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Let (X, a);}) be a separated, —2—shifted symplectic derived C-scheme, in the
sense of Pantev, Toén, Vezzosi and Vaquié (2013), of complex virtual dimension
vdimc X =n € Z, and X,, the underlying complex analytic topological space. We
prove that X,, can be given the structure of a derived smooth manifold Xy, of real
virtual dimension vdimg Xgq, = 7. This Xy, is not canonical, but is independent
of choices up to bordisms fixing the underlying topological space X,,. There is
a one-to-one correspondence between orientations on (X, ¥ ) and orientations
on Xyn-

Because compact, oriented derived manifolds have virtual classes, this means that
proper, oriented —2—shifted symplectic derived C —schemes have virtual classes, in
either homology or bordism. This is surprising, as conventional algebrogeometric
virtual cycle methods fail in this case. Our virtual classes have half the expected
dimension.

Now derived moduli schemes of coherent sheaves on a Calabi—Yau 4—fold are
expected to be —2—shifted symplectic (this holds for stacks). We propose to use
our virtual classes to define new Donaldson-Thomas style invariants “counting”
(semi)stable coherent sheaves on Calabi—Yau 4—folds Y over C, which should be
unchanged under deformations of Y .
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3232 Dennis Borisov and Dominic Joyce

1 Introduction

This paper will relate two apparently rather different classes of “derived” geometric
spaces. The first class is derived C—schemes X, in the derived algebraic geometry of
Toén and Vezzosi [34; 36], equipped with a —2—shifted symplectic structure wy in
the sense of Pantev, Toén, Vaquié and Vezzosi [31]. Such (X, a)}"() are the expected
structures on 4—Calabi—Yau derived moduli C—schemes.

The second class is derived smooth manifolds Xg4n,, in derived differential geometry.
There are several different models available: the derived manifolds of Spivak [32] and
Borisov and Noél [3; 4] (which form co—categories DerMangy;, DerMang,, ), and
Joyce’s d-manifolds [18; 19; 20] (a strict 2—category dMan) and m-Kuranishi spaces
[21, Section 4.7] (a weak 2—category mKur).

As it is known that equivalence classes of objects in all these higher categories are in
natural bijection, these four models are interchangeable for our purposes. But we use
theorems proved for d-manifolds or (m-)Kuranishi spaces.

Here is a summary of our main results, taken from Theorems 3.15, 3.16 and 3.24 and
Propositions 3.17 and 3.18 below.

Theorem 1.1 Let (X,w¥) be a —2—shifted symplectic derived C—scheme, in the
sense of Pantev et al [31], with complex virtual dimension vdim¢c X = n in Z, and
write X,, for the set of C—points of X = to(X), with the complex analytic topology.
Suppose that X is separated, and X,, is second countable. Then we can make
the topological space X,, into a derived manifold X4y of real virtual dimension
vdimg Xqm = n, in the sense of any of Borisov and Noel [3; 4], Joyce [18; 19; 20; 21]
and Spivak [32].

There is a natural one-to-one correspondence between orientations on (X , wY ), in the
sense of Section 2.4, and orientations on Xgm, in the sense of Section 2.6.

The (oriented) derived manifold X4y, above depends on arbitrary choices made in its
construction. However, Xqp, is independent of choices up to (oriented) bordisms of
derived manifolds which fix the underlying topological space.

All the above extends to (oriented) —2—shifted symplectic derived schemes
(m: X = Z, a)j{,/z)

over a base Z which is a smooth affine C—scheme of pure dimension, yielding an (ori-
ented) derived manifold myn: Xqm — Zan over the complex manifold Z,, associated
to Z, regarded as an (oriented) real manifold.
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In Section 2.5 we give a short definition of Kuranishi atlases K on a topological space X .
These are families of “Kuranishi neighbourhoods” (V, E, s, %) on X and “coordinate
changes” between them, based on work of Fukaya, Oh, Ohta and Ono [14; 15] in
symplectic geometry. The hard work in proving Theorem 1.1 is using (X, wY) to
construct a Kuranishi atlas & on X,,. Then we use results from Borisov and Noel [3; 4]
and Joyce [18; 19; 20; 21] to convert (X, K) into a derived manifold Xy, .

Readers of this papers do not need to understand derived manifolds, if they do not
want to. They can just think in terms of Kuranishi atlases, as is common in symplectic
geometry, without passing to derived manifolds.

We prove Theorem 1.1 using a “Darboux theorem” for k—shifted symplectic derived
schemes by Brav, Bussi and Joyce [6]. This paper is related to the series Ben-Bassat,
Brav, Bussi and Joyce [2], Brav, Bussi and Joyce [6], Brav, Bussi, Dupont, Joyce and
Szendréi [5], Bussi, Joyce and Meinhardt [7] and Joyce [22], mostly concerning the
—1-shifted (3—Calabi—Yau) case.

An important motivation for proving Theorem 1.1 is that compact, oriented derived
manifolds have virtual classes, in both bordism and homology. As in Sections 3.6-3.7,
from Theorem 1.1 we may deduce:

Corollary 1.2 Let (X,wy) be a proper, oriented —2-shifted symplectic derived
C—scheme, with vdimc X = n. Theorem 1.1 gives a compact, oriented derived
manifold Xgn with vdimg Xqm = n. We may define a d-bordism class [ X 4m]abo
in the bordism group B, (x), and a virtual class [X4m|vix in the homology group
Hy (Xan: Z), depending only on (X, wy ) and its orientation.

Let X be a derived C—scheme, Z a connected C—scheme, n: X — Z be proper,
and [wy,z] a family of oriented —2—shifted symplectic structures on X /Z, with
vdimc X/Z = n. For each z € Z,, we have a proper, oriented —2—shifted sym-
plectic C—scheme (X*,wY.) with vdim X? = n. Then [Xdzrll]dbo = [Xdzrfl]dbo and
1 ([X 5 vir) = 122 ([X 2)vir) for all zq,z2 € Zan, with 12([XE lvir) € Hn(Xan: Z)
the pushforward under the inclusion 1%: X7 <> Xan.

So, proper, oriented —2—shifted symplectic derived C—schemes (X, wY) have virtual
classes. This is not obvious; in fact it is rather surprising. Firstly, if (X, w%) is
—2-shifted symplectic then X = #9(X) has a natural obstruction theory Lx|x — Ly
in the sense of Behrend and Fantechi [1], which is perfect in the interval [—2, 0]. But
the Behrend—Fantechi construction of virtual cycles [1] works only for obstruction
theories perfect in [—1, 0], and does not apply here.

Secondly, our virtual cycle has real dimension vdimc X = % vdimpg X, which is half
what we might have expected. A heuristic explanation is that one should be able to
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make X into a “derived C*°—scheme” X € (not a derived manifold), in some sense
similar to Lurie [27, Section 4.5] or Spivak [32], and (X", Imw}) should be a
“real —2-shifted symplectic derived C°°—scheme”, with ImwY} the imaginary part
of wy . There should be a morphism X €% s Xgm which is a “Lagrangian fibration”
of (X¢%,Im wY). So vdimg Xgm = % vdimg X¢~ = % vdimg X, as for Lagrangian
fibrations 7: (S, w) — B we have dim B = %dimS.

The main application that we intend for these results, motivated by Donaldson and
Thomas [13] and explained in Sections 3.8-3.9, is to define new invariants “counting”
(semi)stable coherent sheaves on Calabi—Yau 4—folds Y over C, which should be
unchanged under deformations of Y. These are similar to Donaldson-Thomas invariants
found in Joyce and Song [25], Kontsevich and Soibelman [26] and Thomas [33] and
could be called “holomorphic Donaldson invariants”, as they are complex analogues of
Donaldson invariants of 4—manifolds; see Donaldson and Kronheimer [12].

Pantev, Toén, Vaquié and Vezzosi [31, Section 2.1] show that any derived moduli
stack M of coherent sheaves (or complexes of coherent sheaves) on a Calabi—Yau
m—fold has a (2—m)-shifted symplectic structure w},, so in particular 4—Calabi—Yau
moduli stacks are —2-shifted symplectic. Given an analogue of this for derived moduli
schemes, and a way to define orientations upon them, Corollary 1.2 would give virtual
classes for moduli schemes of (semi)stable coherent sheaves on Calabi—Yau 4—folds,
and so enable us to define invariants.

It is well known that there is a great deal of interesting and special geometry, related to
string theory, concerning Calabi—Yau 3—folds and 3—Calabi—Yau categories: mirror
symmetry, Donaldson—Thomas theory, and so on. One message of this paper is that there
should also be special geometry concerning Calabi—Yau 4—folds and 4—Calabi—Yau
categories, which is not yet understood.

During the writing of this paper, Cao and Leung [8; 9; 10] also proposed a theory of
invariants counting coherent sheaves on Calabi—Yau 4—folds, based on gauge theory
rather than derived geometry. We discuss their work in Section 3.9.

Section 2 provides background material on derived schemes, shifted symplectic struc-
tures upon them, Kuranishi atlases, and derived manifolds. The heart of the paper is
Section 3, with the definitions, main results, shorter proofs, and discussion. Longer
proofs of results in Section 3 are deferred to Sections 4—6.

Acknowledgements We would like to thank Yalong Cao, Conan Leung, Bertrand
Toén, Gabriele Vezzosi, and a referee for helpful conversations. This research was
supported by EPSRC Programme Grant EP/1033343/1.
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2 Background material

We begin with some background material and notation needed later. Some references are
Toén and Vezzosi [34; 36] for Sections 2.1-2.2, Pantev, Toén, Vezzosi and Vaquié [31]
and Brav, Bussi and Joyce [6] for Section 2.3, and Spivak [32], Borisov and Noél [3; 4]
and Joyce [18; 19; 20; 21; 23; 24] for Section 2.6.

2.1 Commutative differential graded algebras

Definition 2.1 Write cdgac for the category of commutative differential graded C—
algebras in nonpositive degrees, and cdga%’ for its opposite category. In fact cdgac
has the additional structure of a model category (a kind of co—category), but we only
use this in the proof of Theorem 3.1 in Section 4. In the rest of the paper we treat
cdgac, cdga%) just as ordinary categories.

Objects of cdgac are of the form --- — A™2 95 471 45 40 Here A% for k =
0,—1,—-2,... is the C—vector space of degree-k elements of A, and we have a C—
bilinear, associative, supercommutative multiplication Ak x Al =5 AR+ for k,[ <0,
an identity 1 € A°, and differentials d: A¥ — AK*1 for k < 0 satisfying

d(a-b) = (da)-b + (=1)*a - (db)

forall a € A¥, b € A'. We write such objects as A® or (4*,d).

Here and throughout we will use the superscript “ * ” to denote graded objects (eg

graded algebras or vector spaces), where * stands for an index in Z, so that A* means
(A : k € Z). We will use the superscript “* ” to denote differential graded objects
(eg differential graded algebras or complexes), so that A* means (A%, d), the graded
object A* together with the differential d.

Morphisms o: A* — B*® in cdgac are C—linear maps ak: A% — B¥ forall k <0
commuting with all the structures on A®, B°®.

A morphism «: A* — B* is a quasi-isomorphism if H*(a): H*(A*) — H*(B*) is
an isomorphism on cohomology groups for all £ < 0. A fundamental principle of
derived algebraic geometry is that edgac is not really the right category to work in,
but instead one wants to define a new category (or better, co—category) by inverting
(localizing) quasi-isomorphisms in cdgac .

We will call A* € edgac of standard form if A° is a smooth finitely generated C—
algebra of pure dimension, and the graded C—-algebra A* is freely generated over A°
by finitely many generators in each degree i = —1,—2,.... Here we require A° to
be smooth of pure dimension so that (Spec A°),, is a complex manifold, rather than a
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disjoint union of complex manifolds of different dimensions. This is not crucial, but
will be convenient in Section 3.

Remark 2.2 Brav, Bussi and Joyce [6, Definition 2.9] work with a stronger notion
of standard form cdgas than us, as they require A* to be freely generated over A° by
finitely many generators, all in negative degrees. In contrast, we allow infinitely many
generators, but only finitely many in each degree i = —1,—-2,....

The important thing for us is that since standard form cdgas in the sense of [6] are also
standard form in the (slightly weaker) sense of this paper, we can apply some of their
results [6, Theorems 4.1, 4.2, 5.18] on the existence and properties of nice standard
form cdga local models for derived schemes.

Definition 2.3 Let A® € cdgac, and write D(mod 4) for the derived category of
dg-modules over A°®. Define a derivation of degree k from A® to an A*~module M*®
to be a C-linear map &: A* — M * that is homogeneous of degree k with

8(fg) =8(f)g + (DT rs(g).

Just as for ordinary commutative algebras, there is a universal derivation into an
A*—module of Kdhler differentials 9}1" which can be constructed as /12 for I =
Ker(m: A* ® A* — A°®). The universal derivation §: A* — Q}l. is given by §(a) =
a®1—1®a € I1/1?. One checks that § is a universal degree-0 derivation, so
that o§: Hom$. (L., M*) — Der*(A, M*) is an isomorphism of dg-modules.

Note that Q}l. = ((R}.)*, d) is canonical up to strict isomorphism, not just up to quasi-
isomorphism of complexes, or up to equivalence in D(mod A). Also, the underlying
graded vector space (le.)*, as a module over the graded algebra A™, depends only
on A* and not on the differential d in A®* = (4*,d).

Similarly, given a morphism of cdgas ®: A®* — B*, we can define the relative Kdihler

differentials Q},,./A. .

The cotangent complex L4 of A® is related to the Kéhler differentials le., but is
not quite the same. If ®: A* — B* is a quasi-isomorphism of cdgas over C, then
®y: QLe ®4¢ B* — Q. may not be a quasi-isomorphism of B*~modules. So Kihler
differentials are not well behaved under localizing quasi-isomorphisms of cdgas, which
is bad for doing derived algebraic geometry.

The cotangent complex LL4e is a substitute for Q}r which is well behaved under local-
izing quasi-isomorphisms. It is an object in D(mod A), canonical up to equivalence.
We can define it by replacing A® by a quasi-isomorphic, cofibrant (in the sense of model
categories) cdga B*, and then setting L 4¢ = (Qllg.) ®pe A®. We will be interested
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in the p™ exterior power AP e, and the dual (L4e)", which is called the tangent
complex, and written Tge = (ILge)V.

There is a de Rham differential dgg APLge — AP0, a morphism of complexes,
with dgg? = 0: APLge — APT2L 4. Note that each APL4e is also a complex with
its own internal differential d: (APL4e)% — (APL4¢)k*!, and dgg being a morphism
of complexes means that d o dggr = dgro d.

Similarly, given a morphism of cdgas ®: A®* — B*, we can define the relative cotangent
complex LLpe; 4o .

As in [6, Section 2.3], an important property of our standard form cdgas A° in
Definition 2.1 is that they are sufficiently cofibrant that the Kéhler differentials le.
provide a model for the cotangent complex L 4¢, so we can take L, = IL4e, without
having to replace A*® by an unknown cdga B*. Thus standard form cdgas are convenient
for doing explicit computations with cotangent complexes.

A morphism ®: A* — B* of cdgas will be called quasifree if ®°: A° — B is a smooth
morphism of C—algebras of pure relative dimension, and as a graded (4* ® 40 B®)—
algebra B* is free and finitely generated in each degree. Here if A° is of standard
form and & is quasifree then B* is of standard form, and a cdga A°® is of standard
form if and only if the unique morphism C — A* is quasifree. We will only consider
quasifree morphisms when A°®, B*® are of standard form.

If &: A®* — B° is a quasifree morphism then the relative Kihler differentials 9}3. /4
are a model for the relative cotangent complex IL e, 4e, and therefore we can take
Qllg. JAe = LLpe/ 4. Thus quasifree morphisms are a convenient class of morphisms
for doing explicit computations with cotangent complexes.

2.2 Derived algebraic geometry and derived schemes

Definition 2.4 Write dStc for the co—category of derived C—stacks (or D~ —stacks)
defined by Toén and Vezzosi [36, Definition 2.2.2.14; 34, Definition 4.2]. Objects X
in dStc are oco—functors

X: {simplicial commutative C-algebras} — {simplicial sets}
satisfying sheaf-type conditions. There is a spectrum functor
Spec: cdgal’ — dStc .

A derived C—stack X is called an affine derived C—scheme if X is equivalent in dStc
to Spec A°® for some cdga A® over C. As in [34, Section 4.2], a derived C—stack X
is called a derived C—scheme if it may be covered by Zariski open ¥ € X with Y
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an affine derived C—scheme. Write dSch¢ for the full co—subcategory of derived
C-schemes in dStc, and dSchﬁ‘Cff C dSchc for the full co—subcategory of affine
derived C-schemes. See also Toén [35] for a different but equivalent way to define
derived C—schemes, as an co—category of derived ringed spaces.

We shall assume throughout this paper that all derived C—schemes X are locally finitely
presented in the sense of Toén and Vezzosi [36, Definition 1.3.6.4]. Note that this is
a strong condition, for instance it implies that the cotangent complex LLx is perfect
[36, Proposition 2.2.2.4]. A locally finitely presented classical C—scheme X need not
be locally finitely presented as a derived C—scheme. A local normal form for locally
finitely presented derived C-schemes is given in [6, Theorem 4.1].

There is a classical truncation functor ty: dSchc — Sche taking a derived C—
scheme X to the underlying classical C—scheme X = to(X). On affine derived
schemes dSchgf the functor fo maps Spec A* — Spec H?(A®) = Spec(4°/d(471)).
Toén and Vezzosi show that a derived C—scheme X has a cotangent complex L x [36,
Section 1.4; 34, Sections 4.2.4—4.2.5] in a stable co—category Lgcon(X) defined in [34,
Section 3.1.7, Section 4.2.4]. We will be interested in the p™ exterior power ALy,

and the dual (Lx)", which is called the tangent complex Tx. There is a de Rham
differential dgg APLx — APT1Ly.

Restricted to the classical scheme X = #9(X), the cotangent complex Lx |y may
Zariski locally be modelled as a finite complex of vector bundles

[F7™ > FlI™m ... 5 F9

on X indegrees [—m, 0] for some m = 0. The (complex) virtual dimension vdimc X is
vdimc X = Y7 ,(—1)! rank F . Tt is a locally constant function vdim¢ X: X — Z,
so is constant on each connected component of X. We say that X has (complex)
virtual dimension n € 7, if vdim¢c X =n.

When X = X is a classical scheme, the homotopy category of Lgcon(X) is the trian-
gulated category Dgycon(X) of complexes of quasicoherent sheaves. These Ly, Tx
have the usual properties of (co)tangent complexes. For instance, if f: X — Y isa
morphism in dSch¢ there is a distinguished triangle

frLy) 2Ly Lx/y frLy)[],

where L x /y is the relative cotangent complex of f .

Now suppose A°* is a cdga over C, and X a derived C—scheme with X ~ Spec A*
in dSchc. Then we have an equivalence of triangulated categories Lgcon(X) =
D(mod A), which identifies cotangent complexes L x ~ L 4¢. If also A* is of standard
form then L ge >~ le., so Ly ~ le..
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Bussi, Brav and Joyce [6, Theorem 4.1] prove:

Theorem 2.5 Suppose X is a derived C—scheme (as always, assumed locally finitely
presented), and x € X. Then there exists a standard form cdga A* over C and a Zariski
open inclusion o«: Spec A®* — X with x € Ima.

See Remark 2.2 on the difference in definitions of “standard form”. Bussi et al also
explain [6, Theorem 4.2] how to compare two such standard form charts Spec A®* — X,
Spec B® < X on their overlap in X, using a third chart. We will need the following
conditions on derived C—schemes and their morphisms.

Definition 2.6 A derived C—scheme X is called separated, or proper, or quasicom-
pact, if the classical C—scheme X = f#¢(X) is separated, or proper, or quasicom-
pact, respectively, in the classical sense, as in Hartshorne [16, pages 80, 96, 100].
Proper implies separated. A morphism of derived schemes f: X — Y is proper if
to(f): to(X) — to(Y) is proper in the classical sense [16, page 100].

We will need the following nontrivial fact about the relation between classical and
derived C—schemes. As in Toén [35, Section 2.2, page 186], a derived C—scheme X
is affine if and only if the classical C—scheme X = ty(X) is affine.

Recall that a morphism «: X — Y in Sch¢ (or «: X — Y in dSchc) is affine if
whenever 8: U — Y is a Zariski open inclusion with U affine (or B: U — Y is
Zariski open with U affine), the fibre product X x4y g U in Schc (or homotopy
fibre product X XZ’Y’ 8 U in dSchc) is also affine. Since X is affine if and only if
X =1t9(X) is affine, we see that a morphism a: X — Y in dSchc is affine if and
only if #g(a): to(X) — to(Y) is affine.

Now let X be a separated derived C—scheme. Then X = f¢(X) is a separated classical
C—scheme, so [16, page 96] the diagonal morphism Ayx: X — X x X is a closed
immersion. But closed immersions are affine, and Ay =#o(Ax) for Ax: X - X xX
the derived diagonal morphism, so Ay is also affine. That is, X has affine diagonal.
Therefore if Uy, U, < X are Zariski open inclusions with U;, U, affine, then
U, x})‘( U, — X is also Zariski open with U; x})‘( U, affine. Thus, finite intersections
of open affine derived C—subschemes in a separated derived C—scheme X are affine.

2.3 The shifted symplectic geometry of Pantev, Toén, Vaquié and Vezzosi

Next we summarize parts of the theory of shifted symplectic geometry, as developed by
Pantev, Toén, Vaquié and Vezzosi in [31]. We explain them for derived C—-schemes X,
although Pantev et al work more generally with derived stacks.
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Given a (locally finitely presented) derived C—scheme X and given p = 0, k € Z,
Pantev et al [31] define complexes of k—shifted p—forms Aé (X, k) and k-shifted
closed p—forms Aé’d(X ,k). These are defined first for affine derived C—schemes
Y = Spec A* for A® a cdga over C, and shown to satisfy étale descent. Then for
general X, k—shifted (closed) p—forms are defined as a mapping stack; basically, a
k—shifted (closed) p—form w on X is the functorial choice for all Y, f of a k—shifted
(closed) p—form f*(w) on Y whenever Y = Spec A° is affineand f: Y — X isa
morphism.

Definition 2.7 Let Y ~ Spec A*® be an affine derived C—scheme, for A* a cdga over C.
A k—shifted p—form on Y for k € Z is an element wys € (APL 4¢)* with dwge =0
in (APL4e)k*1 50 that wye defines a cohomology class [wge] € HX (APL 4¢). When
p =2, we call wqe nondegenerate, or a k—shifted presymplectic form, if the induced
morphism Tye 2425 T 4o [k] is a quasi-isomorphism.

A k—shifted closed p—form on Y is a sequence wy, = (wﬂ.,w}i.,wfl., ...) such
that 0, € (APH™L40)k=™ for m = 0, with dwYs = 0 and do}i™ + dgroll = 0
in (APT™F1L 4e)k=™ for all m = 0. Note that if Wie = (wﬁ.,w}l., ...) is a k—shifted
closed p—form then a)A?. is a k—shifted p—form.

When p =2, we call a k—shifted closed 2—form w7, a k—shifted symplectic form if
the associated 2—form a)g. is nondegenerate (presymplectic).

If X is a general derived C—scheme, then Pantev et al [31, Section 1.2] define k-
shifted 2—forms wx, which may be nondegenerate (presymplectic), and k—shifted
closed 2—forms a)}, which have an associated k—shifted 2—form a)g(, and where a);}
is called a k—shifted symplectic form if a)g( is nondegenerate (presymplectic). We will
not go into the details of this definition for general X.

The important thing for us is this: if ¥ € X is a Zariski open affine derived C—
subscheme with ¥ ~ Spec A® then a k—shifted 2—form wy (or a k—shifted closed
2—form a);}) on X induces a k-shifted 2—form wge (or a k—shifted closed 2—
form wj.) on Y in the sense above, where wqe is unique up to cohomology in
the complex ((A?LL4e)*,d), and wx nondegenerate/presymplectic implies w4e non-
degenerate/presymplectic (or where w’e is unique up to cohomology in the complex
(T Tnso(A*T™L4e)* ™™, d + dgr), and w3} symplectic implies w7, symplectic).

It is easy to show that if X is a derived C—scheme with a k—shifted symplectic
or presymplectic form, then k¥ < 0, and the complex virtual dimension vdimc X
satisfies vdimc X = 0 if k£ is odd, and vdim¢ X is even if kK = 0 mod 4 (which
includes classical complex symplectic schemes when k = 0), and vdim¢ X € Z if
k =2 mod 4. In particular, in the case k = —2 of interest in this paper, vdimc X can
take any value in Z.
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The main examples we have in mind come from Pantev et al [31, Section 2.1]:

Theorem 2.8 Suppose Y is a Calabi—Yau m—fold over C, and M a derived moduli
stack of coherent sheaves (or complexes of coherent sheaves) on Y. Then M has a
natural (2—m)—shifted symplectic form wp,.

In particular, derived moduli schemes and stacks on a Calabi—Yau 4-fold Y are
—2—shifted symplectic.

Bussi, Brav and Joyce [6] prove “Darboux theorems” for k—shifted symplectic derived
C-schemes (X, wy) for k <0, which give explicit Zariski local models for (X, wx).
We will explain their main result for k = —2. The next definition is taken from [6,
Example 5.16] (with notation changed, 2¢;s; in place of s; ).

Definition 2.9 A pair (A°®, wge) is called in —2—Darboux form if A® is a standard
form cdga over C, and wye € (A%Lge) 2 = (A2§2}1.)_2 with dwge =0 in (A?L4e)~!
and dgrwye =0 in (A3L4e)™2, so that w}ie 1= (w4e,0,0,...) is a —2—shifted closed
2—form on A°, such that:

(1) A is a smooth C-algebra of dimension m, and there exist xp, ..., X, in A
forming an étale coordinate system on V = Spec A°.

(i) The commutative graded algebra A* is freely generated over A° by elements
V1,...,yp of degree —1 and zy, ..., zy, of degree —2.

(ii1)) There are invertible elements ¢, ..., ¢, in A° such that
() wge =dgrz1 dgrx1 + -+ + darZm dar Xm

+ dar(q1y1) dary1 + - - + dar(@n yn) dar Yn -

(iv) There are elements s, ...,s, € A° satisfying
) q1(51)> + -+ qn(sa)> =0 in A°,
such that the differential d on A* = (A*, d) is given by

s 0g;
(3) dx; =0, dy;=s;, dz; = JX:y](qua -|—]8 )
Here the only assumptions are that A%, x1,...,xm, are as in (i) and we are given
G1s- - qn, S1....,5y in A satisfying (2), and everything else follows from these.

Defining A* as in (ii) and d as in (3), then A®* = (A*,d) is a standard form cdga
over C, where to show that dodz; = 0 we apply d/dx; to (2). Clearly dgrwge =0,
as dqrodgr = 0. We have
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dwge = Z (dodgrz;) darX;i + Z (dodgr(q;y;)) dary; +(dodar y;) dar(q; y;)
i=1 j=1

=—dar Z dz; dgrx; —dgr Z [d(g;jy;) dary;+dy; dar(g; y;)]
i=1 j=1

as; dq
=—dar Z Z Vi (261/ ox; +8j o O ) darx; —dar Z [gjs; dary;+s; dar(q; ;)]
i=1j=1 =1

= —dgrodar Z [(gjsi)yj+si(qiyi)]=
] =
using (1) and d o dgrx; = O for degree reasons in the first step, d o dgqr = —dgrod
and dgrodgr = O in the second, (3) in the third, ds; = Z?:l(as] /0x;) dgrx; and
similarly for g, in the fourth, and dygro dgr = 0 in the fifth. Hence w;l". is a —2—shifted
closed 2—form on A°.

The action Tye 24%5 1L 4e[—2] is given by

d
4 = —darz;i + Z )’J dary; .

0 d
oo — =2 — .- = .
WA 8yj qj dary;j — ,Z; YJ ox; ddez, WA 9z; drx;
By writing this as an upper triangular matrix with invertible diagonal (since the g;
are invertible), we see that wye- is actually an isomorphism of complexes, so a quasi-
isomorphism, and wy. is a —2—shifted symplectic form on A4°.

The main result of Bussi, Brav and Joyce [6, Theorem 5.18] when k = —2 yields:

Theorem 2.10 Suppose (X,wYy) is a —2-shifted symplectic derived C—scheme.
Then for each x € X = to(X) there exists a pair (A*, wye) in —2—Darboux form and
a Zar1sk1 open inclusion o: Spec A* — X such that x € Ima and oc*(a)X) >~ wye
in AC (Spec A®,—2). Furthermore, we can choose A®* minimal at x, in the sense
that m = dim H%(Tx|x) and n = dim H!(Tx|y) in Definition 2.9.

2.4 Orientations on k—shifted symplectic derived schemes

If X is a derived C—scheme (always assumed locally finitely presented), with classical
C—scheme X = 79(X), the cotangent complex Lx|x restricted to X is a perfect
complex, so it has a determinant line bundle det(L x |[y) on X.

The following notion is important for —1—shifted symplectic derived schemes, 3—
Calabi—Yau moduli spaces, and generalizations of Donaldson—Thomas theory:
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Definition 2.11 Let (X, w}) be a —1-shifted symplectic derived C—scheme (or more
generally k—shifted symplectic, for k <0 odd). An orientation for (X ,wY) is a choice
of square root line bundle det(L x|x)!/? for det(Lx|x).

Writing X,, for the complex analytic topological space of X, the obstruction to
existence of orientations for (X, a);‘() lies in H?(Xan;Z>), and if the obstruction
vanishes, the set of orientations is a torsor for H'(Xa; Z2).

This notion of orientation, and its analogue for “d-critical loci”, are used by Ben-
Bassat, Brav, Bussi, Dupont, Joyce, Meinhardt and Szendrdi in a series of papers [2;
5; 6; 7; 22]. They use orientations on (X, w:{,) to define natural perverse sheaves,
D-modules, mixed Hodge modules, and motives on X. A similar idea first appeared
in Kontsevich and Soibelman [26, Section 5] as “orientation data” needed to define
motivic Donaldson—Thomas invariants of Calabi—Yau 3—folds.

This paper concerns —2—shifted symplectic derived schemes, and 4—Calabi—Yau moduli
spaces. It turns out that there is a parallel notion of orientation in the —2—shifted case,
needed to construct virtual cycles.

To define this, note that determinant line bundles det(E*®) of perfect complexes £°
satisfy det[(E*)V] = [det(E*)]"!, and det(E*[k]) = [det(E*)]D". It (X, 0%)
is a k—shifted symplectic derived C—scheme, then Ty =~ Lx[k], where Tx =~
(Lx)V. Restricting to X and taking determinant line bundles gives det(IL x |x)™! =
det(LL X|X)(_1)k. If k is odd this is trivial, but for k even, this gives a canonical
isomorphism of line bundles on X :

2 2
) Lx 0% [detLx |x)]® - Ox = OF.

The next definition is new, so far as the authors know.

Definition 2.12 Let (X, w} ) be a —2—shifted symplectic derived C—scheme (or more
generally k—shifted symplectic, for k < 0 with k = 2 mod 4). An orientation for
(X, wY) is a choice of isomorphism o: det(IL x [x) — Ox such that 0 ® 0 = X0k
for LX 0% S in (4).

Writing X,, for the complex analytic topological space of X, the obstruction to
existence of orientations for (X, a);}) lies in H'(Xan:Z>), and if the obstruction
vanishes, the set of orientations is a torsor for H 0(X ans Z2).

This definition makes sense for k—shifted symplectic derived C—schemes with k even,

but when & =0 mod 4 (including the classical symplectic case k = 0) there is a natural
choice of orientation o, so we restrict to k = 2 mod 4.
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At a point x € X,,, we have a canonical isomorphism
det(Lx|x) = APH(Lx|x) @ [APH ™ (Lx |x)]* ® AP H > (Lx|x).

Now H ' (Lx|x)= H'(Tx|x)*,and (u%|x gives HO(Lx|x) = H 2(Lx|x)*,sowe
see that AP HO(L x |x) = [A“PH~2(ILx|x)]*. Thus we have a canonical isomorphism

(5) det(Lx|x) = APH (Tx|y).

Write Q, for the nondegenerate, symmetric C—bilinear pairing
1 1 Q=% lx
(6) H (Tx|x)x H (Tx|y) ——C.

The determinant det Q is an isomorphism [A“PH!(Ty| x)]®2 — C, and det Q4
corresponds to ¢ X.0% |x under the isomorphism (5). There is a natural bijection

(7)  {orientations on (X,wY) at x} = {C-orientations on (H'(Tx|x), 0x)}.

To see this, note that if (eq, ..., e,) is an orthonormal basis for (H!(Tx|x), Qx) then
e1A---Aey liesin A“’PHI(TTxlx) with det Qx: [e;1 A--- /\en]®2|—> 1. Orientations
for (X, w¥) at x give isomorphisms A: APPHY(Tx|x) = C with A2 =det Q,, and
these correspond to orientations for (H'(Tx|x), Ox) such that A: e; A---Ae, 1
if (e1,...,ey) is an oriented orthonormal basis.

2.5 Kuranishi atlases

We now define our notion of Kuranishi atlases on a topological space X. These are a
simplification of m-Kuranishi spaces in [21, Section 4.7], which in turn are based on
the “Kuranishi spaces” of Fukaya, Oh, Ohta and Ono [14; 15].

Definition 2.13 Let X be a topological space. A Kuranishi neighbourhood on X is a
quadruple (V, E, s, ¥) such that:

(a) V is a smooth manifold.

(b) m: E — V is areal vector bundle over V, called the obstruction bundle.

(c) s:V — E is a smooth section of E, called the Kuranishi section.

(d) ¥ is a homeomorphism from s~1(0) to an open subset R = Im v in X, where

Imy = {Y(x) | x € s71(0)} is the image of V.

If S € X is open, by a Kuranishi neighbourhood over S, we mean a Kuranishi
neighbourhood (V, E,s,¥) on X with S CImy C X.
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Definition 2.14 Let (Vy,Ey,s7,%y), (Vk, Ex, Sk, ¥k) be Kuranishi neighbour-
hoods on a topological space X, and S € Imy¥y NImy g € X be open. A coordinate
change ®yx: (Vy, Ey,s7,%y) — (Vk,Eg,sx,¥k) over S is a triple ®jx =
(Vik, ¢k, Psk) satisfying:

(a) Vyk is an open neighbourhood of ¥ ;1(S) in V.

(b) ¢jx: Vyx — Vi is a smooth map.

(©) $JK: Ejlv,x — ¢7x(Ek) is a morphism of vector bundles on Vg .

) ik (sslve) = b3k (5K).

() Yy =vko¢sk ons; (0)NVk.

) If x € S, and we set vy = wj_l(x) € Vy and vg = wgl(x) € Vi, then the
following is an exact sequence of real vector spaces:

dsyly,Dddrk v, 50

sk v, Bdsk v
EKlv
K

@  0—=>Ty,Vs Ejlv, ®To VK

We can compose coordinate changes: if
Ok = Vik.dsk.dsx): Vi, Ez,s5,97) = (V. Ex. sk, VK),
k1 = (Vkr. 9. dx1): Vi, Ex. sk, V) — (Vo EL,sL, ¥L)

are coordinate changes over Sy, Sxr., then

g o Py = (Vik N¢7A(VKL), KL 0PIk |- § 55 (PKL) 0 PrK|-):
Vi Ey.sy,¥5)— VL, EL,sL, ¥L)
is a coordinate change over S;x N Skr .

Definition 2.15 A Kuranishi atlas IC of virtual dimension n on a topological space X
isdata K= (A, <, (Vj, Ey.,s7,%1)jea. Psk, 7<Kkeca), Where:
(a) A is an indexing set (not necessarily finite).
(b) < is a partial order on A, where by convention J < K only if J # K.
(¢) (Vy,Eyjy,sy,¥y) is a Kuranishi neighbourhood on X for each J € A, with
dimVy—rank Ej =n.
(d) The images Imyy € X for J € A have the property that if J, K € A with
J # K and Imyy NIm Y g # @ then either J < K or K < J.

€ ®sk=Vik.¢sk.$sk): (V. Ej.57.%s) — (Vk. Eg.sk.Vk) is a coordi-
nate change for all J, K € A with J < K,over S =Imyy NImyg.

(f) Pgpodyx = ®yy forall J,K,LeAwithJ <K <L.
(@ Ujealmyy =X.
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We call K a finite Kuranishi atlas if the indexing set A is finite.

If X has a Kuranishi atlas then it is locally compact. In applications we invariably
impose extra global topological conditions on X, for instance X might be assumed
to be compact and Hausdorff; or Hausdorff and second countable; or metrizable; or
Hausdorff and paracompact.

We will also need a relative version of Kuranishi atlas in Section 3.7. Suppose Z is a
manifold, and w: X — Z a continuous map. A relative Kuranishi atlas for m: X — Z
is a Kuranishi atlas I on X as above, together with smooth maps wy: V; — Z
for J € A, such that w1|s;1(o) =moyy: s;l(O) — Z forall J e A,and wj|y,, =
wrgopyk: Vixk — Z forall J < K in A.

Definition 2.16 Let X be a topological space with a Kuranishi atlas /C (Definition 2.15).
For each J € A we can form the C™ real line bundle AP T*V; @ APE; over Vy,
where A'“P(...) means the top exterior power. Thus we can form the restriction

(APT*V; ® A‘OPEJ)|S;1(O) — s710),

considered as a topological real line bundle over the topological space s;l (0).

If J < K in A then for each vy in s;l(O) N Vyx with ¢y (vy) = vk in sEl(O) we
have an exact sequence (8). Taking top exterior powers in (8) (and using a suitable
orientation convention) gives an isomorphism

AP Tv*J Vi® AtoPEjle >~ AP TU*K Vk ® AtOpEK|vK.

This depends continuously on vy, vk, and so induces an isomorphism of topological
line bundles on s;l O)NVyx

(Pyr)s: (APT*V; ® AtOPEJ)|571 (0)mVJK! — ¢k |¥(APT*Vg @ A'*PEK).

If J <K <L in A then as ®gy o &y = Py, by Definition 2.15(f), we see that
(Pxr)« o (Pyk)x = (Pyr )« in topological line bundles over s;l(O) NVygkNVypL.

An orientation on (X, K) is a choice of orientation on the fibres of the topological real
line bundle (APT*V; ® A“)PEJ)|S;1(O) on s;l (0) for all J € A, such that (®yg)«
is orientation-preserving on s;l 0)NVyg forall J < K in A.

An equivalent way to think about this is that there is a natural topological real line
bundle Kx — X called the canonical bundle with given isomorphisms

Ly: (AtOpT*VJ ® AtOPEJ)|S;1(O) — W;(Kx)

for J € A, such that I,J|S;1(())QVJK = ¢jK(LK) o(dy k)« forall J < K in A, and an
orientation on (X, K) is an orientation on the fibres of Ky .
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Remark 2.17 (a) Our Kuranishi atlases are based on Joyce’s “m-Kuranishi spaces”
[21, Section 4.7]. They are similar to Fukaya, Oh, Ohta and Ono’s “good coordi-
nate systems” [14, Lemma A1.11; 15, Definition 6.1], and McDuff and Wehrheim’s
“Kuranishi atlases” [28; 29]. Our orientations are based on [15, Definition 5.8] and [14,
Definition A1.17].

There are two important differences with [14; 15; 28; 29]. Firstly, [14; 15; 28; 29]
use Kuranishi neighbourhoods (V, E, I, s, ¥), where T is a finite group acting equi-
variantly on V, E, s and ¥ maps s~ 1(0)/T" — X. This is because their Kuranishi
spaces are a kind of derived orbifolds, not derived manifolds.

Secondly, [14; 15; 28; 29] each use a more restrictive notion of coordinate change
Oy = (VJK,¢JK,$JK), in which ¢jx: Vjx — Vg must be an embedding, and
$JK: Ejlv,x < ¢k (Ek) an embedding of vector bundles, so that dim Vy < dim Vg
and rank E; <rank Ex . In the Kuranishi atlases we construct later, ¢ jx: Vg — Vi
will be a submersion, and qAﬁ Jk: Ejlv,x — ¢7x(Ek) will be surjective, so that
dim Vy = dim Vg and rank £y = rank Ex . That is, our coordinate changes actually
go the opposite way to those in [14; 15; 28; 29].

(b) Similar structures to Kuranishi atlases are studied [14; 15; 21; 28; 29] because it
is natural to construct them on many differential-geometric moduli spaces. Broadly
speaking, any moduli space of solutions of a smooth nonlinear elliptic PDE on a
compact manifold should admit a Kuranishi atlas. References [14; 15; 28; 29] concern
moduli spaces of J—holomorphic curves in symplectic geometry.

2.6 Derived smooth manifolds and virtual classes

Readers of this paper do not need to know what a derived manifold is. Here is a brief
summary of the points relevant to this paper:

o “Derived manifolds” are derived versions of smooth manifolds, where “derived” is
in the sense of derived algebraic geometry.

e There are several different versions, due to Spivak [32], Borisov and Noel [3; 4] and
Joyce [18; 19; 20; 21], which form oco—categories or 2—categories. They all include
ordinary manifolds Man as a full subcategory.

¢ All these versions are roughly equivalent. There are natural one-to-one correspon-
dences between equivalence classes of derived manifolds in each theory.

e Much of classical differential geometry generalizes nicely to derived manifolds:
submersions, orientations, transverse fibre products, .. ..
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¢ Given a Hausdorff, second countable topological space X with a Kuranishi atlas K
of dimension 7, we can construct a derived manifold X with topological space X
and dimension vdim X = n, unique up to equivalence. Orientations on (X, K) are in
one-to-one correspondence with orientations on X .

e Compact, oriented derived manifolds X have virtual classes [X ]vire in homology or
bordism, generalizing the fundamental class [X] € Hgim x (X; Z) of a compact oriented
manifold X.

e These virtual classes are used to define enumerative invariants such as Gromov—
Witten, Donaldson, and Donaldson-Thomas invariants. Such invariants are unchanged
under deformations of the underlying geometry.

¢ Given a compact Hausdorff topological space X with an oriented Kuranishi atlas /C,
we could construct the virtual class [X]yir directly from (X, K), as in [14; 15; 28; 29],
without going via the derived manifold X.

Readers who do not want to know more details can now skip forward to Section 3.

2.6.1 Different definitions of derived manifold The earliest reference to derived
differential geometry we are aware of is a short final paragraph by Jacob Lurie [27,
Section 4.5]. Broadly following [27, Section 4.5], Lurie’s student David Spivak [32] con-
structed an co—category DerMang,,; of “derived manifolds”. Borisov and Noél [4] gave
a simplified version, an co—category DerMang,N,, and showed that DerMans,; ~
DerManggno .

Joyce [18; 19; 20] defined 2—categories dMan of “d-manifolds” (a kind of derived
manifold), and dOrb of “d-orbifolds” (a kind of derived orbifold), and also strict
2—categories of d-manifolds and d-orbifolds with boundary dMan®, dOrb® and with
corners dMan®, dOrb°®, and studied their differential geometry in detail. Borisov [3]
constructed a 2—functor F: mp(DerMang,N,) — dMan, where 75 (DerMang,no) is
the 2—category truncation of DerMang,n,, and proved that F is close to being an
equivalence of 2—categories.

All of [3; 4; 18; 19; 20; 27; 32] use “C *°-algebraic geometry”, as in Joyce [17], a
version of (derived) algebraic geometry in which rings are replaced by “C °°-rings”,
and define derived manifolds to be special kinds of “derived C *°~schemes”.

In [21; 23; 24], Joyce gave an alternative approach to derived differential geometry based
on the work of Fukaya et al [14; 15]. He defined 2—categories of “m-Kuranishi spaces”
mKaur, a kind of derived manifold, and “Kuranishi spaces” Kur, a kind of derived
orbifold. Here m-Kuranishi spaces are similar to a pair (X, K) of a Hausdorff, second
countable topological space X and a Kuranishi atlas £ in the sense of Section 2.5.
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Joyce [24] will define equivalences of 2—categories dMan >~ mKur and dOrb ~ Kur,
showing that the two approaches to derived differential geometry of [18; 19; 20]
and [21] are essentially the same.

2.6.2 Orientations on derived manifolds Derived manifolds have a good notion
of orientation, which behaves much like orientations on ordinary manifolds. Some
references are Joyce [20, Section 4.8; 19, Section 4.8; 18, Section 4.6] for d-manifolds,
Joyce [24] for m-Kuranishi spaces, and Fukaya, Oh, Ohta and Ono [15, Section 5; 14,
Section A1.1] for Kuranishi spaces in their sense.

For any kind of derived manifold X, we can define a (topological or C°°) real line
bundle Ky over the topological space X called the canonical bundle. 1t is the deter-
minant line bundle of the cotangent complex Lx. For each x € X we can define a
tangent space Tx X and obstruction space O, X, and then

Kx|y = AmpT;X RRrR AmpOxX.

An orientation on X is an orientation on the fibres of Ky . In a similar way to (7), at a
single point x € X we have a natural bijection

) {orientations on X at x } = {orientations on 7y X @ OxX }.

If (V, E,s, V) is a Kuranishi neighbourhood on X and v € s71(0) € V with ¥ (v) =
x € X, then there is a natural exact sequence

(10) 0= TeX =T,V -5 B, = 0,X 0.
Taking top exterior powers in (10) gives an isomorphism

Kxlx = APTX Qg A'POx X = A"PTV Qg A'PE|y,
and thus, with a suitable orientation convention, a natural bijection

{orientations on X at x } = {orientations on T,V & E|, }.

2.6.3 Kuranishi atlases and derived manifolds The next theorem relates topolog-
ical spaces with Kuranishi atlases to derived manifolds. The assumption that X is
Hausdorff and second countable is just to match the global topological assumptions in [4;
18; 19; 20; 21; 32]. For the last part we restrict to (a) and (b) as orientations have not been
written down for the theories of (c¢) and (d), although this would not be very difficult.

Theorem 2.18 Let X be a Hausdortf, second countable topological space with a
Kuranishi atlas K of dimension n in the sense of Section 2.5. Then we can construct

(a) an m-Kuranishi space X in the sense of Joyce [21, Section 4.7];
(b) ad-manifold X in the sense of Joyce [18; 19; 20];
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(c) a derived manifold in the sense of Borisov and Noél [4]; and

(d) a derived manifold in the sense of Spivak [32].

In each case X has topological space X and dimension vdimX = n, and X is
canonical up to equivalence in the 2—categories mKur, dMan or oo—categories
DerMang,N,, DerMang,;. In cases (a) and (b) there is a natural one-to-one cor-
respondence between orientations on K, and orientations on X in Joyce [18; 19; 20;
24].

If also Z is a manifold, w: X — Z is continuous, and (K, {wy | J € A}) is a relative
Kuranishi atlas for m: X — Z, then we can construct a morphism of derived manifolds
w: X — Z, canonical up to 2—-isomorphism, with continuous map 7 .

Proof Part (a) follows from [21, Theorem 4.67] in the m-Kuranishi space case,
and part (b) from [20, Theorem 4.16], in each case with topological space X, and
vdim X = n, and X canonical up to equivalence in mKur, dMan. Part (c) then
follows from (b) and Borisov [3], and part (d) from (c) and Borisov and Noégl [4]. The
one-to-one correspondences of orientations can be proved by comparing Definition 2.16
with Section 2.6.2. The last part also follows from [20, Theorem 4.16]. O

2.6.4 Bordism for derived manifolds We now discuss bordism, following [20, Sec-
tion 4.10], [19, Section 15] and [18, Section 13].

Definition 2.19 Let Y be a manifold, and k € N. Consider pairs (X, f), where X
is a compact, oriented manifold with dim X =k, and f: X — Y is a smooth map.
Define an equivalence relation ~ on such pairs by (X, f) ~ (X', f') if there exists a
compact, oriented (k-+1)—manifold with boundary W, a smoothmap e: W — Y, and a
diffeomorphism of oriented manifolds j: —X X’ — dW ,suchthat fLI f'=eoipoj,
where —X is X with the opposite orientation, and iy : JW < W is the inclusion map.

Write [X, f] for the ~—equivalence class (bordism class) of a pair (X, f). Define
the bordism group By (Y) of Y to be the set of all such bordism classes [X, f] with
dim X = k. Itis an abelian group, with zero Oy = [&, &], addition [X, f]+[X’, f']=
[X U X', fuf'], and inverses —[X, f] =[-X, f].

Define Hggm: Bi(Y)— Hi(Y;Z) by Hggm: [X, f1— f«([X]), where Hy(—;Z) is
singular homology, and [X] € Hy(X;Z) is the fundamental class.

When Y is the point *, the maps f: X — %, e: W — % are trivial, and we can omit
them, and consider By (*) to be the abelian group of bordism classes [X] of compact,
oriented, k—dimensional manifolds X.
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As in Conner [11, Section 1.5], bordism is a generalized homology theory. Results of
Thom, Wall and others in [11, Section 1.2] compute the bordism groups By (*). We
define d-manifold bordism by replacing manifolds X in [X, f] by d-manifolds X :

Definition 2.20 Let Y be a manifold, and k € Z. Consider pairs (X, f), where
X e dMan is a compact, oriented d-manifold with vdimX =k, and f: X - Y isa
1-morphism in dMan.

Define an equivalence relation ~ between such pairs by (X, f) ~ (X', f) if there is a
compact, oriented d-manifold with boundary W with vdim W =k 41, a 1-morphism
e: W — Y in dMan®, an equivalence of oriented d-manifolds j: —X U X' — oW,
and a 2-morphism n: f U f' = e oiw o j, where iy: OW — W is the natural
1—-morphism.

Write [X, f] for the ~—equivalence class (d-bordism class) of a pair (X, f). De-
fine the d-bordism group dBy(Y) of Y to be the set of d-bordism classes [X, f]
with vdim X = k. As for Bi(Y), it is an abelian group, with zero Oy = [&, 9],
addition [X, f]+[X". f/]=[X U X', f U f'], and —[X, f] = [-X, f]. Define
0 By (Y) — dBi(Y) for k =0 by I3 [X, f]+> [X, f]. When Y is a point ,
we can omit f: X — *, and consider dB (*) to be the abelian group of d-bordism
classes [X] of compact, oriented d-manifolds X .

In [18, Section 13.2] we show that B«(Y) and dB«(Y) are isomorphic. See [32,
Theorem 2.6] for an analogous (unoriented) result for Spivak’s derived manifolds.

Theorem 2.21 For any manifold Y, we have that dBy(Y) = 0 for k < 0 and that
Hggoz B (Y) — dBy (Y) is an isomorphism for k = 0.

The main idea of the proof of Theorem 2.21 is that (compact, oriented) d-manifolds X
can be turned into (compact, oriented) manifolds X by a small perturbation. By
Theorem 2.21, we may define a projection Hggg‘: dB(Y) — H(Y;Z) for k =0
by IH™ = T179™ o (TT) =1 We think of IT°™ as a virtual class map, and call
[X Jvirt = Hggom([X , [']) the virtual class. Virtual classes are used in several areas of
geometry to construct enumerative invariants using moduli spaces, for example in [14,
Section Al; 15, Section 6] for Fukaya, Oh, Ohta and Ono’s Kuranishi spaces, and in
Behrend and Fantechi [1] in algebraic geometry.

2.6.5 Virtual classes for derived manifolds in homology If X is a compact, ori-
ented derived manifold of dimension k € Z we can also define a virtual class [X Jyir in
the homology Hj (X; Z) of the underlying topological space X, for a suitable homology
theory. By [20, Corollary 4.30] or [19, Corollary 4.31] or [18, Theorem 4.29], we
can choose an embedding f: X < R” for n >3 0. If Y is an open neighbourhood
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of f(X) in R” then Section 2.6.4 defines Hggom([X, f1 in Hi(Y;Z). We also have
a pushforward map fi: Hp(X;Z) — Hi(Y;Z).

If X is a Euclidean neighbourhood retract (ENR), we can choose Y so that it retracts
onto f(X),and then fix: Hy(X;7Z)— Hy(Y;Z) is an isomorphism, so we can define
the virtual class [X ]y = (fx) Lo Hggg‘([X, f1) in ordinary homology H(X;Z).
This [X]vir is independent of the choices of f, n, Y.

General derived manifolds may not be ENRs. In this case we use a trick that the
authors learned from McDuff and Wehrheim [29, Section 7.5]. Choose a sequence
R"” DYy DY, 2--- of open neighbourhoods of f(X) in R” with f(X)=();5, ;.
Now Steenrod homology HS'(—:7) (see Milnor [30]) is a homology theory with
the nice properties that (i) H3'(Y;;Z) = H.«(Y;;7Z) as Y; is a manifold and (ii) as
f(X)=(;>1 Y: there is an isomorphism with the inverse limit:

(11) HP(f(X): Z) = lim =y HP'(Yi: Z).

Cech homology H, (—: Q) over Q (the dual Q—vector spaces to Cech cohomology
H*(—:Q)) has the same limiting property. Then writing f; = f: X — Y;, so that
Hgggl([X, fil) € H(Yi; Z) ~ H,ft(Yi; 7Z), using (11) we may form the inverse limit
lgn,-;lnﬁg? [X. fi]) in H}'(f(X):Z), so that

(X Dvirc:= (f) ™ [lim 1 TS (X £7D)]

is a virtual class in H ,ft(X ; Z), or similarly in Hi(X; Q). Here [Xvir is independent
of the choices of f, n, Y;.

For the examples in this paper, X is the complex analytic topological space of a proper
C—scheme, and therefore an ENR. Then H,f’t(X; 7) =~ Hip(X;Z) and Hp(X;Q) =
Hy (X;Q), and the virtual class lives in ordinary homology.

3 The main results

We now give our main results. We begin in Section 3.1 with a general existence result
for a special kind of atlas for #: X — Z, where X is a separated derived C—scheme
and Z a smooth affine classical C—scheme, an atlas in which the charts are spectra
of standard form cdgas, the coordinate changes are quasifree, and composition of
coordinate changes is strictly associative.

Sections 3.2-3.5 build up to our primary goal, Theorems 3.15 and 3.16 in Section 3.5,
which show that to a separated, —2—shifted symplectic derived C—scheme (X, wy)
with vdimc X = n and complex analytic topological space X,,, we can build a
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Kuranishi atlas K on X,,, and so construct a derived manifold X4, with topological
space Xyn, with vdimg Xam = 7. In Section 3.6 we show that orientations on (X, w¥ )
and on (Xu, K) and on Xy correspond, and prove that for (X, Y ) proper and
oriented, the bordism class [Xqm] € dBy () is a “virtual cycle” independent of choices.

Section 3.7 extends Sections 3.2-3.6 to families (x: X — Z, [wy,z]) over a connected
base C—scheme Z, and shows that the bordism class [X ] ] € dBy(*) associated to
a fibre #71(2) is independent of z € Z,,. Finally, Sections 3.8-3.9 discuss applying
our results to define Donaldson—Thomas style invariants “counting” coherent sheaves
on Calabi—Yau 4—folds, and motivation from gauge theory.

3.1 Zariski homotopy atlases on derived schemes

Derived schemes and stacks, discussed in Section 2.2, are very abstract objects, and
difficult to do computations with. But standard form cdgas A®, B® and quasifree
morphisms ®: A®* — B* in Section 2.1 are easy to work with explicitly. Our first main
result, proved in Section 4, constructs well-behaved homotopy atlases for a derived
scheme X, built from standard form cdgas and quasifree morphisms.

Theorem 3.1 Let X be a separated derived C—scheme, Z = Spec B be a smooth clas-
sical affine C—-scheme for B a smooth C-algebra of pure dimension, and w: X — Z
be a morphism. Suppose we are given data {(A?,e;, B;) |i € I}, where I is an indexing
set and for each i € I, A7 € edgac is a standard form cdga, and o;: Spec A; — X is
a Zariski open inclusion in dSchc, and ;: B — A? is a smooth morphism of classical
C-algebras such that the following diagram homotopy commutes in dSchc:

Spec A?

o; X
12 T x
(12) - !

pecfi Spec B =7

Here we regard fB; as a morphism B — A;. Then we can construct the following data:
(i) For all finite subsets & # J C I, a standard form cdga A% € cdgac, a Zariski
open inclusion aj: Spec A% — X, with image Imocy = (");c; Ime;, and a
smooth morphism of classical C—-algebras Bj: B — A(}, such that the following
diagram homotopy commutes in dSchc :

Spec A%

oy X
13 \ 4
(13) : |

pec s Spec B =27

When J = {i} fori € I we have Azi} = A7, oy =a;,and By = Bi.
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(ii) For all inclusions of finite subsets @ # K C J C I, a quasifree morphism of
standard form cdgas ®jk: Ay — A% with Bj = Oy o fk: B — A(}, such
that the following diagram homotopy commutes in dSchc :

Spec A% Spec A%

(14) S"\‘”) Lax
oy X
If 2#LCKCJCI then @y, = @y oPgy: A7 — AY.

3.2 Interpreting Zariski atlases using complex geometry

Given a —2—shifted symplectic derived C—scheme (X, %) satisfying certain con-
ditions, we will construct a derived manifold structure Xy, on the complex analytic
topological space X,, underlying X. To do this, we need a change of language: we
have to pass from talking about derived schemes X, cdgas A°, etc, to talking about
smooth manifolds V', vector bundles £ — V/, smooth sections s: V — E, as Xgn will
be built by gluing together such local Kuranishi models (V, E, s).

Therefore we now rewrite part of the output A%, 87: B — A(}, O g: A5 —> Ay of
Theorem 3.1 in terms of complex manifolds V', holomorphic vector bundles £ — V,
and holomorphic sections s: V' — E. In Section 3.5 we will pass to certain real vector
bundles ET = E/E~ to define Xgp,.

First we interpret standard form cdgas A°® € edgac using holomorphic data. We discuss
only data from degrees 0, —1, —2 in A®, as this is all we need, but one could also
define vector bundles G, H, ... over V corresponding to M 3 M4, ..., and many
vector bundle morphisms, satisfying certain equations.

Definition 3.2 Let A* = (--- —> A2 -4 471 45 49) be a standard form cdga
over C, as in Section 2.1. Then A° is a finitely generated smooth C—algebra, so
yalg .= Spec A% is a smooth affine C—scheme, assumed of pure dimension, as in
Section 2.1. Now any C—scheme S has an underlying complex analytic space Sqn,
which is a complex manifold if S is smooth and of pure dimension.

Write V' for the complex manifold (V¥2),, associated to V3¢ = Spec A°.

As A*® is of standard form, the graded C—algebra A* is freely generated over A° by a
series of finitely generated free A%-modules M~1 c A1, M2 C A72,. ... Thus
Al =2M™, A2=2M29 AjOM_l, and so on, giving

(15) M =4"" M2xA? A4
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Hence, the M' are determined by A* as A°-modules up to canonical isomorphism,
although for i < —2 the inclusions M’ < A’ involve an arbitrary choice.

Now finitely generated free A°~modules M are those of the form M =~ H°(C?#)
for C¥2 — Va2 = Spec A a trivial algebraic vector bundle. Write E¥¢ — Vdlg,
F¥2 — Va2 for the trivial algebraic vector bundles (unique up to canonical isomor-
phism) with M~1 = HO((E¥2)*), M~2 >~ HO((F¥¢)*). That is, we set E¥& =
Spec Symj:0 (M), and so on. Write E — V, F — V for the holomorphic vector
bundles corresponding to E%2, Fae,

We now have isomorphisms
A = HO(Opae),
(16) AT = HO((EY®)"),
A72 = HO((FY%)*) @ HO(A2(E¥2)%).

Thus d: A=! — A is identified with an A°~module morphism H°((E¥¢)*) —
HO%(Oyu), that is, a morphism (E¥2)* — Oy, of algebraic vector bundles, which
is dual to a morphism Oypae = OFue — E¥2, ic a section s¥2 € HO(E2) of E¥2.
Write s € HO(E) for the corresponding holomorphic section.

Similarly, write t32: E¥¢ — F2 for the algebraic vector bundle morphism dual to
the component of d: A=2 — A~ mapping H°((F¥¢)*) — HO((E¥£)*) under (16),
and write ¢t: E — F for the corresponding morphism of holomorphic vector bundles.
Then dod = 0 implies that f os =0: Oy — F.

We should also consider how this data E, F, s, ¢t depends on the choice of inclusion
M~2<s A~2 Here E, F are independent of choices up to canonical isomorphism, and
s is independent of choices. Changing the inclusion M ~2 < A2 is equivalent to choos-
ing an algebraic vector bundle morphism y®¢: A2 E¥¢ — F3l2 and identifying M 2
with the image of id @ (y¥&)*: HO((F¥¢)*) — HO((F¥2)*)® HO(A2(E¥¢)*). Writ-
ing y: A2E — F for the corresponding holomorphic morphism, this changes ¢ to 7,
where

(17) I=t+yo(—As).
Notice that t|,: E|y, — F|y is independent of choices at v € V' with s(v) = 0.

Next suppose X is a derived C—scheme and «: Spec A* — X a Zariski open in-
clusion. Write X = #9(X) for the classical C—scheme, and X,, for the set of C-
points of X equipped with the complex analytic topology. (One can give X,, the
structure of a complex analytic space, but we will not use this.) Then #y(Spec A°®)
is the C—subscheme (s¥€)~1(0) € V2, so o = fo(ax) is a Zariski open inclusion
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(s¥2)71(0) — X . Write ¥: s~1(0) = X,, for the corresponding map of C—points.
Then v is a homeomorphism with an open set R =Im ¢ C X,,. Note that (V, E, s, )
is a Kuranishi neighbourhood on X,,, in the sense of Section 2.5.

As we explained in Sections 2.1-2.2, if A°® is a standard form cdga then it is easy
to compute the cotangent complex L 4¢ =~ Q}l., and this also can be identified with
the cotangent complex Lgpec 4¢ of the derived scheme Spec A°. Let v € sTloycv
with ¥ (v) = x € Xa. Then v is a C—point of Spec A* and x a C—point of X
with a(v) = x, s0 Lg|y: Lx|x — Lspec 4¢|v is a quasi-isomorphism, and induces
an isomorphism on cohomology. One can show that Lgpec 4¢|v is represented by the
complex of C—vector spaces

thy ds|

(18) co — F|Iy —— E|} y;V — 0,

with 7,7V in degree 0. Dualizing to tangent complexes and taking cohomology, we
get canonical isomorphisms

(19) HO(Tgly): Ker(ds|y: T,V — Ely) — H(Tx/),
Ker(t|y: Ely = Flv)

HY(Tx|x).
Im(ds|y: TyV — Ely) = H (Ixly)

(20) H'(Tgly):

Now suppose that Z = Spec B is a smooth classical affine C—scheme of pure dimension,
n: X — Z is a morphism, and B: B — A° is a smooth morphism of C-algebras,
such that as for (12)-(13) the following homotopy commutes:

Spec A°

p X
@ g

Spec B =272

Then Z,, is a complex manifold, and 72 := Spec f: V¥¢ — Z is a smooth mor-
phism of C—schemes, and 7 := (r"‘lg)an: V — Z,, is a holomorphic submersion of
complex manifolds. We can form the relative cotangent complexes L x /7, Lgpec 44/
and dual relative tangent complexes Tx /7, Tspec 40z and (21) gives morphisms

Leg: ]LX/Z _>LSpecA°/Za Ty: TSpecA'/Z g TX/Z-

Write T(V/Z,) =Ker(dt: TV — t*(TZa,)) for the relative tangent bundle of V| Z ,, .
It is a holomorphic vector subbundle of TV of rank dim V' —dim Z, as t is a holomor-
phic submersion. Let v € s71(0) € V with ¥ (v) =x € Xan and 1(v) = 7(x) =2 € Zyy.
Then as in (18), Lgpec 42/ z|v 1s represented by the complex of C—vector spaces

* *
oo Fp s 2k

Ty(V/Zw) — 0,
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with T, (V/Z,n) in degree 0. As for (19)—(20) we get canonical isomorphisms

(22) H%(Tgly): Ker(ds|y: Ty(V/Zuw) = Elv) = H(Tx,zx).
Ker(t|y: Ely = Flv)

1 .
(23) B ) e oo TV Zaw) — BT

— HY(Tx/z|x).

Example 3.3 Suppose (A°, wge) is in —2-Darboux form, in the sense of Definition 2.9,
with coordinates X1, ..., Xm, Y1s--+s VYns Z1,---+Zm, and 2—form wye in (1), depend-
ing on invertible functions ¢, ...,q, € A°.

Let V, E, F, s, t be as in Definition 3.2. Then V is a smooth C—scheme of
dimension m, with étale coordinates (xi,...,Xs), so that TV is a trivial vector
bundle with basis of sections d/0x1,...,0/0x,,. Also E is a trivial vector bundle of
rank n, with basis ey := d/dy1,...,e, := 3/dyn, and F is trivial of rank m, with
basis d/0z1,...,0/0zy,. Using the first line of wge in (1), it is natural to identify
F =~ T*V by identifying d/0z; =~ dgrx; fori =1,...,m.

The natural section s € HO(E) is s = s1e1 4+ +snen. Write €!, ..., " for the basis
of sections of E* dual to eq,...,ep, so that €/ =~ d4r v;j. Motivated by the second
line of wye in (1), define Q = q1e! ® el + -+ + gpe” ® € in H*(SZE*). Then
Q is a natural nondegenerate quadratic form on the fibres of E, and (2) implies that

0(s,s)=0.
Identifying F = T*V, from (3) we see that t: E — F is given by

m

0s; 0q;

(24) t(ej) = Z(qu _ij~ +5; _Bx]' ) darx; = 2q; dars; +$; darq;
i=1 ! !

for j =1,...,n. Then t os = 0 follows from applying dgqr to Q(s,s) =0.

What will matter later is that we have a complex manifold V', a holomorphic vector
bundle E — V, asection s € H°(E), and a nondegenerate holomorphic quadratic form
Q € HY(S?2E*) with Q(s,s) = 0, such that the classical complex analytic topological
space (Spec H%(A®))an is s~1(0) C V.

Next we interpret quasifree morphisms of standard form cdgas ®jx: Ay — A%, asin
Theorem 3.1(ii), in terms of complex geometry.

Definition 3.4 Let ®jx: Ay — A% be a quasifree morphism of standard form cdgas
over C, as in Section 2.1. Let V}ﬂg, E;lg, F;lg, salg t;lg, Vi, Ej, Fy, sy, tj be as

in Definition 3.2 for A%, and let Vg%, E%%, ... 1k be as for A%.

Then ¢aJl}"} := Spec CID(}K: V}ﬂg = Spec A(} — Vl?g = Spec A(I)< is a C—scheme mor-
phism. Write ¢jx: Vj — Vi for the corresponding holomorphic map. The quasifree
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condition on ® g implies dd);llg(: (¢31§)*(T*Vla<lg) — T"‘VJalg is injective, and thus

dpsk: ¢ (T*Vk) — T*Vy is injective, that is, ¢pjx: Vj — Vi is a submersion of
complex manifolds.

Now 43311(: AI_<1 — A;l induces an A(}—linear map
(D74)w: AR ®49 A% — A7,
which under (16) corresponds to an algebraic vector bundle morphism
al al al
(@) " (ERH)™) = (E5)".

. 1 1 1 1 .
Write x%: E7* — (¢5%)*(EE®) for the dual morphism, and xsx: Ej — ¢ (Ek)
for the corresponding morphism of holomorphic vector bundles. It is surjective, as
® sk is quasifree. Then do @7z = @Y, od implies that

(25) XJk(57) = ¢k (sk) € HO(¢Fx (Ek)).

By (15) we have a natural composition of morphisms
1 — — —1 (@73)« — — — 1
HO((F;;g)*);MKZgAKZ/Aj%AKI ——LKE AJZ/Ai(}AJI ~M;>=HO((F7%)%).

The induced A(}—linear map corresponds to a natural algebraic vector bundle morphism
1 1 1 . 1 1 1 1 .
(qﬁ;}g{)*((F;ég)*) — (F; £)* . Write S;Ig{: Ff; £ (q’);}g{)*(FIzg) for the dual morphism,
and £5kx: Fj — ¢ (Fk) for the corresponding morphism of holomorphic vector

bundles. It is surjective, as @ jx is quasifree.

These 531]‘(’;, £k are independent of choices, as they depend on the canonical isomor-
phism M ™2 =~ A~2/ AfloA_1 rather than on the noncanonical inclusion M =2 < A~2
in Definition 3.2. However, CD;?( need not map M I;z - AI_<2 to MJ_2 C A;z, and
so under the isomorphisms (16) need not map HO((FI?g)*) — HO((F}ﬂg)*). Write
Sa;i: A%E ?g — (¢31}g<)*(F I?g) for the algebraic vector bundle morphism dual to the
component of ®72 mapping Ho((leg)*) — HO(AZ(Ejlg)*), and 8yx: A’Ej —
@7k (Fx) for the corresponding morphism of vector bundles. Then do (I);Iz< = CI);}( od
implies that

(26) Ejkoty+8jxo(—nsy) =ik (tg) o xyk: Ey — ¢x (Fk).

Therefore yjx, £7x do not strictly commute with ¢7, g, which is not surprising,
since tj, tx depend on arbitrary choices as in (17). But notice that &g |y oty|y =

Ik lp @) © XJK|v at v € Vy with s5(v) =0.

Next suppose that we are given Zariski open inclusions e ;: Spec A% <> X and
ag: Spec Ay < X into a derived C—scheme X, such that (14) homotopy commutes,
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and let
v s7H0) = Xan, Yk s (0) = Xan

be as in Definition 3.2. As the classical truncation of (14) commutes, we see that
27 Vs =Yk 0 dsklss1(0) 57 (0) = Xan.

Suppose vy € s;l(O) C Vy with ¢yg(vy) = vg € sl_(l(O) C Vg and ¢¥j(vy) =
Yr(vg) = X € Xan. As (14) homotopy commutes, the corresponding morphisms of
tangent complexes Tgpec 4% Tspec A% Tx commute up to homotopy, so restricting
to vy, vk, x and taking homology gives strictly commuting diagrams. Thus using
(19)—(20), we see that the following diagrams commute:

Ker(dsylv,: Tv,Vsr = Ejlyv,)

HO(TaJ|vJ)
HO(TdKvi)

Ker(dSK|vK3 TvKVK - EK|v1<) HO(TX|x)

Ker(tJ|vJ: E_]|UJ —>F_]|UJ)
Im(dsys|v,: Tv,Vi = Ejlog)

H' (T |y
Ker(tK|vK: EK'UK _)FKvi) Hl(T"‘K'”K)

H! (TX |x)

Im(dSK|vKI Ty VK — EK|vK)

Now suppose that Z = Spec B is a smooth classical affine C—scheme of pure dimension,
w: X — Z is a morphism, and B8;: B — A(}, Bx: B— A(I)( are smooth morphisms
of C-algebras, such that (13) homotopy commutes for J, K, and 87 = ®jxofg. As
in Definition 3.2 we have holomorphic submersions tj: Vy — Za,, tx: VK = Za,
with 1y = tg oyg: Vi — Zan as By = Pygofg. Let vy € s;l(O) C Vy with
dsk(vy) = vk €5g(0) S Vg, and ¥5(vy) = Yk (vg) = x € X, and 77 (vy) =
tx(vg) = w(x) = z € Z,,. Then using (22)-(23), we see that the following diagrams
commute:

Ker(dsylv,: To,(Vi/Zaw) = Eglv,)

HO(Ta s lv,)
(30) l (d¢JK|vJ)|Kcr(---) \
HO(TOLK |vK)

Ker(dsk vk : Tox (Vk/Zan) = Eklvg) HO(TX/le)
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Ker(tylv,: Eylv, = Frlv,)
Im(dSJ|vJ: TUJ(VJ/Zan) —)Ejvi)

H' (Taylv,)
(31) l‘“Klvﬂ* \
H](TNKIUK)

Ker(tk lvg: Exlvg = Fklvg) H(Ty 210
IM(dsk [og: Tox (Vi /Zan) = Exlug) [zl

Applying Definitions 3.2 and 3.4 to the conclusions of Theorem 3.1 yields:

Corollary 3.5 In the situation of Theorem 3.1, write X,, for the set of C—points
of X = 1t9(X), regarded as a topological space with the complex analytic topology.
Then we obtain the following data in complex geometry:

(i) For all finite subsets @ # J C I, a complex manifold Vj, a holomorphic sub-
mersion ty: Vj — Z,,, holomorphic vector bundles E j, Fy — Vj, a holomorphic
section sy: Vy — Ej, and a homeomorphism Vj: s;l(O) — Ry C X,,, where
Ry C Xy, is open, with moyry = rJ|s;1(0): s;l(O) — Zan. These image subsets
satisty Ry =(;es Ryiy-

By making an additional arbitrary choice we also obtain a morphism of holomorphic
vector bundles tj: Ej — Fy, with ty osy = 0. Different choices ty, t are related
by (17). The restrictions tj|y,: Ejlv, = Fylv, forvy € s;l(O) are independent of
choices. For each vy € s;l (0) with ¥ j(vy) = x € Xan, there are canonical isomor-
phisms (19)«20) writing H' (Tx |x) fori =0, 1 and (22)~23) writing H' (Tx ;7|x)
fori =0,1 intermsof Vy, Ey, Fy, sy, ty, Tty at vy.

(ii) For all inclusions of finite subsets @ # K C J C I, a holomorphic submersion
¢sx: Vj — Vi, and surjective morphisms of holomorphic vector bundles y jx: Ej —
¢ x(Ek) and Ejx: Fj — ¢ (Fk). These satisty 1y = tx opyk: Vj — Zan, and
XIK(57) = ¢Tx(sK). and Yy = Yk 0 dpyk|s;1(0): 87" (0) > Xan.
If ty, tx are possible choices in (i) then yjx, €K, ty, tx are related as in (26). If
vy € s;l (0) with ¢pjx(vy) = vk € s;l (0), this implies that

Erklvs otrlvy =tklog 0 Xuklvs: Eglo, = Fklok-

If vy €s710) € Vy with ¢y (vy) = vk €55 (0) € Vi and Y7 (vy) = ¥k (vk) =
X € Xan, then (28)—(31) commute.

Ifo#LCKCJCI then ¢y =¢krLodsk, XsL =@ x(XkL)OXIK,and &y =
¢7xExL) ok
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3.3 Subbundles E~ € E and Kuranishi neighbourhoods

Throughout Sections 3.3-3.6, when we apply Theorem 3.1 we take B = C, so that Z
is the point * = Spec C, and the data =, 8;, By, Ty is trivial, so we omit it.

Suppose (X, wy) is a —2—shifted symplectic derived C—scheme, A* a standard form
cdga over C, and o: Spec A* — X a Zariski open inclusion. Then Definition 3.2
defines complex geometric data V', E, F, s, t, ¥, R, such that (V, E,s,v) is a
Kuranishi neighbourhood on the topological space X,, of X.

However these are not the Kuranishi neighbourhoods we want: they depend only
on X, not on wy, and in general two such neighbourhoods (V. Ey, s,y ) and
(Vk, Ek, Sk, ¥k) are not compatible over their intersection Ry N R in X,, (eg the
virtual dimensions dimg Vy —rankg £y and dimg Vx —rankgr Ex may be different),
so we cannot glue them to make X,, into a derived manifold.

The basic problem is that the rank of £ may be too large; for instance, we can modify A°*
to replace E, F, s, t by E = E oG, F = FOG,5=500, 1 =t@idg for
some holomorphic vector bundle G — V. Our solution is to choose a real vector
subbundle E~ C E satisfying some conditions involving wY , and set E tT=E/E™
to be the quotient bundle and s* = s+ E~ in C®(E™) to be the quotient section.
The conditions on E~ imply that s~1(0) = (s7)~1(0), so (V, ET,sT, %) is also
a Kuranishi neighbourhood on X,,. Under good conditions we can make two such
vy, Ef, s}', W}L), (Vk, EI‘{F, s;g, 1//}) compatible over Ry N Rk, and glue these local
models to make X,, into a derived manifold.

‘We define the class of subbundles £~ C E we are interested in:

Definition 3.6 Let (X,wY) be a —2-shifted symplectic derived C—scheme with
virtual dimension vdimc X = n, and suppose A°* € cdgac is of standard form and
a: A®* — X is a Zariski open inclusion. Define complex geometric data V', E, F,
s, t and ¥: s71(0) => R C X,, as in Definition 3.2, and suppose R # @. Then for
each v € s71(0) with ¥ (v) = x € Xy, (20) gives an isomorphism from a vector space
dependingon V, E, F, s, t at v to H'(Tx|x).

Equation (6) defined a quadratic form Q, on H!(Tx|y). Define

Ker(t|y: Ely = Fly) " Ker(t|y: Ely = Flv)
Im(ds|y: TyV — Ely)  Im(ds|y: TyV — Ely)

(32) Ou: >C

to be the nondegenerate complex quadratic form identified with QO in (6) by the
isomorphism H!(Ty]y) in (20).

Geometry & Topology, Volume 21 (2017)



3262 Dennis Borisov and Dominic Joyce

Consider pairs (U, E™), where U C V is open and E~ is a real vector subbundle
of E|y. Givensuch (U, E7), we write ET = E|y/E~ for the quotient vector bundle
over U, and s € C®(E™) for the image of 5|y under the projection E|y — E, and
U=y 1 0)nu: sTH0)NU — Xan. We say that (U, E™) satisfies condition () if:

(*) Foreach v e s~1(0) N U, we have

(33) Im(ds|y: TyV — Ely) N E™ |, = {0} in Ely,
(34) ty(E™[y) =ty(Ely) in Fly,

and the natural real linear map

Ker(t|y: Ely = Flv)

Im(ds|y: TyV — E|y)’

which is injective by (33), has image Im I1, a real vector subspace of dimension
exactly half the real dimension of Ker(¢|,)/Im(ds|,), and the real quadratic
form Re Q, on Ker(¢|,)/ Im(ds|,) from (32) restricts to a negative definite real
quadratic form on Im IT, .

35) My: E |y NKer(t]y: Ely — Fly) —

We say (U, E7) satisfies condition (}) if
() (U, E7) satisfies condition () and s~1(0)NU = (sT)~1(0) C U.

In this case, (U, E™,s™, W+) is a Kuranishi neighbourhood on Xy;.

Observe that if v € s71(0)NU with ¥ (v) = x € X, then using (19)—(20) and (33)—(35)

we find there is an exact sequence

(36) 0— H (Tx|x) — TyU — E*|, — H (Tx|,)/ImII, — 0.

Hence

(37) dimg U—rankg E™ = dimgp H%(Tx|x)—dimg H(Tx|x)+dimg Im IT,
=2dim¢ H%(Tx |x)—dimc H ' (Tx )
= dim¢ H%(Tx |x)—dimg H'(Tx |x) +dimc H*(Tx |x)
=vdimc X =n.

Here in the second step we use dimpg [T, = %dimR H'(Tx|x) by (*) and (20),
in the third that H%(Tx|x) = H?(Tx|x)* as (X,wYy) is —2-shifted symplectic
(or —2-shifted presymplectic will do), and in the fourth that Ty is perfect in the
interval [0,2] as (X, wY) is —2-shifted symplectic (or presymplectic).

Equation (37) says that the Kuranishi neighbourhood (U, E™, s, %) has real virtual
dimension dim U —rank ET =n = vdim¢ X = % vdimg X. Note that this is half the
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virtual dimension we might have expected, and the real virtual dimension can be odd,
even though X, V, E, s,... are all complex.

Here are some important properties of such U, E~, E™, s, proved in Section 5.

Theorem 3.7 In the situation of Definition 3.6, with X, a);‘(, A%, o, V, E, F,
s, t, Y fixed, we have:

(a) If the conditions in (x) hold at some v € s~1(0) N U, then they also hold for
all v’ in an open neighbourhood of v in s~1(0)NU.

(b) Suppose C CV isclosed, and (U, E™) satisfies condition () with C CU C V.
(We allow C = U = @&.) Then there exists (U, E™) satistying (*) with
CUs~10) c U CV, and an open neighbourhood U’ of C in U N U such
that E~ |y = E- lu.

(c) If (U, E7) satisfies (), the closed subsets s~1(0)NU and (sT)~1(0) inU €V
coincide in an open neighbourhood U’ of s~1(0)NU in U. Hence (U’, E~|y")
satisfies condition (1), and (U’, E*|y’,s ¥ |y’, ¥ 1) is a Kuranishi neighbour-
hood on X,,. Thus, we can make (U, E™) satisfying (x) also satisfy (1) by
shrinking U, without changing R =Imy in Xy.

The next example proves Theorem 3.7(c) near v € s~ 1(0) N U in a special case, when
(A®, wyge) is in —2-Darboux form and minimal at v. The general case in Section 5.3
is proved by reducing to Example 3.8.

Example 3.8 Suppose that (X, wY) is a —2—shifted symplectic derived C-scheme
and that x € X,,. Then Theorem 2.10 gives a pair (A*, wge) in —2—Darboux form
and a Zariski open inclusion «: Spec A® < X which is minimal at x € Im e, with
a*(wy) = wye in AéCI(Spec A*,-2).

Example 3.3 describes the data V, E, F, s, t associated to A°® in Section 3.2,
and defines a nondegenerate quadratic form Q € H®(S2E*) with Q(s,s) = 0
using wge. As x € Ima there is v € s71(0) € V with a(v) = x, and (4°, )
minimal at x means that ds|, = 0, so that #|, = 0 by (24). Thus in (20) we have
Ker(t|y)/ Im(ds|y) = E|y, identified with H'(Tx|x). Since a*(wy) = w4e, the
quadratic form O, on Ker(t|y)/Im(ds|y) = E|y in (32) is Ol».

Given a pair (U, E™) as in Definition 3.6 with v € U, the map I, in (35) is just the
inclusion £~ |, < E|,. So (%) at v says that E~ |, is a real vector subspace of E|,
with dimg £~ |, = %dimR E|, = dim¢ E|y, such that Re O], is negative definite
on E7|y.
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As this is an open condition, there exists an open neighbourhood U’ of v in U such that
Re Q|y is negative definite on E~|p’. Define a real vector subbundle £+ of E|y- to
be the orthogonal subbundle of £~ |y’ with respect to the nondegenerate real quadratic
form Re Q|y’. Then E|yr = Et @ E~|y’, so we can write s|gr = 5T @ s, for
§teC®(Et) and s~ € C®(E~|y’). The projection E|y' — E* |y = E|y'/E~ v/
restricts to an isomorphism £+ — E1 |y, which maps 51 — st |p-.

Because Re Q is the real part of a complex form, it has the same number of positive
as negative eigenvalues. Thus Re Q |y is positive definite on £ . Now

(38) 0=Re O(s,5)|[yr =Re Q5" +5,5"+57)=Re QG 5")+Re O(s~, s7),
using Re Q(3+, s7) =0 as ET, E~ |y are orthogonal with respect to Re Oy .
For each u € U’, we now have

stw)=0 < $Tw) =0 — ReQGT.5M)u=0

& ReQ(s .5 )|u=0 < ) =5 u)=0 < s(u) =0,

using ET > E™ |y’ an isomorphism mapping 57 +— s¥ |y in the first step, Re Q
positive definite on £ in the second, (38) in the third, Re Q negative definite on E~ |y~
in the fourth, and 5|y’ =51 @ s~ in the fifth.

This proves there exists an open neighbourhood U’ of v in U such that s~1(0)NU’ =
(sT)~1(0) N U’, which is Theorem 3.7(c), except that U’ is a neighbourhood of v
rather than of s~1(0) N U.

Remark 3.9 Pairs (U, E7) satisfying () will be used to prove our main result,
constructing a derived manifold structure Xy, on the complex analytic topological
space Xa, of a —2—shifted symplectic derived C—scheme (X, w¥).

Our construction apparently uses less than the full —2-shifted symplectic structure wy
on X. In particular, conditions (*) and (f) only involve the nondegenerate pair-
ings @%|x on H'(Tx|x) in (6), which depend only on the presymplectic structure 0%,
not the symplectic structure a)} = (w?\,, a))l( ...). The proofs of Theorem 3.7(a),(b)
in Sections 5.1-5.2 also use only wg( rather than wy .

However, the proof of Theorem 3.7(c) in Section 5.3 involves a)} as it uses the
existence of a minimal —2-Darboux form presentation for (X, w} ) near each x € Xy,
as in Theorem 2.10. The authors do not know whether Theorem 3.7(c) holds for
—2-shifted presymplectic (X, a)g() which are not symplectic.
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3.4 Comparing (Uy, E}), (Uk, E) under @,k

Section 3.3 discussed how to use standard form charts «: Spec A* — X on (X, wY)
to choose pairs (U, E7), and so define Kuranishi neighbourhoods (U, E™*,s™, y™T)
on X,,. We now explain how to pull back such pairs (Uk, E) along a quasifree
morphism ®jg: Ay — A%, and construct coordinate changes between the Kuranishi
neighbourhoods (U_],E}_,S}_, w;r), (Ug, EIJg,sIJg,w;).

Definition 3.10 Let (X, wY) be a —2-shifted symplectic derived C—scheme with
vdim¢ X = n, and suppose ®jk: Ay — A% is a quasifree morphism of stan-
dard form cdgas over C and aj: Spec A5 — X, ag: Spec Ay, <> X are Zariski
open inclusions such that (14) homotopy commutes. Define complex geometric data
Vi, Ey, Fy,sy,t5, %y, Ry, Vk, Ex, Fk, sk, tk, ¥k, Rk, sk, Ik §IK
in Definitions 3.2 and 3.4, and suppose Ry # @, s0 Rx # & as Ry € Rx € Xan-

Consider pairs (Uy, E}) for A% and (Uk, Eg) for Ay satisfying condition () in
Definition 3.6. We say that (Uy, E}) and (Uk, E) are compatible if ¢pjx(Uy) € Uk
and yyklu, (E}) € oskly, (Ex) S ¢k, (Ek)-

For compatible pairs (Uy, E}) and (Uk, E), define a vector bundle morphism
X'}'K: E}' — oIkl , (EI"{') on Uy by the commutative diagram with exact rows:

0 E; Ejlyy, ——— E}_ —— 0
lXJKEy l){]l{hj‘, X e

~

0 — ¢ykly, (Ex) — ¢skly, (Ex) — ¢uklf, (Eg) — 0

Let vy € S;l(O) C Uy C Vy with ¢pjx(vy) = vg € SI_(l(O) C Ug C Vg and
VYy(vy) =¥k (vk) =X € Xy, Consider the diagram, with rows (36) for (Uy, E), vy
and (Uk, Eg), vk:

0— HO(TX|x) — Ty, Uy — E;—|UJ - HI(TXlx)/ImHvJ —0

dsy lv,
(39) idl d¢JK|vJJ( lxjr,(nj lid

ds+|v
0— HY(Tx|y) — Tox Uk —— Ef|ux — H'(Tx|x)/Im [y, — 0

Here if we regard Im IT,,, Im IT,,, from (35) as subspaces of H!(Tx|x) using (20),

compatibility yjx(E7|v,) € Eglvg and (29) imply that Im T, € ImII,,, so
ImIT,, = ImII,, as they have the same dimension by (%), and the right-hand
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column of (39) makes sense. From (25), (28) and (29) we see that (39) commutes.
Elementary linear algebra then gives an exact sequence

dsf |o,®de |y Xk I, Dds |y
40) 0— Ty, Uy s7 v, ®ddsklv, Ej|vJ®TvKUK Xyl @dsg vy E;|UK_>O-
From (40) and Definition 2.14, we deduce:

Corollary 3.11 In the situation of Definition 3.10, if (Uy, E7) and (Uk, Ey) are
compatible and satisty (}) then, in the sense of Section 2.5,

Us.dsxlu, x5x): Wi EF . sT.¥5) > (Uk. EE.s§. Vi)

is a coordinate change of Kuranishi neighbourhoods on Xy .

Lemma 3.12 In the situation of Definition 3.10, fix (Ug, E) satistying (x) for
A%, ag. Set Ujp = ¢;}((UK) C Vy. Then E}p := )(JK|U,K(EK) is a vector
subbundle of Ejlu/, . as xjk is surjective. Choose a complementary real vector
subbundle E'y ., so that Ejlu,, = Ep @ ET.

Choose a connection V on Ej, sothat Vsj: TV; — Ej is a vector bundle morphism.
Now Ker(dpyk: TV — ¢7(TVk)) is a vector subbundle of TV, as dpk is sur-
jective, and Vs is injective on Kerd¢ jx near s;l(O), s0 E'fl := (Vsy)[Kerde k]
is a vector subbundle of Ej near s;l (0) in Vy.

Then (Uy, E}) satisfies (x) for A%, ay and is compatible with (Uk, Ey) if and

only if Uy is open in U}, and E is a vector subbundle of E'yf |y, satisfy-

ing Eylu, = Ejx @ Eljglu, ® Efxlu, near s71(0) N Uy in Uy. Alternatively,

identifying E';x with E_]|U‘/]K/E‘/]/K, this condition may be written as E';x |y, =
Ejx ®E x ®ET)/Egllu, near s;1(0)NUy.

Proof We deduce Vs is injective on Kerd¢ g at vy € s}l(O) using (28), check
that (x) for Uy, E7 isequivalentto E; = E, @ EJ @ Ef ateach vy € s7'(0),
and note that both are open conditions. a

Lemma 3.12 shows we can always pull back (Uk, Ey) satisfying (*) along submer-
sions ¢ jx: Vy — Vi : we just have to choose a complement E to (E/j . DE)/Elj ¢
in £’ on some small open neighbourhood U of s;l (0) in U }K’ for instance, the
orthogonal complement with respect to any metric on E’;,. By Theorem 3.7(c),
making Uy smaller, we can suppose (Uy, E7) satisfies ().

3.5 Constructing Kuranishi atlases and derived manifolds

Let (X, wYy) be a —2-shifted symplectic derived C—scheme with vdim¢ X =n in Z,
and write X,, for the complex analytic topological space. Suppose X is separated and

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi—Yau four-folds 3267

Xan 1S a paracompact topological space. (Paracompactness is automatic if X is proper,
or quasicompact, or of finite type, or if X,, is second countable.) We will construct a
Kuranishi atlas on X,,, in the sense of Section 2.5.

First choose a family {(A?, ;) |i € I}, where A} € edgac is a standard form cdga, and
o;: Spec A} — X a Zariski open inclusion in dSchc for each i in 7, an indexing set,
such that {R; := (Ime; ),y | i € I} is an open cover of the complex analytic topological
space Xun. This is possible by Theorem 2.5. If X is quasicompact (since X is locally
of finite type, this is equivalent to X being of finite type) then we can take / to be
finite.

Apply Theorem 3.1 to get data A% € edgac, a;: Spec A5 — X for finite @ # J C 1
and quasifree Ok A;< — A'J, for all finite @ #A K CJ C 1.

Use the notation of Section 3.2 to rewrite A%, @k in terms of complex geometry. As
in Corollary 3.5, this givesdata Vy, Ey, Fy, sy, ty, ¥y, Ry forall finite @ # J C I,
and ¢y, xJK, Ejk forall finite @ # K S J C 1.

For brevity we write A ={J | @ # J € I and J is finite}. The proof of the next result
in Section 6.1 is based on McDuff and Wehrheim [29, Lemma 7.1.7].

Proposition 3.13 Suppose Z is a paracompact, Hausdortff topological space and
{R; | i € I} an open cover of Z. Then we can choose closed subsets Cy C Z for all
finite @ # J C I, satistying:

(i) Cj<()jey Ri forall J.
(i) Each z € Z has an open neighbourhood U, C Z with U, N Cj # & for only
finitely many J .
(iii) CyNCx # D onlyit J CK or KCJ.
) UgrscrmieCi=2Z.

In our case, X,, is Hausdorff and second countable. It is also locally compact, as
it is locally homeomorphic to closed subsets s}l (0) of complex manifolds Vy. But
Hausdorff, locally compact and second countable imply that X is paracompact and
normal. Thus Proposition 3.13 applies to Z = X,, with the open cover {R; |i € I},
and we can choose closed subsets C; € Ry =(");c; Ri € Xan forall J € A4 satisfying
conditions (1)—(@v).

The next proposition, proved in Section 6.2 using Theorem 3.7 and Lemma 3.12,
chooses pairs (Uy, E7) satisfying (), as in Section 3.3, with (Uy, E7), (Uk, Eg)
compatible near Cy N Ck under the quasifree morphism ®jg: Ay — A%.
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Proposition 3.14 In the situation above, we can choose (Uy, E7) satisfying condi-
tion (1) for Vy, Ey,... foreach J € A, such that wJ_I(CJ) C Uy CVy, and setting
Sy =Yy (s;l(O) N Uy) so that Sy is an open neighbourhood of Cj in X, then
forall J,K € A, we have Sy NSk # D onlyif J C K or K< J,andif K < J
then there exists open Ujyx C Uy with s;l(()) NUjg = WJ_I(SJ N Sk) such that
(Usk, ESlu,g) is compatible with (Uk, E), in the sense of Section 3.4.

We can now prove two of the central results of this paper.

Theorem 3.15 Let (X,wy) be a —2—shifted symplectic derived C—scheme with
complex virtual dimension vdimc X = n in Z, and write X,, for the set of C—points
of X = to(X) with the complex analytic topology. Suppose that X is separated,
and X,, is a paracompact topological space. Then we can construct a Kuranishi
atlas IC on Xy, of real dimension n, in the sense of Section 2.5. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof In the discussion from the beginning of Section 3.5 up to Proposition 3.14, we
have the following:

(i) A Hausdorff, paracompact topological space X,y .
(ii)) An indexing set I, where we write A ={J | @ # J C I and J is finite}.

(iii) An open cover {Sy | J € A} of Xy, such that Sy N Sk # @ for J, K € A only
if JCKor KCJ.

(iv) For each J € A, a Kuranishi neighbourhood (Uy, E;—,S}_, w;r) on X,, with
dim Uy —rank E ;r = n, constructed as in Section 3.3 from (Uy, E7) satisfying (),
with ImyF = Sy € Xap.

(v) Forall J,K € A with K € J, a coordinate change of Kuranishi neighbourhoods
over Sy N Sk, as in Corollary 3.11,

(UJK’ ¢JK|UJK7 X‘—]’_K) (UJ’ E‘—}_,S}_, w;—) - (UK9 E;gysl—i{_’ W;{_)?
since (Uyk, EJ|u, ) is compatible with (Uk, Ex).
(vi) Forall J,K,L e A with L K & J, Corollary 3.5 implies that ¢ j;, = ¢k 09k
and b, =% (x%p) o x Tk on Usk NU L N4 (UkL).

This is a Kuranishi atlas K in the sense of Definition 2.15, where the partial order <
on4is J <K if K< J.If X is quasicompact then we can take / finite, so A and K
are finite. O
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Combining Theorems 2.18 and 3.15 yields:

Theorem 3.16 Let (X,wy) be a —2—shifted symplectic derived C—scheme with
complex virtual dimension vdimc X = n in Z, and write X,, for the set of C—points
of X =1to(X) with the complex analytic topology. Suppose that X is separated, so
that X,, is Hausdorff, and also that X,, is a second countable topological space, which
holds if and only if X admits a Zariski open cover {X. | c € C} with C countable and
each X, a finite type C-scheme.

Then we can make the topological space X,, into a derived manifold Xy, with real
virtual dimension vdimg X4m = 1, in any of the senses (a) Joyce’s m-Kuranishi spaces
mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noél’s derived manifolds DerMangon, [3; 4], or (d) Spivak’s derived manifolds
DerMans,; [32], all discussed in Section 2.6.

We will discuss the dependence of Xgn on choices made in the constructions in
Section 3.6. Note that X4, in Theorem 3.16 has dimension vdimg X4, = vdimc X =
% vdimg X, which is exactly half what we might have expected.

3.6 Orientations, bordism classes and virtual classes

Work in the situation of Theorems 3.15 and 3.16, so that we have a —2—shifted
symplectic derived C—scheme (X, w¥) with complex analytic topological space Xy,
a Kuranishi atlas K on X,;, and a derived manifold X4y, . The next proposition, proved
in Section 6.3, justifies our notions of orientation in Sections 2.4-2.6.

Proposition 3.17 In the situation of Theorems 3.15 and 3.16, there are canonical
one-to-one correspondences between

(a) orientations on (X, wy ) in the sense of Section 2.4;
(b) orientations on (X,,, K) in the sense of Section 2.5; and

(c) orientations on X4y, In the sense of Section 2.6.2.

Next we consider how the derived manifold Xg, in Theorem 3.16 depends on choices
made in the construction. Once we have chosen the Kuranishi atlas /C in Theorem 3.15,
Theorem 2.18 shows that Xy, is determined uniquely up to equivalence in its 2—category
or co—category. However, constructing K involves many arbitrary choices, and the
next proposition, proved in Section 6.4 using the material of Section 3.7, explains how
Xam depends on these.

Proposition 3.18 In the situation of Theorem 3.16, for (X, a)}) and n fixed, the
derived manifold X4, depends on choices made in the construction only up to bordisms
of derived manifolds which fix the underlying topological space Xy .
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That is, if Xgqm, X ém are possible derived manifolds in Theorem 3.16, then we can
construct a derived manifold with boundary Wy, with topological space X, x [0, 1]
and vdim Wy, = n + 1, and an equivalence of derived manifolds 0Wgm >~ Xgm U X ém,
topologically identifying Xqm with Xanx{0} and X with X x{1}. We regard Wp,
as a bordism from Xy to X/ .

This bordism Wy, is compatible with orientations in Proposition 3.17. That is, given
an orientation on (X, a)}), we get natural orientations on Xgp, Xc’lm, Wim, and an
equivalence of oriented derived manifolds 0Wypy >~ —Xgm U X ém, where —Xgm 1S Xdm
with the opposite orientation.

Combining this with material in Sections 2.6.4-2.6.5 yields:

Corollary 3.19 Suppose (X,wY) is a proper —2-shifted symplectic derived C—
scheme, with vdimc X = n, and with an orientation in the sense of Section 2.4. Then
Theorem 3.16 constructs a compact derived manifold X4y, with vdimg Xqm = n, and
Proposition 3.17 defines an orientation on Xgp, .

Although Xg, depends on arbitrary choices, the d-bordism class [Xqm]dbo in Bn (%)
from Section 2.6.4 and the virtual class [ Xam]vire in Hy (Xan; Z) from Section 2.6.5 are
independent of these, and depend only on (X, wY ) and its orientation.

3.7 Working relative to a smooth base C-scheme Z

Let Z = Spec B be a smooth classical affine C—scheme, which we now assume is
connected. Then the set Z,, of C—points of Z is a complex manifold, and hence a real
manifold. In this section we will show that all of Sections 3.1-3.6 also works relatively
over the base Z. To do this, we will need a notion of a family (x: X — Z,wx,z) of
—2—shifted symplectic derived C—schemes over the base Z.

To understand the next definition, recall from Remark 3.9 that if (X, wY ) is —2-shifted
symplectic, then the derived manifold Xy, constructed in Section 3.5 does not de-
pend on the whole sequence wy = (w%,a);‘,, ...), but only on the nondegenerate
pairings w%|x on H'(Tx|yx) for x € X, and therefore only on the cohomology
class [w?\,] € H72(Lx). We require that choices of w}( w/z\, ... should exist (they
are needed to apply Theorem 2.10, which is used in the proof of Theorem 3.7(c)), but
Xam does not depend on them.

Definition 3.20 Let X be a derived C—scheme, Z = Spec B a smooth, connected,

classical affine C—scheme, and n: X — Z a morphism. A family of —2-shifted
symplectic structures on X / Z is [wx 7] € H™2 (Lx,z), such that if z € Zy,, writing
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X=a"l2)=X xf‘t % for the fibre of 7 over z and [wx,z]|x= € H2(Lyx-) for
the restriction of [wx 7] to X?, then there should exist a —2—shifted symplectic struc-
ture wy. = (w%z,w}(z, ...) on XZ such that [wy,z]|x= = [w%z] in H2(Lx:).

That is, a family of —2—shifted symplectic structures on X /Z is a —2—shifted rela-
tive 2—form [wx,z] on X /Z, which on each fibre X* extends to a closed 2—form
which is —2-shifted symplectic. We will explain how to extend the arguments of
Sections 3.3-3.6 to the relative case. Here is the analogue of Definition 3.6:

Definition 3.21 Let X be a derived C—scheme, Z = Spec B a smooth, classical, affine
C—scheme of pure dimension, w: X — Z a morphism, and [wx,z] in H 2Ly /Z)
a family of —2-shifted symplectic structures on X/Z. Write dim¢c Z = k and
vdimc X = n + k. Suppose A* € cdgac is of standard form, a: A* — X is a
Zariski open inclusion, and B: B — A° is a smooth morphism of C-algebras, such
that (21) homotopy commutes. Define complex geometric data V, 7, E, F, s, ¢
and ¥: s71(0) => R C X,, as in Definition 3.2, and suppose R # @. Then for
each v € s71(0) with ¥ (v) = x € Xu and 7(v) = 7(x) = z € Zyan, (23) gives
an isomorphism from a vector space dependingon V, t, Z,,, E, F, s, t, T at v
to H'(Tx;zlx)-

As in (6), the relative 2—form [wy ;7] induces a pairing

QOx:i= Q x
(41) HY(Tx,z)x) x H (T z|x) ——X/22", C,

which is nondegenerate because Qy, under the equivalence Tx,z|x ~ Tx:z|x, is
identified with the pairing induced by a —2—shifted symplectic form wy. on X?Z, as
in Definition 3.20. Define

Ker(t|y: Ely = Flv) " Ker(t|y: Ely = Flv)
Im(ds|y: Ty(V/Zan) = Ely)  Im(ds|y: Ty(V/Zan) = Elv)
to be the nondegenerate complex quadratic form identified with Q, in (41) by the
isomorphism H!(Tg|y) in (23).

42 Oy ~C

Consider pairs (U, E7), where U C V is open and E~ is a real vector subbundle
of E|y. Givensuch (U, E7), we write ET = E|y/E~ for the quotient vector bundle
over U, and s € C®(E™) for the image of 5|y under the projection E|y — E™T, and
U=yl nu: sTH0)NU — Xu. We say that (U, E7) satisfies condition () if

(%) Foreach v e s~1(0) N U, we have

(43) Im(ds|y: Ty(V/Za) — E|ly) N E™ |y = {0} in Ely,
(44) ty(E™|v) =tly(Ely) in Fly,
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and the natural real linear map

Ker(t|y: Ely = Fly)
Im(ds|y: Ty(V/Zan) = Elv)’
which is injective by (43), has image Im IT, a real vector subspace of dimension
exactly half the real dimension of Ker(#|,)/Im(ds|,), and the real quadratic

form Re O, on Ker(t|,)/ Im(ds|y) from (42) restricts to a negative definite real
quadratic form on Im IT, .

(45) IMy: E7 |y NKer(t]y: Ely = Fly) —

We say (U, E7) satisfies condition (}) if
(t) (U, E7) satisfies condition (%) and s~ 1(0)NU = (s7)"1(0) C U.
In this case, (U, E™,s™, W+) is a Kuranishi neighbourhood on Xy;.

Observe that if v e s~1(0)NU with ¥ (v) = X € Xy then using (22)—(23) and (43)—(45)
we find as for (36) that there is an exact sequence

(46) 00— H°(Tx,zlx) = Tv(V/Zuw) = E*|y = H'(Tx/z|x)/Im T, — 0.
Hence as for (37) we have
dimg U — dimg Zay —rankg ET
= dimg H°(Tx,z|x) —dimg H'(Tx,z|x) + dimg Im I,
=2dim¢c H*(Tx/z|x) —dim¢ H'(Tx,z|x)

= dim¢c H°(Tx,z|x) —dimc H'(Tx,z|x) +dimc H*(Tx/z|x)
= vdim¢c X —dim¢c Z =n.

Thus the Kuranishi neighbourhood (U, E st w+) has virtual dimension
dimU —rank E* = n 4 2k = (vdimg X —dimg Zy,) + dimg Zan,

which is the real dimension of the base Z,,, plus half the real virtual dimension of the
fibres X~=.

Note that essentially the only important difference between Definitions 3.6 and 3.21 is
that 7,V in (32), (33) and (35) is replaced by Ty (V/Zan) in (42), (43) and (45).

Theorem 3.22 Theorem 3.7 holds with Definition 3.21 in place of Definition 3.6.

Proof In the proofs of Theorem 3.7(a),(b) in Sections 5.1-5.2, we replace ds|,: T,V —
E|y by ds|y: Ty(V/Zan) — E|y throughout, and no other changes are needed.
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For part (c), fix z € Z,,, so that Definition 3.20 gives a —2—shifted symplectic derived
C-scheme (X7, w%.) with [wx,z]|x> =[w%.]in H?(Lx:). Consider the complex
submanifolds VZ =t71(z) in V and U? = U N VZ in U, and write EZ, FZ, s?, t?
for the restrictions of E, F, s, t to V?, and E*?, s1Z, y+Z for the restrictions
of EE, sT, ¥t to U?. Then (Xz,w;‘(z), VZ, EZ,... satisfy Definition 3.6, so
Theorem 3.7(c) shows (s7)~1(0)NU?Z and (s2)~1(0) coincide near (s*)~1(0) N U?
in U?. Hence (s~1(0) N U) Nt~ 1(z) and ((s7)~1(0)) N t71(z) coincide near
(s"H0)NU)Nt71(2) in U. As this holds for all z € Z,,,we have that s~1(0) N U
and (s7)~1(0) coincide near s~1(0) N U in U, and the theorem follows. a

When we extend Section 3.4 to the relative case, in the analogue of Definition 3.10 we
also include data : X — Z = Spec B and smooth B;: B — AY, Bgx: B — A% with
Bs = ®jx o Bx and (13) homotopy commuting for J, K. We obtain an analogue
of (39) with rows (46) rather than (36), and so as for (40) we get an exact sequence

ds Ty, ®ddsx v —x Tk lv, ®dsi |y
0Ty, (Uy | Zan)—2 LS E |y @ Ty (Uk | Zan) 5L K B 0.

But by taking the direct sum of this with id: 7, Z,, — T, Z,, in the second and third
positions, we see that this implies (40) is exact, and the analogue of Corollary 3.11
follows. The relative analogue of Lemma 3.12, in which we replace TVy, TVk by
T(Vy/Zuw), T(Vk/Zan), is immediate.

For Section 3.5, we prove the following relative analogue of Theorem 3.15:

Theorem 3.23 Let X be a separated derived C—scheme, Z = Spec B a smooth,
connected, classical affine C—scheme, m: X — Z a morphism, and [wy 7] a family
of —2—shifted symplectic structures on X /Z, with dim¢c Z = k and vdim¢c X =
n+ k. Write Xan, Zan for the sets of C—points of X = ty(X), Z with the complex
analytic topology, and suppose X, is paracompact. Then we can construct a relative
Kuranishi atlas (IC, {wy | J € A}) for man: Xan — Zan of real dimension n + 2k,
as in Definition 2.15, with wyj: Uy — Z,, a submersion. If X is quasicompact
(equivalently, of finite type) then we can take K to be finite.

Proof First choose a family {(A},e;,B;) |7 € I}, where A} € edgac is a standard
form cdga, and o;: Spec A} < X is a Zariski open inclusion in dSch¢ for each i
in 7, an indexing set, and §;: B — A? is a smooth morphism of classical C—algebras
such that (12) homotopy commutes, with {R; := (Ima; )., | i € I} an open cover of
the complex analytic topological space X,,. This is possible by a relative version of
Theorem 2.5, easily proved by modifying the proof of [6, Theorem 4.1] to work over the
base Z = Spec B. Apply Theorem 3.1 to get data A% € cdgac, oj: Spec A5 — X,
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Bs: B — AY for finite @ # J C I and quasifree morphisms ® x: A% — A%, for all
finite d# K CJ C 1.

Use the notation of Section 3.2 to rewrite 4%, By, ®yk in terms of complex geom-
etry. As in Corollary 3.5, this gives data Vy, vy, Ej, Fy, sy, ty, ¥y, Ry for all
finite @ # J C I, and ¢k, xjk, Eyx for all finite @ # K C J C I. Note that the
holomorphic submersions 7y: Vj — Z,, with 7y = tg o pyx for K € J were not
used in Sections 3.3-3.6 as there Z,, was the point *, but now we need them.

Proposition 3.14 now also holds in our relative situation. Its proof in Section 6.2
uses Theorem 3.7 and Lemma 3.12, which as above hold in the relative situation
with Definition 3.21 and T'(Vj/Z,,) in place of Definition 3.6 and TVy. As in
the proof of Theorem 3.15, we have now constructed a Kuranishi atlas X on Xy,
with dimension n + 2k. Setting wy = ty|y,: Uy — Z, for J € A, we see that
(K, {wy | J € A}) is a relative Kuranishi atlas for m,,, with @w a submersion. If X
is quasicompact we can take / finite, so A and K are finite. O

We then deduce the following relative analogue of Theorem 3.16:

Theorem 3.24 (i) Let X be a separated derived C—-scheme, Z = Spec B a smooth,
connected, classical affine C—scheme, w: X — Z a morphism, and [wx 7] a family of
—2—shifted symplectic structures on X /Z, with dim¢c Z = k and vdimc X =n + k.
Write Xan, Zan for the sets of C—points of X = tg(X), Z with the complex analytic
topology, and suppose X, is second countable.

Then we can make the topological space X,, into a derived manifold Xg, with real
virtual dimension vdimg X4m = n + 2k, in any of the senses (a) Joyce’s m-Kuranishi
spaces mKur [21, Section 4.7], (b) Joyce’s d-manifolds dMan [18; 19; 20], (c) Borisov
and Noél’s derived manifolds DerMangon, [3; 4], or (d) Spivak’s derived manifolds
DerMans),; [32], all discussed in Section 2.6.

(ii)) We can also define a morphism of derived manifolds mqy: Xam — Zan, With
underlying continuous map 7. Xan —> Zan.

(iii) For each z € Zyy,, the fibre X7 = er_ml (z) = Xdm Xy, Zo,z * 1S a derived
manifold with vdimg X} = n. From Definition 3.20, X? = n~1(z) has a —2—shifted
symplectic structure @, and both X7 , X have (complex analytic) topological
space ;1 (z) € Xun. Then X &, 1s up to equivalence a possible choice for the derived

manifold associated to (X, ) in Theorem 3.16.

Proof Parts (i) and (i1) follow from Theorems 2.18 and 3.23. For (iii), if z € Z,, then
as tj: Vj — Za, is a holomorphic submersion for J € A, the fibre V7 := tj_l(z) is
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a complex submanifold of V. Setting U7 = Uy NV} and writing E7, F7, 57,15
for the restrictions of Ej, Fy, sy, ty to V7, and E;Z, E}'Z, s}"z, wj'z for the
restrictions of E7, Ej' s}", w;‘ toUF,wesee I, A, Vi, E5, F7,s5,t5, U7, ...
are a possible choice for the data I, A, Vjy, Ey,... in the application of Theorems
3.15and 3.16 to (X7, wY ). But from facts about fibre products of derived manifolds
in [18; 19; 20; 24] we see that the derived manifold X7 = Xam X, Z..,z * may be
constructed from the data I, A, U7, E;FZ, S}LZ, W}”, ..., as above. The theorem
follows. a

Next we discuss orientations, generalizing Section 2.4 and Section 3.6 to the relative
case. Here is the analogue of Definition 2.12:

Definition 3.25 Let X be a derived C—scheme, Z = Spec B a smooth, connected,
classical affine C—scheme, n: X — Z a morphism, and [wx 7] € H_Z(ILX/Z) a
family of —2—shifted symplectic structures on X /Z. Then as in (4), [wx 7] induces
a canonical isomorphism of line bundles on X = #9(X):

2 2
IX/Zwx,5: [det(Lx/z|x)]® — Ox = OF .

An orientation for (m: X — Z,[wyz]) is an isomorphism o: det(Lx,z|x) — Ox
suchthat 0 ® 0 = 1x /7wy, -

Here is the relative analogue of Proposition 3.17. In parts (b) and (c), we could also
use notions of relative orientation for (X,,, K) — Z,, and Xy — Zan. But as Z,,
is a complex manifold with a natural orientation, these are equivalent to absolute
orientations for (Xan, ), Xam, s0 we do not bother. The proof is an easy modification
of that in Section 6.3.

Proposition 3.26 In the situation of Theorems 3.23 and 3.24, there are canonical
one-to-one correspondences between

(a) orientations on (w: X — Z,[wx,z]) in the sense of Definition 3.25;

(b) orientations on (X,,, K) in the sense of Section 2.5; and

(c) orientations on X4y, In the sense of Section 2.6.2.

The relative analogue of Proposition 3.18 does hold, but we will not prove it, as we
do not need it. The next theorem says that the virtual classes [Xdam|dbo, [Xdm]virt
of a proper oriented —2—shifted symplectic derived C—scheme (X, wY) defined in
Corollary 3.19 are unchanged under deformation in families. Note that it is essential
that the base C—scheme Z be connected in Theorem 3.27.
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Theorem 3.27 Let X be a separated derived C-scheme, Z = Spec B a smooth,
connected, classical affine C—scheme, n: X — Z a proper morphism, and [wx /7]
a family of —2—shifted symplectic structures on X /Z, equipped with an orientation,
with dimc Z =k and vdimc X =n+k.

For each z € Z,, we have a proper, oriented —2-shifted symplectic C—scheme
(X?,wx:) with vdim X? = n, and thus Corollary 3.19 defines a d-bordism class
[X} lavo € dBy(*) and a virtual class [ ¥ i € Hy (X2 Z), Wh1ch depend only
on (X*wy.). Then [X,lao = | X la and 13 (Xiuhar) = 12 (X hie) for
all z,z" € Za,, where 17([XZ lvin) € Hn(Xan:Z) is the pushforward under the in-

z
clusion 1?: X7 — Xan.

Proof Theorem 3.24 constructs a derived manifold X4, with vdim X4, =#n +2k and
a morphism gy Xam — Zan, Which is proper as x is proper, and Proposition 3.26
gives an orientation on Xy, .

Let z,z' € Z,,. As Z is connected we can choose a smooth map y: [0, 1] — Z,, with
y(0) = z and y(1) = z’. The fibre product

de = de XamsZansY [0, 1]

exists as a derived manifold with boundary by [19, Section 7.5; 18, Section 7.6] and
Joyce [24], with vdim Wy, =n+ 1, and Wy, is compact as [0, 1] is and 74y, is proper,
and oriented since Xqm, Zan, [0, 1] are. As 0Xgm = 0Z,n = D, the boundary is

ade - de Xndma ansY [0 1] - de U de’

z
where X7,

Since 9]0, 1] = —{0} L {1} in oriented O—manifolds, we have dWy, = —X7 U XZ

in oriented derived manifolds. Therefore Definition 2.20 gives [X 7 ]abo = [X dm]dbo
in dBy (*). By Theorem 3.22(c), X7 , X, jn/n are outcomes of Theorem 3.16 applied
to (X%, w XZ), (X z’ . XZ,), 50 [XZ lavo, [X, (f[;l]dbo are the d-bordism classes associated
to (X%, w¥:), (X7 ,w;z,) in Corollary 3.19. A similar argument works for the
homology classes. a

Xdzr; are the fibres of mym: Xam — Zan at z, z’.

Remark 3.28 The assumptions that Z is smooth, classical and affine, and X is
separated, in Theorem 3.27 are easily removed; we can work over a base Z which is a
general classical or derived C—scheme, provided it is connected.

To see this, suppose : X — Z is a proper morphism of derived C—schemes with Z
connected, and [wy,z] € H 2Ly /z) is a family of —2—shifted symplectic structures
on X /Z equipped with an orientation, extending Definitions 3.20 and 3.25 to general Z
in the obvious way.
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Suppose z,z’' € Z,,. As Z is connected we can find a sequence z=zg, z1, ..., zNy=2'
of points in Z,,, and a sequence of smooth, connected, affine curves C ..., cN
over C with morphisms n': C! — Z, such that 7/(C’) contains z;_;, z; for
i=1,...,N.Then X! =X XZ,Z, C' is a derived C-scheme, and [wy /z] pulls
back to a family [wyi,ci] of oriented —2-shifted symplectic structures on X' /C".
Applying Theorem 3.27 to (X! — C, [wxi/ci]) we see [X;=']=[X] in dBu(x)
fori =1,..., N, so that

[Xdzm]dbo = [XdZI(I)l]dbO = [Xdzr:l]dbo == [XdZn[;/ ]dbo = [Xdzm]dbo‘

The same argument works for virtual classes [X ] ]vir in homology.

i

We took Z to be smooth above to avoid defining families mgn: Xgm — Z of derived
manifolds over a base Z which is not a (derived) manifold.

3.8 “Holomorphic Donaldson invariants” of Calabi—Yau 4-folds

We now outline how the results of Sections 3.1-3.7 can be used to define new enu-
merative invariants of (semi)stable coherent sheaves on Calabi—Yau 4—folds Y, which
we could call “holomorphic Donaldson invariants”, and which should be unchanged
under deformations of Y. A related programme using gauge theory has recently been
proposed by Cao and Leung [8; 9; 10], which we discuss in Section 3.9.

We begin by discussing Donaldson—Thomas invariants DT*(t) of Calabi—Yau 3—folds,
introduced by Thomas [33]. Suppose Z is a Calabi—Yau 3—fold over C with an
ample line bundle Oz (1), which defines a Gieseker stability condition T on coherent
sheaves on Z, and o« € H**"(Z; Q). Then one can form coarse moduli C—schemes
ME(t), MZ(7) of T—(semi)stable coherent sheaves on Z of Chern character o, with
ME(t) € MZ(t) Zariski open, and M () proper.

Thomas [33] showed that M(7) carries an “obstruction theory” ¢: E® — L yqe (o)
of virtual dimension 0, in the sense of Behrend and Fantechi [1]. Thus, if there are
no strictly r—semistable sheaves in class o, so that MZ(7) = M%(r) and MZ(7) is
proper, then [1] gives a virtual count DT%(7) = [M%()]vir € Z. Thomas proved that
DT*(7) is unchanged under continuous deformations of Z.

Later, Joyce and Song [25] extended the definition of DT (7) to invariants DT*(7) € Q
for all « € H®*"(Z; QQ), dropping the condition that there are no strictly r—semistable
sheaves in class o, and proved a wall-crossing formula for DT%(z) under change
of stability condition t. At about the same time, Kontsevich and Soibelman [26]
defined a motivic generalization of Donaldson—Thomas invariants (assuming existence
of “orientation data” as in Section 2.4), and proved their own wall-crossing formula
under change of 7.
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Thomas [33] called his invariants DT*(z) “holomorphic Casson invariants”, though
they are now generally known as Donaldson—Thomas invariants. Here Casson invariants
are integer invariants of oriented real 3—manifolds Zg which are homology 3—spheres,
which “count” flat connections on Z.

This followed a programme of Donaldson and Thomas [13], which starting with some
well-known geometry in real dimensions 2, 3 and 4, aimed to find analogues in complex
dimensions 2, 3 and 4; so the complex analogues of homology 3—spheres, and flat
connections upon them, are Calabi—Yau 3—folds, and holomorphic vector bundles (or
coherent sheaves) upon them.

Donaldson invariants [12] are invariants of compact, oriented 4—manifolds Yg, defined
by “counting” moduli spaces M of SU(2)-instantons £ on YR with ¢2(E) =« €
Z . In contrast to Casson and Donaldson—Thomas invariants, the (virtual) dimension
d® of Mf need not be zero. Oversimplifying/lying a bit, one first constructs an
orientation on M [12, Section 5.4]. Then we have a virtual class [M ]y €
Hgjoa (M ;7). For each B € Hy(YR:Z) we construct a natural cohomology class
w(B) € HA(ME ;Z), with u(By + B2) = u(B1) + u(B2). Then if d = 2k, we
define Donaldson invariants D*(B1, ..., Br) = (u(B1) U---Uu(Br)) - IMT Jvin € Z
for all By,...,Bx € Ha2(Yr;Z). We can think of D% as a Z-valued homogeneous

degree-k polynomial on H,(YRr;Z).

We propose, following [13], to define “holomorphic Donaldson invariants” of Calabi—
Yau 4-folds. The gauge theory ideas which were the primary focus of [13] will be
discussed in Section 3.9; here we work in the world of (derived) algebraic geometry.
Suppose Y is a Calabi—Yau 4—fold over C (ie Y is smooth and projective with
Hi((’)y) =Cifi =0,4 and Hi(Oy) = 0 otherwise), and o = (ao,az,a4,a6,a8) €
H®"(Y;Q). As above we can form coarse moduli C—schemes M (7) € M ()
of Gieseker (semi)stable coherent sheaves on ¥ of Chern character o, with M ()
proper.

To make contact with the work of Sections 3.1-3.7, we need to show:

Claim 3.29 There is a —2-shifted symplectic derived C-scheme (M2(7),®™),
natural up to equivalence, with classical truncation to(M%(7)) = M%(t), of vir-
tual dimension vdimc M%(t) = d% := 2 —deg(e U @ U td(TY))g, where & =
(%, —a?, a*, —a® «®), and td(—) is the Todd class.

Pantev et al [31, Section 2.1] prove the analogue of Claim 3.29 in the context of

(derived) Artin stacks, but we want to reduce to (derived) schemes. Roughly this
means factoring out the C* stabilizer groups at each point of the t—stable derived
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moduli stack. Actually, it should not be difficult to extend Sections 3.1-3.7 to derived
algebraic C—spaces rather than derived C—schemes, and then it would be enough to
construct MY (7) as a derived algebraic C—space.

Next we would need to answer:

Question 3.30 Does (M(7), w*) in Claim 3.29 have a natural orientation, in the
sense of Section 2.4, possibly depending on some choice of dataon Y ?

Following the argument of Donaldson [12, Section 5.4], Cao and Leung prove an
orientability result [10, Theorem 2.2], which should translate to the statement that if the
Calabi—Yau 4—fold Y has holonomy SU(4) with H«(Y;Z) torsion-free, and M (7)
is a derived moduli scheme of coherent sheaves on Y, then orientations on M (7)
exist, though they do not construct a natural choice.

If both these problems are solved, then Theorem 3.16 makes M (7)an into a derived
manifold MY (t)gm of real virtual dimension d*, which is oriented by Proposition 3.17.
If there are no strictly t—semistable sheaves in class o then M (7)am is also compact,
and has a d-bordism class [MZ(7)dm]dbo in dBga (*) and virtual class [ME(T)dm]virt
in Hga (Mg(t)an: Z).

If d* =0 then [MZ(7)dm]dbo € dBo(*) = Z is the virtual count we want. Butif d% >0
we should aim to find suitable cohomology classes on M%(7)an and integrate them
over [ME(T)dam]virt» as for Donaldson invariants above.

Claim 3.31 One can define natural cohomology classes () on M2 (7)an depending
on homology classes 8 on Y, which can be combined with [MZ(T)dm]virt to give
integer invariants, in a similar way to Donaldson invariants.

If M (7) is a fine moduli space, there is a universal sheaf £ on M (7)x Y, with Chern
classes ¢; (£) € H? (ME(0)an X V; Q) 2= @y HZ F (M (1)an; Q) ® H*(Y; Q), and
we can make ; (B) € H2—k (ME(7)an: Q) by contracting ¢; (€) with B € Hi(Y; Q).
Using the results of Section 3.7, we should be able to prove that the resulting invariants
are unchanged under continuous deformations of Y.

This would take us to the same point as Thomas [33] in the Calabi—Yau 3—fold case:
we could “count” moduli spaces M (7) for those classes o containing no strictly
T—semistable sheaves, and get a deformation-invariant answer. Many questions would
remain, for instance, how to count strictly t—semistables, wall-crossing formulae as
in [25; 26], computation in examples, and so on.

We hope to return to these issues in future work.
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3.9 Motivation from gauge theory and “SU(4) instantons”

Finally we discuss some ideas of Donaldson and Thomas [13], which were part of the
motivation for this paper, and the work of Cao and Leung [8; 9; 10].

Let Y be a Calabi—Yau 4—fold over C, regarded as a compact real 8—manifold Y
with complex structure J, Ricci-flat Kdhler metric g, Kihler form w and holomorphic
volume form €2. Fix a complex vector bundle £ — Y of rank r > 0 with Hermitian
metric & and Chern character ch(E) = «, and as in [8; 9] assume for simplicity
that ¢1(E) = 0. Consider connections V on E preserving / that have curvature
F € C®(End(E) ®c (A’T*Y ®g C)). The splitting

A’T*Y @r C = (0)c @ Ay ' T*Y @ A2OT*Y @ A%2T*Y
induces a corresponding decomposition F = F® @ Fy*' @ F>0 @ F%2.

We call V a Hermitian—Einstein connection if F® = F?0 = F%2 = (. There is a
splitting V = dg @ 0k, where dg gives E the structure of a holomorphic vector
bundle on (Y, J), as F%2? = 0. The Hitchin—Kobayashi correspondence says that
if (E,dg) is a holomorphic vector bundle and is slope-stable, then 0 extends to a
unique Hermitian—Einstein connection V = dg & OE preserving &. Also, holomorphic
vector bundles on Y are algebraic. Thus, studying moduli spaces Mg‘lg_vb of stable
algebraic vector bundles is roughly equivalent to studying moduli spaces M, of
Hermitian—Einstein connections, modulo gauge.

As a system of PDEs, the Hermitian—Einstein equations are overdetermined: there are
8r2 unknowns, 1372 equations and r2 gauge equivalences, with 872 —13r2 —r2 < 0.
Algebraically, this corresponds to the fact that the natural obstruction theory on Mjg.vp
is not perfect, so we cannot form virtual classes.

Using €2, g we can define real splittings
A2OT*Y = A2°T*Y @ A%OT*Y and A®2T*Y = AY’T*Y @ A%2T*Y
and corresponding decompositions
F?'=F2°@F?" and F%?=F}?@ F%2

Following Donaldson and Thomas [13, Section 3], we call V an SU(4)-instanton
if F® = Fi’o = F_?’z = 0. This gives 82 unknowns, 7r2 equations and r2 gauge
equivalences, with 872 —7r? —r? = 0. It is a determined elliptic system, so that we
can hope to define virtual classes. This is special to Calabi—Yau 4—folds, a complex
analogue of instantons on real 4—manifolds.
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Writing MSU( 4 for the moduli space of SU(4)—instantons, we have M, C MSU(4),
as the SU(4) instanton equations are weaker than the Hermitian—Einstein equations.
Now o = ch(E) € EB;:O HP-P(Y) if E admits Hermitian—Einstein connections.
Conversely, as in [13, page 36], if o € @p HP:P(Y) then one can use L?—norms
of components of F' to show that any SU(4)—instanton is Hermitian—Einstein. Thus,

either M = MSU(4), or MY =@.

However, the equality M = MSU( 1) holds only at the level of sets, or topological

spaces. Since My is defined by more equations, if we regard My, M

su(4) 3
(derived) C*°—schemes, for instance, then My & Mgy, -

In the setting of Sections 3.1-3.6, we should compare M. (a Calabi—Yau 4—fold
moduli space, without a virtual class, equivalent to an algebraic moduli scheme Mg‘lg_vb)
with the —2-shifted symplectic derived C—scheme (X, wY), and MSU( 4) (an elliptic
moduli space, hopefully with a virtual class, equal to M on the level of topological
spaces) with the derived manifold Xgy. It was these ideas from Donaldson and
Thomas [13] that led the authors to believe that one could modify a —2—shifted
symplectic derived C—scheme to get a derived manifold with the same topological
space, and so define a virtual class.

Donaldson and Thomas [13] envisaged using gauge theory to define invariants of
Calabi—Yau 4—folds “counting” moduli spaces MSU( 4y and also invariants of compact
Spin(7)—manifolds “counting” moduli spaces of “Spin(7)-instantons”.

This would require finding suitable compactifications M SU(4) of the moduli spaces
MG SU(4)? and giving them a nice enough geometric structure to define virtual classes,
which is a formidably difficult problem in gauge theory in dimensions > 4. A huge
advantage of our approach is that, working in algebraic geometry, with moduli spaces
of coherent sheaves rather than vector bundles, we often get compactness of moduli
spaces for free, without doing any work.

Cao and Leung [8; 9; 10] also aim to define enumerative invariants of Calabi—Yau
4—folds Y, which they call “DT4—invariants”, and their ideas overlap with ours. As
for our outline in Section 3.8, their general theory is still rather incomplete, but they
prove many partial results, and do computations in examples.

Given a vector bundle moduli space M alg-vb = = Mg = M‘S’fU( 4) in topological spaces,
assuming it is compact, and with an orientation (compare Question 3.30), Cao and Leung
[9, Section 5] define a virtual class [MSU 4)]Vm for M¥ SU@)” and contract this with some
cohomology classes u(f) (compare Claim 3.31) to get integer invariants, which they
prove are unchanged under deformations of Y. All this involves fairly standard material
from gauge theory.

Geometry & Topology, Volume 21 (2017)



3282 Dennis Borisov and Dominic Joyce

They also discuss the case in which one has a compact moduli space of coherent sheaves
M, > Which contains the vector bundle moduli space Mg‘lg_vb as an open subset.
They want to define a virtual class for Mg‘oh_sh, as we want to, and they can do this
under the assumptions that either MY, . is smooth, or (in our language) that the
—2-shifted symplectic derived scheme (MY, . @) is locally of the form T*X[2]
for X a quasismooth derived C—scheme.

To compare our work with theirs, given M‘;‘lg_vb C MZ, . as above, assuming
Claim 3.29, our Theorem 3.16 gives M&, . the structure of a derived manifold, but
one depending on arbitrary choices. By topologically identifying Mg, ;, = Mg‘U( 4)°
in effect Cao and Leung make Mf:lg_vb into a derived manifold, canonically up to
equivalence (though depending on the Kéhler metric g and holomorphic volume
form ). However, there seems no reason why their derived manifold structure
on Mg‘lg_vb C MZ, o, should extend smoothly to MZ, . . This is a reason why our

approach may in the end be more effective.

4 Proof of Theorem 3.1

In this proof we write edgac for the ordinary category of cdgas over C, and cdgagy
for the co—category of cdgas over C, defined using the model structure on cdgac .
All objects in cdgac are fibrant. A cdga A is cofibrant if it is a retract of a cdga A’
which is almost-free, that is, free as a graded commutative algebra. If ¢: A — B
is a morphism in cdgac then ¢: A — B is also a morphism in cdgag’. However,
morphisms ¢: A — B in edgag® may not correspond to morphisms A — B in edgac
unless A is cofibrant.

The spectrum functor Spec maps (cdgac)? — dSchc and (edgag®)°® — dSchc, and
(cdgad®)? — dSchc is an equivalence with the full co—subcategory of dSchc with
affine objects. So, morphisms ¢: A — B in cdgag® are essentially the same thing as
morphisms Spec B — Spec A in dSchc¢.

Let m: X — Z = Spec B and {(4},a;,B;) | i € I} be as in Theorem 3.1. Our
task is to construct a standard form cdga A% = (A%,d), a Zariski open inclusion
oy: Spec A% — X, and a morphism B;: B — A(} for all finite @ # J C I, and a
quasifree morphism ®;g: A% — A for all finite & # K C J C [, satisfying certain
conditions. We will do this by induction on increasing k = |J|. Here is our inductive
hypothesis:

Hypothesis 4.1 Let k =1,2,... be given. Then:

(a) We are given finite subsets S for all @ # J C I with |J| < k and for all
n=-1,-2,....
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(b) Forall @ # J C I with |J| <k we have 4% = Qo B AY as a smooth C—
algebra of pure dimension, where the tensor products are over B using f8;: B — A?
to make A? into a B-algebra, so thatif J = {iq,...,i;} then

47 A§ = A, ®p Ai, ®B -+ Q5 Ai;.

The morphism B;: B — AY is induced by (47) and the B;: B — A? for i € J, and is
smooth as the fB; are.

(c) Forall @ # J C I with |J| <k, as a graded C—algebra, A is freely generated
over Ag by generators |_|®¢ng Sk indegree n forn =—1,-2,....
(d) Forall @# K CJ C I with |[J| <k, the morphism ®Y,: A% — AY in degree 0
is the morphism
0 0 0 0 0
ieK ieK ieJ\K ieJ

induced by the morphisms id: A? — A? fori € K and B;: B — Al(.’ fori e J\K.
Then @ k: Ay — A% is the unique morphism of graded C—algebras acting by QD(}K
in degree 0, and mapping ®yg: y >y foreach y € §7 for @ # L C K CJ C I and
n=—1,-2,...,sothat y is a free generator of both A}} over A(I)( and A; over A(}.

Note that <I>(} K" A?{ — A(} is a smooth morphism of C-algebras of pure relative
dimension, since id: A? — A? and B;: B — A? are. Also ®;x maps independent
generators | |7 g S7 of Ay over A% to independent generators of A% over AY.
Hence ®k: Ay — A} is quasifree.

Clearly B = ®% o Bx = Py 0 Bx: B — AY.

Also,if @# L C K CJ €I with |J| < K thenclearly 9, =9 0®%,: 4) - A9,
and &7, = &y o Ogyr: Az —>A;.

() Forall @ # J <€ [ with |J| < k and all n = —1,-2,..., we are given
maps §7: S} — A’}H.

(f) Let @ # J C I with |J| <k. Define d: A7 — Aj+1 uniquely by the conditions
that d satisfies the Leibnitz rule, and

(48) dy = ®jgoég(y) forall @# K CJ, n<—1 and y € Sg.
We require that dod = 0: A} — A“J‘+2, so that A% = (A%, d) is a cdga.

This defines A% = (A7, d) as a standard form cdga over C. Observeif @ # K CJ C 1
with [J| < k then as ®yk: Ax — A% is a morphism of graded C-algebras with
® xody =do® k(y) forall y in the generating sets | |54 c g ST for Ay over A%,
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we have ®jg od =do @ k: A’;{—>Aj+1

of cdgas.

,and so ®yk: Ay — A% is a morphism

(g) For all @ #£ J C I with |J| < k, we are given a Zariski open inclusion
oy: Spec A5 — X, with image Ima; = (\ies Ima;, such that (13) homotopy
commutes.

If @# K CJ C [ with |J| <k then (14) homotopy commutes.

Remark 4.2 (i) In Hypothesis 4.1, the only actual data required are the finite sets S’
in (a), the maps 87: ST — A'}H in (e), and the morphisms & ;: Spec A% — X in (g).

Also, the only statements requiring proof are that dod = 0 in (f), and that «y is
a Zariski open inclusion with image (7);c; Ime;, and that (13) and (14) homotopy
commute in (g). All of (b), (c), (d) are definitions and deductions.

(ii)) Most of the conclusions of Theorem 3.1 are immediate from the definitions
in (a)-(g): that A% is a standard form cdga, and Bs: B — A(} is smooth, and
O k. Ay — A% is quasifree, and f; = @k o Bk, and @y = P g o Dk .

For the first step in the induction, we prove Hypothesis 4.1 when k& = 1. Then the
only subsets @ # J C I with |J| <k are J = {i} for i € I, and the only subsets
K JCI with|J|<kareJ=K={i}foriel.

As in Theorem 3.1 we are given data {(A},e;,B;) | i € I}, where A? is a standard
form cdga, so that A¥ is freely generated over A? by finitely many generators in each
degree n = —1,—2, ..., as in Definition 2.1. For each i € [ and each n = —1, -2,
choose a subset S ”} C A7, as in part (a) for J = {i}, such that A} is freely generated
over A0 by [ ],<_1 S{l} Set Azi} = A; and By = B, so that parts (b) and (c) hold
for J ={i}.

Part (d) is a definition, and when k& = 1 only says that when J = K = {i} we have

Diyy = id: Ay — Af;y. For (o), define

{l} S{l} - A}{ﬁl = A?H by 8?1'}()’) =dy,

using d in the cdga A} = (A}, d). Given (e), part (f) says that the differentials d in

{l} = (A{l}, d) and A} = (A*,d) agree, consistent with setting AZi} = A7, so that
dod =0 in A}., as A? is a cdga.

{i} i

For (g), if i € I define ay;y = o;: Azi} = A; — X. Then the assumptions on
{(A7,a;,Bi) | i € I} in Theorem 3.1 imply that e; is a Zariski open inclusion,
with image Imeayy = Ime;, and (13) homotopy commutes for J = {i} as (12)
does. Theonly @ £ K C J C I with |J|<k =1 are J = K = {i}, and then (14)
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homotopy commutes as ey =g = o ;3 and Py =1id. This completes Hypothesis 4.1
when k = 1. Note that our definitions Azi} = A}, agy =a;,and By = B; fori el
are as required in Theorem 3.1(i).

Next we prove the inductive step. Let / = 1 be given, and suppose Hypothesis 4.1
holds with k = /. Keeping all the data in parts (a), (e), (g) for |J| <[ the same, we
will prove Hypothesis 4.1 with k =1 + 1. To do this, foreach J C [ with |J| =141,
we have to construct the data of finite sets S; for n = —1,-2,... in (a), and maps
8% 87 — A’}H in (e), and the morphism «;: Spec A% < X in (g), and then prove
the claims in (f) that dod = 0, and in (g) that ey is a Zariski open inclusion with
image ﬂie y Ima;, and that (13) and (14) homotopy commute.

Note that as Hypothesis 4.1 involves no compatibility conditions between data for
distinct J, J' € I with |J| =|J’| = k, we can do this independently for each J C I
with |J| =1 + 1, that is, it is enough to give the proof for a single such J. So fix a
subset J C I with |J| =1+ 1.

We first define a standard form cdga A' which is an approx1mat10n to the cdga A%
that we want, and morphisms ,BJ B —>AJ, yk: Ay — A' forall @ # K ¢ J, so
that |K| <[ and A% is already defined:

e Define 4 = A9 and f; = f;: B — A9 = AY as in Hypothesis 4.1(b).

e Define ,Zf; to be the graded C—algebra freely generated over A(} by generators
Ll@;éKgJ Sg in degree n for n = —1,—2,.... This is the same as for A% in
Hypothesis 4.1(c), except that we do not include generators S, since S is not
yet defined.

e If @ # K C J, so that A% is defined, define dJJK AO — Ag = /T(} as in
Hypothesis 4.1(d), and define k: Ax — A* to be the unique morphism of graded
C-algebras acting by dDO sk indegree O and mapping ®,k: y >y foreach y € ST
forgLCKandn=-1,-2,....

e The differential d: Xj — /Tj“ in the cdga A = (/T* ,d) is determined uniquely
as in (48) by

dy = Dyx08%(y) forall 3# K S J,n<—1 and y € SE.

Then ®k: Ay — /T'J is a cdga morphism for all @ # K < J, as in Hypothesis 4.1(f)
for ® ;¢ .

That is, /T.J is the colimit in the ordinary category cdgac of the commutative diagram I
with vertices the objects B and A% forall K with @ # K & J, and edges the morphlsms
Bk: B — A% and @k k,: Aj 2—>A' for@;éKZCKl cJ, and,BJ B—>A'
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yk: Ay — A} are the projections to the colimit. Since all the morphisms in I’
are almost-free in negative degrees and smooth in degree 0, these morphisms are
sufficiently cofibrant to compute the homotopy colimits as well. Indeed, having such a
morphism A4* — C* we can factor it into A* — A®* ® 40 C® — C*. Each one of these
morphisms is flat, and hence homotopy pullbacks can be computed without resolving.
Finally we notice that the colimit of the entire diagram I' can be calculated as a
sequence of pullbacks So A is also the homotopy colimit of I" in the co—category
cdga?’. Hence Spec A is the homotopy limit of SpecI" in the co—category dSchc .

For @ # K C J, consider ();cg Ima; as an open derived C—subscheme of X. Then by
Hypothesis 4.1(g), ax: Spec Ay — [);cx Ima; is an equivalence in dSchc . We also
have the open derived C—subscheme ();c; Ima; in X, which is affine by Definition 2.6
as X has affine dlagonal and Im a; >~ Spec A} is affine for i € J. Thus we may choose
a standard form cdga A' and an equ1valence o j: Spec A — (ies Ima;.

Define morphisms ﬂJ: Spec A'J — Z =Spec B by ﬂJ =mod s, and ¢JK: Spec A'J —
Spec Ay for @ # K S J as the composition

= ~ -1
Spec A% '~ N;ey Ima; & ;g Ime; 2K, Spec A%,

1

where o' is a quasi-inverse for the equivalence ax: Spec Ay — );cx Ima; .

By the homotopy limit property of Spec A* , there exists a morphlsm ¥: Spec - A‘
SpecA in dSchc unique up to homotopy, with homotopies B J =~ Spec ,3 Jovy
and ¢JK Spec D g o ¥ for @ # K C J. We can then write ¥ =~ Spec WV for
v A‘ — A‘ a morphism in edgag’, unique up to homotopy. However, we do not
yet know that W descends to a morphism in cdgac . The definitions of ﬂ 7, ¢ Jk and
¥ =~ Spec ¥ give homotopies

Tody SpecEJ o Spec V: SpecA'J — Z,

(49) ~ “
oy >~ agoSpecd x oSpecW: Spec A5 — X for @#K C J.

Consider the composition of morphisms of classical C—algebras

(50) A0 — 10— gO(Ay) 22, o4,
Here Spec H%(W) is the natural morphism
0 .
(51) Spec HO(V): X; — ]_[Z Xk,
@K

writing Xk for the open, C—subscheme (¢ fo (Im o) in X. This is the restriction
of the multidiagonal A2 xS x Xz X Xz--+Xz X, with 21-2 copies of X on
the right. Because X is separated, A2 X — X xz X is a closed immersion, and
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thus A2| 1s a closed immersion. Also the domain Xj of (51) is the preimage
under A2 7172 of the target, since Xy = ﬂ®¢KC] Xk as |J]| =2.

Hence (51) is a closed immersion, so H®(W) in (50) is surjective. Also A0 — HO(A )
is surjective, so the composition (50) is surjective. Therefore we can replace A‘ by
an equivalent object in cdgag®, such that AO = AO and the following homotopy
commutes in cdgag’:

A0 70

AJ - AJ

(52) | |

~ v ~
Ay —— A%

Now WU A — A° % 18 a morphism in cdga(C For this to descend to a morphism in
cdgac, the simplest condition is that A% should be cofibrant and A' fibrant in the
model category cdgac . Here the object A is fibrant, as all ob]ects are, but A"l may
not be cofibrant, ie a retract of an almost- free cdga. However, A is cofibrant as an
A° y—algebra, as it is free in negative degrees, and (52) says that \I/ does descend to a
morphlsm in cdgac in degree 0. Together these imply that W descends to a morphism
W A'J — A} in cdgac.

Next, by induction on decreasing n = —1, -2, ... we will choose the data S, §’ in
parts (a) and (e) of Hypothesis 4.1. Here is our inductive hypothesis:

Hypothesis 4.3 Let N =0,—1,—2,... be given. Then:

(a) We are given finite subsets S; forn=-1,-2,..., N. Write
1 1 N

for the graded C—algebra freely generated over Aj by the sets of extra generators S
in degree n foralln = —1,-2,..., N.
(b) We are given maps 8’}: S"} — A"Jrl forn =—1,-2,..., N. Define

d: A%y — A*+1
uniquely by the conditions that d satisfies the Leibnitz rule, and d is as in A =
(A*,d) on A C AJN’ and on the extra generators y € S; forn=-1,-2,...,N,
we have dy = 8 (y) € A’}";Vl We require that dod = 0: A% \ — Aj";\? so that
Ay = (Aj,N,d) is a cdga.
(c) We are given maps £7: S7 — A’} forn =—1,-2,..., N. Define

En: Ay — A*
to be the morphism of graded C-algebras such that E 5 = ¥ on A* C A% TN and on
the extra generators y € S forn =—1,-2,..., N, we have E N()/) =§&7(y) e A
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We require that Ey od=do En: A} y — /f"}“, sothat En: A% y — /T‘J is a cdga
morphism.

We also require that H" (En): H" (A% N) —H ”(A ) should be an isomorphism for
n=0-1,-2,...,N+1, and surjectlve forn=N.

For the first step N = 0, there is no data Sf,’, 83, E?, and A, = zzf'], and Eg =V,
and the only thing to prove is that

HO(W): HO(A%) — H°(4%)

is surjective, which holds as W0 = id: gg — /T(} = /’1\[} from above. So Hypothesis 4.3
holds for N = 0.

For the inductive step, let m =0, —1, -2, ... be given, and suppose Hypothesis 4.3
holds with N = m. Keeping all the data S" 8” g7 for n=—1,..., m the same, we
will prove Hypothesis 4.3 with N =m —1. Note that with SJ_I, ..., 87 the same, the
graded C-algebras A% Aj’m_l agree in degrees 0, —1,...,m, so it makes sense
to say that

Jm>

8”:S7—>A”+1 and 8”:SJ—>A'}’;111

are equal forn=—1,—2,...,m. We must choose data S~ 1, §m~1. gm~1 =AY
and g1 §m—1 . Am- ' , and verify the last two COI’ldlthIlS of Hypothes1s 4.3(c).

Choose a finite subset ST‘I of Ker(H™(Ep): H™(AY,,) — H"‘(A )) which gener-
ates Ker(---) asan H 0(A »)—module, and a finite subset S m=1 of HM= 1(A’ ) such
that Sm U and Im(H™~ 1(_, ): H™™ l(A ) = H™ 1(A )) generate H™~ 1(A )
as an H 0(A )—module. Finite subsets sufﬁce in each case since A%, , A'J are
of standard form, so that the modules H" (4% ), H "(A ) are ﬁmtely generated
over HO(A m)> HO(A ) for all n. Set

Then Hypothesis 4.3(a) defines A* _, asagraded C—algebra, with A”] T m— =47, in
degrees n >m. Forall y € Sm ! choose a representative 6’7~ L(y) in AJ m— I—A’}’,m
for the cohomology class y in H™(AY ), so that
d@7 My =0 in ATFL
Define 67~ 1(y)=01in AJ m_1 forall y € 5’"“1 H_nls defines S'J”_l: ST 1 —>Af,”m 1
ES
in Hypothes1s 4.3(b), and hence d: AG A Tom—1-
To see that dod = 0: 47, A}‘J;nz |- note that A% | = Aj’m[ST_l], so d
on A%, _, is determined by d on A%, which already satisfies dod = 0 by induction,
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and d on the extra generators S ;”_1, which satisfy dod = 0 as for y € § 5"_1 we have
dody = d(8m_1(y)) =0, and for y € S}”_l we have dy =0 so dody = 0. Hence
A'J m—l = (AJ m—1-d) is a cdga, as we have to prove.

For all y € Sm 1 because 87 1(y) € AJm represents a cohomology class in
Ker(H™(Em): Hm(A m) Hm(A )), we see that E,, 0877~ 1(y) is exact in A,
so we can choose an element g7 1()/) € Am 1 with do &7~ 1(y) =E8mody” Ly).
Forall y € Sm LcH™ 1(A ), choose an element ¥4 1(]/) € Am ! representing y,
so that dofg1 '(y) = 0. This defines §7'~1: s7~1 Am L

Hypothesis 4.3(c) now defines E,—1: AJm 1—>A . Toprove E;y—10od=doE,—1,

notethatAjm 1—A* [S7~ 11, and on AJmCA* m—1 Wehave Ep—1 = 8y, and

Emod=do&E, by induction. So it is enough to prove that Em—10d(y) =doEpy—1(y)
forall y € ST‘I. Ifye ST_l then
Em-10d(y) = Bm—1087 71 (¥) = Bm o871 (y) =do &7 (y) =do Em—1(y),

as we want. Similarly, if y € S7~1 then
Em—10d(y) = Bm-108771(y) =0=do &7 (y) =do Bpm-1(y).

Therefore E,,—10od=do E,,—1,and E,,—1: A", — /T'J is a cdga morphism.

J.m—1

Finally we have to show that H" (Ep,—1): H" (A% 7 m— D—H" (A ) isan 1som0rphlsm

for n = —1,-2,...,m, and surjective for n = m — 1. Since E,,: A}, — A' and
Em—1: A% ,,_1— A'J coincide in degrees 0, —1,...,m, in cohomology they coincide
indegrees 0,—1,...,m+1,s0 H"(E,;,—1) is anisomorphism forn =0, —1,...,m+1

as H"(E,,) is, by induction.

Because H™(E,): Hm(A'J,m) — H’"(/T}) is surjective, and the added genera-
tors S‘m_l in A%, _, span Ker(H m(Em)) adding the generators S'm_l makes
H’”(um 1) H’”(AJ m_1) = H’"(A' ) into an isomorphism. Also, since the added
generators 71 together with Im(H™1(E,,)) generate H™~ 1(A%), adding §7~1
makes H™™ l(um 1): H™™ I(AJm ) —~ H™ 1(A') surjective.

This proves Hypothesis 4.3 for N =m —1, so by induction Hypothesis 4.3 holds for all
N =0,—-1,-2,.... Taking the limit limy_,_ A'J,N gives the cdga A'J defined in
Hypothesis 4.1 using the data %, &7 forall n =—1,-2,... from parts (a) and (b) of
Hypothesis 4.3 as N — —oo. The data £} for n = —1, -2, ... from part (c) defines a
morphism E =limy oo En: AT — //1\}, where E, A% agree with Ep, A.J,N in
degrees 0, —1,..., N forall N <0.

Hence H"(E): H" (A% )—>H”(A ) agrees with H" (E): H" (A% N)—)H”(A )
foralln =0,—1,...,N+1,so H”( ) is anlsomorphlsmforalln<0bypart(c)
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of Hypothesis 4.3, and E: 4% — /T‘J is a quasi-isomorphism in cdgac, and hence
an equivalence in cdgag’. Thus Spec E: Spec A% — Spec A% is an equivalence
in dSchc . So we can choose a quasi-inverse x: Spec A% — Spec A% in dSchc .

Write ¢: A~.J < A% for the inclusion. Then ¥ = E o X} — A\.J since EN|/I-J =y,
so taking the limitas N — —oo gives E[43 = W. Also the definitions of 8;: B — A
and @JKL Ay — A% for @jé K € J in parts (b) and (d) of Hypothesis 4.1 satisfy
By=tofyand Pyjx =10dyk.

Define @y =@ o x: Spec A% — X. Since & is a Zariski open inclusion with image
(\ies Ima;, and y is an equivalence, a;: Spec A% — X is a Zariski open inclusion
with image (7);cy Ima;, as in Hypothesis 4.1(g). Then we have

Toay=modjox
:Spec,gj oSpecVo y
:Spec,gj oSpecmSpechX:SpecBJ oSpec. = Specfy,

using (49) in the second step, W = & o in the third, Spec &, x quasi-inverse in the
fourth, and By = to B in the fifth. Thus (13) homotopy commutes.

Similarly, if @ # K C J then
oy =djox
:aKoSpecEDJKoSpec\IloX
~ (XKOSpeC;ISJK oSpectoSpec E o y ~ag oSpecDjx,
using (49) in the second step, W = E ot in the third, and & jx = Lod sk and Spec &, x
quasi-inverse in the fourth. Hence (14) homotopy commutes.

This proves that Hypothesis 4.1 holds with k = [ 4 1, and completes the inductive
step begun shortly after Remark 4.2. Hence by induction, Hypothesis 4.1 holds for
all k =1,2,... so Hypothesis 4.1 holds for k = co. Theorem 3.1 follows, since all the
conclusions of Theorem 3.1(i)—(ii) are either part of Hypothesis 4.1, or for Afi} = A7,
oy = a;, By = Bi in part (i) were included in the first step of the induction. This
completes the proof.

5 Proof of Theorem 3.7

5.1 Theorem 3.7(a): (%) is an open condition

Suppose X, w}, A, o, V, E, F, s, t, ¥ are as in Definition 3.6, and suppose
that U C V is open, E~ is a real vector subbundle of E|y, and v € sTLo)nuU,
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such that the assumptions on E~|, in condition (x) hold at v. We must show that
these assumptions also hold for all v’ in an open neighbourhood of v in s~1(0) N U.
Suppose for a contradiction that this is false. Then we can choose a sequence (v;){2,
in s71(0) N U such that v; — v as i — oo, and the assumptions on E~|,, in (*) do
not hold forany i =1,2,....

By passing to a subsequence of (v,)l 2 1» we can assume dimImds|,; and dim Ker? |y,
are independent of i = 1,2, .... By trivializing E near v, we can regard (Imds|y,){2,
and (Kert]y;){2, as sequences in complex Grassmannians, which are compact. Thus,
passing to a subsequence of (v;){2,, we can assume they converge, and there are
complex vector subspaces Iy, Ky C E|y such that Imds|,;, — I, and Kert|,, — Ky
as i — 0o.

Because ¢ ods = 0 on s~!(0) we have Imds|,, € Kert|y;, and so I, € K. Also
Imds|y € Iy, since if w € T,V we can find w; € Ty, V with w; — w as i — oo, and
then ds|y; (w;) — ds|y(w) as i — oo. Similarly K, C Kert/|,.

We now have a quotient vector space (Kert|,)/(Imds|y), which as in (32) carries a
nondegenerate quadratic form Qv. There are subspaces satisfying I,/(Imds|,) C
Ky/(Imds|y) € (Kert|y)/(Imds|,). Also, for each i = 1 we have a quotient space
(Kert|y;)/(Imds|y;) with quadratic forms 0, ;- As i — 0o we have

(53) (Kert|y,;)/(Imds|y;) = Ky /Iy = [Ky/(Imds|y)]/[Iv/(Imds|y)].
One can prove using a representative wye for a*(a)g,) that
I,/(Imds|y) = {e € (Kert|y)/(Imds|y) | Qv(e,k) =0 forall k € K,/(Imds|y)},

that is, /,/(Imds|,) and K,/(Imds|,) are orthogonal subspaces with respect to Qv.
Hence the restriction of Q v to Ky /(Imds|y) is null along I,,/(Imds|,), and descends
to a nondegenerate quadratic form Qv on [Ky/(Imds|y)]/[Iy/(Imds|y)] = Ky /1y.
Then under the limit (53), we have Qvi — Qv as i — o0.

By (x) for (U, E7) at v, we have Im(ds|,) N E~|, = {0}, and the map IT, in (35),
Iy: E7 |y ﬂKer(t| ) — (Kert|y)/(Imds|y), has i image Im IT, of half the total dimen-

sion, with Re 0, negative definite on Im IT,. Since O, is zero on I,,/(Imds|y), it
follows that Im IT, N (I, /(Imds|y)) = {0}, and thus

(54) E™ |y 01y ={0}.

Condition (34), that ¢|,(E ™ |y) = t|y(E|v), is equivalent to E~ |, + Ker(¢]y) = E|v,
in subspaces of E|,. As Im IT, is a maximal negative definite subspace for Re Qv in
(Kert|y)/(Imds|y), and K, /(Imds|,) is the orthogonal to a null subspace I,/ (Imds|)
with respect to Re Oy, it follows that Im IT, + K, /(Imds|,) = (Ker?|,)/(Imds|y).
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Lifting to Kert|, gives [E~ |, N (Kert|y)] + Ky, = Kert|,. Thus the subspace
E~ |y + Ky in E|, contains E~|, and Ker¢|,, so, as E~ |, + Ker(¢|y) = E|y, we
see that

(55) E_|U+Kv:E|v~

Write I1,: E ~|yN Ky — Ky /I, for the natural projection. It is injective by (54). Using
(54)—(55) and the facts that Im IT,, has half the dimension of (Ker¢|,)/(Imds|,), and

dim[/,/(Imds|y)] + dim[Ky/(Im ds|,)] = dim[(Ker?|y)/(Imds|y )]

as I,/(Imds|y), Ky/(Imds|,) are orthogonal subspaces, by a dimension count we
find that Im f[v has half the total dimension of K,/I,. Also, since the quadratic
form Qv on Ky/I, = [Ky/(Im ds| )]/[1y/(Imds|,)] descends from the restriction
of Qv to K,/(Imds|y), and Im I1, descends from Im IT, N [Ky/(Imds|y)], and
Re Qv is negative definite on Im IT,, we see that Re Qv is negative definite on Im ,.

Because E~|,; — E~ |y and Imds|y; — I, as i — oo, we see from (54) that
(56) E™|y; N (Imdsly;) = {0} for i > 0.

Since E~|y; — E~ |y and Kert|,, — K, as i — 0o, we see from (55) that we have
E~|y; +Kert|y, = E|y,; for i > 0. But this is equivalent to

(57) to; (E™ |v;) =t]v;(Ely;) in Fly, fori > 0.

Using (56)—(57), the same dimension count as above implies that Im ﬁv has half
the dimension of (Kert|vl) / (Im ds|y;) for i > 0. Under the limit (53), we have
Qvi — Qv and Im I, ; — Im I1,. Thus, as Re Qv is negative definite on Im I1,, we
see that Re Qu, is negative definite on Im H for i > 0. Together with (56)—(57),
this shows that the assumptions on E~|,, in (*) hold for i > 0, which contradicts
the choice of sequence (v;)% 721 - This proves Theorem 3.7(a).

5.2 Theorem 3.7(b): extending pairs (U, E ™) satisfying (%)

Suppose X, wy, A*, o, V, E, F, s, t, Y are as in Definition 3.6, and (U, E7)
satisfying (*) 1s as in Definition 3.6, and C C V is closed with C € U. Our goal is to
construct (U 7) satisfying (x) for V, E,... with C Us_l(O) c U C V, such that
E~ |y’ = E~ |y for U’ an open neighbourhood of CinUNTD.

Using the notation of Section 3.2, s~1(0)¥2 is a finite type closed C—subscheme
of V¢ and the maps v+ dim Ker ds|, and v dim Ker ¢|,, are upper semicontinuous,
algebraically constructible functions s~ (0)%¢ — N, noting that ¢|, is independent
of choices for v € s~1(0)¥2. Therefore by some standard facts about constructible

Geometry & Topology, Volume 21 (2017)



Virtual fundamental classes for moduli spaces of sheaves on Calabi—Yau four-folds 3293

sets in algebraic geometry, we can choose a stratification of Zariski topological spaces
s7LH0)¥e = Llgea Waalg, where A is a finite indexing set, and Waalg is a smooth,
connected, locally closed C—subscheme of s~1(0)¥2 C V22 for each a € A, with
closure Waalg in s~1(0)¢ a finite union of strata W, such that v — dim Kerds|,
and v — dimKer¢|, are both constant functions on W, e,

Writing W, € s~1(0) € V for the set of C—points of W, 8 each W, is a connected,
locally closed complex submanifold of V lying in s~1(0), with closure W, a finite
union of submanifolds W}, such that s~1(0) = | lseq Wa. On each W,, the maps
v > dimKerds|, and v — dimKer¢|, are constant. This implies that Kerds|w,
is a holomorphic vector subbundle of TV |w,, and Imds|w, a holomorphic vector
subbundle of E|w,, and Kert|w, a holomorphic vector subbundle of E|w,, and
Im¢|w, a holomorphic vector subbundle of F|yw, . Since t ods = 0 on s~1(0), we
have Imds|w, € Kert|w, € E|w,.

Thus we have a holomorphic vector bundle (Ker¢|w,) / (Imds|w,) over W,, whose
fibre at v € W, is identified with H!'(Tx|x) for x = ¥ (v) by (20). As in (6)
we have a quadratic form Q, on H!(Tx|y), and as in (32) Qv is the quadratic
form on (Kert|w,)/(Imds|w,)|, identified with Q, by (20). One can prove using a
representatlve wye for a* (w? y ) that Qv depends holomorphically on v € W, . Hence
Qv = Qa |y for Qa € HO(S?[(Kert|w,)/(Imds|w,)]*), a nondegenerate holomorphic
quadratic form on the fibres of (Ker?|w,)/(Imds|w,).

The idea of the proof is to choose E~ near W, by induction on increasing dim W,
starting with @ € A with dim W, = 0, then ¢ € A with dim W, = 1, and so on.
Since dim(W, \ W) < dim W,, we see that W, \ W, is a finite union of W, with
dim W}, < dim W,, so when we choose E~ near W, we will already have chosen E~
near W, \ W, and the extension over W, should be compatible with this.

Our inductive hypothesis (f),, for m =0,1,2,... is

(¥)m Forall a € A with dim W, <m we have chosen a pair (Ua, E 2 ) satisfying ()
for V, E, F,s,t,... with W, C Ua C V, such that there is an open neigh-
bourhood Ua of CN Ua in U N Ua with E7|g, = E_|Ua, and if b € A with
Wy, € W, \ W, (which implies that dim W}, < dim W, < m, so (Ub, E ) is
deﬁned) then there is an open neighbourhood Uab of Wy in Ub such that

Ea |UaﬂUab - Eb |UunUab'

First consider how to choose (Ua, Ea_ ) satisfying (x) with W, C U, CVforac A
with no compatibility conditions, either with (U, E™) near C, or with (Up, E,) for
Wy, € W, \ W, . We can do this as follows:
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(i) Choose a real vector subbundle E, of (Kert|w,)/(Imds|w,), whose real rank
is half the real rank of (Ker?|w,)/(Imds|w,), such that Re Q, is negative definite
on E,.

(i1) Lift Ea to a real vector subbundle Ea of Kert|w,. That is, the projection
Kert|w, — (Kert|w,)/(Imds|w,) induces an isomorphism E, — E,.

(iii) Choose a real vector subbundle E, of E|w, with E|w, = E, & Kert|w, .

(iv) Set Ea_|Wa =E,® E,. Then Ea_|Wa is a real vector subbundle of E|w,, and
the assumptions on E |, in condition () in Section 3.3 hold for all v € W.

(v) Choose any real vector subbundle E . of E|g, onasmall open neighbourhood U,
of W, in V, extending the given E |w, = E, ® E, on W,.

Observe that by Theorem 3.7(a), proved in Section 5.1, condition (*) holds for E on
an open neighbourhood of W, . So by making U, smaller, we can suppose (Ua, E )
satisfies (x).

All of these steps are poss1ble Any (Ua, E ) satisfying (*) with Wa C U, CV arises
from steps (i)—(v) (though E, in (iii) is not uniquely determined by E ). Furthermore
(taking germs in (v)), the space of choices in each step is contractible.

Now suppose m = 0,1,...and (%);;—1 holdsif m >0, and a € A with dim W, =m. To
choose (Ua, E ) with the compatibility conditions required in (1), , we follow (i)—(v),
but modified as follows. In step (i), we choose Ea with

(58)  Ealy, np, = [(E™NKer)|y, (5 )+Amdsly, (5)]/(mdsly, 15).

for some small open neighbourhood U, of CNW, in U, andif b € A with Wy C
W, \ W, then

(59) Ealy, np,, = (E; NKert|y, (5 )+ (mds|y, (5 )]/(mds|y, 15 ),
for some small open neighbourhood ﬁab of Wy in Ub.

To see this is possible, first note that the first part of (i);,—; with b in place of a
implies that (58) and (59) are compatible, that is they prescribe the same value for E,
on WonU, N 0ab’ provided the open neighbourhoods U,, ﬁa p are small enough.
Also given distinct b,b’ € A with Wy, Wy € W, \ W,, either (a) W € W, \ Wp,
or (b) Wy € Wy \ Wy, or (¢) W N Wy = W, N Wy = @. In cases (a) and (b)
we can use the second part of (f),,—1 to show that (59) for b, b’ are compatible
provided ﬁab’ Uab/ are small enough, and in case (c) we can choose ﬁab’ Uab/ with
ﬁab N ﬁab/ = &, so compatibility is trivial.
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Thus, if ﬁa and ﬁab for all b are small enough then (58) and (59) for all b are
compatlble and can be combined into a single equatlon prescrlbmg Eq on W, =
W, N (Ua U ab) We then have to extend E, from W, to W,, satlsfymg the
required conditions. This may not be possible: if we have chosen E~ or E badly
near the “edge” of W, in W, then the prescribed values of E, may not extend
continuously to the closure W, of Wa in W, . However, we can deal with this problem
by shrlnklng all the Ua , Uab’ such that the closure W, of the new W, lies inside the
old W,. Then it is guaranteed that the prescribed value of E, on W, extends smoothly
to an open neighbourhood of Wa in W,, so we can choose E, on W, satisfying all
the required conditions (58)—(59).

In a similar way, for each of steps (ii)—(v) we can show that making the open neigh-
bourhoods Ua , Uab smaller if necessary, we can make choices consistent with the
compatibility conditions on ((v]a, E _) in (i)m So by induction, (%) holds for
allm=0,1,.... Fix data (Ua, E ), U,, U, b satisfying (1), for m =dim V.

Next, choose open neighbourhoods U’ of C in U C V and Ua of W, in (v]a for
each a € A, such that U’ N Ua C ﬁa for a € A, and ﬁa N l~]b C ﬁab if a,b € A with
Wy, € Wy \ Wy, and U, NUp = @ if a,b € A with W, N W), = W, N W,, = @. This
is possible provided U’ and U, for a € A are all small enough.

Define U = U’ UJ,c4 Ua, which is an open ‘neighbourhood of C U Jzeq Wa =
C Us_l(O) in V. Define a vector subbundle £~ of E|§ by E~ |U’ =E~ |U/ and
E- 7, = E |f7, for a € A. These values agree on the overlaps U’ N U, and U, N Ub
by construction, so E~ is well defined. Also (U E- ) satisfies (*) since (U, E7)
and the (U,, E ) do, and U’ is an open neighbourhood of C in U N U with E~ lv =
E- |y’ by definition. This proves Theorem 3.7(b).

5.3 Theorem 3.7(c): s~1(0) = (s*)~1(0) locally in U

In Section 3.4 we explained how to pull back pairs (U, E) satisfying (x) along a
quasifree ®yg: Ay — A% . We can also push forward (Uy, E7) along @k .

Definition 5.1 Let X, wy, n, ®jx: Ay — Ay and Vy, Ej, ..., xjk, §jk be as
in Definition 3.10, and suppose (Uy, E7) satisfies () for A% . Our goal is to construct
(Uk. E) satisfying () for A%, with ¢y (SJI(O) NnUy) = WK(SKl (0)NUk) < Xan,
and if (Uy, E7), (Uk, Eg) also satisfy (T), a coordinate change of Kuranishi neigh-
bourhoods, as in Section 2.5:

(60) (Uk.0ks.nk1): WUk, E{.sg . vE) = Uy, EF st v).
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Let vy € s71(0)NUy with ¢k (vy) = vk €55 (0) € Vg and ¥y (vy) = ¥ (vk) =
x € Xan. We claim that we can choose splittings of real vector spaces
6 V= To,Vi®T), Vs, Eglo, =Ejlo, ®E)lo, ® E]ly,.

E;lvj = E}|UJ GBE‘/HUJa FJ|UJ = FJ'UJ GBF}/|UJ @F}//h)],
fitting into a commutative diagram of the form

E;|v1 :E;|UJ @E%w

EleJ@ ﬁJ|vJ®

T dsyly tylv
TUJ Vi E" | F///|
J vy J vy
ldd)JKle lXJKh)J lSJKle
dsK‘l)]( lK|vK
0 —— Ty Vk ————— Eklogy ————— Fxlog —— -
where
* * * 0 dsklog O tklog 0 0
inc=| 0 x|, t7]g7),, =0 =] dssly,=| *x =| = 0 0x]
0 = 00 0 0 0 00

doslv,=(=0), xsklv,=(=00), &rklv,=(=00).

To prove this, note that the rows of (62) are Tgpe, A lvs > Tspec A3, |vg » and are com-
plexes, and the lower columns are induced by ® ;g , are surjective as ® jx is quasifree,
and induce isomorphisms on cohomology as in Section 3.2. Then:

(i) Define Ty, Vy = Kerdg k|, -

(i) Choose arbitrary Ty, Vy with Ty, Vy = Ty, Vs @T, V. Then Ty, Vy = Ty Vg
as d¢jk 1is surjective.

(iii) Define E |y, =dsslv, [Ty, Vs]. Then E |y, = T, Vy as the columns of (62)
are isomorphisms in cohomology, and E’; |, € Ker(yxjk|v,) as the left-hand square
of (62) commutes.

(iv) Choose E”7 |y, with Ker(ysx|v,) = E}lv, ® E7lv, .

(v) Since the columns of (62) are isomorphisms on cohomology, t;|,, is injective
on E7|y,. Define FJ|y, =tslv,[E7|y,]. Then F}|y, = Ef|y,. Also F}|,, C
Ker &k |y, , as the right-hand square of (62) commutes.
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(vi) Choose F'|y, with Ker&sk|v, = F}lv, ® F}'|v, .

(vii) Since the columns of (62) are isomorphisms on cohomology, we have

F}/|Uj tJ|UJ[EJ|UJ®E |UJ]_ZJ|UJ[KerXJK|UJ]

=Ker&jxlv, NImtsly, = (Fflo, ® FJ'lv,) NImty|y,.

Thus we may choose Fyl|,, with Fy|,, = FJl-UJ ® Fflv, ® F'ly, and Imt;|y, €
FJ|UJ F{ly,. So the third row of #7|,, in (62) is zero. Also FJ|vJ >~ Filog
by (vi) as &5k is surjective.

(viii) Set Eﬂw =E7|v, ﬂt1|v_}(ﬁj|v1). We claim y x|y, is injective on Eﬂv,.
To see this, note that we have an exact sequence

0— E;|UJ NKerty|y, —>E;|UJ —>tJ|UJ[E;|UJ]ﬂFJ|vJ — 0,

since Kerty|y, € tJ|;}(fJ|vJ). The last part of (x) implies that yjx|,, maps
E7 |y, NKertyly, injectively into Kertk |y, . Also &5k /|y, is injective on Fy|y, , and
the right square of (62) commutes, so the claim follows.

(ix) Choose EJ|UJ C Ejlv, such that

Ejly, CEjly, and Ejly, =Ejly, EBKCT(XJKle) = EleJ ®E} |y, ®ET|v,

and tJ|vJ[EJ|UJ] C FJ|vJ This is possible as y sk |y, is injective on E; 7lv, . and
using (v), (vii) and (viii). Then E Jlv, = Exlvg as yyk is surjective.

(x) Choose Ef,’|vj such that E7 [, = E;|vj ®§J|Uj and tJ|v_,[E’J’|vj] C Fflv,-
This is possible by (viii) and because Im?;|y, € Fjlv, ® FJlv, .

Since 27]v; (E7lv,) = tslv; (Egly,) by (34) and Fllo, = trlo, [E}|v,], we see
that tJ|vJ[E”|vJ]_F“|vJ Also tyly,: E" T, = FYlv, is injective, as, by (viii),
Kerty|g5 |UJ_E |v, . Hence E’ |UJ:F”|vJ

We can do all this, not just at one vy € s;l (0)N Uy, but in an open neighbourhood U
of S;I(O) N Uy in Uy. That is, we can choose U, and splittings

TVily, =TV, @TVy, Esly, =E;@E; @ Ejly,,

(63) B -
EJlU}ZE]@E_/]/, FJ|U5=FJEBFJ€BFW,

with E — C Ey, such that (62) holds at each v € s;l (0)NUy . To see this, note that the
argument above can be carried outon s ~1(0)NU; regarded as a C > —subscheme of U /7,
in the sense of C °°—algebraic geometry in [17], and the splittings (63) with E CEy
can then be extended from s7 ~1(0)N Uy to an open nelghbourhood U; ’ Makmg U; !
smaller, we can suppose that the component of yjx mapping E;— ¢ _]K|U/ (E K)

Geometry & Topology, Volume 21 (2017)



3298 Dennis Borisov and Dominic Joyce

is an isomorphism. We can also choose the splittings so that away from s;l o)nuy,
the map 77|y, has the form

(64) trly, = cEjly, ®E, ®E) > Fr @ F]a F).

=

Write 5|y, =57 @5 @57y, for 5y € C™(Ey), sJ C®(E’)) and 5’y € C®(E]).
Then (64) and t7 o sy = 0 together imply that s’ = 0. From (62) we see that
ds’;lv,: Tu, Vi — E’|v, is surjective and d¢yk |y, : Ker(ds’;|v,) — Tux Vi is an
isomorphism, at each vy € s;l(O) N Uy. Hence S/J is transverse near vy, so that
(s/J)_1 (0) is an embedded submanifold of V; near v; with tangent space Ker(ds’, |y )
at vy, and ¢k l(s/,)="(0): (s/J)_l(O) — Vg is a local diffeomorphism near vy . Thus,
making U, smaller, we can suppose that s’; is transverse on U, so that (s;)7!(0)
is an embedded submanifold of U}, and ¢ _]K|(s y=10): ()7 1(0) — Vi is a local
diffeomorphism. But ¢k is injective on s (()) N Uy, so making U’ 7 smaller, we
can also suppose ¢ JK|(S/J)—1(0) is a diffeomorphism with an open set Ux in Vg,
with inverse Ogy: Ux => (s/,)"1(0) C U, C Uy

‘We now have a vector bundle 03 J(E J) over Uk, and we have vector subbundles
QEJ(EJ, JET ET E E”) with QI’QJ(EJ) = Q;J(EJ)GBQEJ(E Y® O, (ET),
Og (ET) = G*J(EJ) @9*J(E ) and Q*J(E ) C O*J(EJ) Since ¢jg o Ogy =
idyy , pulling back yjx: Ej— ¢ (Ek) by Ok gives a surjective vector bundle mor-
phlsm Oy (xsK): O ;(Ey) — Ex|uy » where 0F ; (x k) restricts to an isomorphism
Og s (EJ) — Ek . We also have a section g ;(sy) of 0 ;(Es), whose components
in 63 J(EJ) Og s (EY), 0 ;(ET) are 0g ;(57), 0, 0. Applying 6% ; to (25) and
using E’; C Ker y sk shows that

(65) Ok s (X ar) 0k s (5] = O0g ;X)) 0k s 57)] = sk luk -

Define a vector subbundle Ex C Exlux by Ex = 0g; (xsx)[0% (E )]. This is
valid as 0 (E )C o J(EJ) and 0g ;(xJK) is an isomorphism on QKJ(EJ) We
claim that (U k., Ex) satisfies condition (). To see this, let vk € s Kl (0)N Uk, and set
vy =0gj(vg). Then vy € sJI(O) N U’ with ¢ jx(vy) = vK, so (61)—(62) hold, with
the columns of (62) isomorphisms on cohomology From this and (x) for (Uy, E)
at vy, we can deduce () for (Uk, Ef) at vk .

Writing EF = Ejlu,/E7, s;r =s;+Ej € C°°(E;r), and similarly for EZ, s}g,
define a vector bundle morphism

nks: Ef = 08 (EF). nksiex +Eg > QEJ(XJK)IgI%J(gJ)[eK] +0g s (EY).
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This is well defined as O ; (xsx)loz ,(E,): Oy (E;) — Ek is an isomorphism, with
inverse

QEJ(XJKN;[{J(EJ)I Ex — 0 (Ep),

which, by definition of EE maps Ep — Q*J(E_) C 0g;(E7). Also (65) implies
that ngs (s}(") = 0g,(s J) Using (62) we can also show that the analogue of (8)
for Ok, nks at vk is exact. Therefore, if (Uy, E}), (Uk, Ey) also satisfy (7), then
(Uk, 0k j,nky) in (60) is a coordinate change. This completes Definition 5.1.

We now prove Theorem 3.7(c). Suppose X, a)}, A%, a,V,E, F,s,t,yand (U, E7)
satisfying (*) are as in Definition 3.6. Then X’ := a(Spec A*) C X is an affine
derived C—subscheme of X. Let v € s71(0) N U, and set x = ¥ (v) € X,,. Write
(A},a1) = (A%, &), V1 =V, E;y = E, v1 = v and so on. Applying Theorem 2.10
to (X', wk|x’) at x gives a pair (45, wA-) in —2-Darboux form and a Zariski open
inclusion e&t5: Spec A3 < X’ € X which is minimal at x € Im e, with o} (0¥ ) Wys-
Section 3.2 applied to A‘, oy gives Vo, Ea, 52,.... Set v =Y, 1(x) €55 1(O) - Vz.

Applying Theorem 3.1 to the derived C—scheme X’ with I = {1,2} and initial
data {(A,01), (A5, a2)} gives (A],,a12) withimage Imoa12 =Ima; NImay and
quasifree morphisms ®15 1: A} — A},, ®12,2: A5 — A}, such that (14) homotopy
commutes in dSchc. Section 3.2 applied to A}, gives V12, Eq2, s12,... and to
®13,1 and D125 gives ¢12,1: Viz > Vi =V, x12,1, §12,1 and ¢122: Viz — V2,
X122, £12,2, simplifying notation a little. Set vi2 = le (x) €57, 1(0) € V12, so that
$12,1(v12) = v1 and ¢12,2(v12) = V2.

We have (U, E™) satisfying (x) for A}, a1, V1, E1, S1,.... Thus by Lemma 3.12,
we can choose (Uiz, E7,) satisfying (%) for V12, Ei2, s12,... and compatible
with (U, E7) under ¢12,1 and yi2,1 in the sense of Section 3.4, such that vy, €
515 (0)N @13 | (U) S Uiz € Vip. Also Section 3.4 defines x7, | such that if (U, E™)
and (Ui2, E7,) satisfy (f) (we do not assume this), then

(U12 ¢12 1|U12’ X12 1) (U12’ 12,S12’ le)—>(U E+ + w+)
is a coordinate change of Kuranishi neighbourhoods, as in Corollary 3.11.

Now apply Definition 5.1 to push forward (U12, E{;) in Vi2, Eq2, s12,... along
$12,2, X12,2, §12,2. This yields (Uz, E5) satisfying (%) for V2, E3, s2,... with
¢12,2(s1_21 (0) NU12) € U, C V3, so in particular v, € U, and data 65,12, 12,12 such
that if (U, E5) and (Ui2, E{5) satisfy (1) (we do not assume this), then

(66) (Uz, 02,12, 12,12): (Uz, Ef s 055 — (Ura, Efy s, vih)

is a coordinate change of Kuranishi neighbourhoods, as in (60).
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Since (A’,a)A-) is in —2-Darboux form and minimal at x, Example 3.8 proves
that there ex1sts an open neighbourhood U} of v, in U, such that s loynuj =
(s;)71(0) N U}. Then (U}, E5 lus) satisfies (f). The construction in Definition 5.1
implies that 92,12 identifies s2_ 1(O) near v, with 51_21 (0) near vz, and identifies
(s;r )~1(0) near v, with (sfrz)_1 (0) near v1o (the second follows from the fact that the
analogue of (8) for 62 12, 172,12 at v2, V12 is exact, so (66) is a coordinate change of
Kuranishi nelghbourhoods near vy, v12). Since s, 1L0)= (s;r )~1(0) near v, it follows
that s, 10) = (s12) 1(0) near vy,. That is, there exists an open neighbourhood U/,
of v12 in Usa such that s, (0) N U/, = (s15)71(0) N U{,

Similarly, we have that ¢12,; identifies 57, 1(0) near vy, with s~1(0) near v, and
identifies (512) 1(0) near vy, with (s7)~1(0) near v, so there exists an open neigh-
bourhood U, of v in U such that s~1(0) N U, = (sT)~1(0) N U,. This holds for
all ves™1(0)NU. Define U’ = Uves—1(0) Uy~ Then U’ is an open neighbourhood
of s~1(0)NU in U, and s~1(0)NU’' = (s+) 1(0) NU’. Theorem 3.7(c) follows.

6 Proofs of some auxiliary results
Next we prove Propositions 3.13, 3.14 and 3.17.

6.1 Proof of Proposition 3.13

Let Z be a paracompact, Hausdorff topological space and {R; | i € I} an open cover
of Z. By paracompactness we can choose a locally finite refinement {S; | i € I}. That
is, S; € R; € Z is open with Uie] S;i=Z,andeach z € Z hasanopen z € U, C Z
with U; N S; # @ for only finitely many i € I.

By a standard result in topology known as the shrinking lemma, we can choose open
sets T! € Z with closures T} € Z for i € [ suchthat T' C T} € S; fori € [
and | J;¢; T! = Z. The next part of the proof broadly follows that of McDuff and
Wehrheim [29, Lemma 7.1.7], who prove a similar result with Z compact and [/ finite.
By induction on k = 2,3, ... choose open T'i k c 7 with

(67) T, cT;CcT?cT;cTPcT; S5, SZ

for i € I. Here to choose Tl.k we note that Z is normal as it is paracompact and
Hausdorff, so we can choose open Tl.k, U C Z with Tf.‘_l - Tl.k, Z\S; CU and
TFNU=. Then TF € Z\U  S;, and Z\ U is closed, so we have T¥ C S;.

Now for each finite @ # J C I, define a closed subset Cy C Z by
(68) cr=TY\ () 77

jeJ iel\J
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Then part (i) of the proposition follows from Ty lcs i € R; for j € J by (67), and (ii)
from {S; | i € I} locally finite with Cj € ();¢; Si. For (iii), suppose @ # J, K C [
are finite with J € K and K &€ J. Without loss of generality, suppose |J| < |K].
Then there exists j € J \ K, and (68) gives Cy C T”| and Cx C Z '\ T|K|Jrl which
forces C;y NCg = T as T|J| - T|K|"'1 by (67).

For part (iv), if z € Z, define
(69) = U

J C I finite
Z € mj eJ T‘le
Then J, is finite since {S; | i € I} is locally finite, so z € S; for only finitely
many j € I, and J, is nonempty as {Ti1 |i € I} covers Z,s0 z € Ti1 C Tiz for
some i € I, and J = {i} is a possible set in the union (69). If j € J; then j € J
for some J in the union (69), so that z € Ty| - T‘JZ| as |J| < |J|. Ifiel\J;
then we have that z ¢ ﬂJEJ uti} T|JZ|+1 as J; U {z} is not one of the sets J in (69),
but z € ﬂje T|le , SO we conclude that z ¢ T|le+1 Hence z € Cy, by (68), and
part (iv) follows Th1s completes the proof of Proposmon 3.13.

6.2 Proof of Proposition 3.14

We work in the situation of Section 3.5 just after Remark 3.28, so that we have data
Xan, I, Vy, Ey, sy, ¥y and Cy C Ry = ﬂieJRi C X, forall J € A, and
osk, ik forall J, K € A with K & J. We will first prove the following inductive
hypothesis (4),, by inductionon m =1,2,...:

(H)m Forall J € A with |J| < m, we can choose Uy, E7 7) satisfying condition (x)
for A%, Vy, Ey, Fy, sy, tj, ¥j,... such that vy 1(CJ) - Uj c vy,
andif J,K € A with K ¢ J and 0 < |K| < |J| < m then there exists open
UJK - UJ with 1//J1(CJ NCk) C UJK such that, in the sense of Section 3.4,
(UJK, E7 |UJI() is compatible with (UK, ). That s, ¢JK(UJK) CUx C Vg

and XJK|UJK(E |UJK)C¢JK|* (EK)C¢JK| (EK)

For the first step, to prove (+); for all J ={i} with i € I we choose (U I E7 7)
for A%, Vy, Ey, ... satisfying (%) with sJI(O) c Uy, so that WJI(CJ) c Uy, by
applying Theorem 3.7(b) with C = U = &. The second part of (4); is trivial, as there
areno J,K € A with 0 < |K| < |J| <1

For the inductive step, suppose (4+),;—1 holds for some m > 1. We will prove that
(+)m holds. Using the existing choices of (Uy, E7 7) and Uk for J,K € A with
|J|,|K| <m from (4),,—1, it remains to choose (U_], J) when |J| =m, and Urk
when 0 < |K| < |J|=m. So fix J C I with |J|=m.

Geometry & Topology, Volume 21 (2017)



3302 Dennis Borisov and Dominic Joyce

Then (H)m—1 gives (UK, K) satisfying (%) for all @ # K < J. Using the notation
of Lemma 3.12, set UJK ¢JK(UK) C Vy, and define

Ejx = 1ixlg, (Ex).

a vector subbundle of Ej|g;, . Then U 7k is an open neighbourhood of wj_l (Ck)
in Vy, by (27).

If @ # L C K S J thenby (4),—1 we have that there exists open U, € Ug with
WEI(CK N CL) C Uk such that

¢xL(Ukr) SO and  xxLlg,, (Ex) S éxely  (ED) SoxLlf, (EL).

Pulling back by ¢k, applying xsx, and using the last part ¢ of Corollary 3.5(ii) then
shows that we have an open neighbourhood UJKL = ¢JK(UKL) of ¥ l(cgkncCyr)
in UJK N U}L C Vy, such that

E/ r7/ - E/ r7/ - E r7/ .
JK|UJKL - JL|UJKL - JlUJKL
As in Lemma 3.12, choose vector subbundles £ /J/K CEy |(_73 « With
Ejlz) =E\®E) Ul forall @# K S J.
g, =Ejx ®Ejx on Ujg forall 3£ K G

Choose a connection V on Ej. As in Lemma 3.12, E/J”K := (Vsy)[Kerdegk] is a
vector subbundle of E; near s Jl(O) in Vy, forall @ # K & J. Making the open
neighbourhoods U }K, U } k1 Smaller, we can suppose E ” is a vector subbundle
of EJlU}K Ifo#L <K< J CI then Kerdgyx gKerd¢JL as ¢y =PrxLoPIK
and so

/// C E/l/

|UJKL |UJKL ==J |[7}KL.

Next, by reverse inductionon [ =m —1,m—2,...,1, we will prove the following

inductive hypothesis (x)j;:

(x)g,; Forall @# L < J with [ <|L| we can choose an open neighbourhood U
of w;l(CJ NCL) in U1 and a vector subbundle E;L of E’JL |0,, such that

(70) Eslg,. = EjL ®EfLlo,. ® ELlo,..
or equivalently, identifying E’;, with E;/E’;; on UL,
(71) E’JL|(7]L =E; ®(EjL, @ Ef)/E] g,

and such that if @ # L € K € J with [ < |L| < |K]| then there exists
an open neighbourhood Ujgj of WJ_I(CJ NCxgNCr) in Uyg N UyL
with E5; [0, = EJgl0,k1 -
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For the first step / =m — 1, for each L € J with |[L| =m — 1 we take U =Uyp
and take £, to be an arbitrary complement to [(E’y, E”’L)/E;L] in EY |5,,
as in (71), which implies (70). The second part of (x)j ,—1 is trivial as there are
no K, Lwithm—1<|L|<|K|<|J|=

For the inductive step, suppose (x) ;41 holds for some 1 </ <m—1,and fix L C J
with |L| =[. Choose open neighbourhoods Urkr of v WCynCgNnCyr) in V_] for
all L € K € J with the properties that:

(a) ﬁJKL - ﬁJK N (7_]L, where ﬁJK is already chosen by (x)j;41.-
(b) If LS K;,Ky S J with K1 S K5 and Ko G Ky then Uy, NUjg,1 = 2.

(c) f L € Ky € K1 & J then ﬁJKlL N 0JK2L - ﬁjKle, where 0][(1]{2 is
already chosen by (x)41.

This is possible, using Proposition 3.13(iii) to ensure (b).

Next, we have to choose an open neighbourhood U JL of ¥ L(Cy;NCyL) in Ujr and
choose a vector subbundle £7 7L S of E', L|U L satlsfymg (70)- (71) such that for all K
with L € K S J we have that Uygz € Ujp and EJL|UJKL = E]K|UJKL

First note from Lemma 3.12 that (70)—(71) near ¥, 1(CyNnCy) are equivalent to
(UJL, JL) near Y ; L(c;ncCy) satlsfylng (*) and being compatible with (UL, E ).
By (X),1+1 we already know that EJK|UJKL near ¥, L(CyNCy) satisfies (*) and
is compatible with (UK, K) and thus E Tl 18 compatible with (Ur, E ) near
WJI(CJ N Cy) since (Ug, K) is compatible with (Up, E ) by (Hm—1- Thus the
prescribed value EJKlU.IKL for EJL on UJKL satisfies (70)— (71) near ¥, Lcy ﬂCL)
and making UJKL smaller, we can suppose EJK|UJKL satlsﬁes (70)— (71)A0n UJKL.
This proves that (70)—(71) are compatible with the conditions E7; |7, = E7x|0,x.
foral #LC K < J.

Next, observe that the prescribed values E;K|[7 Jxz for E;L on U sk for different
K1, K> with L & K1, K> C J agree on the overlaps U]KlL N U_]KzL This follows
from (b) and (c) above and EJK 101k, x, = EJi, |05, &, » Which holds by (X) 7741
Therefore the last part of (x) J,1 can be rewritten to say that we have one prescribed
value for EJL on the subset UJL = U{K|LCKCJ} UJKL which satisfies (70)—(71)
on U JL-

So, we are given a prescribed value of E 7 ©On an open set Uy CVy satlsfymg 71),
and we have to extend it to a larger open set U JL € Vj containing both Ujyr and
vy 1(C 7 N Cg NCr). This may not be possible: if we have chosen prev10us values
of E7 7k badly near the “edge” of UL in Vj, then the prescribed values of E; 71 may
not extend continuously to the closure U gL of U JL in Vy, and in particular, may not
extend continuously over points in [wj_l (C;NCx NC)IN[U sz \ Usr]. However,
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we can deal with this problem by shrinking all the open sets U JKL, such that the
closure U JL of the new U JL lies inside the old U, JL - Then it is guaranteed that the
prescribed value of E; 71 on Uyr extends smoothly to an open neighbourhood of U JL
in Vj, so we can choose (U JL, E ;1) satisfying all the required conditions. As this
holds for all L ¢ J with |L| =1, this completes the inductive step, and (x); holds
foral l=m—1,m-2,...,1.

Fix data UJL, JL> U_]KL as in (X)Jl For all @ # K < J, choose open neigh-
bourhoods UJK of 1/fJ (CyNCgk) in UJK such that if K1 g K> and K> € K3
then UJKl ﬁU_]K2 =g,andif @ # L C K < J then U_]KﬂUJL C U_]KL This
is posv51ble pr9V1ded the U sk are small enough, using Proposition 3.13(iii) to en-

sure Uy, NUjk, = .

Define . .
ur= |J U
{K|Io#£KSJ}
The set U 7 is an open neighbourhood of the closed set C 7 in Vj, where C J =
U{K|®¢KCJ} wJ_l(CJ N Ck) in V. Define a vector subbundle £ of Es|g, by

EV;|UJK = E;Lh}”( forall @ # K C J.

These prescribed values for different K, K, are compatible, by construction, on the
overlap Uyk, NUyk,, so E7 is well defined.

Now apply Theorem 3.7(b) to A%, V], EJ s7y,..., with closed set é] C Vy and
palr (U 7. E7 7) satisfying (x) with Cy; cUy. ThlS shows that there exists a palr
(U_] 7) satlsfymg (x) for AJ, Vi, Eg,s7... , and an open neighbourhood U’
ofCJmUJﬂUJ suchthatE |U/—E |U’ Set

UJK=UJOU_]K forall @ # K ¢ J.

Then Ujg is an open neighbourhood of l/fJI(CJ N CK) in Vy, and E7 ok =
E |7, = E 7k |0, » which is compatible with (Uk. K) by definition. ThlS com-
pletes the proof of the inductive step of (+),,. So by induction, (+), holds for
allm=1,2,....

Fix data (Uy, E7) forall J € 4 and Uyk forall J, K € A with K € J asin (+)m
as m — oo (or m = |I| if I is finite). For all J € A, choose open neighbourhoods Uy
of W;I(CJ) in Uy, such that setting £, = E;|UJ and Sy = w;(s;I(O) NUy), so
that S is an open neighbourhood of C in X,,, then (Uy, E7) satisfies condition (),
and forall J,K € A,if J £ K and K € J then SJﬂSK—Q and if K ¢ J then
v7U(SyNSk) S Ujk. If K S J, we define Uyx = Uyx N Uy N¢7x(Uxk). Then
sJI(O)ﬂUJK 1//J1(SJ ﬂSK) and (Ujk, E |lu, k) is compatible with (Uk, Ey).
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To see that we can choose Uy for all J € A satisfying all these conditions, note that
by Theorem 3.7(c), if Uy is small enough then (Uy, E7) satisfies (f), as ((7], E;)
satisfies (). If J € K and K Z J then Proposition 3.13(iii) implies that Sy NSx = &
provided both Uy, Uk are sufficiently small. Similarly, if KX & J then we have
wJ_l(S JNSkg) C Urk provided both Uy, Uk are sufficiently small. Now if I is
infinite, it is possible that an individual set Uy may have to satisfy infinitely many
smallness conditions, for compatibility with infinitely many sets @ # K C I. However,
the local finiteness condition Proposition 3.13(ii) means that in an open neighbourhood
of any vy € wj_l (Cy), only finitely many smallness conditions on Uy are relevant, so
we can solve them. This completes the proof of Proposition 3.14.

6.3 Proof of Proposition 3.17

Let (X,wx*), Xan, K and Xy, be as in Theorems 3.15 and 3.16, and use the notation
of Section 3.5. First we relate orientations on (X, wx*) and X4y, at one point x € Xy;.
Pick J € A with x € §7 =Im w;r. From (7) and (9) we have

(72)  {orientations on (X, wy) at x} = {C—orientations on (H YTxl|x). )},

(73) {orientations on Xgm at x} = {orientations on Ty Xam D Ox Xdm},

where Qy = a)g( is the nondegenerate complex quadratic form on H1(Tx|y) in (6).
There is a unique vy in s;l(O) NUy = (s}r)_l(O) CUy CVy with ¥y(vy) = x.
Equation (20) gives an isomorphism of complex vector spaces

Ker(tylv,: Ejlv, = Frlv,)
In’l(dSJ|vJ: TvJVJ — EJ|UJ)

(74) H' (T, |v,): — HY(Tx|y).

Write 0, , for the complex quadratic form on Ker(ts|y,)/Im(dsy|y,) identified
with QO by (74), as in Definition 3.6. Then by (72) we have
(75) {orientations on (X,w¥) at x}

=~ {C-orientations on (Ker(ts|v,)/Im(dss]v,), Ov,)}-
Condition (x) for (Uy, E}) at vy requires that
Ker(tlv,: Eglv, = Frlv,)
Im(dsylv,: To, Vi — Ejlv,)
should be injective, with image Im I1, , areal vector subspace of half the real dimension
of Ker(ty|y,)/Im(dsys|y,), on which the real quadratic form Re Q,, is negative

definite. As (Uy, E}' s}", Vsls7'0)nu,) is a Kuranishi neighbourhood on Xgm by
the proof of Theorem 3.16, equation (10) gives an exact sequence

ij: E;|Uj mKer([J|vJ: EJ|UJ _)Fjlvj)—)

+
0 — Ty Xam — To, Vi~ BEL s 00 Xgm — 0.
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Condition (*) implies that Ker(dsy|y,) = Ker(ds;r lv,), so we have
(76) Ty Xam = Ker(dsyly,: Ty, Vi — Ejlv,)-
Also from (x) we see there is a canonical isomorphism

Ker(tj|vj)/ Im(dSJ|vJ

77
) OxX. Im T,

By (76), TxXam is a complex vector space, so TxX4m and 7 X4m have natural
orientations as real vector spaces. Thus by (77) we have a bijection

(78)  {orientations on Ty Xdm ® Ox Xdm}
= {orientations on [Ker(ts|y,)/Im(dss|y,)]/ImII,, }.

Suppose we are given a complex basis ey, ...,ex of Ker(ty|y,)/Im(dsys|y,) = ck
that is orthonormal with respect to Qv ;- Aseq,...,ex are orthonormal with respect to
Qv ; » the real quadratic form Re QU ; 1s positive deﬁmte on the real span {eq, ..., e;)R,
and Re ij is negative definite on ImIT,, , and thus (eq,...,ex)r NImII,, = {0}.
Therefore ey +ImI1y,,...,ex +ImII,, are linearly independent in the real vector
space [Ker(¢jl|y,)/Im(dsyly,)]/ImII,, = R¥, so they are a basis as Im Iy, has
half the real dimension of Ker(¢7|y,)/Im(dss|y,). Define an identification

(79) {(C—orientations on (Ker(tJ lv,)/ Im(dsy|y, ). QUJ)}

= {orientations on [Ker(ts|y,)/Im(dsys|y,)]/ImII,, },

such that orientations on both sides are identified if, whenever ey, ..., e is an oriented
orthonormal complex basis for (Ker(t Jlvy)/Im(dsy|y,), 0, J) , then we have that
e1+ImIly,,...,ex+ImII,, is an oriented basis for [Ker(¢ 7|y, )/Im(ds s |y, )]/ImIT,,.
Combining equations (73), (75), (78) and (79) gives an identification

(80) {orientations on (X,wY) at x } = {orientations on Xgn at x}.

It is not difficult to show that the isomorphism (80) is independent of the choice
of J € A with x € §;, and depends continuously on x € X,,. Thus we get a
canonical one-to-one correspondence between the sets in Proposition 3.17(a),(c). The
last part of Theorem 2.18 gives a one-to-one correspondence between the sets in
Proposition 3.17(b),(c). This completes the proof.

6.4 Proof of Proposition 3.18

Suppose (X,wY) is a separated, —2—-shifted symplectic derived C-scheme with
virtual dimension vdimc X = n, whose complex analytic topological space Xj, is
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second countable. Let K, K’ be different possible Kuranishi atlases constructed in
Theorem 3.15, and X4, X C/‘m the corresponding derived manifolds in Theorem 3.16.

As in Section 3.5, let K be constructed using the family {(4;,e;) | i € I}, and
data A’, ay for J € A, Oy for K C J in A from Theorem 3.1, where A =
{J|@ 7é J C I and J is finite}, and as in Section 3.2, use notation Vy, Ey, Fj, 57,
ty, ¥y and Ry = ey Ri € Xa from A%, ay and ¢yk. xsk. Esk from @ k.
Let K be defined using closed subsets Cy C X,, for J € A in Proposition 3.13 and
pairs (Uy, E7) and open subsets Ujg € Uy in Proposition 3.14. Similarly, let K’ be
constructed using {(A, a,) |i" €I}, A}, '}, Vi, Efyro o Up g S U,

We must build a derived manifold with boundary Wy, with topological space Xa, X [0, 1]
and vdim Wy, = n + 1, and an equivalence 0Wgy, >~ Xgm U X ém topologically identi-
fying Xqm with X, x {0} and X} with Xy, x {1}.

Write 7: X — Z to be the projection ma1: X x Al — Al sothat Z = A! = Spec B
with B = C[z], and Z,, = C. Define wg,z = n;‘((a)g(). Then wx,z is a family of
—2—shifted symplectic structures on X /Z in the sense of Section 3.7, the constant
family over Z = A! with fibre (X, wy). We now carry out the programme of
Section 3.7 for 7: X — Z,wx/z, choosing data as follows:

(@) Set I =TIUI',the disjoint union of 7 and I’.
(b) Define (;f;,&,-,ﬁi) fori € I by
A=A ®c Clz.(z— D7,
so that Spec A* = (Spec A?) x (A1 \ {1}), and
@; = a; xinc: (Spec A7) x (A1 \ {1}) — X x A,

and
Ei: <C[Z]—>A(-)®(C Clz,(z—1)"1] by Ei: z>1®z.

Similarly, define (A;',,éi, /, Bir) for i’ € I’ by Al, = Al ®c C[z,z7'], so Spec Al, =
(Spec A7%) x (A'\ {0}), and &; = a}, x inc: (Spec A/') (AT\ {0}) > X x A, and
Bl Clz] > AY ®c Clz,z~ ]byﬁ’, z>1®z.

(c) Write A={J |@#J C1I and J is finite}. Then A C A and A’ C A.

(d) When we apply Theorem 3.1 to choose A' , a5, By for J € A and dig
for K C J, we make these choices so that

A% =A% ®cClz,(z—1)"'] and A%, =4} ®cClz,z71],
oy =ay xinc: (Spec A%) x x (AT\ {1}) > X x A,
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& ;= a';, xinc: (Spec A’}) x AT\ {0}) > X x Al
,g]: z—~1®z and B}Azn—>1®z,
Dk = Pk ®id: Ay ®c Clz,(z— 1)1 = A3 ®@c Clz, z — )],
Dyg =0 Qid: A ®c Clz,z71 - A}, ®c Clz, 271,
forall K € J in 4 and K" € J" in A". This is clearly possible. Note that this does
not determine A‘~ aj, Bjor Pypif J € A\ (AUA).
(e) When we translate to complex geometry using Section 3.2, part (d) implies
that VJ =Vyx (C\{l}) for J € A C A. Also E], F], 57, 17, ¢JK XJK
for J,K € A are obtained from E J s XJK by taking products with C \ {1}.

Similarly, V_]/ EJ/ F_]/ Sy, l_]/ ¢J’K/ )(J/K/ for J/, K'e¢ A’ C A are obtained
from Vy/, ..., y g by taking products with C \ {0}.

(f) When we choose data C~’J~, ([7;, E}) for J € /T, we do this so that

Cy N (Xan x {0}) = Cy x {0}, Uy NVyx{0} = Uy x {0},
E7lu,xioy = E7 x0,  Cpr N (Xanx {1}) = C}, x {1},
Uy NV} x {1} =Uj x {1}, E’;,|U},X{1}=E’,7x1,

whenever J € A and J' € A’. This is clearly possible.

Theorem 3.23 constructs a relative Kuranishi atlas K for nc: Xan X C — C, of
dimension n +2. By construction, over X, x {0} this restricts to the Kuranishi atlas &,
and over X,, x {1} it restricts to K'.

Theorem 3.24 gives a derived manifold X dm With vdim X dm = 1 + 2 and topological
space Xy, X C, with a morphism Tgm: X gm — (C From Theorem 3.24(iii) we see that
Xg =Ty, 1(0) ~ Xgm and Xl =Ty, (1) ~

Now define Wym = X gm X Fam,Clinc [0, 1], as a ﬁbre product in the 2—category dMan®
of d-manifolds with corners from [18; 19; 20], where inc: [0, 1] < C is the inclusion.

By properties of fibre products in dMan® from [18; 19; 20], this has topological
space Xan X [0, 1] and vdim Wy, = n + 1, and boundary

B IWam = Xam Xz, C.inc 90, 11 = Xam X5, .C.ine {0 1} = Xam U X -
This proves the first part of Proposition 3.18.

For the last part, orientations on (X, w¥) correspond naturally to orientations for
7 X > Z ox /Z » by pullback along X — X, and these correspond to orientations
on X dm by Proposition 3.26, and thus (using oriented fibre products) to orientations
on Win,. Since 9]0, 1] = —{0} LI {1} in oriented manifolds, we see that as in (81) that
0Wam =~ —Xgm U X/, in oriented derived manifolds. This completes the proof.
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