig, and then (14)
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homotopy commutes as ˛J D˛KD˛fig and ˆJKD id. This completes Hypothesis 4.1
when k D 1. Note that our definitions A�

fig
D A�i , ˛fig D ˛i , and ˇfig D ˇi for i 2 I

are as required in Theorem 3.1(i).

Next we prove the inductive step. Let l > 1 be given, and suppose Hypothesis 4.1
holds with k D l . Keeping all the data in parts (a), (e), (g) for jJ j6 l the same, we
will prove Hypothesis 4.1 with kD lC1. To do this, for each J � I with jJ j D lC1,
we have to construct the data of finite sets SnJ for nD�1;�2; : : : in (a), and maps
ınJ W S

n
J ! AnC1J in (e), and the morphism ˛J W SpecA�J ,!X in (g), and then prove

the claims in (f) that d ı d D 0, and in (g) that ˛J is a Zariski open inclusion with
image

T
i2J Im˛i , and that (13) and (14) homotopy commute.

Note that as Hypothesis 4.1 involves no compatibility conditions between data for
distinct J; J 0 � I with jJ j D jJ 0j D k , we can do this independently for each J � I
with jJ j D l C 1, that is, it is enough to give the proof for a single such J . So fix a
subset J � I with jJ j D l C 1.

We first define a standard form cdga zA�J which is an approximation to the cdga A�J
that we want, and morphisms žJ W B! zA0J , ẑJK W A�K! zA�J for all ¿¤K ¨ J , so
that jKj6 l and A�K is already defined:

� Define zA0J D A
0
J and žJ D ˇJ W B! zA0J D A

0
J as in Hypothesis 4.1(b).

� Define zA�J to be the graded C–algebra freely generated over A0J by generatorsF
¿¤K¨J S

n
K in degree n for n D �1;�2; : : : . This is the same as for A�J in

Hypothesis 4.1(c), except that we do not include generators SnJ , since SnJ is not
yet defined.

� If ¿ ¤ K ¨ J , so that A�K is defined, define ˆ0JK W A
0
K ! A0J D

zA0J as in
Hypothesis 4.1(d), and define ẑJK W A�K ! zA�J to be the unique morphism of graded
C–algebras acting by ˆ0JK in degree 0, and mapping ˆJK W 
 7! 
 for each 
 2 SnL
for ¿¤ L�K and nD�1;�2; : : : .

� The differential dW zA�J ! zA�C1J in the cdga zA�J D . zA
�
J ; d/ is determined uniquely

as in (48) by

d
 D ẑJK ı ınK.
/ for all ¿¤K ¨ J; n6 �1 and 
 2 SnK :

Then ẑJK W A�K! zA
�

J is a cdga morphism for all ¿¤K ¨ J , as in Hypothesis 4.1(f)
for ˆJK .

That is, zA�J is the colimit in the ordinary category cdgaC of the commutative diagram �

with vertices the objects B and A�K for all K with ¿¤K¨J , and edges the morphisms
ˇK W B ! A�K and ˆK1K2 W A

�

K2
! A�K1 for ¿¤K2 ¨K1 ¨ J , and žJ W B ! zA�J ,
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ẑ
JK W A

�

K !
zA�J are the projections to the colimit. Since all the morphisms in �

are almost-free in negative degrees and smooth in degree 0, these morphisms are
sufficiently cofibrant to compute the homotopy colimits as well. Indeed, having such a
morphism A�! C � we can factor it into A�! A�˝A0 C

0! C �: Each one of these
morphisms is flat, and hence homotopy pullbacks can be computed without resolving.
Finally we notice that the colimit of the entire diagram � can be calculated as a
sequence of pullbacks. So zA�J is also the homotopy colimit of � in the 1–category
cdga1C . Hence Spec zA�J is the homotopy limit of Spec� in the 1–category dSchC .

For ¿¤K¨J , consider
T
i2K Im˛i as an open derived C–subscheme of X . Then by

Hypothesis 4.1(g), ˛K W SpecA�K!
T
i2K Im˛i is an equivalence in dSchC . We also

have the open derived C–subscheme
T
i2J Im˛i in X , which is affine by Definition 2.6

as X has affine diagonal and Im˛i 'SpecA�i is affine for i 2J . Thus we may choose
a standard form cdga yA�J and an equivalence y̨J W Spec yA�J ,!

T
i2J Im˛i .

Define morphisms y̌J W Spec yA�J!ZDSpecB by y̌J D�ıy̨J , and y�JK W Spec yA�J!
SpecA�K for ¿¤K ¨ J as the composition

Spec yA�J
y̨J //

T
i2J Im˛i

� � //
T
i2K Im˛i

˛�1K // SpecA�K ;

where ˛�1K is a quasi-inverse for the equivalence ˛K W SpecA�K !
T
i2K Im˛i .

By the homotopy limit property of Spec zA�J , there exists a morphism  W Spec yA�J !
Spec zA�J in dSchC unique up to homotopy, with homotopies y̌J ' Spec žJ ı  
and y�JK ' Spec ẑJK ı  for ¿ ¤ K ¨ J . We can then write  ' Spec‰ for
‰W zA�J !

yA�J a morphism in cdga1C , unique up to homotopy. However, we do not
yet know that ‰ descends to a morphism in cdgaC . The definitions of y̌J , y�JK and
 ' Spec‰ give homotopies

(49)
� ı y̨J ' Spec žJ ıSpec‰W Spec yA�J !Z;

y̨J ' ˛K ıSpec ẑJK ıSpec‰W Spec yA�J !X for ¿¤K ¨ J:

Consider the composition of morphisms of classical C–algebras

(50) A0J
zA0J

// H 0. zA�J /
H0.‰/

// H 0. yA�J /:

Here SpecH 0.‰/ is the natural morphism

(51) SpecH 0.‰/W XJ !
Y

Z

¿¤K¨J

XK ;

writing XK for the open C–subscheme
T
k2K t0.Im˛k/ in X . This is the restriction

of the multidiagonal �2
jJ j�2

X W X!X �ZX �Z � � ��ZX , with 2jJ j�2 copies of X on
the right. Because X is separated, �2X W X ! X �Z X is a closed immersion, and
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thus �2
jJ j�2

X is a closed immersion. Also the domain XJ of (51) is the preimage
under �2

jJ j�2

X of the target, since XJ D
T

¿¤K¨J XK as jJ j> 2.

Hence (51) is a closed immersion, so H 0.‰/ in (50) is surjective. Also zA0J!H 0. zA�J /

is surjective, so the composition (50) is surjective. Therefore we can replace yA�J by
an equivalent object in cdga1C , such that yA0J D zA

0
J , and the following homotopy

commutes in cdga1C :

(52)

zA0J

��

yA0J

��

zA�J
‰
// yA�J

Now ‰W zA�J !
yA�J is a morphism in cdga1C . For this to descend to a morphism in

cdgaC , the simplest condition is that zA�J should be cofibrant and yA�J fibrant in the
model category cdgaC . Here the object yA�J is fibrant, as all objects are, but zA�J may
not be cofibrant, ie a retract of an almost-free cdga. However, zA�J is cofibrant as an
zA0J –algebra, as it is free in negative degrees, and (52) says that ‰ does descend to a

morphism in cdgaC in degree 0. Together these imply that ‰ descends to a morphism
‰W zA�J !

yA�J in cdgaC .

Next, by induction on decreasing nD�1;�2; : : : we will choose the data SnJ , ınJ in
parts (a) and (e) of Hypothesis 4.1. Here is our inductive hypothesis:

Hypothesis 4.3 Let N D 0;�1;�2; : : : be given. Then:

(a) We are given finite subsets SnJ for nD�1;�2; : : : ; N . Write

A�J;N D
zA�J ŒS

1
J ; : : : ; S

N
J �

for the graded C–algebra freely generated over zA�J by the sets of extra generators SnJ
in degree n for all nD�1;�2; : : : ; N .

(b) We are given maps ınJ W S
n
J ! AnC1J;N for nD�1;�2; : : : ; N . Define

dW A�J;N ! A�C1J;N

uniquely by the conditions that d satisfies the Leibnitz rule, and d is as in zA�J D
. zA�J ; d/ on zA�J � A

�
J;N , and on the extra generators 
 2 SnJ for nD�1;�2; : : : ; N ,

we have d
 D ınJ .
/ 2 A
nC1
J;N . We require that d ı d D 0W A�J;N ! A�C2J;N , so that

A�J;N D .A
�
J;N ; d/ is a cdga.

(c) We are given maps �nJ W S
n
J !

yAnJ for nD�1;�2; : : : ; N . Define

„N W A
�
J;N !

yA�J

to be the morphism of graded C–algebras such that „N D‰ on zA�J � A
�
J;N , and on

the extra generators 
 2SnJ for nD�1;�2; : : : ; N , we have „N .
/D �nJ .
/2 yA
n
J;N .
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We require that „N ıdD dı„N W A�J;N ! yA
�C1
J , so that „N W A�J;N ! yA

�

J is a cdga
morphism.

We also require that Hn.„N /W H
n.A�J;N /!Hn. yA�J / should be an isomorphism for

nD 0;�1;�2; : : : ; N C 1, and surjective for nDN .

For the first step N D 0, there is no data SnJ , ınJ , �nJ , and A�J;0 D zA
�

J , and „0 D‰ ,
and the only thing to prove is that

H 0.‰/W H 0. zA�J /!H 0. yA�J /

is surjective, which holds as ‰0D idW zA0J ! zA
0
J D

yA0J from above. So Hypothesis 4.3
holds for N D 0.

For the inductive step, let mD 0;�1;�2; : : : be given, and suppose Hypothesis 4.3
holds with N Dm. Keeping all the data SnJ , ınJ , �nJ for nD�1; : : : ; m the same, we
will prove Hypothesis 4.3 with N Dm�1. Note that with S�1J ; : : : ; SmJ the same, the
graded C–algebras A�J;m , A�J;m�1 agree in degrees 0;�1; : : : ; m, so it makes sense
to say that

ınJ W S
n
J ! AnC1J;m and ınJ W S

n
J ! AnC1J;m�1

are equal for nD�1;�2; : : : ; m. We must choose data Sm�1J , ım�1J W Sm�1J !AmJ;m�1
and �m�1J W Sm�1J ! yAm�1J , and verify the last two conditions of Hypothesis 4.3(c).

Choose a finite subset PSm�1J of Ker.Hm.„m/W H
m.A�J;m/!Hm. yA�J // which gener-

ates Ker. � � � / as an H 0.A�J;m/–module, and a finite subset RSm�1J of Hm�1. yA�J / such
that RSm�1J and Im.Hm�1.„m/W H

m�1.A�J;m/!Hm�1. yA�J // generate Hm�1. yA�J /

as an H 0. yA�J /–module. Finite subsets suffice in each case since A�J;m , yA�J are
of standard form, so that the modules Hn.A�J;m/, H

n. yA�J / are finitely generated
over H 0.A�J;m/, H

0. yA�J / for all n. Set

Sm�1J D PSm�1J t RSm�1J :

Then Hypothesis 4.3(a) defines A�J;m�1 as a graded C–algebra, with AnJ;m�1DA
n
J;m in

degrees n>m. For all 
 2 PSm�1J , choose a representative ım�1J .
/ in AmJ;m�1DA
m
J;m

for the cohomology class 
 in Hm.A�J;m/, so that

d.ım�1J .
//D 0 in AmC1J;m :

Define ım�1J .
/D0 in AmJ;m�1 for all 
 2 RSm�1J . This defines ım�1J W Sm�1J !AmJ;m�1
in Hypothesis 4.3(b), and hence dW A�J;m�1! A�C1J;m�1 .

To see that d ı d D 0W A�J;m�1 ! A�C2J;m�1 , note that A�J;m�1 D A
�
J;mŒS

m�1
J �, so d

on A�J;m�1 is determined by d on A�J;m , which already satisfies dıdD 0 by induction,
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and d on the extra generators Sm�1J , which satisfy dıdD 0 as for 
 2 PSm�1J we have
d ı d
 D d.ım�1J .
//D 0, and for 
 2 RSm�1J we have d
 D 0 so d ı d
 D 0. Hence
A�J;m�1 D .A

�
J;m�1; d/ is a cdga, as we have to prove.

For all 
 2 PSm�1J , because ım�1J .
/ 2 AmJ;m represents a cohomology class in
Ker.Hm.„m/W H

m.A�J;m/!Hm. yA�J //, we see that „m ı ım�1J .
/ is exact in yA�J ,
so we can choose an element �m�1J .
/ 2 yAm�1J with d ı �m�1J .
/D„m ı ı

m�1
J .
/.

For all 
 2 RSm�1J �Hm�1. yA�J /, choose an element �m�1J .
/ 2 yAm�1J representing 
 ,
so that d ı �m�1J .
/D 0. This defines �m�1J W Sm�1J ! yAm�1J .

Hypothesis 4.3(c) now defines „m�1W A�J;m�1! yA
�
J . To prove „m�1ıdD dı„m�1 ,

note that A�J;m�1DA
�
J;mŒS

m�1
J �, and on A�J;m�A

�
J;m�1 we have „m�1D„m , and

„mıdD dı„m by induction. So it is enough to prove that „m�1ıd.
/D dı„m�1.
/
for all 
 2 Sm�1J . If 
 2 PSm�1J then

„m�1 ı d.
/D„m�1 ı ım�1J .
/D„m ı ı
m�1
J .
/D d ı �m�1J .
/D d ı„m�1.
/;

as we want. Similarly, if 
 2 RSm�1J then

„m�1 ı d.
/D„m�1 ı ım�1J .
/D 0D d ı �m�1J .
/D d ı„m�1.
/:

Therefore „m�1 ı dD d ı„m�1 , and „m�1W A�J;m�1! yA�J is a cdga morphism.

Finally we have to show that Hn.„m�1/W H
n.A�J;m�1/!Hn. yA�J / is an isomorphism

for n D �1;�2; : : : ; m, and surjective for n D m� 1. Since „mW A�J;m! yA�J and
„m�1W A

�

J;m�1!
yA�J coincide in degrees 0;�1; : : : ; m, in cohomology they coincide

in degrees 0;�1; : : : ; mC1, so Hn.„m�1/ is an isomorphism for nD0;�1; : : : ; mC1
as Hn.„m/ is, by induction.

Because Hm.„m/W H
m.A�J;m/ ! Hm. yA�J / is surjective, and the added genera-

tors PSm�1J in A�J;m�1 span Ker.Hm.„m//, adding the generators PSm�1J makes
Hm.„m�1/W H

m.A�J;m�1/!Hm. yA�J / into an isomorphism. Also, since the added
generators RSm�1J together with Im.Hm�1.„m// generate Hm�1. yA�J /, adding RSm�1J

makes Hm�1.„m�1/W H
m�1.A�J;m�1/!Hm�1. yA�J / surjective.

This proves Hypothesis 4.3 for N Dm�1, so by induction Hypothesis 4.3 holds for all
N D 0;�1;�2; : : : . Taking the limit limN!�1A�J;N gives the cdga A�J defined in
Hypothesis 4.1 using the data SnJ , ınJ for all nD�1;�2; : : : from parts (a) and (b) of
Hypothesis 4.3 as N !�1. The data �nJ for nD�1;�2; : : : from part (c) defines a
morphism „D limN!�1„N W A�J ! yA�J , where „, A�J agree with „N , A�J;N in
degrees 0;�1; : : : ; N for all N 6 0.

Hence Hn.„/W Hn.A�J /!Hn. yA�J / agrees with Hn.„N /W H
n.A�J;N /!Hn. yA�J /

for all nD 0;�1; : : : ; N C 1, so Hn.„/ is an isomorphism for all n6 0 by part (c)
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of Hypothesis 4.3, and „W A�J ! yA�J is a quasi-isomorphism in cdgaC , and hence
an equivalence in cdga1C . Thus Spec„W Spec yA�J ! SpecA�J is an equivalence
in dSchC . So we can choose a quasi-inverse �W SpecA�J ! Spec yA�J in dSchC .

Write �W zA�J ,!A�J for the inclusion. Then ‰D„ı �W zA�J ! yA
�

J , since „N j zA�J D‰ ,
so taking the limit as N !�1 gives „j zA�J D‰ . Also the definitions of ˇJ W B!A�J
and ˆJK W A�K ! A�J for ¿¤ K ¨ J in parts (b) and (d) of Hypothesis 4.1 satisfy
ˇJ D � ı žJ and ˆJK D � ı ẑJK .

Define ˛J D y̨J ı�W SpecA�J !X . Since y̨J is a Zariski open inclusion with imageT
i2J Im˛i , and � is an equivalence, ˛J W SpecA�J !X is a Zariski open inclusion

with image
T
i2J Im˛i , as in Hypothesis 4.1(g). Then we have

� ı˛J D � ı y̨J ı�

' Spec žJ ıSpec‰ ı�

' Spec žJ ıSpec � ıSpec„ ı�' Spec žJ ıSpec �D SpecˇJ ;
using (49) in the second step, ‰ D„ ı � in the third, Spec„, � quasi-inverse in the
fourth, and ˇJ D � ı žJ in the fifth. Thus (13) homotopy commutes.

Similarly, if ¿¤K ¨ J then

˛J D y̨J ı�

' ˛K ıSpec ẑJK ıSpec‰ ı�

' ˛K ıSpec ẑJK ıSpec � ıSpec„ ı�' ˛K ıSpecˆJK ;

using (49) in the second step, ‰D„ı� in the third, and ˆJKD �ı ẑJK and Spec„, �
quasi-inverse in the fourth. Hence (14) homotopy commutes.

This proves that Hypothesis 4.1 holds with k D l C 1, and completes the inductive
step begun shortly after Remark 4.2. Hence by induction, Hypothesis 4.1 holds for
all kD 1; 2; : : : so Hypothesis 4.1 holds for kD1. Theorem 3.1 follows, since all the
conclusions of Theorem 3.1(i)–(ii) are either part of Hypothesis 4.1, or for A�fig D A

�

i ,
˛fig D ˛i , ˇfig D ˇi in part (i) were included in the first step of the induction. This
completes the proof.

5 Proof of Theorem 3.7

5.1 Theorem 3.7(a): .�/ is an open condition

Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  are as in Definition 3.6, and suppose
that U � V is open, E� is a real vector subbundle of EjU , and v 2 s�1.0/ \ U ,
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such that the assumptions on E�jv in condition .�/ hold at v . We must show that
these assumptions also hold for all v0 in an open neighbourhood of v in s�1.0/\U .
Suppose for a contradiction that this is false. Then we can choose a sequence .vi /1iD1
in s�1.0/\U such that vi ! v as i !1, and the assumptions on E�jvi in .�/ do
not hold for any i D 1; 2; : : : .

By passing to a subsequence of .vi /1iD1 , we can assume dim Im dsjvi and dim Ker t jvi
are independent of i D 1; 2; : : : . By trivializing E near v , we can regard .Im dsjvi /

1
iD1

and .Ker t jvi /
1
iD1 as sequences in complex Grassmannians, which are compact. Thus,

passing to a subsequence of .vi /1iD1 , we can assume they converge, and there are
complex vector subspaces Iv; Kv �Ejv such that Im dsjvi ! Iv and Ker t jvi !Kv
as i !1.

Because t ı ds D 0 on s�1.0/ we have Im dsjvi � Ker t jvi , and so Iv � Kv . Also
Im dsjv � Iv , since if w 2 TvV we can find wi 2 TviV with wi !w as i!1, and
then dsjvi .wi /! dsjv.w/ as i !1. Similarly Kv � Ker t jv .

We now have a quotient vector space .Ker t jv/=.Im dsjv/, which as in (32) carries a
nondegenerate quadratic form zQv . There are subspaces satisfying Iv=.Im dsjv/ �
Kv=.Im dsjv/ � .Ker t jv/=.Im dsjv/. Also, for each i > 1 we have a quotient space
.Ker t jvi /=.Im dsjvi / with quadratic forms zQvi . As i !1 we have

(53) .Ker t jvi /=.Im dsjvi /!Kv=Iv Š ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/�:

One can prove using a representative !A� for ˛�.!0
X
/ that

Iv=.Im dsjv/D fe 2 .Ker t jv/=.Im dsjv/ j zQv.e; k/D 0 for all k 2Kv=.Im dsjv/g;

that is, Iv=.Im dsjv/ and Kv=.Im dsjv/ are orthogonal subspaces with respect to zQv .
Hence the restriction of zQv to Kv=.Im dsjv/ is null along Iv=.Im dsjv/, and descends
to a nondegenerate quadratic form LQv on ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/� Š Kv=Iv .
Then under the limit (53), we have zQvi ! LQv as i !1.

By .�/ for .U;E�/ at v , we have Im.dsjv/\E�jv D f0g, and the map …v in (35),
…vW E

�jv\Ker.t jv/! .Ker t jv/=.Im dsjv/, has image Im…v of half the total dimen-
sion, with Re zQv negative definite on Im…v . Since zQv is zero on Iv=.Im dsjv/, it
follows that Im…v \ .Iv=.Im dsjv//D f0g, and thus

(54) E�jv \ Iv D f0g:

Condition (34), that t jv.E�jv/D t jv.Ejv/, is equivalent to E�jvCKer.t jv/DEjv ,
in subspaces of Ejv . As Im…v is a maximal negative definite subspace for Re zQv in
.Ker t jv/=.Im dsjv/, andKv=.Imdsjv/ is the orthogonal to a null subspace Iv=.Imdsjv/
with respect to Re zQv , it follows that Im…vCKv=.Im dsjv/D .Ker t jv/=.Im dsjv/.
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Lifting to Ker t jv gives ŒE�jv \ .Ker t jv/� C Kv D Ker t jv . Thus the subspace
E�jv CKv in Ejv contains E�jv and Ker t jv , so, as E�jv CKer.t jv/ D Ejv , we
see that

(55) E�jvCKv DEjv:

Write L…vW E�jv\Kv!Kv=Iv for the natural projection. It is injective by (54). Using
(54)–(55) and the facts that Im…v has half the dimension of .Ker t jv/=.Im dsjv/, and

dimŒIv=.Im dsjv/�C dimŒKv=.Im dsjv/�D dimŒ.Ker t jv/=.Im dsjv/�

as Iv=.Im dsjv/;Kv=.Im dsjv/ are orthogonal subspaces, by a dimension count we
find that Im L…v has half the total dimension of Kv=Iv . Also, since the quadratic
form LQv on Kv=Iv Š ŒKv=.Im dsjv/�=ŒIv=.Im dsjv/� descends from the restriction
of zQv to Kv=.Im dsjv/, and Im L…v descends from Im…v \ ŒKv=.Im dsjv/�, and
Re zQv is negative definite on Im…v , we see that Re LQv is negative definite on Im L…v .

Because E�jvi !E�jv and Im dsjvi ! Iv as i !1, we see from (54) that

(56) E�jvi \ .Im dsjvi /D f0g for i � 0:

Since E�jvi !E�jv and Ker t jvi !Kv as i !1, we see from (55) that we have
E�jvi CKer t jvi DEjvi for i � 0. But this is equivalent to

(57) t jvi .E
�
jvi /D t jvi .Ejvi / in F jvi for i � 0.

Using (56)–(57), the same dimension count as above implies that Im z…vi has half
the dimension of .Ker t jvi /=.Im dsjvi / for i � 0. Under the limit (53), we have
zQvi !

LQv and Im z…vi ! Im L…v . Thus, as Re LQv is negative definite on Im L…v , we
see that Re zQvi is negative definite on Im z…vi for i � 0. Together with (56)–(57),
this shows that the assumptions on E�jvi in .�/ hold for i � 0, which contradicts
the choice of sequence .vi /1iD1 . This proves Theorem 3.7(a).

5.2 Theorem 3.7(b): extending pairs .U;E�/ satisfying .�/

Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  are as in Definition 3.6, and .U;E�/
satisfying .�/ is as in Definition 3.6, and C � V is closed with C �U . Our goal is to
construct . zU ; zE�/ satisfying .�/ for V;E; : : : with C [ s�1.0/� zU � V , such that
E�jU 0 D zE

�jU 0 for U 0 an open neighbourhood of C in U \ zU .

Using the notation of Section 3.2, s�1.0/alg is a finite type closed C–subscheme
of V alg , and the maps v 7!dim Ker dsjv and v 7!dim Ker t jv are upper semicontinuous,
algebraically constructible functions s�1.0/alg! N , noting that t jv is independent
of choices for v 2 s�1.0/alg . Therefore by some standard facts about constructible
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sets in algebraic geometry, we can choose a stratification of Zariski topological spaces
s�1.0/alg D

F
a2AW

alg
a , where A is a finite indexing set, and W

alg
a is a smooth,

connected, locally closed C–subscheme of s�1.0/alg � V alg for each a 2 A, with
closure W alg

a in s�1.0/alg a finite union of strata Wb , such that v 7! dim Ker dsjv
and v 7! dim Ker t jv are both constant functions on W alg

a .

Writing Wa � s�1.0/� V for the set of C–points of W alg
a , each Wa is a connected,

locally closed complex submanifold of V lying in s�1.0/, with closure Wa a finite
union of submanifolds Wb , such that s�1.0/ D

F
a2AWa . On each Wa , the maps

v 7! dim Ker dsjv and v 7! dim Ker t jv are constant. This implies that Ker dsjWa
is a holomorphic vector subbundle of TV jWa , and Im dsjWa a holomorphic vector
subbundle of EjWa , and Ker t jWa a holomorphic vector subbundle of EjWa , and
Im t jWa a holomorphic vector subbundle of F jWa . Since t ı ds D 0 on s�1.0/, we
have Im dsjWa � Ker t jWa �EjWa .

Thus we have a holomorphic vector bundle .Ker t jWa/=.Im dsjWa/ over Wa , whose
fibre at v 2 Wa is identified with H 1.TX jx/ for x D  .v/ by (20). As in (6)
we have a quadratic form Qx on H 1.TX jx/, and as in (32) zQv is the quadratic
form on .Ker t jWa/=.Im dsjWa/jv identified with Qx by (20). One can prove using a
representative !A� for ˛�.!0

X
/ that zQv depends holomorphically on v 2Wa . Hence

zQvD zQajv for zQa 2H 0.S2Œ.Ker t jWa/=.Im dsjWa/�
�/, a nondegenerate holomorphic

quadratic form on the fibres of .Ker t jWa/=.Im dsjWa/.

The idea of the proof is to choose zE� near Wa by induction on increasing dimWa ,
starting with a 2 A with dimWa D 0, then a 2 A with dimWa D 1, and so on.
Since dim.Wa nWa/ < dimWa , we see that Wa nWa is a finite union of Wb with
dimWb < dimWa , so when we choose zE� near Wa we will already have chosen zE�

near Wa nWa , and the extension over Wa should be compatible with this.

Our inductive hypothesis .�/m for mD 0; 1; 2; : : : is:

.�/m For all a 2A with dimWa 6m we have chosen a pair . LUa; LE�a / satisfying .�/
for V , E , F , s , t; : : : with Wa � LUa � V , such that there is an open neigh-
bourhood yUa of C \ LUa in U \ LUa with E�j yUa D LE

�
a j yUa , and if b 2 A with

Wb � Wa nWa (which implies that dimWb < dimWa 6 m, so . LUb; LE�b / is
defined), then there is an open neighbourhood yUab of Wb in LUb such that
LE�a j LUa\ yUab D

LE�
b
j LUa\ yUab .

First consider how to choose . LUa; LE�a / satisfying .�/ with Wa � LUa � V for a 2 A
with no compatibility conditions, either with .U;E�/ near C , or with . LUb; LE�b / for
Wb �Wa nWa . We can do this as follows:
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(i) Choose a real vector subbundle PEa of .Ker t jWa/=.Im dsjWa/, whose real rank
is half the real rank of .Ker t jWa/=.Im dsjWa/, such that Re zQa is negative definite
on PEa .

(ii) Lift PEa to a real vector subbundle REa of Ker t jWa . That is, the projection
Ker t jWa ! .Ker t jWa/=.Im dsjWa/ induces an isomorphism REa! PEa .

(iii) Choose a real vector subbundle «Ea of EjWa with EjWa D «Ea˚Ker t jWa .

(iv) Set LE�a jWa D REa˚ «Ea . Then LE�a jWa is a real vector subbundle of EjWa , and
the assumptions on LE�a jv in condition .�/ in Section 3.3 hold for all v 2Wa .

(v) Choose any real vector subbundle LE�a of Ej LUa on a small open neighbourhood LUa
of Wa in V , extending the given LE�a jWa D REa˚ «Ea on Wa .

Observe that by Theorem 3.7(a), proved in Section 5.1, condition .�/ holds for LE�a on
an open neighbourhood of Wa . So by making LUa smaller, we can suppose . LUa; LE�a /
satisfies .�/.

All of these steps are possible. Any . LUa; LE�a / satisfying .�/ with Wa � LUa � V arises
from steps (i)–(v) (though «Ea in (iii) is not uniquely determined by LE�a ). Furthermore
(taking germs in (v)), the space of choices in each step is contractible.

Now suppose mD0; 1; : : : and .�/m�1 holds if m>0, and a2A with dimWaDm. To
choose . LUa; LE�a / with the compatibility conditions required in .�/m , we follow (i)–(v),
but modified as follows. In step (i), we choose PEa with

(58) PEajWa\ yUa
D Œ..E�\Ker t /j

Wa\ yUa
/C .Im dsj

Wa\ yUa
/�=.Im dsj

Wa\ yUa
/;

for some small open neighbourhood yUa of C \Wa in U , and if b 2 A with Wb �
Wa nWa then

(59) PEajWa\ LUab
D Œ.. LE�b \Ker t j

Wa\ yUab
//C .Im dsj

Wa\ yUab
/�=.Im dsj

Wa\ yUab
/;

for some small open neighbourhood yUab of Wb in LUb .

To see this is possible, first note that the first part of .�/m�1 with b in place of a
implies that (58) and (59) are compatible, that is they prescribe the same value for PEa
on Wa \ yUa \ yUab , provided the open neighbourhoods yUa , yUab are small enough.
Also given distinct b; b0 2 A with Wb; Wb0 � Wa nWa , either (a) Wb0 � Wb nWb ,
or (b) Wb � Wb0 nWb0 , or (c) Wb \Wb0 D Wb \Wb0 D ¿. In cases (a) and (b)
we can use the second part of .�/m�1 to show that (59) for b , b0 are compatible
provided yUab , yUab0 are small enough, and in case (c) we can choose yUab , yUab0 with
yUab \ yUab0 D¿, so compatibility is trivial.
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Thus, if yUa and yUab for all b are small enough then (58) and (59) for all b are
compatible, and can be combined into a single equation prescribing PEa on LWa WD
Wa \ . yUa [

S
b
yUab/. We then have to extend PEa from LWa to Wa , satisfying the

required conditions. This may not be possible: if we have chosen E� or LE�
b

badly
near the “edge” of LWa in Wa , then the prescribed values of PEa may not extend
continuously to the closure LWa of LWa in Wa . However, we can deal with this problem
by shrinking all the yUa , yUab , such that the closure LWa of the new LWa lies inside the
old LWa . Then it is guaranteed that the prescribed value of PEa on LWa extends smoothly
to an open neighbourhood of LWa in Wa , so we can choose PEa on Wa satisfying all
the required conditions (58)–(59).

In a similar way, for each of steps (ii)–(v) we can show that making the open neigh-
bourhoods yUa , yUab smaller if necessary, we can make choices consistent with the
compatibility conditions on . LUa; LE

�
a / in .�/m . So by induction, .�/m holds for

all mD 0; 1; : : : . Fix data . LUa; LE�a /, yUa , yUab satisfying .�/m for mD dimV .

Next, choose open neighbourhoods U 0 of C in U � V and zUa of Wa in LUa for
each a 2 A, such that U 0\ zUa � yUa for a 2 A, and zUa \ zUb � yUab if a; b 2 A with
Wb �Wa nWa , and zUa \ zUb D¿ if a; b 2 A with Wa \Wb DWa \Wb D¿. This
is possible provided U 0 and zUa for a 2 A are all small enough.

Define zU D U 0 [
S
a2A
zUa , which is an open neighbourhood of C [

S
a2AWa D

C [ s�1.0/ in V . Define a vector subbundle zE� of Ej zU by zE�jU 0 D E�jU 0 and
zE�j zUa D

LE�a j zUa for a 2A. These values agree on the overlaps U 0\ zUa and zUa\ zUb
by construction, so zE� is well defined. Also . zU ; zE�/ satisfies .�/, since .U;E�/
and the . LUa; LE�a / do, and U 0 is an open neighbourhood of C in U \ zU with E�jU 0 D
zE�jU 0 by definition. This proves Theorem 3.7(b).

5.3 Theorem 3.7(c): s�1.0/D .sC/�1.0/ locally in U

In Section 3.4 we explained how to pull back pairs .UK ; E�K/ satisfying .�/ along a
quasifree ˆJK W A�K ! A�J . We can also push forward .UJ ; E�J / along ˆJK .

Definition 5.1 Let X , !�
X

, n, ˆJK W A�K ! A�J and VJ , EJ ; : : : ; �JK , �JK be as
in Definition 3.10, and suppose .UJ ; E�J / satisfies .�/ for A�J . Our goal is to construct
.UK ; E

�
K/ satisfying .�/ for A�K , with  J .s�1J .0/\UJ /D K.s

�1
K .0/\UK/�Xan ,

and if .UJ ; E�J /, .UK ; E
�
K/ also satisfy .�/, a coordinate change of Kuranishi neigh-

bourhoods, as in Section 2.5:

(60) .UK ; �KJ ; �KJ /W .UK ; E
C

K ; s
C

K ;  
C

K /! .UJ ; E
C

J ; s
C

J ;  
C

J /:
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Let vJ 2 s�1J .0/\UJ with �JK.vJ /D vK 2 s�1K .0/� VK and  J .vJ /D K.vK/D
x 2Xan . We claim that we can choose splittings of real vector spaces

(61)
TvJVJ D

zTvJVJ ˚T
0
vJ
VJ ; EJ jvJ D

zEJ jvJ ˚E
0
J jvJ ˚E

00
J jvJ ;

E�J jvJ D
zE�J jvJ ˚

zE 00J jvJ ; FJ jvJ D
zFJ jvJ ˚F

00
J jvJ ˚F

000
J jvJ ;

fitting into a commutative diagram of the form

(62)

E�J jvJ D
zE�J jvJ˚

zE 00J jvJ

inc

��

tJ jE�
J
jvJ

&&

0 //
zTvJVJ˚
T 0vJVJ

d�JK jvJ
��

dsJ jvJ
//

zEJ jvJ˚
E 0J jvJ˚

E 00J jvJ

�JK jvJ

��

tJ jvJ
//

zFJ jvJ˚
F 00J jvJ˚

F 000J jvJ

//

�JK jvJ

��

� � �

0 // TvKVK
dsK jvK

// EK jvK
tK jvK

// FK jvK
// � � �

where

incD

0@� �0 �
0 �

1A; tJ jE�J jvJ
D

0@� 00 Š

0 0

1A; dsJ jvJD

0B@BdsK jvK 0

� Š

0 0

1CA; tJ jvJD

0@AtK jvK 0 0

0 0 Š

0 0 0

1A;
d�JK jvJD

�
Š 0

�
; �JK jvJD

�
Š 0 0

�
; �JK jvJD

�
Š 0 0

�
:

To prove this, note that the rows of (62) are TSpecA�J
jvJ ;TSpecA�K

jvK , and are com-
plexes, and the lower columns are induced by ˆJK , are surjective as ˆJK is quasifree,
and induce isomorphisms on cohomology as in Section 3.2. Then:

(i) Define T 0vJVJ D Ker d�JK jvJ .

(ii) Choose arbitrary zTvJVJ with TvJVJ Š zTvJVJ˚T
0
vJ
VJ . Then zTvJVJ ŠTvKVK

as d�JK is surjective.

(iii) Define E 0J jvJ D dsJ jvJ ŒT
0
vJ
VJ �. Then E 0J jvJ Š T

0
vJ
VJ as the columns of (62)

are isomorphisms in cohomology, and E 0J jvJ � Ker.�JK jvJ / as the left-hand square
of (62) commutes.

(iv) Choose E 00J jvJ with Ker.�JK jvJ /DE
0
J jvJ ˚E

00
J jvJ .

(v) Since the columns of (62) are isomorphisms on cohomology, tJ jvJ is injective
on E 00J jvJ . Define F 00J jvJ D tJ jvJ ŒE

00
J jvJ �. Then F 00J jvJ Š E

00
J jvJ . Also F 00J jvJ �

Ker �JK jvJ , as the right-hand square of (62) commutes.
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(vi) Choose F 000J jvJ with Ker �JK jvJ D F
00
J jvJ ˚F

000
J jvJ .

(vii) Since the columns of (62) are isomorphisms on cohomology, we have

F 00J jvJ D tJ jvJ ŒE
0
J jvJ ˚E

00
J jvJ �D tJ jvJ ŒKer�JK jvJ �

D Ker �JK jvJ \ Im tJ jvJ D .F
00
J jvJ ˚F

000
J jvJ /\ Im tJ jvJ :

Thus we may choose zFJ jvJ with FJ jvJ D zFJ jvJ ˚F
00
J jvJ ˚F

000
J jvJ and Im tJ jvJ �

zFJ jvJ ˚ F
00
J jvJ . So the third row of tJ jvJ in (62) is zero. Also zFJ jvJ Š FK jvK

by (vi) as �JK is surjective.

(viii) Set zE�J jvJ DE
�
J jvJ \ tJ j

�1
vJ
. zFJ jvJ /. We claim �JK jvJ is injective on zE�J jvJ .

To see this, note that we have an exact sequence

0 // E�J jvJ \Ker tJ jvJ // zE�J jvJ
// tJ jvJ ŒE

�
J jvJ �\

zFJ jvJ
// 0;

since Ker tJ jvJ � tJ j
�1
vJ
. zFJ jvJ /. The last part of .�/ implies that �JK jvJ maps

E�J jvJ \Ker tJ jvJ injectively into Ker tK jvK . Also �JK jvJ is injective on zFJ jvJ , and
the right square of (62) commutes, so the claim follows.

(ix) Choose zEJ jvJ �EJ jvJ such that

zE�J jvJ �
zEJ jvJ and EJ jvJ D

zEJ jvJ ˚Ker.�JK jvJ /
.iv/
D zEJ jvJ ˚E

0
J jvJ ˚E

00
J jvJ

and tJ jvJ Œ zEJ jvJ � � zFJ jvJ . This is possible as �JK jvJ is injective on zE�J jvJ , and
using (v), (vii) and (viii). Then zEJ jvJ ŠEK jvK as �JK is surjective.

(x) Choose zE 00J jvJ such that E�J jvJ D zE
�
J jvJ ˚

zE 00J jvJ and tJ jvJ Œ zE
00
J jvJ �� F

00
J jvJ .

This is possible by (viii) and because Im tJ jvJ �
zFJ jvJ ˚F

00
J jvJ .

Since tJ jvJ .E
�
J jvJ / D tJ jvJ .EJ jvJ / by (34) and F 00J jvJ D tJ jvJ ŒE

00
J jvJ �, we see

that tJ jvJ Œ zE
00
J jvJ � D F

00
J jvJ . Also tJ jvJ W zE

00
J jvJ ! F 00J jvJ is injective, as, by (viii),

Ker tJ jE�J jvJ �
zE�J jvJ . Hence zE 00J jvJ Š F

00
J jvJ .

We can do all this, not just at one vJ 2 s�1J .0/\UJ , but in an open neighbourhood U 0J
of s�1J .0/\UJ in UJ . That is, we can choose U 0J , and splittings

(63)
TVJ jU 0J

D zTVJ ˚T
0VJ ; EJ jU 0J

D zEJ ˚E
0
J ˚E

00
J jvJ ;

E�J jU 0J
D zE�J ˚

zE 00J ; FJ jU 0J
D zFJ ˚F

00
J ˚F

000
J ;

with zE�J � zEJ , such that (62) holds at each vJ 2 s�1J .0/\UJ . To see this, note that the
argument above can be carried out on s�1J .0/\UJ regarded as a C1–subscheme of UJ ,
in the sense of C1–algebraic geometry in [17], and the splittings (63) with zE�J � zEJ
can then be extended from s�1J .0/\UJ to an open neighbourhood U 0J . Making U 0J
smaller, we can suppose that the component of �JK mapping zEJ ! �JK j

�
U 0J
.EK/
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is an isomorphism. We can also choose the splittings so that away from s�1J .0/\UJ ,
the map tJ jU 0J has the form

(64) tJ jU 0J
D

0@� � 0

� � Š

� � 0

1AW zEJ jvJ ˚E 0J ˚E 00J ! zFJ ˚F 00J ˚F 000J :
Write sJ jU 0J D zsJ ˚ s

0
J ˚ s

00
J , for zsJ 2 C1. zEJ /, s0J 2 C

1.E 0J / and s00J 2 C
1.E 00J /.

Then (64) and tJ ı sJ D 0 together imply that s00J D 0. From (62) we see that
ds0J jvJ W TvJVJ ! E 0J jvJ is surjective and d�JK jvJ W Ker.ds0J jvJ /! TvKVK is an
isomorphism, at each vJ 2 s�1J .0/\ UJ . Hence s0J is transverse near vJ , so that
.s0J /

�1.0/ is an embedded submanifold of VJ near vJ with tangent space Ker.ds0J jvJ /
at vJ , and �JK j.s0J /�1.0/W .s

0
J /
�1.0/! VK is a local diffeomorphism near vJ . Thus,

making U 0J smaller, we can suppose that s0J is transverse on U 0J , so that .s0J /
�1.0/

is an embedded submanifold of U 0J , and �JK j.s00J /�1.0/W .s
0
J /
�1.0/! VK is a local

diffeomorphism. But �JK is injective on s�1J .0/\UJ , so making U 0J smaller, we
can also suppose �JK j.s0J /�1.0/ is a diffeomorphism with an open set UK in VK ,
with inverse �KJ W UK Š�! .s0J /

�1.0/� U 0J � UJ .

We now have a vector bundle ��KJ .EJ / over UK , and we have vector subbundles
��KJ .

zEJ ; E
0
J ; E

00
J ; E

�
J ;
zE�J ;
zE 00J / with ��KJ .EJ /D �

�
KJ .
zEJ /˚�

�
KJ .E

0
J /˚�

�
KJ .E

00
J /,

��KJ .E
�
J /D �

�
KJ .
zE�J /˚ �

�
KJ .
zE 00J / and ��KJ . zE

�
J / � �

�
KJ .
zEJ /. Since �JK ı �KJ D

idUK , pulling back �JK W EJ!��JK.EK/ by �KJ gives a surjective vector bundle mor-
phism ��KJ .�JK/W �

�
KJ .EJ /!EK jUK , where ��KJ .�JK/ restricts to an isomorphism

��KJ .
zEJ /!EK . We also have a section ��KJ .sJ / of ��KJ .EJ /, whose components

in ��KJ . zEJ /, �
�
KJ .E

0
J /, �

�
KJ .E

00
J / are ��KJ .zsJ /, 0, 0. Applying ��KJ to (25) and

using E 00J � Ker�JK shows that

(65) ��KJ .�JK/Œ�
�
KJ .sJ /�D �

�
KJ .�JK/Œ�

�
KJ .zsJ /�D sK jUK :

Define a vector subbundle E�K � EK jUK by E�K D �
�
KJ .�JK/Œ�

�
KJ .
zE�J /�. This is

valid as ��KJ . zE
�
J /� �

�
KJ .
zEJ /, and ��KJ .�JK/ is an isomorphism on ��KJ . zEJ /. We

claim that .UK ; E�K/ satisfies condition .�/. To see this, let vK 2 s�1K .0/\UK , and set
vJ D �KJ .vK/. Then vJ 2 s�1J .0/\U 0J with �JK.vJ /D vK , so (61)–(62) hold, with
the columns of (62) isomorphisms on cohomology. From this and .�/ for .UJ ; E�J /
at vJ , we can deduce .�/ for .UK ; E�K/ at vK .

Writing ECJ D EJ jUJ =E
�
J , sCJ D sJ CE

�
J 2 C

1.ECJ /, and similarly for ECK , sCK ,
define a vector bundle morphism

�KJ W E
C

K ! ��KJ .E
C

J /; �KJ W eK CE
�
K 7! ��KJ .�JK/j

�1

��KJ .
zEJ /
ŒeK �C �

�
KJ .E

�
J /:

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds 3299

This is well defined as ��KJ .�JK/j��KJ . zEJ /W �
�
KJ .
zEJ /!EK is an isomorphism, with

inverse
��KJ .�JK/j

�1

��KJ .
zEJ /
W EK ! ��KJ .

zEJ /;

which, by definition of E�K , maps E�K ! ��KJ .
zE�J / � �

�
KJ .E

�
J /. Also (65) implies

that �KJ .sCK / D ��KJ .s
C

J /. Using (62) we can also show that the analogue of (8)
for �KJ , �KJ at vK is exact. Therefore, if .UJ ; E�J /, .UK ; E

�
K/ also satisfy .�/, then

.UK ; �KJ ; �KJ / in (60) is a coordinate change. This completes Definition 5.1.

We now prove Theorem 3.7(c). Suppose X , !�
X

, A� , ˛, V , E , F , s , t ,  and .U;E�/
satisfying .�/ are as in Definition 3.6. Then X 0 WD ˛.SpecA�/ � X is an affine
derived C–subscheme of X . Let v 2 s�1.0/\U , and set x D  .v/ 2 Xan . Write
.A�1;˛1/D .A

�;˛/, V1 D V , E1 D E , v1 D v and so on. Applying Theorem 2.10
to .X 0; !�

X
jX 0/ at x gives a pair .A�2; !A�2/ in �2–Darboux form and a Zariski open

inclusion ˛2W SpecA�2 ,!X
0�X which is minimal at x 2 Im˛2 with ˛�2.!

�
X /'!A�2

.
Section 3.2 applied to A�2 , ˛2 gives V2 , E2 , s2; : : : . Set v2D �12 .x/2 s�12 .0/� V2 .

Applying Theorem 3.1 to the derived C–scheme X 0 with I D f1; 2g and initial
data f.A�1;˛1/; .A

�

2;˛2/g gives .A�12;˛12/ with image Im˛12 D Im˛1\ Im˛2 and
quasifree morphisms ˆ12;1W A�1! A�12 , ˆ12;2W A�2! A�12 such that (14) homotopy
commutes in dSchC . Section 3.2 applied to A�12 gives V12 , E12 , s12; : : : and to
ˆ12;1 and ˆ12;2 gives �12;1W V12 ! V1 D V , �12;1 , �12;1 and �12;2W V12 ! V2 ,
�12;2 , �12;2 , simplifying notation a little. Set v12 D  �112 .x/ 2 s

�1
12 .0/� V12 , so that

�12;1.v12/D v1 and �12;2.v12/D v2 .

We have .U;E�/ satisfying .�/ for A�1 , ˛1 , V1 , E1 , s1; : : : . Thus by Lemma 3.12,
we can choose .U12; E�12/ satisfying .�/ for V12 , E12 , s12; : : : and compatible
with .U;E�/ under �12;1 and �12;1 in the sense of Section 3.4, such that v12 2
s�112 .0/\�

�1
12;1.U /� U12 � V12 . Also Section 3.4 defines �C12;1 such that if .U;E�/

and .U12; E�12/ satisfy .�/ (we do not assume this), then

.U12; �12;1jU12 ; �
C
12;1/W .U12; E

C
12; s

C
12;  

C
12/! .U;EC; sC;  C/

is a coordinate change of Kuranishi neighbourhoods, as in Corollary 3.11.

Now apply Definition 5.1 to push forward .U12; E�12/ in V12 , E12 , s12; : : : along
�12;2 , �12;2 , �12;2 . This yields .U2; E�2 / satisfying .�/ for V2 , E2 , s2; : : : with
�12;2.s

�1
12 .0/\U12/� U2 � V2 , so in particular v2 2 U2 , and data �2;12 , �2;12 such

that if .U2; E�2 / and .U12; E�12/ satisfy .�/ (we do not assume this), then

(66) .U2; �2;12; �2;12/W .U2; E
C
2 ; s
C
2 ;  

C
2 /! .U12; E

C
12; s

C
12;  

C
12/

is a coordinate change of Kuranishi neighbourhoods, as in (60).
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Since .A�2; !A�2/ is in �2–Darboux form and minimal at x , Example 3.8 proves
that there exists an open neighbourhood U 02 of v2 in U2 such that s�12 .0/\ U 02 D

.sC2 /
�1.0/\U 02 . Then .U 02; E

�
2 jU

0
2
/ satisfies .�/. The construction in Definition 5.1

implies that �2;12 identifies s�12 .0/ near v2 with s�112 .0/ near v12 , and identifies
.sC2 /

�1.0/ near v2 with .sC12/
�1.0/ near v12 (the second follows from the fact that the

analogue of (8) for �2;12 , �2;12 at v2 , v12 is exact, so (66) is a coordinate change of
Kuranishi neighbourhoods near v2 , v12 ). Since s�12 .0/D .sC2 /

�1.0/ near v2 , it follows
that s�112 .0/D .s

C
12/
�1.0/ near v12 . That is, there exists an open neighbourhood U 012

of v12 in U12 such that s�112 .0/\U
0
12 D .s

C
12/
�1.0/\U 012 .

Similarly, we have that �12;1 identifies s�112 .0/ near v12 with s�1.0/ near v , and
identifies .sC12/

�1.0/ near v12 with .sC/�1.0/ near v , so there exists an open neigh-
bourhood U 0v of v in U such that s�1.0/\U 0v D .s

C/�1.0/\U 0v . This holds for
all v 2 s�1.0/\U . Define U 0 D

S
v2s�1.0/ U

0
v . Then U 0 is an open neighbourhood

of s�1.0/\U in U , and s�1.0/\U 0 D .sC/�1.0/\U 0 . Theorem 3.7(c) follows.

6 Proofs of some auxiliary results

Next we prove Propositions 3.13, 3.14 and 3.17.

6.1 Proof of Proposition 3.13

Let Z be a paracompact, Hausdorff topological space and fRi j i 2 I g an open cover
of Z . By paracompactness we can choose a locally finite refinement fSi j i 2 I g. That
is, Si �Ri �Z is open with

S
i2I Si DZ , and each z 2Z has an open z 2Uz �Z

with Uz \Si ¤¿ for only finitely many i 2 I .

By a standard result in topology known as the shrinking lemma, we can choose open
sets T 1i � Z with closures T 1i � Z for i 2 I such that T 1i � T

1
i � Si for i 2 I

and
S
i2I T

1
i D Z . The next part of the proof broadly follows that of McDuff and

Wehrheim [29, Lemma 7.1.7], who prove a similar result with Z compact and I finite.
By induction on k D 2; 3; : : : choose open T ik �Z with

(67) Ti � T
1
i � T

2
i � T

2
i � T

3
i � T

3
i � � � � � Si �Z

for i 2 I . Here to choose T ki we note that Z is normal as it is paracompact and
Hausdorff, so we can choose open T ki ; U � Z with T k�1i � T ki , Z n Si � U and
T ki \U D¿. Then T ki �Z nU � Si , and Z nU is closed, so we have T ki � Si .

Now for each finite ¿¤ J � I , define a closed subset CJ �Z by

(68) CJ D
\
j2J

T jJ jj n
\
i2InJ

T jJ jC1i :
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Then part (i) of the proposition follows from T jJ jj �Sj �Rj for j 2J by (67), and (ii)
from fSi j i 2 I g locally finite with CJ �

T
i2I Si . For (iii), suppose ¿¤ J;K � I

are finite with J 6� K and K 6� J . Without loss of generality, suppose jJ j 6 jKj.
Then there exists j 2 J nK, and (68) gives CJ � T jJ jj and CK �Z nT jKjC1j , which
forces CJ \CK D¿ as T jJ jj � T

jKjC1
j by (67).

For part (iv), if z 2Z , define

(69) Jz D
[

J � I finite
z 2

T
j2JT

jJ j
j

J:

Then Jz is finite since fSi j i 2 I g is locally finite, so z 2 Sj for only finitely
many j 2 I , and Jz is nonempty as fT 1i j i 2 I g covers Z , so z 2 T 1i � T

2
i for

some i 2 I , and J D fig is a possible set in the union (69). If j 2 Jz then j 2 J
for some J in the union (69), so that z 2 T jJ jj � T

jJz j
j as jJ j 6 jJzj. If i 2 I n Jz

then we have that z …
T
j2Jz[fig

T jJz jC1j , as Jz [fig is not one of the sets J in (69),
but z 2

T
j2Jz

T jJz jC1j , so we conclude that z … T jJz jC1i . Hence z 2CJz by (68), and
part (iv) follows. This completes the proof of Proposition 3.13.

6.2 Proof of Proposition 3.14

We work in the situation of Section 3.5 just after Remark 3.28, so that we have data
Xan , I , VJ , EJ , sJ ,  J and CJ � RJ D

T
i2J Ri � Xan for all J 2 A, and

�JK , �JK for all J;K 2 A with K ¨ J . We will first prove the following inductive
hypothesis .C/m , by induction on mD 1; 2; : : : :

.C/m For all J 2 A with jJ j6m, we can choose . zUJ ; zE�J / satisfying condition .�/
for A�J , VJ , EJ , FJ , sJ , tJ ,  J ; : : : such that  �1J .CJ / � zUJ � VJ ,
and if J;K 2 A with K ¨ J and 0 < jKj < jJ j 6 m then there exists open
zUJK � zUJ with  �1J .CJ \CK/� zUJK such that, in the sense of Section 3.4,
. zUJK ; zE

�
J j zUJK / is compatible with . zUK ; zE�K/. That is, �JK. zUJK/� zUK �VK

and �JK j zUJK . zE
�
J j zUJK /� �JK j

�
zUJK

. zE�K/� �JK j
�
zUJK

.EK/.

For the first step, to prove .C/1 for all J D fig with i 2 I , we choose . zUJ ; zE�J /
for A�J , VJ , EJ ; : : : satisfying .�/ with s�1J .0/ � zUJ , so that  �1J .CJ / � zUJ , by
applying Theorem 3.7(b) with C DU D¿. The second part of .C/1 is trivial, as there
are no J;K 2 A with 0 < jKj< jJ j6 1.

For the inductive step, suppose .C/m�1 holds for some m > 1. We will prove that
.C/m holds. Using the existing choices of . zUJ ; zE�J / and zUJK for J;K 2 A with
jJ j; jKj<m from .C/m�1 , it remains to choose . zUJ ; zE�J / when jJ j Dm, and zUJK
when 0 < jKj< jJ j Dm. So fix J � I with jJ j Dm.
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Then .C/m�1 gives . zUK ; zE�K/ satisfying .�/ for all ¿¤K ¨ J . Using the notation
of Lemma 3.12, set zU 0JK D �

�1
JK.
zUK/� VJ , and define

zE 0JK D �JK j
�1
zU 0JK

. zE�K/;

a vector subbundle of EJ j zU 0JK . Then zU 0JK is an open neighbourhood of  �1J .CK/

in VJ , by (27).

If ¿¤ L¨K ¨ J then by .C/m�1 we have that there exists open zUKL � zUK with
 �1K .CK \CL/� zUKL such that

�KL. zUKL/� zUL and �KLj zUKL
. zE�K/� �KLj

�
zUKL

. zE�L /� �KLj
�
zUKL

. zEL/:

Pulling back by �JK , applying �JK , and using the last part of Corollary 3.5(ii) then
shows that we have an open neighbourhood zU 0JKL D �

�1
JK.
zUKL/ of  �1J .CK \CL/

in zU 0JK \ zU
0
JL � VJ , such that

zE 0JK j zU 0JKL
� zE 0JLj zU 0JKL

�EJ j zU 0JKL
:

As in Lemma 3.12, choose vector subbundles zE 00JK �EJ j zU 0JK with

EJ j zU 0JK
D zE 0JK ˚

zE 00JK on zU 0JK for all ¿¤K ¨ J:

Choose a connection r on EJ . As in Lemma 3.12, zE 000JK WD .rsJ /ŒKer d�JK � is a
vector subbundle of EJ near s�1J .0/ in VJ , for all ¿ ¤ K ¨ J . Making the open
neighbourhoods zU 0JK , zU 0JKL smaller, we can suppose zE 000JK is a vector subbundle
of EJ j zU 0JK . If ¿¤ L¨K ¨ J � I then Ker d�JK�Ker d�JL , as �JLD�KLı�JK ,
and so

zE 000JK j zU 0JKL
� zE 000JLj zU 0JKL

�EJ j zU 0JKL
:

Next, by reverse induction on l D m� 1;m� 2; : : : ; 1, we will prove the following
inductive hypothesis .�/J;l :
.�/J;l For all ¿¤ L¨ J with l 6 jLj we can choose an open neighbourhood yUJL

of  �1J .CJ \CL/ in zUJL and a vector subbundle yE�JL of E 0JLj yUJL such that

(70) EJ j yUJL D
yE�JL˚E

00
JLj yUJL ˚E

000
JLj yUJL ;

or equivalently, identifying E 0JL with EJ =E 00JL on yUJL ,

(71) E 0JLj yUJL
D yE�JL˚ Œ.E

00
JL˚E

000
JL/=E

00
JL�j yUJL

;

and such that if ¿ ¤ L ¨ K ¨ J with l 6 jLj < jKj then there exists
an open neighbourhood yUJKL of  �1J .CJ \ CK \ CL/ in yUJK \ yUJL
with yE�JLj yUJKL D yE

�
JK j yUJKL .

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds 3303

For the first step l Dm� 1, for each L¨ J with jLj Dm� 1 we take yUJL D zUJL
and take yE�JL to be an arbitrary complement to Œ.E 00JL˚E

000
JL/=E

00
JL� in E 0JLj zUJL ,

as in (71), which implies (70). The second part of .�/J;m�1 is trivial as there are
no K, L with m� 16 jLj< jKj< jJ j Dm.

For the inductive step, suppose .�/J;lC1 holds for some 16 l <m�1, and fix L¨ J

with jLj D l . Choose open neighbourhoods yUJKL of  �1J .CJ \CK \CL/ in VJ for
all L¨K ¨ J with the properties that:

(a) yUJKL � yUJK \ zUJL , where yUJK is already chosen by .�/J;lC1 .

(b) If L¨K1; K2 ¨ J with K1 ¨K2 and K2 ¨K1 then yUJK1L\ yUJK2L D¿.

(c) If L ¨ K2 ¨ K1 ¨ J then yUJK1L \ yUJK2L � yUJK1K2 , where yUJK1K2 is
already chosen by .�/J;lC1 .

This is possible, using Proposition 3.13(iii) to ensure (b).

Next, we have to choose an open neighbourhood yUJL of  �1J .CJ \CL/ in zUJL and
choose a vector subbundle yE�JL of E 0JLj yUJL satisfying (70)–(71), such that for all K
with L¨K ¨ J we have that yUJKL � yUJL and yE�JLj yUJKL D yE

�
JK j yUJKL .

First note from Lemma 3.12 that (70)–(71) near  �1J .CJ \ CL/ are equivalent to
. yUJL; yE

�
JL/ near  �1J .CJ \CL/ satisfying .�/ and being compatible with . zUL; zE�L /.

By .�/J;lC1 we already know that yE�JK j yUJKL near  �1J .CJ \CL/ satisfies .�/ and
is compatible with . zUK ; zE�K/, and thus yE�JK j yUJKL is compatible with . zUL; zE�L / near
 �1J .CJ \CL/ since . zUK ; zE�K/ is compatible with . zUL; zE�L / by .C/m�1 . Thus the
prescribed value yE�JK j yUJKL for yE�JL on yUJKL satisfies (70)–(71) near  �1J .CJ\CL/,
and making yUJKL smaller, we can suppose yE�JK j yUJKL satisfies (70)–(71) on yUJKL .
This proves that (70)–(71) are compatible with the conditions yE�JLj yUJKL D yE

�
JK j yUJKL

for all ¿¤ L¨K ¨ J .

Next, observe that the prescribed values yE�JK j yUJKL for yE�JL on yUJKL for different
K1 , K2 with L¨K1 , K2 ¨ J agree on the overlaps yUJK1L\ yUJK2L . This follows
from (b) and (c) above and yE�JK1 j yUJK1K2 D

yE�JK2 j
yUJK1K2

, which holds by .�/J;lC1 .
Therefore the last part of .�/J;l can be rewritten to say that we have one prescribed
value for yE�JL on the subset PUJL WD

S
fKjL¨K¨J g

yUJKL , which satisfies (70)–(71)
on PUJL .

So, we are given a prescribed value of yE�JL on an open set PUJL � VJ satisfying (71),
and we have to extend it to a larger open set yUJL � VJ containing both PUJL and
 �1J .CJ \CK \CL/. This may not be possible: if we have chosen previous values
of yE�JK badly near the “edge” of PUJL in VJ , then the prescribed values of yE�JL may
not extend continuously to the closure PUJL of PUJL in VJ , and in particular, may not
extend continuously over points in Œ �1J .CJ \CK \CL/�\ Œ PUJL n PUJL�. However,
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we can deal with this problem by shrinking all the open sets yUJKL , such that the
closure PUJL of the new PUJL lies inside the old PUJL . Then it is guaranteed that the
prescribed value of yE�JL on PUJL extends smoothly to an open neighbourhood of PUJL
in VJ , so we can choose . yUJL; yE�JL/ satisfying all the required conditions. As this
holds for all L¨ J with jLj D l , this completes the inductive step, and .�/J;l holds
for all l Dm� 1;m� 2; : : : ; 1.

Fix data yUJL , yE�JL , yUJKL as in .�/J;1 . For all ¿ ¤ K ¨ J , choose open neigh-
bourhoods LUJK of  �1J .CJ \ CK/ in yUJK such that if K1 ¨ K2 and K2 ¨ K1
then LUJK1 \ LUJK2 D ¿, and if ¿ ¤ L ¨ K ¨ J then LUJK \ LUJL � yUJKL . This
is possible provided the LUJK are small enough, using Proposition 3.13(iii) to en-
sure LUJK1 \ LUJK2 D¿.

Define
LUJ D

[
fKj¿¤K¨J g

LUJK :

The set LUJ is an open neighbourhood of the closed set LCJ in VJ , where LCJ DS
fKj¿¤K¨J g  

�1
J .CJ \CK/ in VJ . Define a vector subbundle LE�J of EJ j LUJ by

LE�J j LUJK D
yE�JLj LUJK for all ¿¤K ¨ J:

These prescribed values for different K1 , K2 are compatible, by construction, on the
overlap LUJK1 \ LUJK2 , so LE�J is well defined.

Now apply Theorem 3.7(b) to A�J , VJ , EJ , sJ ; : : : , with closed set LCJ � VJ and
pair . LUJ ; LE�J / satisfying .�/ with LCJ � LUJ . This shows that there exists a pair
. zUJ ; zE

�
J / satisfying .�/ for A�J , VJ , EJ , sJ ; : : : , and an open neighbourhood LU 0J

of LCJ in LUJ \ zUJ such that LE�J j LU 0J D
zE�J j LU

0
J

. Set

zUJK D LU
0
J \
LUJK for all ¿¤K ¨ J:

Then zUJK is an open neighbourhood of  �1J .CJ \ CK/ in VJ , and zE�J j zUJK D
LE�J j zUJK D

yE�JK j zUJK , which is compatible with . zUK ; zE�K/ by definition. This com-
pletes the proof of the inductive step of .C/m . So by induction, .C/m holds for
all mD 1; 2; : : : .

Fix data . zUJ ; zE�J / for all J 2 A and zUJK for all J;K 2 A with K ¨ J as in .C/m
as m!1 (or mD jI j if I is finite). For all J 2A, choose open neighbourhoods UJ
of  �1J .CJ / in zUJ , such that setting E�J D zE

�
J jUJ and SJ D  J .s�1J .0/\UJ /, so

that SJ is an open neighbourhood of CJ in Xan , then .UJ ; E�J / satisfies condition .�/,
and for all J;K 2 A, if J 6�K and K 6� J then SJ \SK D¿, and if K ¨ J then
 �1J .SJ \ SK/ � zUJK . If K ¨ J , we define UJK D zUJK \UJ \ ��1JK.UK/. Then
s�1J .0/\UJK D 

�1
J .SJ \SK/, and .UJK ; E�J jUJK / is compatible with .UK ; E�K/.
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To see that we can choose UJ for all J 2 A satisfying all these conditions, note that
by Theorem 3.7(c), if UJ is small enough then .UJ ; E�J / satisfies .�/, as . zUJ ; zE�J /
satisfies .�/. If J 6�K and K 6�J then Proposition 3.13(iii) implies that SJ \SK D¿
provided both UJ , UK are sufficiently small. Similarly, if K ¨ J then we have
 �1J .SJ \ SK/ � zUJK provided both UJ , UK are sufficiently small. Now if I is
infinite, it is possible that an individual set UJ may have to satisfy infinitely many
smallness conditions, for compatibility with infinitely many sets ¿¤K � I . However,
the local finiteness condition Proposition 3.13(ii) means that in an open neighbourhood
of any vJ 2  �1J .CJ /, only finitely many smallness conditions on UJ are relevant, so
we can solve them. This completes the proof of Proposition 3.14.

6.3 Proof of Proposition 3.17

Let .X ; !X�/, Xan , K and Xdm be as in Theorems 3.15 and 3.16, and use the notation
of Section 3.5. First we relate orientations on .X ; !X�/ and Xdm at one point x 2Xan .
Pick J 2 A with x 2 SJ D Im CJ . From (7) and (9) we have

forientations on .X ; !�X / at xg Š fC–orientations on .H 1.TX jx/;Qx/g;(72)

forientations on Xdm at xg Š forientations on T �x Xdm˚OxXdmg;(73)

where Qx D !0X � is the nondegenerate complex quadratic form on H 1.TX jx/ in (6).
There is a unique vJ in s�1J .0/\UJ D .s

C

J /
�1.0/� UJ � VJ with  J .vJ / D x .

Equation (20) gives an isomorphism of complex vector spaces

(74) H 1.T˛J jvJ /W
Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvJ /
!H 1.TX jx/:

Write zQvJ for the complex quadratic form on Ker.tJ jvJ /= Im.dsJ jvJ / identified
with Qx by (74), as in Definition 3.6. Then by (72) we have

(75) forientations on .X ; !�X / at x g

Š
˚
C–orientations on

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�	
:

Condition .�/ for .UJ ; E�J / at vJ requires that

…vJ W E
�
J jvJ \Ker.tJ jvJ W EJ jvJ ! FJ jvJ /!

Ker.tJ jvJ W EJ jvJ ! FJ jvJ /

Im.dsJ jvJ W TvJVJ !EJ jvJ /

should be injective, with image Im…vJ a real vector subspace of half the real dimension
of Ker.tJ jvJ /= Im.dsJ jvJ /, on which the real quadratic form Re zQvJ is negative
definite. As .UJ ; ECJ ; s

C

J ;  J js
�1
J .0/\UJ / is a Kuranishi neighbourhood on Xdm by

the proof of Theorem 3.16, equation (10) gives an exact sequence

0 // TxXdm // TvJVJ
dsCJ jvJ // ECJ jvJ

// OxXdm // 0:
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Condition .�/ implies that Ker.dsJ jvJ /D Ker.dsCJ jvJ /, so we have

(76) TxXdm Š Ker.dsJ jvJ W TvJVJ !EJ jvJ /:

Also from .�/ we see there is a canonical isomorphism

(77) OxXdm Š
Ker.tJ jvJ /= Im.dsJ jvJ /

Im…vJ
:

By (76), TxXdm is a complex vector space, so TxXdm and T �x Xdm have natural
orientations as real vector spaces. Thus by (77) we have a bijection

(78) forientations on T �x Xdm˚OxXdmg

Š forientations on ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ g:

Suppose we are given a complex basis e1; : : : ; ek of Ker.tJ jvJ /= Im.dsJ jvJ /ŠCk

that is orthonormal with respect to zQvJ . As e1; : : : ; ek are orthonormal with respect to
zQvJ , the real quadratic form Re zQvJ is positive definite on the real span he1; : : : ; ekiR ,

and Re zQvJ is negative definite on Im…vJ , and thus he1; : : : ; ekiR\ Im…vJ D f0g.
Therefore e1C Im…vJ ; : : : ; ekC Im…vJ are linearly independent in the real vector
space ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ ŠRk , so they are a basis as Im…vJ has
half the real dimension of Ker.tJ jvJ /= Im.dsJ jvJ /. Define an identification

(79)
˚
C–orientations on

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�	
Š forientations on ŒKer.tJ jvJ /= Im.dsJ jvJ /�= Im…vJ g;

such that orientations on both sides are identified if, whenever e1; : : : ; ek is an oriented
orthonormal complex basis for

�
Ker.tJ jvJ /= Im.dsJ jvJ /; zQvJ

�
, then we have that

e1CIm…vJ ; : : : ;ekCIm…vJ is an oriented basis for ŒKer.tJ jvJ /=Im.dsJ jvJ /�=Im…vJ .
Combining equations (73), (75), (78) and (79) gives an identification

(80) forientations on .X ; !�X / at x g Š forientations on Xdm at x g:

It is not difficult to show that the isomorphism (80) is independent of the choice
of J 2 A with x 2 SJ , and depends continuously on x 2 Xan . Thus we get a
canonical one-to-one correspondence between the sets in Proposition 3.17(a),(c). The
last part of Theorem 2.18 gives a one-to-one correspondence between the sets in
Proposition 3.17(b),(c). This completes the proof.

6.4 Proof of Proposition 3.18

Suppose .X ; !�
X
/ is a separated, �2–shifted symplectic derived C–scheme with

virtual dimension vdimC X D n, whose complex analytic topological space Xan is
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second countable. Let K , K0 be different possible Kuranishi atlases constructed in
Theorem 3.15, and Xdm , X 0dm the corresponding derived manifolds in Theorem 3.16.

As in Section 3.5, let K be constructed using the family f.A�i ;˛i / j i 2 I g, and
data A�J , ˛J for J 2 A, ˆJK for K � J in A from Theorem 3.1, where A D
fJ j¿¤ J � I and J is finiteg, and as in Section 3.2, use notation VJ , EJ , FJ , sJ ,
tJ ,  J and RJ D

T
i2J Ri � Xan from A�J , ˛J and �JK , �JK , �JK from ˆJK .

Let K be defined using closed subsets CJ �Xan for J 2 A in Proposition 3.13 and
pairs .UJ ; E�J / and open subsets UJK � UJ in Proposition 3.14. Similarly, let K0 be
constructed using f.A0�i 0 , ˛

0
i 0/ j i

0 2 I 0g, A0�J 0 , ˛
0
J 0 , V

0
J 0 , E

0
J 0 ; : : : ; U

0
J 0K0 � U

0
J 0 .

We must build a derived manifold with boundaryWdm with topological space Xan� Œ0; 1�

and vdimWdm D nC 1, and an equivalence @Wdm 'Xdm tX
0
dm topologically identi-

fying Xdm with Xan � f0g and X 0dm with Xan � f1g.

Write z�W zX!Z to be the projection �A1 W X �A1!A1 , so that Z DA1D SpecB
with B DCŒz�, and Zan DC . Define ! zX=Z D ��X .!

0
X
/. Then ! zX=Z is a family of

�2–shifted symplectic structures on X=Z in the sense of Section 3.7, the constant
family over Z D A1 with fibre .X ; !�

X
/. We now carry out the programme of

Section 3.7 for z�W zX !Z;! zX=Z , choosing data as follows:

(a) Set zI D I t I 0 , the disjoint union of I and I 0 .

(b) Define . zA�i ; z̨i ; ži / for i 2 I by

zA�i D A
�

i ˝C CŒz; .z� 1/�1�;

so that Spec zA�i D .SpecA�i /� .A
1 n f1g/, and

z̨i D ˛i � incW .SpecA�i /� .A
1
n f1g/!X �A1;

and
ž
i W CŒz�! A0i ˝C CŒz; .z� 1/�1� by ži W z 7! 1˝ z:

Similarly, define . zA0�i 0 ; z̨i 0 ; ži 0/ for i 0 2 I 0 by zA�i 0 DA
0�
i 0 ˝C CŒz; z�1�, so Spec zA0�i 0 D

.SpecA0�i 0/� .A
1 n f0g/, and z̨i 0 D ˛0i 0 � incW .SpecA0�i 0/� .A

1 n f0g/!X �A1 , and
ž0
i 0 W CŒz�! A00i 0 ˝C CŒz; z�1� by ž0i 0 W z 7! 1˝ z .

(c) Write zAD f zJ j¿¤ zJ � zI and zJ is finiteg. Then A� zA and A0 � zA.

(d) When we apply Theorem 3.1 to choose zA�
zJ
, z̨ zJ , žzJ for zJ 2 zA and ẑ zJ zK

for zK � zJ , we make these choices so that

zA�J D A
�

J ˝C CŒz; .z� 1/�1� and zA�J 0 D A
0�
J 0 ˝C CŒz; z�1�;

z̨J D ˛J � incW .SpecA�J /� .A
1
n f1g/!X �A1;
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z̨J 0 D ˛
0
J 0 � incW .SpecA0�J 0/� .A

1
n f0g/!X �A1;

ž
J W z 7! 1˝ z and ž

J 0 W z 7! 1˝ z;

ẑ
JK DˆJK ˝ idW A�K ˝C CŒz; .z� 1/�1�! A�J ˝C CŒz; .z� 1/�1�;

ẑ
J 0K0 Dˆ

0
J 0K0 ˝ idW A0�K0 ˝C CŒz; z�1�! A0�J 0 ˝C CŒz; z�1�;

for all K � J in A and K 0 � J 0 in A0 . This is clearly possible. Note that this does
not determine zA�

zJ
, z̨ zJ , žzJ or ˆ zJ zK if zJ 2 zA n .AtA0/.

(e) When we translate to complex geometry using Section 3.2, part (d) implies
that zVJ D VJ � .C n f1g/ for J 2 A � zA. Also zEJ , zFJ , zsJ , ztJ , z�JK , z�JK
for J;K 2 A are obtained from EJ ; : : : ; �JK by taking products with C n f1g.
Similarly, zVJ 0 , zEJ 0 , zFJ 0 , zsJ 0 , ztJ 0 , z�J 0K0 , z�J 0K0 for J 0; K 0 2 A0 � zA are obtained
from VJ 0 ; : : : ; �J 0K0 by taking products with C n f0g.

(f) When we choose data zC zJ , . zU zJ ; zE
�
zJ
/ for zJ 2 zA, we do this so that

zCJ \ .Xan � f0g/D CJ � f0g; zUJ \VJ � f0g D UJ � f0g;

zE�J jUJ�f0g DE
�
J � 0;

zCJ 0 \ .Xan � f1g/D C
0
J 0 � f1g;

zUJ 0 \V
0
J 0 � f1g D U

0
J 0 � f1g;

zE�J 0 jU 0J 0�f1g
DE 0�J 0 � 1;

whenever J 2 A and J 0 2 A0 . This is clearly possible.

Theorem 3.23 constructs a relative Kuranishi atlas zK for �CW Xan � C ! C , of
dimension nC2. By construction, over Xan�f0g this restricts to the Kuranishi atlas K ,
and over Xan � f1g it restricts to K0 .
Theorem 3.24 gives a derived manifold zX dm with vdim zX dm D nC 2 and topological
space Xan�C , with a morphism z�dmW zX dm!C . From Theorem 3.24(iii) we see that
zX0dm D z�

�1
dm .0/'Xdm and zX1dm D z�

�1
dm .1/'X

0
dm .

Now define Wdm D zX dm �z�dm;C;inc Œ0; 1�, as a fibre product in the 2–category dManc

of d-manifolds with corners from [18; 19; 20], where incW Œ0; 1� ,!C is the inclusion.
By properties of fibre products in dManc from [18; 19; 20], this has topological
space Xan � Œ0; 1� and vdimWdm D nC 1, and boundary

(81) @Wdm ' zX dm �z�dm;C;inc @Œ0; 1�' zX dm �z�dm;C;inc f0; 1g 'Xdm tX
0
dm:

This proves the first part of Proposition 3.18.

For the last part, orientations on .X ; !�X / correspond naturally to orientations for
z�W zX !Z;! zX=Z , by pullback along zX !X , and these correspond to orientations
on zX dm by Proposition 3.26, and thus (using oriented fibre products) to orientations
on Wdm . Since @Œ0; 1�D�f0g t f1g in oriented manifolds, we see that as in (81) that
@Wdm '�Xdm tX

0
dm in oriented derived manifolds. This completes the proof.
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