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Persistent homology and Floer–Novikov theory

MICHAEL USHER

JUN ZHANG

We construct “barcodes” for the chain complexes over Novikov rings that arise in
Novikov’s Morse theory for closed one-forms and in Floer theory on not-necessarily-
monotone symplectic manifolds. In the case of classical Morse theory these coincide
with the barcodes familiar from persistent homology. Our barcodes completely
characterize the filtered chain homotopy type of the chain complex; in particular
they subsume in a natural way previous filtered Floer-theoretic invariants such as
boundary depth and torsion exponents, and also reflect information about spectral
invariants. Moreover, we prove a continuity result which is a natural analogue both
of the classical bottleneck stability theorem in persistent homology and of standard
continuity results for spectral invariants, and we use this to prove a C 0–robustness
result for the fixed points of Hamiltonian diffeomorphisms. Our approach, which
is rather different from the standard methods of persistent homology, is based on a
nonarchimedean singular value decomposition for the boundary operator of the chain
complex.

53D40; 55U15

1 Introduction

Persistent homology is a well-established tool in the rapidly developing field of topolog-
ical data analysis. On an algebraic level, the subject studies “persistence modules”, ie
structures V consisting of a module Vt associated to each t 2R with homomorphisms
�st W Vs ! Vt whenever s � t satisfying the functoriality properties that �ss D IVs ,
the identity map on module Vs , and �su D �tu ı �st (more generally R could be
replaced by an arbitrary partially ordered set, but this generalization will not be relevant
to this paper). Persistence modules arise naturally in topology when one considers a
continuous function f W X !R on a topological space X ; for a field K one can then
let Vt DH�.ff � tgIK/ be the homology of the t–sublevel set, with the �st being
the inclusion-induced maps. For example if X D Rn and the function f W Rn! R
is given by the minimal distance to a finite collection of points sampled from some
subset S �Rn , then Vt is the homology of the union of balls of radius t around the
points of the sample; the structure of the associated persistence module has been used
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effectively to make inferences about the topological structure of the set S in some
real-world situations; see eg Carlsson [7].

Under finiteness hypotheses on the modules Vt (for instance finite-type as in Zomoro-
dian and Carlsson [46] or more generally pointwise finite-dimensionality as in Crawley-
Boevey [12]), provided that the coefficient ring for the modules Vt is a field K , it
can be shown that the persistence module V is isomorphic in the obvious sense to a
direct sum of “interval modules” KI , where I � R is an interval and by definition
.KI /t D K for t 2 I and f0g otherwise, and the morphisms �st are the identity on K
when s; t 2 I and 0 otherwise. The barcode of V is then defined to be the multiset of
intervals appearing in this direct sum decomposition. When V is obtained as the filtered
homology of a finite-dimensional chain complex, [46] gives a worst-case-cubic-time
algorithm that computes the barcode given the boundary operator on the chain complex.

If f W X ! R is a Morse function on a compact smooth manifold, a standard con-
struction (see eg Schwarz [39]) yields a “Morse chain complex” .CM�.f /; @/. The
degree-k part CMk.f / of the complex is formally spanned (say over the field K) by the
critical points of f having index k . The boundary operator @W CMkC1.f /!CMk.f /

counts (with appropriate signs) negative gradient flowlines of f which are asymptotic
as t ! �1 to an index-.kC1/ critical point and as t !1 to an index-k critical
point. For any t 2 R, if we consider the subspace CMt

�.f / � CM�.f / spanned
only by those critical points p of f with f .p/ � t , then the fact that f decreases
along its negative gradient flowlines readily implies that CMt

�.f / is a subcomplex
of CM�.f /. So taking homology gives filtered Morse homology groups HMt

�.f /,
with inclusion-induced maps HMs

�.f /! HMt
�.f / when s � t that satisfy the usual

functoriality properties. Thus the filtered Morse homology groups associated to a Morse
function yield a persistence module; given a formula for the Morse boundary operator
one could then apply the algorithm from [46] to compute its barcode. In fact, standard
results of Morse theory show that this persistence module is (up to isomorphism) simply
the persistence module comprising the sublevel homologies H�.ff � tgIK/ with the
inclusion-induced maps.

There are a variety of situations in which one can do some form of Morse theory
for a suitable function AW C!R on an appropriate infinite-dimensional manifold C .
Indeed, Morse himself [32] applied his theory to the energy functional on the loop
space of a Riemannian manifold in order to study its geodesics. Floer [15; 16; 17]
discovered some rather different manifestations of infinite-dimensional Morse theory
involving functions A which, unlike the energy functional, are unbounded above
and below and have critical points of infinite index. In these cases, one still obtains
a Floer chain complex analogous to the Morse complex of the previous paragraph
and can still speak of the filtered homologies HFt with their inclusion-induced maps
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HFs ! HFt ; however it is no longer true that these filtered homology groups relate
directly to classical topological invariants; rather, they are new objects. Thus Floer’s
construction gives (taking filtrations into account as above) a persistence module. If
the persistence module satisfies appropriate finiteness conditions one then obtains a
barcode by the procedure indicated earlier; however, as we will explain below the
finiteness conditions only hold in rather restricted circumstances. While the filtered
Floer groups have been studied since the early 1990s and have been a significant tool in
symplectic topology since that time (see eg Floer and Hofer [18], Schwarz [40], Entov
and Polterovich [13], Oh [34], Usher [45] and Humilière, Leclercq and Seyfaddini [26]),
it is only very recently that they have been considered from a persistent-homological
point of view. Namely, Polterovich and Shelukhin [36] apply ideas from persistent
homology to prove interesting results about autonomous Hamiltonian diffeomorphisms
of symplectic manifolds, subject to a topological restriction that is necessary to guarantee
the finiteness property that leads to a barcode. This paper will generalize the notion of
a barcode to more general Floer-theoretic situations. In particular, this opens up the
possibility of extending the results from [36] to manifolds other than those considered
therein; this is the subject of work in progress by the second author.

The difficulty with applying the theory of barcodes to general Floer complexes lies
in the fact that, typically, Floer theory is more properly viewed as an infinite dimen-
sional version of Novikov’s Morse theory for closed one-forms (see Novikov [33]
and Farber [14]) rather than of classical Morse theory. Here one considers a closed
1–form ˛ on some manifold M which vanishes transversely with finitely many zeros,
and takes a regular covering � W zM ! M on which we have ��˛ D d zf for some
function zf W zM !R. Then zf will be a Morse function whose critical locus consists
of the preimage of the (finite) zero locus of ˛ under � ; in particular, if the de Rham
cohomology class of ˛ is nontrivial then � W zM !M will necessarily have infinite
fibers and so zf will have infinitely many critical points.

One then attempts to construct a Morse-type complex CN�. zf / by setting CNk. zf /
equal to the span over K of the index-k critical points1 of zf , with boundary operator
@W CNkC1. zf /!CNk. zf / given by setting, for an index-.kC1/ critical point p of zf ,

@p D
X

ind zf .q/Dk

n.p; q/q;

where n.p; q/ is a count of negative gradient flowlines for zf (with respect to a suitably
generic Riemannian metric pulled back to zM from M ) asymptotic to p in negative time
and to q in positive time. However the above attempt does not quite work because the

1“Index” means Morse index in the finite-dimensional case (see eg Schwarz [39]), and typically some
version of the Maslov index in the Floer-theoretic case (see eg Robbin and Salamon [37]).
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sum on the right-hand side may have infinitely many nonzero terms; thus it is necessary
to enlarge CNk. zf / to accommodate certain formal infinite sums. The correct definition
is, denoting by Critk. zf / the set of critical points of zf with index k ,

(1) CNk. zf /D
� X
p2Critk. zf /

app
ˇ̌̌
ap 2 K and

#fp j ap ¤ 0; zf .p/ > C g<1 for all C 2R

�
:

Then under suitable hypotheses it can be shown that the definition of @ above gives a
well-defined map @W CNkC1. zf /! CNk. zf / such that @2 D 0. This construction can
be carried out in many contexts, including the classical Novikov complex where M
is compact and various Floer theories where M is infinite-dimensional. In the latter
case, the zeros of ˛ are typically some objects of interest, such as closed orbits of
a Hamiltonian flow, on some other finite-dimensional manifold. In these cases, just
as in Morse theory, @ preserves the R–filtration given by, for t 2R, letting CNtk.

zf /

consist of only those formal sums
P
p app where each zf .p/ is at most t . In this way

we obtain filtered Novikov homology groups HNt�. zf / with inclusion-induced maps
HNs. zf /! HNt . zf / satisfying the axioms of a persistence module over K .

However, when the cover zM !M is nontrivial, this persistence module over K does
not satisfy the hypotheses of many of the major theorems of persistent homology; the
maps HNs. zf /!HNt . zf / generally have infinite rank over K (due to a certain “lifting”
scenario which is described later in this paragraph) and so the persistence module is
not “q-tame” in the sense of Chazal, de Silva, Glisse and Oudot [9]. As is well-known,
to get a finite-dimensional object out of the Novikov complex one should work not
over K but over a suitable Novikov ring. From now on we will assume that the cover
� W zM ! M is minimal subject to the property that ��˛ is exact; in other words,
the covering group coincides with the kernel of the homomorphism I˛W �1.M/!R
induced by integrating ˛ over loops. This will lead to our Novikov ring being a field.
Given this assumption, let y� �R be the image of I˛ . Then by, for any g 2 y� , lifting
loops in M with integral equal to �g to paths in zM , we obtain an action of y� on the
critical locus of zf such that zf .p/� zf .gp/D g . In some Floer-theoretic situations this
action can shift the index by s.g/ for some homomorphism sW y�! Z. For instance,
in Hamiltonian Floer theory s is given by evaluating twice the first Chern class of the
symplectic manifold on spheres, whereas in the classical case of the Novikov chain
complex of a closed one-form on a finite-dimensional manifold, s is zero. Now let
� D ker s , so that � acts on the index-k critical points of zf , and this action then gives
rise to an action of the following Novikov field on CNk. zf /:

ƒK;�
D

�X
g2�

agT
g
ˇ̌̌
ag 2 K and #fg j ag ¤ 0; g < C g<1 for all C 2R

�
:
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It follows from the description that CNk. zf / is a vector space over ƒK;� of (finite!)
dimension equal to the number of zeros of our original ˛ 2�1.M/ that admit lifts to
index-k critical points for zf in zM . Indeed, if the set f zp1; : : : ; zpmi g � zM consists of
exactly one such lift of each of these zeros of ˛ then f zp1; : : : ; zpmi g is a ƒK;�–basis
for CNk. zf /.

Now since the action by an element g of � shifts the value of zf by �g , the fil-
tered groups CNtk.

zf / are not preserved by multiplication by scalars in ƒK;� , and
so the aforementioned persistence module fHFt . zf /g over K can not be viewed as a
persistence module over ƒK;� , unless of course � D f0g, in which case ƒK;� D K .
Our strategy in this paper is to understand filtered Novikov and Floer complexes not
through their induced persistence modules on homology (see Remark 1.1 below) but
rather through the nonarchimedean geometry that the filtration induces on the chain
complexes. This will lead to an alternative theory of barcodes which recovers the
standard theory in the case that � D f0g (see Zomorodian and Carlsson [46], Chazal,
de Silva, Glisse and Oudot [9] and, for a different perspective, Barannikov [2]) but
which also makes sense for arbitrary � , while continuing to enjoy various desirable
properties.

We should mention that, in the case of Morse–Novikov theory for a function f W X!S1 ,
a different approach to persistent homology is taken in Burghelea and Dey [5] and
Burghelea and Haller [6]. These works are based around the notion of the (zigzag)
persistent homology of level sets of the function; this is a rather different viewpoint
from ours, as in order to obtain insight into Floer theory we only use the algebraic
features of the Floer chain complex, and in a typical Floer theory there is nothing that
plays the role of the homology of a level set. Rather, we construct what could be called
an algebraic simulation of the more classical sublevel set persistence, even though (as
noted in [5]) from a geometric point of view it does not make sense to speak of the
sublevel sets of an S1–valued function. Also our theory, unlike that of [5] and [6],
applies to the Novikov complexes of closed one-forms that have dense period groups.
Notwithstanding these differences, there are some indications (see in particular the
remark after [6, Theorem 1.4]) that the constructions may be related on their common
domains of applicability; it would be interesting to understand this further.

1.1 Outline of the paper and summary of main results

With the exception of an application to Hamiltonian Floer theory in Section 12, the en-
tirety of this paper is written in a general algebraic context involving chain complexes of
certain kinds of nonarchimedean normed vector spaces over Novikov fields ƒDƒK;� .
(In particular, no knowledge of Floer theory is required to read the large majority of the
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paper, though it may be helpful as motivation.) The definitions necessary for our theory
are somewhat involved and so will not be included in detail in this introduction, but they
make use of the standard notion of orthogonality in nonarchimedean normed vector
spaces, a subject which is reviewed in Section 2. Our first key result is Theorem 3.4,
which shows that any linear map AW C !D between two finite-dimensional nonar-
chimedean normed vector spaces C and D over ƒ having orthogonal bases admits
a singular value decomposition: there are orthogonal bases BC for C and BD for D
such that A maps each member of BC either to zero or to one of the elements of BD .
In the case that C and D admit orthonormal bases and not just orthogonal ones this
was known (see Kedlaya [27, Section 4.3]); however, Floer complexes typically admit
orthogonal but not orthonormal bases (unless one extends coefficients, which leads to
a loss of information), and in this case Theorem 3.4 appears to be new.

In Definition 4.1 we introduce the notion of a “Floer-type complex” .C�; @; `/ over
a Novikov field ƒ; this is a chain complex of ƒ–vector spaces .C�; @/ with a nonar-
chimedean norm e` on each graded piece Ck that induces a filtration which is respected
by @. We later construct our versions of the barcode by consideration of singular value
decompositions of the various graded pieces of the boundary operator. Singular value
decompositions are rather nonunique, but we prove a variety of results reflecting that
data about filtrations of the elements involved in a singular value decomposition is
often independent of choices and so gives rise to invariants of the Floer-type com-
plex .C�; @; `/. The first instance of this appears in Theorem 4.11, which relates the
boundary depth of Usher [44; 45], as well as generalizations thereof, to singular value
decompositions. Theorem 4.13 shows that these generalized boundary depths are equal
to (an algebraic abstraction of) the torsion exponents from Fukaya, Oh, Ohta and
Ono [20]. Since the definition of the torsion exponents in [20] requires first extending
coefficients to the universal Novikov field (with � D R), whereas our definition in
terms of singular value decompositions does not require such an extension, this implies
new restrictions on the values that the torsion exponents can take: in particular, they all
must be equal to differences between filtration levels of chains in the original Floer
complex.

1.1.1 Barcodes Our fundamental invariants of a Floer-type complex, the “verbose
barcode” and the “concise barcode”, are defined in Definition 6.3. The verbose barcode
in any given degree is a finite multiset of elements .Œa�; L/ of the Cartesian product
.R=�/ � Œ0;1�, where � � R is the subgroup described above and involved in
the definition of the Novikov field ƒ D ƒK;� . The concise barcode is simply the
submultiset of the verbose barcode consisting of elements .Œa�; L/ with L> 0. Both
barcodes are constructed in an explicit way from singular value decompositions of the
graded pieces of the boundary operator on a Floer-type complex.
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To be a bit more specific, as is made explicit in Proposition 7.4, a singular value
decomposition can be thought of as expressing the Floer-type complex as an orthogonal
direct sum of very simple complexes2 having the form

(2) � � � ! 0! spanƒfyg ! spanƒf@yg ! 0! � � �

or � � � ! 0! spanƒfxg ! 0! � � � ;

and the verbose barcode consists of the elements .Œ`.@y/�; `.y/�`.@y// for summands
of the first type and .Œ`.x/�;1/ for summands of the second type. The concise barcode
discards those elements coming from summands with `.@y/D `.y/ (as these do not
affect any of the filtered homology groups).

To put these barcodes into context, suppose that � D f0g and that our Floer-type
complex .C�; @; `/ is given by the Morse complex CM�.f / of a Morse function f
on a compact manifold X (with ` recording the highest critical value attained by a
given chain in the Morse chain complex). Then standard persistent homology methods
associate to f a barcode, which is a collection of intervals Œa; b/ with a < b �1,
given the interpretation that each interval Œa; b/ in the collection corresponds to a
topological feature of X which is “born” at the level ff D ag and “dies” at the level
ff D bg (or never dies if b D1). Theorem 6.2 proves that, when � D f0g (so that
R=� D R), our concise barcode is equivalent to the classical persistent homology
barcode under the correspondence that sends a pair .a; L/ in the concise barcode to
an interval Œa; aCL/. (Thus the second coordinates L in our elements of the concise
barcode correspond to the lengths of bars in the persistent homology barcode.) To
relate this back to the persistence module fHMt

�.f /gt2R Š fH�.ff � tgIK/gt2R

discussed earlier in the introduction, each HMt
k
.f / has dimension equal to the number

of elements .a; L/ in the degree-k concise barcode such that a � t < aCL, and the
rank of the inclusion-induced map HMs

k
.f /! HMt

k
.f / is equal to the number of

such elements with a � s � t < aCL.

When � is a nontrivial subgroup of R, a Floer-type complex over ƒ is more akin to
the Morse–Novikov complex of a multivalued function f , where the ambiguity of
the values of f is given by the group � (for instance, identifying S1 D R=Z, for
an S1–valued function we would have � D Z). While this situation lies outside the
scope of classical persistent homology barcodes for reasons indicated earlier in the
introduction, on a naive level it should be clear that if a topological feature of X is born
where f D a and dies where f D b (corresponding to a bar Œa; b/ in a hypothetical

2The “Morse–Barannikov complex” described in Barannikov [2] and Le Peutrec, Nier and Viterbo [28,
Section 2] can be seen as a special case of this direct sum decomposition when � D f0g and the Floer-type
complex is the Morse complex of a Morse function whose critical values are all distinct; see Remark 5.6
for details.
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barcode), then it should equally be true that, for any g 2 � , a topological feature
of X is born where f D aC g and dies where f D bC g . So bars would come in
�–parametrized families with � acting on both endpoints of the interval; such families
in turn can be specified by the coset Œa� of the left endpoint a in R=� together with
the length LD b�a 2 Œ0;1�. This motivates our definition of the verbose and concise
barcodes as multisets of elements of .R=�/� Œ0;1�. In terms of the summands in (2),
the need to quotient by � simply comes from the fact that the elements y and x are
only specified up to the scalar multiplication action of ƒ n f0g, which can affect their
filtration levels by an arbitrary element of � . The following classification results are
two of the main theorems of this paper.

Theorem A Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain isomorphic to each other if and only if they have identical verbose barcodes in all
degrees.

Theorem B Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain homotopy equivalent to each other if and only if they have identical concise
barcodes in all degrees.

Theorem A includes the statement that the verbose (and hence also the concise) barcode
is independent of the singular value decomposition used to define it; indeed this
statement is probably the hardest part of Theorems A and B to prove. We prove these
theorems in Section 7.

As should already be clear from the above discussion, the only distinction between
the verbose and concise barcodes of a Floer-type complex .C�; @; `/ arises from
elements y 2 C� with `.@y/ D `.y/. While our definition of a Floer-type complex
only imposes the inequality `.@y/� `.y/, in many of the most important examples,
including the Morse complex of a Morse function or the Hamiltonian Floer complex of
a nondegenerate Hamiltonian, one in fact always has a strict inequality `.@y/ < `.y/
for all y 2 C� n f0g. For complexes satisfying this latter property the verbose and
concise barcodes are equal, and so Theorems A and B show that the filtered chain
isomorphism classification of such complexes is exactly the same as their filtered chain
homotopy equivalence classification. (This fact can also be proven in a more direct
way; see for instance the argument at the end of Usher [44, Proof of Lemma 3.8].)

In Remark 4.3 we mention some examples of naturally occurring Floer-type complexes
in which an equality `.@y/D `.y/ can sometimes hold. In these complexes the verbose
and concise barcodes are generally different, and thus the filtered chain homotopy
equivalence classification is coarser than the filtered chain isomorphism classification.
For many purposes the filtered chain isomorphism classification is likely too fine, in
that it may depend on auxiliary choices made in the construction of the complex (for
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instance, in the Morse–Bott complex as constructed in Frauenfelder [19], it would
depend on the choices of Morse functions on the critical submanifolds of the Morse–
Bott function under consideration). The filtered chain homotopy type (and thus, by
Theorem B, the concise barcode) is generally insensitive to such choices, and moreover
is robust in a sense made precise in Theorem 1.4.

When � D f0g, Theorem B may be seen as an analogue of standard results from
persistent homology theory (like [46, Corollary 3.1]) which imply that the degree-k
barcode of a Floer-type complex completely classifies the persistence module obtained
from its filtered homologies H t

k
.C�/. Of course, the filtered chain homotopy type of a

filtered chain complex is sufficient to determine its filtered homologies. Conversely,
still assuming that � D f0g, by using the description of finite-type persistence modules
as KŒt �–modules in Zomorodian and Carlsson [46], and taking advantage of the fact
that (because KŒt � is a PID) chain complexes of free KŒt �–modules are classified up
to chain homotopy equivalence by their homology, one can show that the filtered
chain homotopy type of a Floer-type complex is determined by its filtered homology
persistence module. Thus, although the persistent homology literature generally focuses
on homological invariants rather than classification of the underlying chain complexes
up to filtered isomorphism or filtered homotopy equivalence, when � Df0g Theorem B
can be deduced from [46] together with a little homological algebra and Theorem 6.2.

For any choice of the group � , the concise barcode contains information about various
numerical invariants of Floer-type complexes that have previously been used in filtered
Floer theory. In particular, by Theorems 4.11 and 4.13 and the definition of the concise
barcode, the torsion exponents from Fukaya, Oh, Ohta and Ono [20] are precisely the
second coordinates L of elements .Œa�; L/ of the concise barcode having L <1,
written in decreasing order; the boundary depth of [44] is just the largest of these.
In Section 6.1 we show that the concise barcode also carries information about the
spectral invariants as in Schwarz [40] and Oh [34]. In particular, a number a arises
as the spectral invariant of some class in the homology of the complex if and only if
there is an element of form .Œa�;1/ in the concise barcode. By contrast, the numbers
a appearing in elements .Œa�; L/ of the concise barcode with L <1 do not seem to
have standard analogues in Floer theory, and so could be considered as new invariants.
Whereas the spectral invariants and boundary depth have the notable feature of varying
in Lipschitz fashion with respect to the Hofer norm on the space of Hamiltonians,
these numbers a have somewhat more limited robustness properties, which can be
understood in terms of our stability results such as Corollary 1.5 below.

In Section 6.2 we show how the verbose (and hence also the concise) barcodes of a
Floer-type complex in various degrees are related to those of its dual complex, and
to those of the complex obtained by extending the coefficient field by enlarging the
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group � . The relationships are rather simple; in the case of the dual complex they
can be seen as extending results from Usher [43] on the Floer theory side and from
de Silva, Morozov and Vejdemo-Johansson [41] on the persistent homology side.

Remark 1.1 Our approach differs from the conventional approach in the persistent
homology literature in that we work almost entirely at the chain level; for the most part
our theorems do not directly discuss the homology persistence modules fH t

k
.C�/gt2R .

The primary reason for this is that, when � ¤ f0g, such homology persistence modules
are unlikely to fit into any reasonable classification scheme. The basic premise of the
original introduction of barcodes in [46] is that a finite-type persistence module over
a field K can be understood in terms of the classification of finitely generated KŒx�–
modules; however, when � ¤ f0g our persistence modules are infinitely generated
over K , leading to infinitely generated KŒx�–modules and suggesting that one should
work with a larger coefficient ring than K . Since the action of the Novikov field does
not preserve the filtration on the chain complex, the H t

k
.C�/ are not modules over the

full Novikov field ƒ. They are however modules over the subring ƒ�0 consisting of
elements

P
g agT

g with all g � 0, and if � is nontrivial and discrete (in which case
ƒ�0 is isomorphic to a formal power series ring KŒŒt ��) then each H t

k
.C�/ is a finitely

generated ƒ�0–module. But then the approach from [46] leads to the consideration of
finitely generated KŒŒt ��Œx�–modules, which again do not admit a simple description in
terms of barcode-type data since KŒŒt ��Œx� is not a PID.

Our chain-level approach exploits the fact that the chain groups Ck in a Floer-type
complex, unlike the filtered homologies, are finitely generated vector spaces over a field
(namely ƒ), which makes it more feasible to obtain a straightforward classification. It
does follow from our results that the filtered homology persistence module of a Floer-
type complex can be expressed as a finite direct sum of filtered homology persistence
modules of the building blocks E.a; L; k/ depicted in (2). However, since the filtered
homology persistence modules of the E.a; L; k/ are themselves somewhat complicated
(as the interested reader may verify by direct computation) it is not clear whether this
is a useful observation. For instance, we do not know whether the image on homology
of a filtered chain map between two Floer-type complexes can always likewise be
written as a direct sum of these basic persistence modules; if this is true then it might
be possible to adapt arguments from Bauer and Lesnick [3] or Chazal, de Silva, Glisse
and Oudot [9, Section 3.4] to remove the factor of 2 in Theorem 1.4.

1.1.2 Stability Among the most important theorems in persistent homology theory
is the bottleneck stability theorem, which in its original form (see Cohen-Steiner,
Edelsbrunner and Harer [10]) shows that the barcodes of the sublevel persistence
modules fH�.ff � tgIKgt2R associated to suitably tame functions f W X !R on a
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fixed topological space X depend in 1–Lipschitz fashion on f , where we use the C 0–
norm to measure the distance between functions and the bottleneck distance (recalled
below) to measure distances between barcodes. Since in applications there is inevitably
some imprecision in the function f , some sort of result along these lines is evidently
important in order to ensure that the barcode detects robust information. More recently, a
number of extensions and new proofs of the bottleneck stability theorem have appeared,
for instance in Chazal, Cohen-Steiner, Glisse, Guibas and Oudot [8], Chazal, de Silva,
Glisse and Oudot [9] and Bauer and Lesnick [3]; these have recast the theorem as an
essentially algebraic result about persistence modules satisfying a finiteness condition
such as q–tameness or pointwise finite-dimensionality (see [3, pages 163, 167] for
precise definitions). When recast in this fashion the stability theorem can be improved
to an isometry theorem, stating that two natural metrics on an appropriate class of
persistence modules are equal.

Hamiltonian Floer theory (see Floer [17], Hofer and Salamon [24], Liu and Tian [30],
Fukaya and Ono [22] and Pardon [35]) associates a Floer-type complex to any suitably
nondegenerate Hamiltonian H W S1 �M ! R on a compact symplectic manifold
.M;!/. A well-established and useful principle in Hamiltonian Floer theory is that
many aspects of the filtered Floer complex are robust under C 0–small perturbations
of the Hamiltonian; for instance, various R–valued quantities that can be extracted
from the Floer complex such as spectral invariants and boundary depth are Lipschitz
with respect to the C 0–norm on Hamiltonian functions (see Schwarz [40], Oh [34] and
Usher [44]). Naively this is rather surprising since C 0–perturbing a Hamiltonian can
dramatically alter its Hamiltonian flow. Our notion of the concise barcode — which by
Theorem B gives a complete invariant of the filtered chain homotopy type of a Floer-
type complex — allows us to obtain a more complete understanding of this C 0–rigidity
property, as an instance of a general algebraic result which extends the bottleneck
stability/isometry theorem to Floer-type complexes for general subgroups � �R.

In order to formulate our version of the stability theorem we must explain the notions
of distance that we use between Floer-type complexes on the one hand and concise
barcodes on the other. Beginning with the latter, consider two multisets S and T of
elements of .R=�/� Œ0;1�. For ı � 0, a ı -matching between S and T consists of
the following data:

(i) Submultisets Sshort and Tshort such that the second coordinate L of every element
.Œa�; L/ 2 Sshort[ Tshort obeys L� 2ı .

(ii) A bijection � W S n Sshort ! T n Tshort such that, for each .Œa�; L/ 2 S n Sshort

(where a 2R, L 2 Œ0;1�) we have �.Œa�; L/D .Œa0�; L0/, where for all � > 0
the representative a0 of the coset Œa0� 2 R=� can be chosen such that both
ja0� aj � ıC � and either LD L0 D1 or j.a0CL0/� .aCL/j � ıC � .
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Thus, viewing elements .Œa�; L/ as corresponding to intervals Œa; aC L/ (modulo
�–translation), a ı–matching is a matching which shifts both endpoints of each interval
by at most ı , with the proviso that we allow an interval I to be matched with a fictitious
zero-length interval at the center of I .

Definition 1.2 If S and T are two multisets of elements of .R=�/� Œ0;1� then the
bottleneck distance between S and T is

dB.S; T /D inffı � 0 j there exists a ı–matching between S and T g:

If S D fSkgk2Z and T D fTkgk2Z are two Z–parametrized families of multisets of
elements of .R=�/� Œ0;1� then we write

dB.S; T /D sup
k2Z

dB.Sk; Tk/:

It is easy to see that in the special case where � D f0g the above definition agrees with
the notion of bottleneck distance in Cohen-Steiner, Edelsbrunner and Harer [10]. Note
that the value dB can easily be infinity. For instance this occurs if S D f.Œa�;1/g and
T D f.Œa�; L/g, where L<1.

On the Floer complex side, we make the following definition, which is a slight mod-
ification of Usher [45, Definition 3.7]. As is explained in the appendix, this is very
closely related to the notion of interleaving of persistence modules from [8].

Definition 1.3 Let .C�; @C ; `C / and .D�; @D; `D/ be two Floer-type complexes, and
ı � 0. A ı–quasiequivalence between C� and D� is a quadruple .ˆ;‰;K1; K2/,
where:

� ˆW C�!D� and ‰W D�! C� are chain maps, with

`D.ˆc/� `C .c/C ı and `C .‰d/� `D.d/C ı

for all c 2 C� and d 2D� .

� KC W C�! C�C1 and KDW D�!D�C1 obey the homotopy equations

‰ ıˆ� IC� D @CKC CKC @C and ˆ ı‰� ID� D @DKDCKD@D;

and for all c 2 C� and d 2D� we have

`C .KC c/� `C .c/C 2ı and `D.KDd/� `D.d/C 2ı:
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The quasiequivalence distance between .C�; @C ; `C / and .D�; @D; `D/ is then defined
to be

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–quasiequivalence between

.C�; @C ; `C / and .D�; @D; `D/
	
:

We will prove the following as Theorems 8.17 and 8.18 in Sections 9 and 10:

Theorem 1.4 Given a Floer-type complex .C�; @C ; `C /, denote its concise barcode by
B.C�; @C ; `C / and the degree-k part of its concise barcode by BC;k . Then the bottle-
neck and quasiequivalence distances obey, for any Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/, the following conditions:

(i) dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB

�
B.C�; @C ; `C /;B.D�; @D; `D/

�
� 2dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
:

(ii) For k 2 Z let �D;k > 0 denote the smallest second coordinate L of all of the
elements of BD;k . If dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
< 1
4
�D;k , then

dB.BC;k;BD;k/� dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Thus the map from filtered chain homotopy equivalence classes of Floer-type complexes
to concise barcodes is at least bi-Lipschitz, with Lipschitz constant 2. We expect that it
is always an isometry; in fact when �Df0g this can be inferred from [9, Theorem 4.11]
and Theorem 6.2, and as mentioned in Remark 9.15 it is also true in the opposite extreme
case when � is dense.

Our proof that the bottleneck distance dB obeys the upper bounds of Theorem 1.4
is roughly divided into two parts. First, in Proposition 9.3, we prove the sharp in-
equality dB � dQ in the special case that the Floer-type complexes .C�; @C ; `C / and
.D�; @D; `D/ have the same underlying chain complex, and differ only in their filtration
functions `C and `D . In the rest of Section 9 we approximately reduce the general
case to this special case, using a mapping cylinder construction to obtain two different
filtration functions on a single chain complex, one of which has concise barcode equal
to that of .D�; @D; `D/ (see Proposition 9.12), and the other of which has concise
barcode consisting of the concise barcode of .C�; `C ; @C / together with some “extra”
elements .Œa�; L/ 2 .R=�/� Œ0;1� all having L� 2dQ

�
.C�; @C ; `C /; .D�; @D; `D/

�
(see Proposition 9.13). These constructions are quickly seen in Section 9.5 to yield
the upper bounds on dB in the two parts of Theorem 1.4; the factor of 2 in part (i)
arises from the “extra” bars in the concise barcode of the Floer-type complex from
Proposition 9.13.
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In contrast, the proof of the other inequality dQ � dB in Theorem 1.4(i) is considerably
simpler, and is carried out by a direct construction in Section 10.

As mentioned earlier, it is likely that the factor of 2 in Theorem 1.4(i) is unnecessary,
ie that the map from Floer-type complexes to concise barcodes is an isometry with
respect to the quasiequivalence distance dQ on Floer-type complexes and the bottleneck
distance dB on concise barcodes. Although we do not prove this, by taking advantage
of Theorem 1.4(ii) we show in Section 11 that, if dQ is replaced by a somewhat more
complicated distance dP that we call the interpolating distance, then the map is indeed
an isometry (see Theorem 11.2). The expected isometry between dQ and dB is then
equivalent to the statement that dP D dQ . Consistently with this, our experience in
concrete situations has been that methods which lead to bounds on one of dP or dQ
often also produce identical bounds on the other.

The final section of the body of the paper applies our general algebraic results to
Hamiltonian Floer theory, the relevant features of which are reviewed at the beginning
of that section.3 Combining Theorem 11.2 with standard results from Hamiltonian
Floer theory proves the following:

Corollary 1.5 If H0 and H1 are two nondegenerate Hamiltonians on any com-
pact symplectic manifold .M;!/, then the bottleneck distance between the concise
barcodes of .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/ is less than or equal toR 1
0 kH1.t; � /�H0.t; � /kL1 dt .

To summarize, we have shown how to associate to the Hamiltonian Floer complex
combinatorial data, in the form of the concise barcode, which completely classifies
the complex up to filtered chain homotopy equivalence, and which is continuous
with respect to variations in the Hamiltonian in a way made precise in Corollary 1.5.
Given the way in which torsion exponents, the boundary depth, and spectral invariants
are encoded in the concise barcode, this continuity can be seen as a simultaneous
extension of continuity results for those quantities; see Fukaya, Oh, Ohta and Ono [20,
Theorem 6.1.25], Usher [44, Theorem 1.1(ii)] and Schwarz [40, (12)].

We then apply Corollary 1.5 to prove our main application, Theorem 12.2, concerning
the robustness of the fixed points of a nondegenerate Hamiltonian diffeomorphism under
C 0–perturbations of the Hamiltonian: roughly speaking, as long as the perturbation
is small enough (as determined by the concise barcode of the original Hamiltonian),
the perturbed Hamiltonian, if it is still nondegenerate, will have at least as many fixed

3While we focus on Hamiltonian Floer theory in Section 12, very similar results would apply to the
Hamiltonian-perturbed Lagrangian Floer chain complexes or to the chain complexes underlying Novikov
homology.
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points as the original one, with actions that are close to the original actions. Moreover,
depending in a precise way on the concise barcode, fixed points with certain actions
may be identified as enjoying stronger robustness properties (in the sense that a larger
perturbation is required to eliminate them) than general fixed points of the same map.
While C 0–robustness of fixed points is a familiar idea in Hamiltonian Floer theory (see
eg Cornea and Ranicki [11, Theorem 2.1]), Theorem 12.2 goes farther than previous
results both in its control over the actions of the perturbed fixed points and in the way
that it gives stronger bounds for the robustness of unperturbed fixed points with certain
actions (see Remark 12.3).

Finally, the appendix identifies the quasiequivalence distance dQ that features in
Theorem 1.4 with a chain level version of the interleaving distance that is commonly
used (eg in [8]) in the persistent homology literature.
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2 Nonarchimedean orthogonality

2.1 Nonarchimedean normed vector spaces

Fixing a ground field K and an additive subgroup � � R as in the introduction, we
will consider vector spaces over the Novikov field defined as

ƒDƒK;�
D

�X
g2�

agT
g
ˇ̌̌
ag 2 K and # fg j ag ¤ 0; g < C g<1 for all C 2R

�
;

where T is a formal symbol and we use the obvious “power series” addition and
multiplication. This Novikov field adapts the ring used by Novikov in his version
of Morse theory for multivalued functions; see [24] both for some of its algebraic
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properties and for its use in Hamiltonian Floer homology. Note that when � is the
trivial group, ƒ reduces to the ground field K .

First, we need the following classical definition.

Definition 2.1 A valuation � on a field F is a function �W F !R[f1g such that

(V1) �.x/D1 if and only if x D 0;

(V2) �.xy/D �.x/C �.y/ for any x; y 2 F ;

(V3) �.xCy/�minf�.x/; �.y/g for any x; y 2 F .

Moreover, we call a valuation � trivial if �.x/D 0 for x ¤ 0 and �.x/D1 precisely
when x D 0.

For F Dƒ defined as above, we can associate a valuation simply by

�

�X
g2�

agT
g

�
Dminfg j ag ¤ 0g;

where we use the standard convention that the minimum of the empty set is 1. It is
easy to see that this � satisfies conditions (V1), (V2) and (V3). Note that the finiteness
condition in the definition of Novikov field ensures that the minimum exists. If �Df0g,
then the valuation � is trivial.

Definition 2.2 A nonarchimedean normed vector space over ƒ is a pair .C; `/, where
C is a vector space over ƒ endowed with a filtration function `W C ! R[ f�1g
satisfying the following axioms:

(F1) `.x/D�1 if and only if x D 0;

(F2) `.�x/D `.x/� �.�/ for any � 2ƒ and x 2 C ;

(F3) `.xCy/�maxf`.x/; `.y/g for any x; y 2 C .

In terms of Definition 2.2, the standard convention would be that the norm on a
nonarchimedean normed vector space .C; `/ is e` , not `. The phrasing of the above
definition reflects the fact that we will focus on the function `, not on the norm e` .

We record the following standard fact:

Proposition 2.3 If .C; `/ is a nonarchimedean normed vector space over ƒ and the
elements x; y 2 C satisfy `.x/¤ `.y/, then

(3) `.xCy/Dmaxf`.x/; `.y/g:
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Proof Of course the inequality “�” in (3) is just (F3). For “�” we assume without
loss of generality that `.x/ > `.y/, so we are to show that `.xCy/� `.x/. Now (F2)
implies that `.�y/D `.y/, so `.x/D `..xCy/C.�y//�maxf`.xCy/; `.y/g. Thus
since we have assumed that `.x/ > `.y/ we indeed must have `.x/� `.xCy/.

Example 2.4 (Rips complexes) Let X be a collection of points in euclidean space.
We will define a one-parameter family of “Rips complexes” associated to X as follows.
Let CR�.X/ be the simplicial chain complex over K of the complete simplicial complex
on the set X , so that CRk.X/ is the free K–vector space generated by the k–simplices
all of whose vertices lie in X . Define `W CR�.X/!R[f�1g by setting `.

P
i ai�i /

equal to the largest diameter of any of the simplices �i with ai ¤ 0 (and to �1 whenP
i ai�i D 0). Then .CR�.X/; `/ is a nonarchimedean vector space over ƒK;f0g DK .

For any � > 0 we define the Rips complex with parameter � , CR�.X I �/, to be the
subcomplex of C� with degree-k part given by

CRk.X I �/D fc 2 CRk.X/ j `.x/� �g:

Thus CR�.X I �/ is spanned by those simplices with diameter at most � . The stan-
dard simplicial boundary operator maps CRk.X I �/ to CRk�1.X I �/, yielding Rips
homology groups HRk.X I �/, and the dependence of these homology groups on � is
a standard object of study in applied persistent homology, as in [46].

Example 2.5 (Morse complex) Suppose we have a closed manifold X and f is a
Morse function on X . We may then consider its Morse chain complex CM�.X If /
over the field K D ƒK;f0g as in [39]. Let C D

L
k CMk.X If /. For any element

x 2 C , by the definition of the Morse chain complex, x D
P
i aipi , where each pi is

a critical point and ai 2 K . Then define `W C !R[f�1g by

`
�X

i
aipi

�
Dmaxff .pi / j ai ¤ 0g;

with the usual convention that the maximum of the empty set is �1. It is easy to
see that ` satisfies (F1), (F2) and (F3) above. Therefore,

�L
k CMk.X If /; `

�
is a

nonarchimedean normed vector space over KDƒK;f0g .

Example 2.6 Given a closed one-form ˛ on a closed manifold M , let � W zM !M

denote the regular covering space of M that is minimal subject to the property that
��˛ is exact, and choose zf W zM !R such that d zf D��˛ . The graded parts CNk. zf /
of the Novikov complex (see (1)) can likewise be seen as nonarchimedean vector spaces
over ƒDƒK;� , where the group � �R consists of all possible integrals of ˛ around
loops in M . Namely, just as in the previous two examples we put

`
�X

app
�
Dmaxf zf .p/ j ap ¤ 0g:
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We leave verification of axioms (F1), (F2), and (F3) to the reader.

2.2 Orthogonality

We use the standard notions of orthogonality in nonarchimedean normed vector spaces
(see [31]).

Definition 2.7 Let .C; `/ be a nonarchimedean normed vector space over a Novikov
field ƒ.

� Two subspaces V and W of C are said to be orthogonal if for all v 2 V and
w 2W , we have

`.vCw/Dmaxf`.v/; `.w/g:

� A finite ordered collection .w1; : : : ; wr/ of elements of C is said to be orthogo-
nal if, for all �1; : : : ; �r 2ƒ, we have

(4) `

� rX
iD1

�iwi

�
D max
1�i�r

`.�iwi /:

In particular a pair .v; w/ of elements of C is orthogonal if and only if the spans hviƒ
and hwiƒ are orthogonal as subspaces of C . Of course, by (F2), the criterion (4) can
equivalently be written as

(5) `

� rX
iD1

�iwi

�
D max
1�i�r

.`.wi /� �.�i //:

Example 2.8 Here is a simple example illustrating the notion of orthogonality. Let
� D f0g so that ƒD K has the trivial valuation defined in Definition 2.1. Let C be a
two-dimensional K–vector space, spanned by elements x; y . We may define a filtration
function ` on C by declaring .x; y/ to be an orthogonal basis with, say, `.x/D 1 and
`.y/D 0; then in accordance with (5) and the definition of the trivial valuation � we
will have

`.�xC �y/D

8<:
1 if �¤ 0;
0 if �D 0; �¤ 0;
�1 if �D �D 0:

The ordered basis .xCy; y/ will likewise be orthogonal: indeed for �; � 2K we have

`.�.xCy/C �y/D `.�xC .�C �/y/D

8<:
1 if �¤ 0;
0 if �D 0; �C �¤ 0;
�1 if �D �D 0;
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which is indeed equal to the maximum of `.�.xCy// and `.�y/ (the former being 1
if �¤ 0 and �1 otherwise, and the latter being 0 if �¤ 0 and �1 otherwise).

On the other hand the pair .x; xCy/ is not orthogonal: letting �D�1 and �D 1 we
see that `.�xC �.xCy//D `.y/D 0 whereas maxf`.�x/; `.�.xCy//g D 1.

Here are some simple but useful observations that follow directly from Definition 2.7.

Lemma 2.9 If .C; `/ is an nonarchimedean normed vector space over ƒ, then:

(i) If two subspaces U and V are orthogonal, then U intersects V trivially.

(ii) For subspaces U; V;W , if U and V are orthogonal, and U ˚ V and W are
orthogonal, then U and V ˚W are orthogonal.

(iii) If U and V are orthogonal subspaces of C , and if .u1; : : : ; ur/ is an orthog-
onal ordered collection of elements of U while .v1; : : : ; vs/ is an orthogonal
ordered collection of elements of V , then .u1; : : : ; ur ; v1; : : : ; vs/ is orthogonal
in U ˚V .

Proof For (i), if w 2 U \V , then noting that (F2) implies that `.�w/D `.w/, we
see that, since w 2 U and �w 2 V , where U and V are orthogonal,

�1D `.0/D `.wC .�w//Dmaxf`.w/; `.w/g D `.w/;

and so w D 0 by (F1). So indeed U intersects V trivially.

For (ii), first note that if U ˚V and W are orthogonal, then in particular, V and W
are orthogonal. For any elements u 2 U; v 2 V and w 2W , we have

`.uC .vCw//D `..uC v/Cw/

Dmaxf`.uC v/; `.w/g

Dmaxf`.u/; `.v/; `.w/g

Dmaxf`.u/; `.vCw/g:

The second equality comes from orthogonality between U ˚ V and W ; the third
equality comes from orthogonality between U and V ; and the last equality comes
from orthogonality between V and W .

Part (iii) is an immediate consequence of the definitions.

Definition 2.10 An orthogonalizable ƒ–space .C; `/ is a finite-dimensional nonar-
chimedean normed vector space over ƒ such that there exists an orthogonal basis for C .
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Example 2.11 .ƒ;��/ is an orthogonalizable ƒ–space.

Example 2.12 .ƒn;�E�/ is an orthogonalizable ƒ–space, where E� is defined as
E�.�1; : : : ; �n/Dmin1�i�n�.�i /. Moreover, fixing some vector Et D .t1; : : : ; tn/ 2Rn ,
the shifted version .ƒn;�E�Et / is also an orthogonalizable ƒ–space, where E�Et is defined
as

E�Et .�1; : : : ; �n/D min
1�i�n

.�.�i /� ti /:

Specifically, an orthogonal ordered basis is given by the standard basis .e1; : : : ; en/
for ƒn : indeed, we have �E�Et .ei /D ti , and

�E�Et

� nX
iD1

�iei

�
D max
1�i�n

.ti � �.�i //D max
1�i�n

.�E�Et .ei /� �.�i //:

In Example 2.6 above, if we let f zpigniD1 � zM consist of one point in every fiber of the
covering space zM !M that contains an index-k critical point, then it is easy to see
that we have a vector space isomorphism CNk. zf /Šƒn , with the filtration function `
on CNk. zf / mapping to the shifted filtration function �E�Et , where ti D zf . zpi /.

Remark 2.13 In fact, using (F2) and the definition of orthogonality, it is easy to see
that any orthogonalizable ƒ–space .C; `/ is isomorphic in the obvious sense to some
.ƒn;�E�Et /: if .v1; : : : ; vn/ is an ordered orthogonal basis for .C; `/ then mapping vi
to the i th standard basis vector for ƒn gives an isomorphism of vector spaces which
sends ` to �E�Et , where ti D `.vi /.

2.3 Nonarchimedean Gram–Schmidt process

In classical linear algebra, the Gram–Schmidt process is applied to modify a set of
linearly independent elements into an orthogonal set. A similar procedure can be
developed in the nonarchimedean context. The key part of this process comes from the
following theorem, which we state using our notations in this paper (see Remark 2.13).

Theorem 2.14 [42, Theorem 2.5] Suppose .C; `/ is an orthogonalizable ƒ–space
and W � C is a ƒ–subspace. Then for any x 2 CnW there exists some w0 2W such
that

(6) `.x�w0/D inff`.x�w/ j w 2W g:

Thus w0 achieves the minimal distance to x among all elements of W . Note that (in
contrast to the situation with more familiar notions of distance such as the euclidean
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distance on Rn ) the element w0 is generally not unique. However, similarly to the
case of the euclidean distance, solutions to this distance-minimization problem are
closely related to orthogonality, as the following lemma shows.

Lemma 2.15 Let .C; `/ be a nonarchimedean normed vector space over ƒ, and let
W � C be a ƒ–subspace and x 2 CnW . Then W and hxiƒ are orthogonal if and
only if `.x/D inff`.x�w/ j w 2W g.

Proof Suppose W and hxiƒ are orthogonal. Then for any w 2W , by orthogonality,

`.x�w/Dmaxf`.x/; `.w/g � `.x/:

Therefore, taking an infimum, we get inff`.x � w/ j w 2 W g � `.x/. Moreover,
by taking w D 0, we have inff`.x � w/ j w 2 W g � `.x � 0/ D `.x/. Therefore,
`.x/D inff`.x�w/ j w 2W g.

Conversely, suppose that `.x/ D inff`.x �w/ j w 2 W g and let y D wC�x be a
general element of W ˚ hxiƒ . We must show that `.y/ D maxf`.w/; `.�x/g; in
fact, the inequality “�” automatically follows from (F3), so we just need to show that
`.y/�maxf`.w/; `.�x/g. If �D 0 this is obvious since then y Dw , so assume from
now on that �¤ 0. Then

`.y/D `
�
�.��1wC x/

�
D `.��1wC x/� �.�/� `.x/� �.�/D `.�x/;

where the inequality uses the assumed optimality property of x . If `.�x/� `.w/ this
proves that `.y/ � maxf`.w/; `.�x/g. On the other hand if `.�x/ < `.w/ then the
fact that `.y/�maxf`.w/; `.�x/g simply follows by Proposition 2.3.

Theorem 2.16 (nonarchimedean Gram–Schmidt process). Let .C; `/ be an orthogo-
nalizable ƒ–space and let fx1; : : : ; xrg be a basis for a subspace V � C . Then there
exists an orthogonal ordered basis .x01; : : : ; x

0
r/ for V whose members have the form

x01 D x1;

x02 D x2��2;1x1;
:::

x0r D xr ��r;r�1xr�1��r;r�2xr�2� � � � ��r;1x1;

where the �˛;ˇ are constants in ƒ. Moreover if the first i elements of the initial basis
are such that .x1; : : : ; xi / are orthogonal, then we can take x0j D xj for j D 1; : : : ; i .

Proof We proceed by induction on the dimension r of V . If V is one-dimensional
then we simply take x01 D x1 . Assuming the result to be proven for all k–dimensional
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subspaces, let .x1; : : : ; xkC1/ be an ordered basis for V , with .x1; : : : ; xi / orthogonal
for some i 2 f1; : : : ; kC 1g. If i D kC 1 then we can set x0j D xj for all j and we
are done. Otherwise apply the inductive hypothesis to the span W of fx1; : : : ; xkg
to obtain an orthogonal ordered basis .x01; : : : ; x

0
k
/ for W , with x0j D xj for all

j 2 f1; : : : ; ig. Now apply Theorem 2.14 to W and the element xkC1 to obtain some
w0 2W such that `.xkC1�w0/D inff`.xkC1�w/ jw 2W g. Let x0

kC1
D xkC1�w0 .

It then follows from Lemma 2.15 that W and hx0
kC1
iƒ are orthogonal, and so by

Lemma 2.9(iii) .x01; : : : ; x
0
k
; x0
kC1

/ is an orthogonal ordered basis for V . Moreover
since x0

kC1
D xkC1 �w0 , where w0 lies in the span of x1; : : : ; xk , it is clear that

xkC1 has the form required in the theorem. This completes the inductive step and
hence the proof.

Corollary 2.17 If .C; `/ is an orthogonalizable ƒ–space, then for every subspace
W � C , .W; `jW / is also an orthogonalizable ƒ–space.

Proof Apply Theorem 2.16 to an arbitrary basis for W to obtain an orthogonal ordered
basis for W .

Corollary 2.18 If .C; `/ is an orthogonalizable ƒ–space and V � W � C , any
orthogonal ordered basis of V may be extended to an orthogonal basis of W .

Proof By Corollary 2.17, we have an orthogonal ordered basis .v1; : : : ; vi / for V .
Extend it arbitrarily to a basis fv1; : : : ; vi ; viC1; : : : ; vrg for W , and then apply
Theorem 2.16 to obtain an orthogonal ordered basis for W whose first i elements are
v1; : : : ; vi .

Corollary 2.19 Suppose that .C; `/ is an orthogonalizable ƒ–space and U � C .
Then there exists a subspace V such that U ˚V D C and U and V are orthogonal.
(We call any such V an orthogonal complement of U ).

Proof By Corollary 2.17, we have an orthogonal ordered basis .u1; : : : ; uk/ for
subspace U . By Corollary 2.18, extend it to an orthogonal ordered basis for C , say
.u1; : : : ; uk; v1; : : : ; vl/ (so dim.C /D kC l ). Then V D spanƒfv1; : : : ; vlg satisfies
the desired properties.

Orthogonal complements are generally not unique, as is illustrated by Example 2.8, in
which hxC ayiK is an orthogonal complement to hyiK for any a 2 K .
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2.4 Duality

Given a nonarchimedean normed vector space .C; `/, the dual space C � (over ƒ)
becomes a nonarchimedean normed vector space if we associate a filtration function
`�W C �!R[f1g defined by

`�.�/D sup
0¤x2C

.�`.x/� �.�.x///:

Indeed, for � and  in C � and x 2 C , we have

�`.x/� �.�.x/C .x//� �`.x/�minf�.�.x//; �. .x//g

Dmaxf�`.x/� �.�.x//;�`.x/� �. .x//g

�maxf`�.�/; `�. /g

and so taking the supremum over x shows that `�.� C  / � maxf`�.�/; `�. /g,
and it is easy to check the other axioms (F1) and (F3) required of `� . The following
proposition demonstrates a relation between bases of the original space and its dual
space.

Proposition 2.20 If .C; `/ is an orthogonalizable ƒ–space with orthogonal ordered
basis .v1; : : : ; vn/, then .C �; `�/ is an orthogonalizable ƒ–space with an orthogonal
ordered basis given by the dual basis .v�1 ; : : : ; v

�
n/. Moreover, for each i , we have

(7) `�.v�i /D�`.vi /:

Proof For any x 2 C , written as
Pn
jD1 �ivi , we have v�i x D �i for each i , so if

�i D 0 then �`.x/� �.v�i x/D�1, while otherwise

�`.x/� �.v�i x/D� max
1�j�n

.`.vj /� �.�j //� �.�i /

� �.`.vi /� �.�i //� �.�i /D�`.vi /:

Equality holds in the above when x D vi , so `�.v�i /D�`.vi /.

To prove orthogonality, given any �1; : : : ; �n 2ƒ, choose i0 to maximize the quantity
�`.vi /� �.�i / over i 2 f1; : : : ; ng. Then

`�
� nX
iD1

�iv
�
i

�
� �`.vi0/� �

�� nX
iD1

�iv
�
i

�
vi0

�
D�`.vi0/� �.�i0/D max

1�i�n
.`�.v�i /� �.�i //:

The reverse direction immediately follows from the nonarchimedean triangle inequality
(F3) in Definition 2.2. Therefore, we have proven the orthogonality of the dual basis.
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2.5 Coefficient extension

This is a somewhat technical subsection which is not used for most of the main results —
mainly we are including it in order to relate our barcodes to the torsion exponents from
[20] — so it could reasonably be omitted on first reading.

Throughout most of this paper we consider a fixed subgroup � �R, with associated
Novikov field ƒDƒK;� , and we consider orthogonalizable ƒ–spaces over this fixed
Novikov field ƒ. Suppose now that we consider a larger subgroup � 0 � � (still
with � 0 � R). The inclusion � ,! � 0 induces in obvious fashion a field extension
ƒ ,!ƒK;� 0 , and so for any ƒ vector space C we obtain a ƒK;� 0–vector space

C 0 D C ˝ƒƒ
K;� 0 :

If .C; `/ is an orthogonalizable ƒ–space with orthogonal ordered basis .w1; : : : ; wn/
then fw1˝ 1; : : : ; wn˝ 1g is a basis for C 0 and so we can make C 0 into an orthogo-
nalizable ƒK;� 0–space .C 0; `0/ by putting

`0
� nX
iD1

�0iwi ˝ 1

�
Dmax

i
.`.wi /� �.�

0
i //

for all �01; : : : ; �
0
n 2 ƒ

K;� 0 ; in other words we are defining `0 by declaring .w1 ˝
1; : : : ; wn˝1/ to be an orthogonal ordered basis for .C 0; `0/. The following proposition
might be read as saying that this definition is independent of the choice of orthogonal
basis .w1; : : : ; wn/ for .C; `/.

Proposition 2.21 With the above definition, if .x1; : : : ; xn/ is any orthogonal ordered
basis for .C; `/ then .x1˝ 1; : : : ; xn˝ 1/ is an orthogonal ordered basis for .C 0; `0/.

Proof Let .w1; : : : ; wn/ denote the orthogonal basis that was used to define `0 . Let
N 2 GLn.ƒ/ be the basis change matrix from .w1; : : : ; wn/ to .x1; : : : ; xn/, ie the
matrix characterized by the fact that for j 2 f1; : : : ; ng we have xj D

P
i Nijwi . Then

for E�0 D .�01; : : : ; �
0
n/ 2 .ƒ

K;� 0/n we have

(8) `0
� nX
jD1

�0jxj ˝ 1

�
D `

� nX
iD1

.N E�0/iwi

�
Dmax

i
.`.wi /� �..N E�0/i //:

Now the vector E�0 2 .ƒK;� 0/n is a formal sum E�0D
P
g2� 0 EvgT

g where Evg 2Kn and
where the set of g with Evg ¤ 0 is discrete and bounded below. Let S E�0 � �

0 consist
of those g 2 � 0 such that g is the minimal element in its coset gC � � � 0 having
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Evg ¤ 0. We can then reorganize the above sum as

E�0 D
X
g2S E�0

E�gT
g ;

where now E�g 2ƒn , and where the set S E�0 is discrete and bounded below and has the
property that distinct elements of S E�0 belong to distinct cosets of � in � 0 .

Now since N has its coefficients in ƒ, we will have

N E�0 D
X
g2S E�0

N E�gT
g ;

where each N E�g 2 ƒ
n . For each i the various �..N E�g/iT g/ are equal to g C

�..N E�g/i / and so belong to distinct cosets of � in � 0 (in particular, they are distinct
from each other) and so we have for each i

�..N E�0/i /D min
g2S E�0

.gC �..N E�g/i //;

and similarly �.�0j /Dming.gC �..E�g/j // for each j . Combining this with (8) and
using the orthogonality of .w1; : : : ; wn/ and .x1; : : : ; xn/ with respect to ` and the
fact that the E�g belong to ƒn gives

`0
� nX
jD1

�0jxj ˝ 1

�
Dmax

i;g
.`.wi /�g� �..N E�g/i //

Dmax
g

�
�gCmax

i
.`.wi /� �..N E�g/i //

�
Dmax

g

�
�gC `

�X
i

.N E�g/iwi

��
Dmax

g

�
�gC `

�X
j

.E�g/jxj

��
Dmax

g

�
�gCmax

j
.`.xj /� �..E�g/j //

�
Dmax

j

�
`.xj /�min

g
.gC �..E�g/j //

�
Dmax

j
.`.xj /� �.�

0
j //;

proving the orthogonality of .x1˝ 1; : : : ; xn˝ 1/ since it follows directly from the
original definition of `0 in terms of .w1; : : : ; wn/ that `0.x ˝ 1/ D `.x/ whenever
x 2 C .
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3 (Nonarchimedean) singular value decompositions

Recall that in linear algebra over C with its standard inner product, a singular value
decomposition for a linear transformation AW Cn! Cm is typically defined to be a
factorization A D X†Y � where X 2 U.m/, Y 2 U.n/, and †ij D 0 when i ¤ j
while each †i i � 0. The “singular values” of A are by definition the diagonal entries
�i D†i i , and then we have an orthonormal basis .y1; : : : ; yn/ for Cn (given by the
columns of Y ) and an orthonormal basis .x1; : : : ; xm/ for Cm (given by the columns
of X ) with Ayi D �ixi for all i with �i ¤ 0, and Ayi D 0 otherwise.

An analogous construction for linear transformations between orthogonalizable ƒ–
spaces will play a central role in this paper. In the generality in which we are working, we
should not ask for the bases .y1; : : : ; yn/ to be orthonormal, since an orthogonalizable
ƒ–space may not even admit an orthonormal basis (for the examples .ƒn;�E�Et / of
Example 2.12, an orthonormal basis exists if and only if each ti belongs to the value
group � ). However in the classical case asking for a singular value decomposition is
equivalent to asking for orthogonal bases .y1; : : : ; yn/ for the domain and .x1; : : : ; xm/
for the codomain such that for all i either Ayi D xi or Ayi D 0; the singular values
could then be recovered as the numbers kAyik=kyik. This is precisely what we will
require in the nonarchimedean context. For the case in which the spaces in question do
admit orthonormal bases (and so are equivalent to .ƒn;�E�/) such a construction can
be found in [27, Section 4.3].

3.1 Existence of (nonarchimedean) singular value decomposition

Definition 3.1 Let .C; `C /, .D; `D/ be orthogonalizable ƒ–spaces and let AW C!D

be a linear map with rank r . A singular value decomposition of A is a choice of
orthogonal ordered bases .y1; : : : ; yn/ for C and .x1; : : : ; xm/ for D such that

(i) .yrC1; : : : ; yn/ is an orthogonal ordered basis for kerA;

(ii) .x1; : : : ; xr/ is an orthogonal ordered basis for ImA;

(iii) Ayi D xi for i 2 f1; : : : ; rg;

(iv) `C .y1/� `D.x1/� � � � � `C .yr/� `D.xr/.

Remark 3.2 Consistently with the remarks at the start of the section, the singular
values of A would then be the quantities e`D.xi /�`C .yi / for 1� i � r , as well as 0 if
r < n. So the quantities `C .yi /� `D.xi / from (iv) are the negative logarithms of the
singular values.
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Remark 3.3 Occasionally it will be useful to consider data ..y1; : : : ;yn/; .x1; : : : ;xm//
which satisfy all of the conditions of Definition 3.1 except condition (iv); such a pair
will be called an unsorted singular value decomposition. Of course passing from an
unsorted singular value decomposition to a genuine singular value decomposition is
just a matter of sorting by the quantity `C .yi /� `C .xi /.

The rest of this subsection will be devoted to proving the following existence theorem:

Theorem 3.4 If .C; `C / and .D; `D/ are orthogonalizable ƒ–spaces, then any ƒ–
linear map AW C !D has a singular value decomposition.

We will prove Theorem 3.4 by providing an algorithm (with proof) for producing a
singular value decomposition of linear map A between orthogonalizable ƒ–spaces.
The algorithm is essentially Gaussian elimination, but with a carefully designed rule
for pivot selection which allows us to achieve the desired orthogonality properties. In
this respect it is similar to the algorithm from [46] (that computes barcodes in classical
persistent homology); however [46] uses a pivot-selection rule which does not adapt
well to our context, where the value group � may be nontrivial, leading us to use a
different such rule. Like the algorithm from [46], our algorithm requires a number of
field operations that is at most cubic in the dimensions of the relevant vector spaces,
and can be expected to do better than this in common situations where the matrix
representing the linear map is sparse. Of course, when working over a Novikov field
there is an additional concern regarding how one can implement arithmetic operations
in this field on a computer; we do not attempt to address this here.

Theorem 3.5 (algorithmic version of Theorem 3.4) Let .C; `C / and .D; `D/ be
orthogonalizable ƒ–spaces, let AW C !D be a ƒ–linear map, and let .v1; : : : ; vn/
be an orthogonal ordered basis for C . Then one may algorithmically construct an
orthogonal ordered basis .v01; : : : ; v

0
n/ of C such that

(i) `C .v
0
i /D `C .vi / and `D.Av0i /� `D.Avi / for each i ;

(ii) Let U D
˚
i 2 f1; : : : ; ng j Av0i ¤ 0

	
. Then the ordered subset .Av0i j i 2 U/ is

orthogonal in D .

Remark 3.6 In particular, .v0i j i … U/ then gives an orthogonal ordered basis for
kerA.

Proof Fix throughout the algorithm an orthogonal ordered basis .w1; : : : ; wm/ for D .
Represent A by a matrix .Aij / with respect to these bases, so that Avj D

P
i Aijwi .

Note that vj changes as the algorithm proceeds (though the wi do not), so the elements
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Aij 2 ƒ will likewise change in a corresponding way. Initialize the set of “unused
column indices” to be J D f1; : : : ; ng, and the set of “pivot pairs” to be P D ¿; at
each step an element will be removed from J and an element will be added to P . Here
is the algorithm:

while .9j 2 J /.Avj ¤ 0/ do
Choose i0 2 f1; : : : ; mg and j0 2 J which maximize the quantity

`D.wi /� �.Aij /� `C .vj / over all .i; j / 2 f1 : : : ; mg �J .

Add .i0; j0/ to the set P .
Remove j0 from the set J .
For each j 2 J , replace vj by v0j WD vj �

Ai0j
Ai0j0

vj0 .

For each j 2 J and i 2 f1; : : : ; mg, replace Aij by A0ij WD Aij �
Ai0jAij0
Ai0j0

(thus
restoring the property that Avj D

Pm
iD1Aijwi ).

end

Note that the while loop predicate implies that in each iteration there is some .i; j / 2
f1; : : : ; mg �J such that Aij ¤ 0, so in particular Ai0j0 ¤ 0 (otherwise AD 0) and
so the divisions by Ai0j0 in the last two steps of the iteration are not problematic. The
ordered basis .v01; : : : ; v

0
n/ promised in the statement of this theorem is then simply

the tuple to which .v1; : : : ; vn/ has evolved upon the termination of the while loop. To
prove that this satisfies the required properties it suffices to prove that, in each iteration
of the while loop, the following assertions hold:

Claim 3.7 If the initial basis .v1; : : : ; vn/ is orthogonal, then so is the basis obtained
by replacing vj by

v0j D vj �
Ai0j

Ai0j0
vj0

for each j 2 J n fj0g. Moreover `C .v0j /D `C .vj / while `D.Av0j /� `D.Avj /.

Claim 3.8 After each iteration, the ordered set .Avj j j … J /�D is orthogonal.

Proof of Claim 3.7 For any j 2 J n fj0g, by the orthogonality of .v1; : : : ; vn/ and
the definition of v0j , we have

`C .v
0
j /Dmax

�
`C .vj /; `C

�
Ai0j

Ai0j0
vj0

��
:

Because .i0; j0/ is chosen to satisfy

`D.wi0/� �.Ai0j0/� `C .vj0/� `D.wi /� �.Aij /� `C .vj /
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for all i and j , it in particular holds that

`D.wi0/� �.Ai0j0/� `C .vj0/� `D.wi0/� �.Ai0j /� `C .vj /;

which can be rearranged to give

(9) `C

�
Ai0j

Ai0j0
vj0

�
� `C .vj /:

So we get

(10) `C .v
0
j /D `C .vj /:

As for the statement about `D.Av0j /, note that

`D.Avj0/D `D

� mX
iD1

Aij0wi

�
Dmax

i
.`D.wi /� �.Aij0//D `D.wi0/� �.Ai0j0/;

where the last equation follows from the optimality criterion satisfied by .i0; j0/.
Therefore,

`D

�
Ai0j

Ai0j0
Avj0

�
D `D.wi0/� �.Ai0j /� max

1�i�n
`D.Aijwi /

D `D

� nX
iD1

Aijwi

�
D `D.Avj /

and hence

`D.Av
0
j /�max

�
`D.Avj /; `D

�
Ai0j

Ai0j0
Avj0

��
D `D.Avj /:

It remains to prove orthogonality of the basis obtained by replacing the vj by v0j for
j 2J . Here and for the rest of the proof we use the variable values as they are after the
third step of the given iteration of the while loop — thus the vj have not been changed
but j0 has been removed from J . The new basis will be fv01; : : : ; v

0
ng, where v0j D vj

if j … J and v0j D vj � .Ai0j =Ai0j0/vj0 otherwise. Let �1; : : : ; �n 2ƒ and observe
that, by the orthogonality of fv1; : : : ; vng,

(11) `C

� nX
jD1

�j v
0
j

�
D `C

� nX
jD1

�j vj �
X
j2J

�j
Ai0j

Ai0j0
vj0

�

Dmax
�
`C

��
�j0 �

X
k2J

�k
Ai0k

Ai0j0

�
vj0

�
;max
j¤j0

`C .�j vj /

�
:
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If `.�j0v
0
j0
/ > `.�j v

0
j / for all j ¤ j0 , then of course

`C

� nX
jD1

�j v
0
j

�
D `C .�j0v

0
j0
/Dmax

j
f`C .�j v

0
j /g:

Otherwise, there is j1 ¤ j0 such that

(12) max
j
`C .�j v

0
j /D `C .�j1v

0
j1
/:

Now by (10) and the optimality condition (12), we have

(13) `C .�j1vj1/D `C .�j1v
0
j1
/� `C .�j0v

0
j0
/D `C .�j0vj0/:

Also, by (9) and (12), for all k 2 J ,

`C .�j1vj1/� `C

�
�k
Ai0k

Ai0j0
vj0

�
:

Thus

(14) `C .�j1vj1/� `C

��
�j0 �

X
k2J

�k
Ai0k

Ai0j0

�
vj0

�
:

So combining (11), (12), and (14), we have

`C

� nX
jD1

�j v
0
j

�
Dmax

j
`C .�j v

0
j /;

proving the orthogonality of .v01; : : : ; v
0
n/. This completes the proof of Claim 3.7.

Proof of Claim 3.8 For k � 1 let .ik; jk/ denote the pivot pair that is added to the
set P during the kth iteration of the while loop. In particular jk is removed from J
during the kth iteration, and after this removal we have J D f1; : : : ; ng n fj1; : : : ; jkg.
So the column operation in the last step of the kth iteration replaces the matrix entries
Aikj for j … fj1; : : : ; jkg by

Aikj �
AikjAikjk
Aikjk

D 0:

Moreover for j … fj1; : : : ; jkg and any i 2 f1; : : : ; mg such that after the prior iteration
we had Aijk DAij D 0 (for instance this applies, inductively, to any i 2 fi1; : : : ; ik�1g),
the fact that Aij D 0 will be preserved after the kth iteration. Thus,

(15) after the kth iteration, Ailj D 0 for l 2 f1; : : : ; kg and j … fj1; : : : ; jlg:

We now show that, after the kth iteration, the ordered set .Avj1 ; : : : ; Avjk / is orthogo-
nal; this is evidently equivalent to the statement of the claim. Note that, for 1� l � k ,
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neither the element vjl nor the j th
l

column of the matrix .Aij / changes during or after
the l th iteration of the while loop, due to the removal of jl from J during that iteration.
For l 2 f1; : : : ; kg, the optimality condition satisfied by the pair .il ; jl/ guarantees
that `D.wi /� �.Aijl /� `D.wil /� �.Ailjl / for all i and hence

(16) `D.Avjl /Dmax
i
.`D.Aijlwi //D `D.Ailjlwil /:

Given �1; : : : ; �k 2 ƒ we shall show that `D
�Pk

lD1 �lAvjl
�
D maxl `D.�lAvjl /.

Let l0 be the smallest element of f1; : : : ; kg with the property that

`D.�l0Ail0jl0wil0 /D max
1�l�k

`D.�lAiljlwil /:

For all i 2 f1; : : : ; mg and l 2 f1; : : : ; kg we have, by the choice of .il ; jl/,

`D.�lAijlwi /� `D.�lAiljlwil /� `D.�l0Ail0jl0wil0 /:

Using (15), Ail0jl ¤ 0 only for l � l0 , and soX
l

�lAil0jlwil0 D �l0Ail0jl0wil0 C
X
l<l0

�lAil0jlwil0 :

Each term �lAil0jlwil0 has filtration level bounded above by `D.�lAiljlwil / by the
second equality in (16), and this latter filtration level is, for l < l0 , strictly lower than
`D.�l0Ail0jl0wil0 / because we chose l0 as the smallest maximizer of `D.�lAiljlwil /.
So we in fact have

`D

�X
l

�lAil0jlwil0

�
D `D.�l0Ail0jl0wil0 /:

By the orthogonality of the ordered basis .w1; : : : ; wm/ we therefore have

`D

� kX
lD1

�lAvjl

�
D `D

� kX
lD1

mX
iD1

�lAijlwi

�

D max
1�i�m

`D

� kX
lD1

�lAijlwi

�
� `D.�l0Ail0jl0wil0 /

Dmax
l
`D.�lAiljlwil /Dmax

l
`D.�lAvjl /;

where in the first equality in the third line we use the defining property of l0 and in the
last equality we use (16). Since the reverse inequality

`D

�X
l

�lAvjl

�
�max

l
`D.�lAvjl /

is trivial this completes the proof of the orthogonality of .Avj1 ; : : : ; Avjk /.
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As noted earlier, Claims 3.7 and 3.8 directly imply that the basis for C obtained at
the termination of the while loop satisfies the required properties, thus completing the
proof of Theorem 3.5.

Proof of Theorem 3.4 First reorder the elements v0i produced by the Theorem 3.5 so
that Av0i ¤ 0 if and only if i 2 f1; : : : ; rg, where r is the rank of A, and such that

`C .v
0
1/� `D.Av

0
1/� � � � � `C .v

0
r/� `D.Av

0
r/:

If A is surjective, then ..v01; : : : ; v
0
n/; .Av

0
1; : : : ; Av

0
r// will immediately be a singular

value decomposition for A. More generally, we may use Corollary 2.19 to find
an orthogonal complement of Im.A/ in D , and by Corollary 2.17 this orthogonal
complement has some orthogonal ordered basis .xrC1; : : : ; xm/. We thus conclude
that ..v01; : : : ; v

0
n/; .Av

0
1; : : : ; Av

0
r ; xrC1; : : : ; xm// is a singular value decomposition

for A.

3.2 Duality and coefficient extension for singular value decompositions

Proposition 2.20 allows us to easily convert a singular value decomposition for a map
AW C !D to one for the adjoint map A�W D�! C � . Explicitly:

Proposition 3.9 Let .C; `C / and .D; `D/ be two orthogonalizable ƒ–spaces and
AW C !D be a ƒ–linear map with rank r . Suppose ..y1; : : : ; yn/; .x1; : : : ; xm// is a
singular value decomposition for A. Then ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n// is a singular

value decomposition for its adjoint map A�W D�! C � .

Proof By the first assertion of Proposition 2.20, .x�1 ; : : : ; x
�
m/ is an orthogonal or-

dered basis for D� and .y�1 ; : : : ; y
�
n/ is an orthogonal ordered basis for C � . By

the definition of a singular value decomposition, Ayi D xi for i 2 f1; : : : ; rg and
Ayi D 0 for i 2 fr C 1; : : : ; ng, so A�x�i D y�i for i 2 f1; : : : ; rg and A�x�i D 0

for i 2 fr C 1; : : : ; mg. Therefore .x�rC1; : : : ; x
�
m/ is an orthogonal ordered basis

for kerA� and fy1; : : : ; yrg D fA�x�1 ; : : : ; A
�x�r g is an orthogonal ordered basis for

ImA� . Finally, for i 2 f1; : : : ; rg, by the second assertion of Proposition 2.20, we have

`�D�.x
�
i /� `

�
C�.y

�
i /D�`D.xi /C `C .yi /D `C .yi /� `D.xi /:

So the ordering of `C .yi /�`D.xi / implies the desired ordering for `�D�.x
�
i /�`

�
C�.y

�
i /.

Similarly, Proposition 2.21 implies that singular value decompositions are well-behaved
under coefficient extension.
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Proposition 3.10 Consider two subgroups ��� 0�R, and write ƒDƒK;� and ƒ0D
ƒK;� 0 . Let .C; `C / and .D; `D/ be orthogonalizable ƒ–spaces and let AW C ! D

be a ƒ–linear map, with singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//.
Then if C˝ƒƒ0 and D˝ƒƒ0 are endowed with the filtration functions `0C and `0D as
in Section 2.5, the map A˝1W C ˝ƒƒ0!D˝ƒƒ

0 has singular value decomposition
given by ..y1˝ 1; : : : ; yn˝ 1/; .x1˝ 1; : : : ; xm˝ 1//.

Proof The ordered sets .y1˝1; : : : ; yn˝1/ and .x1˝1; : : : ; xm˝1/ are orthogonal
by Proposition 2.21. Moreover by definition of the relevant filtration functions we have
`0C .yi ˝ 1/D `C .yi / and `0D.xi ˝ 1/D `D.xi / for all i such that these are defined.
Once these facts are known it is a trivial matter to check each of the conditions (i)-(iv)
in the definition of a singular value decomposition.

4 Boundary depth and torsion exponents
via singular value decompositions

The boundary depth as defined in [44] or [45] is a numerical invariant of a filtered chain
complex that, in the case of the Hamiltonian and Lagrangian Floer complexes, has been
effectively used to obtain applications in symplectic topology. A closely related notion
is that of the torsion threshold and more generally the torsion exponents that were
introduced in [20, Section 6.1] for the Lagrangian Floer complex over the universal
Novikov ring and were used in [21] to obtain lower bounds for the displacement energies
of polydisks. We will see in this section that, for complexes like those that arise in Floer
theory, both of these notions are naturally encoded in the (nonarchimedean) singular
value decomposition of the boundary operator of the chain complex. In particular our
discussion will show that the boundary depth coincides with the torsion threshold when
both are defined, and that certain natural generalizations of the boundary depth likewise
coincide with the rest of the torsion exponents. This implies new restrictions on the
values that the torsion exponents can take. Our generalized boundary depths will be
part of the data that comprise the concise barcode of a Floer-type complex, our main
invariant to be introduced in Section 6.

For the rest of the paper, we will always work with what we call a Floer-type complex
over a Novikov field ƒ, defined as follows:

Definition 4.1 A Floer-type complex .C�; @C ; `C / over a Novikov field ƒDƒK;�

is a chain complex
�
C� D

L
k2Z Ck; @C

�
over ƒ together with a function `C W C�!

R[ f�1g such that each .Ck; `jCk / is an orthogonalizable ƒ–space, and for each
x 2 Ck we have @Cx 2 Ck�1 with `C .@Cx/� `C .x/.
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Example 4.2 According to Example 2.12, the Morse, Novikov, and Hamiltonian Floer
chain complexes are all Floer-type complexes. In each case the boundary operator
is defined by counting connecting trajectories between two critical points for some
function, which satisfy a certain differential equation (see eg [38, Section 1.5] for the
Hamiltonian Floer case).

Remark 4.3 In fact in many Floer-type complexes including the Morse, Novikov,
and Hamiltonian Floer complexes one has the strict inequality `C .@Cx/ < `C .x/.
However it is also often useful in Morse and Floer theory to consider complexes
where the inequality is not necessarily strict; for instance the Biran–Cornea pearl
complex [4] with appropriate coefficients can be described in this way, as can the
Morse–Bott complex built from moduli spaces of “cascades” in [19, Appendix A]. Also
our definition allows other, non-Floer-theoretic, constructions such as the Rips complex
(see Example 2.4), and the mapping cylinders which play a crucial role in the proofs
of Theorem B and Theorem 1.4, to be described as Floer-type complexes, whereas
requiring `C .@Cx/ < `C .x/ would rule these out. In the case that one does have a
strict inequality for the effect of the boundary operator on the filtration, the verbose
and concise barcodes that we define later are easily seen to be equal to each other.

Definition 4.4 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/, a
filtered chain isomorphism between these two complexes is a chain isomorphism
ˆW C�!D� such that `D.ˆ.x//D `C .x/ for all x 2 C� .

Definition 4.5 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/, two
chain maps ˆ;‰W C�!D� are called filtered chain homotopic if there exists KW C�!
D�C1 such that ˆ�‰D@DKCK@D and K preserves filtration, ie `D.K.x//�`C .x/
for all x , and both ˆ and ‰ preserve filtration as well.

We say that .C�; @C ; `C / is filtered homotopy equivalent to .D�; @D; `D/ if there exist
chain maps ˆW C�!D� and ‰W D�! C� which both preserve filtration such that
‰ıˆ is filtered chain homotopic to identity IC while ˆı‰ is filtered chain homotopic
to the ID .

In order to cut down on the number of indices that appear in our formulas, we will
sometimes work in the following setting:

Definition 4.6 A two-term Floer-type complex .C1 @!C0/ is a Floer-type complex of
the form

� � � ! 0! C1
@
!C0! 0! � � � :
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Given any Floer-type complex .C�; @C ; `C /, fixing a degree k , we can consider the
two-term Floer-type complex

. zC
.k/
1

@jCk
���! zC

.k/
0 /;

where zC .k/1 D Ck and zC .k/0 D ker.@jCk�1/.� Ck�1/.

For the rest of this section, we will focus mainly on two-term Floer-type complexes;
consistently with the above discussion this roughly corresponds to focusing on a given
degree in one of the multiterm chain complexes that we are ultimately interested in.
For a two-term Floer-type complex .C1 @!C0/, by Theorem 3.4 we may fix a singular
value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// for the boundary map @W C1! C0 .
Denote the rank of @ by r . We will see soon that the numbers f`.yi /� `.xi /g for
i 2 f1; : : : ; rg (which have earlier been described as the negative logarithms of the
singular values of @) can be characterized in terms of the following notion of robustness
of the boundary operator.

Definition 4.7 Let ı 2R. An element x 2 C0 is said to be ı–robust if for all y 2 C1
such that @y D x it holds that `.y/ > `.x/C ı . A subspace V � C0 is said to be
ı–robust if every x 2 V n f0g is ı–robust.

Example 4.8 When .C1 @
!C0/ is the two-term Floer-type complex eCM.k/

� .f / in-
duced by the degree-k and degree-.k�1/ parts of the Morse complex CM�.f / of a
Morse function on a compact manifold, the reader may verify that each nonzero element
of C0 is ı–robust for all ı < ık , where ık is the minimal positive difference between a
critical value of an index-k critical point and a critical value of an index-.k�1/ critical
point. Because a strict inequality is required in the definition of robustness, there may
be elements of C0 which are not ık–robust.

In the presence of our singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//, the
following simple observation is useful for checking ı–robustness:

Lemma 4.9 Let x D
Pr
iD1 �ixi be any element of Im @, and suppose y 2 C1 obeys

@y D x . Then

`.y/� `

� rX
iD1

�iyi

�
Dmaxf`.yi /� �.�i / j 1� i � rg:

Proof Since @yi D xi for 1 � i � r and @yi D 0 for i > r , and since the xi are
linearly independent, the elements y 2 C1 such that @y D x are precisely those of the

Geometry & Topology, Volume 20 (2016)



3368 Michael Usher and Jun Zhang

form
Pr
iD1 �iyi C

Pn
iDrC1 �iyi for arbitrary �rC1; : : : ; �n 2 ƒ. The proposition

then follows directly from the fact that .y1; : : : ; yn/ is an orthogonal ordered basis
for C1 .

Definition 4.10 Given a two-term chain complex .C1 @!C0/ and a positive integer k ,
let

ˇk.@/D sup
�
f0g[ fı � 0 j 9 ı–robust subspace V � Im @ with dim.V /D kg

�
:

Note that ˇk.@/D 0 if @ is the zero map or if k > dim.Im @/. It is easy to see that,
when k � dim.Im @/, ˇk.@/ can be rephrased as

ˇk.@/D sup
V�Im @

dim.V /Dk

inf
x2V nf0g

f`.y/� `.x/ j @y D xg:

When k D 1, this is exactly the definition of boundary depth in [45] (see [45, (24)]),
and so we can view the ˇk.@/ as generalizations of the boundary depth. Clearly one
has

ˇ1.@/� ˇ2.@/� � � � � ˇk.@/� 0

for all k . We will prove the following theorem which relates the ˇk.@/ to singular
value decompositions.

Theorem 4.11 Given a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//
for a two-term chain complex .C1 @!C0/, the numbers ˇk.@/ are given by

ˇk.@/D

�
`.yk/� `.xk/ if 1� k � r;
0 if k > r;

where r is the rank of @.

Proof For each k 2 f1; : : : ; rg, we will show that there exists a k–dimensional ı–
robust subspace of Im @ for any ı < `.yk/�`.xk/, but that no k–dimensional subspace
is .`.yk/� `.xk//–robust. This clearly implies the result by the definition of ˇk.@/.

Considering the subspace VkD spanƒfx1; : : : ; xkg, let xD
Pk
iD1 �ixi be any nonzero

element in Vk . Let i0 2 f1; : : : ; kg maximize the quantity `.xi / � �.�i / over all
i 2 f1; : : : ; kg, so that by the orthogonality of the xi we have `.x/D `.xi0/� �.�i0/.
Then, using the orthogonality of the yi ,

`

� kX
iD1

�iyi

�
� `.x/Dmax

i
.`.yi /� �.�i //� .`.xi0/� �.�i0//

� .`.yi0/� �.�i0//� .`.xi0/� �.�i0//D `.yi0/� `.xi0/

� `.yk/� `.xk/;
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where the last inequality follows from our ordering convention for the xi . But then by
Lemma 4.9, it follows that whenever @y D x we have `.y/� `.x/ � `.yk/� `.xk/.
Since this holds for an arbitrary element x 2 spanƒfx1; : : : ; xkg n f0g we obtain that
spanfx1; : : : ; xkg is ı–robust for all ı < `.yk/� `.xk/.

Next, for any k–dimensional subspace V � Im @, let W D spanƒfxk; xkC1; : : : ; xrg.
Since W has codimension k�1 in Im @, the intersection V \W contains some nonzero
element x . Since x 2 W we can write x D

Pr
iDk �ixi where not all �i are zero.

Choose i0 2 fk; : : : ; rg to maximize the quantity `.yi /� �.�i / over i 2 fk; : : : ; rg.
Let y D

Pr
iDk �iyi . Then we have @y D x , and

`.y/� `.x/D .`.yi0/� �.�i0//�maxi .`.xi /� �.�i //

� .`.yi0/� �.�i0//� .`.xi0/� �.�i0//

D `.yi0/� `.xi0/� `.yk/� `.xk/

by our ordering convention for the xi . So since x 2 V n f0g (and since the in-
equality required in the definition of ı–robustness is strict) this proves that V is not
.`.yk/�`.xk//–robust.

Finally, when k > r , there is no V � Im @ such that dim.V /Dk (since dim.Im @/D r ).
Then by definition of ˇk.@/, it is zero.

Note that Definition 4.10 makes clear that ˇk.@/ is independent of the choice of
singular value decomposition; thus we deduce the nonobvious fact that the difference
`.yk/� `.xk/ is likewise independent of the choice of singular value decomposition
for each k 2 f1; : : : ; rg. Note also that any filtration-preserving ƒ–linear map A

between two orthogonalizable ƒ–spaces C and D can just as well be viewed as a
two-term chain complex .C A

!D/, and so we obtain generalized boundary depths
ˇk.A/. Theorem 3.4 or Theorem 3.5 provides a systematic way to compute ˇk.A/.
It is also clear from the definition that if AW C ! D has image contained in some
subspace D0 �D then ˇk.A/ is the same regardless of whether we regard A as a map
C !D or as a map C !D0 . For instance if .C�; @C ; `C / is a Floer-type complex,
for any i we could consider either of the two-term complexes

.Ci
@jCi
���! Ci�1/ or .Ci

@jCi
���! ker.@C jCi�1//

and obtain the same values of ˇk .

We conclude this section by phrasing the torsion exponents of [20; 21] in our terms and
proving that these torsion exponents coincide with our generalized boundary depths ˇk .
We will explain this just for two-term Floer-type complexes .C1 @!C0/; this represents
no loss of generality, as for a general Floer-type complex .C�; @C ; `C / one may apply
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the discussion below to the various two-term Floer-type complexes

.CiC1
@jCiC1
�����! ker.@C jCi //

in order to relate the torsion exponents and generalized boundary depths in any degree
i 2 Z.

So let .C1 @!C0/ be a two-term Floer-type complex over ƒDƒK;� . We first define
the torsion exponents (in degree zero) in our language, leaving it to readers familiar
with [20] to verify that our definition is consistent with theirs. Write ƒuniv D ƒK;R

for the “universal” Novikov field, so named because regardless of the choice of � we
have a field extension ƒK;� ,!ƒuniv . Also define

ƒuniv
0 D f� 2ƒuniv

j �.�/� 0gI

thus ƒuniv
0 is the subring of ƒuniv consisting of formal sums

P
g agT

g with each
g � 0.

As in Section 2.5, for j D 0; 1 let C 0j D Cj ˝ƒ ƒ
univ , and endow C 0j with the

filtration function obtained by choosing an orthogonal ordered basis .w1; : : : ; wa/
for Cj and putting `0

�P
i �
0
iwi˝1

�
Dmaxi .`.wi /��.�0i // for any �01; : : : ; �

0
a 2ƒ

univ .
By Proposition 2.21 this definition is independent of the choice of orthogonal basis
.w1; : : : ; wa/.

Now, for j D 0; 1, define

xC 0j D fc 2 C
0
j j `

0.c/� 0g

and observe that xCj is a module over the subring ƒuniv
0 of ƒuniv . Moreover, again

taking Proposition 2.21 into account, it is easy to see that if .w1; : : : ; wa/ is any
orthogonal ordered basis for Cj , then the elements xwi Dwi ˝T `.wi / form a basis for
xC 0j as a ƒuniv

0 –module.

The fact that `.@c/�`.c/ implies that the coefficient extension @˝1W C 01!C 00 restricts
to xC 01 as a map to xC 00 . So we have a (two-term) chain complex of ƒuniv

0 –modules

. xC 01
@˝1
���! xC 00/:

Fukaya, Oh, Ohta, and Ono show [20, Theorem 6.1.20] that the zeroth homology of
this complex (ie the quotient xC 00=.@˝ 1/ xC

0
1 ) is isomorphic to

(17) .ƒuniv
0 /q˚

sM
kD1

.ƒuniv
0 =T �kƒuniv

0 /

for some natural numbers q; s and positive real numbers �i ; : : : ; �s .
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Definition 4.12 [20] Order the summands in the decomposition (17) of xC 00=.@˝1/ xC
0
1

so that �1� � � � ��s . For a positive integer k , the kth torsion exponent of the two-term
Floer-type complex .C1 @

! C0/ is �k if k � s and 0 otherwise. The first torsion
exponent is also called the torsion threshold.

Theorem 4.13 For each positive integer k the kth torsion exponent of .C1 @!C0/ is
equal to the generalized boundary depth ˇk.@/.

Proof Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for the
map @W C1! C0 . By Proposition 3.10, ..y1˝ 1; : : : ; yn˝ 1/; .x1˝ 1; : : : ; xm˝ 1//
is a singular value decomposition for @˝ 1W C 01 ! C 00 . Let r denote the rank of @
(equivalently, that of @˝ 1).

Let us determine the image .@˝ 1/. xC 01/ � C
0
0 . A general element x of C 00 can be

written as x D
Pm
iD1 �ixi ˝1, where �i 2ƒuniv . By the definition of a singular value

decomposition, in order for x to be in the image of @˝ 1 we evidently must have
�i D 0 for i > r . Given that this holds, we will have .@˝ 1/

�Pr
iD1 �iyi ˝ 1

�
D x ,

and moreover by Lemma 4.9,
Pr
iD1 �iyi ˝ 1 has the lowest filtration level among all

preimages of x under @˝ 1. Now

`0
� rX
iD1

�iyi ˝ 1

�
Dmax

i
.`.yi /� �.�i //;

so we conclude that x D
Pm
iD1 �ixi ˝ 1 belongs to .@˝ 1/. xC 01/ if and only if both

�i D 0 for i > r and �.�i /� `.yi / for i D 1; : : : ; r .

Recall that the elements xxi D xi ˝ T `.xi / form a ƒuniv
0 –basis for xC 00 . Letting �i D

T �`.xi /�i , the conclusion of the above paragraph can be rephrased as saying that
.@˝1/. xC 01/ consists precisely of elements

Pm
iD1 �i xxi such that �i D 0 for i > r and

�.�i / � `.yi /� `.xi / for i D 1; : : : ; r . Now for any � 2 ƒuniv and c 2 R, one has
�.�/� c if and only if � 2 T cƒuniv

0 . So we conclude that

.@˝ 1/. xC 01/D spanƒuniv
0
fT `.y1/�`.x1/xx1; : : : ; T

`.yr /�`.xr /xxrg;

while as mentioned earlier

xC 00 D spanƒuniv
0
fxx1; : : : ; xxmg:

These facts immediately imply that

xC 00

.@˝ 1/. xC 01/
D .ƒuniv

0 /m�r ˚

rM
kD1

.ƒuniv
0 =T `.yk/�`.xk/ƒuniv

0 /:
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Comparing with (17) we see that the numbers that we have denoted by s and r are
equal to each other, and that the kth torsion exponent is equal to `.yk/� `.xk/ for
1� k � r and to zero otherwise. By Theorem 4.11 this is the same as ˇk.@/.

5 Filtration spectrum

The filtration spectrum of an orthogonalizable ƒ–space is an algebraic abstraction of
the set of critical values of a Morse function or the action spectrum of a Hamiltonian
diffeomorphism (see [40]).

In the definition below and elsewhere, our convention is that N is the set of nonnegative
integers (so includes zero).

Definition 5.1 A multiset M is a pair .S; �/, where S is a set and �W S!N[f1g
is a function, called the multiplicity function of M . If T is some other set, a multiset
of elements of T is a multiset .S; �/ such that S � T .

For s 2 S , the value �.s/ should be interpreted as “the number of times that s appears”
in the multiset M . By abuse of notation we will sometimes denote multisets in set-
theoretic notation with elements repeated: for instance f1; 3; 1; 2; 3g denotes a multiset
with �.1/ D �.3/ D 2 and �.2/ D 1. The cardinality of the multiset .S; �/ is by
definition

P
s2S �.S/. (For notational simplicity we are not distinguishing between

different infinite cardinalities in our definition; in fact, for nearly all of the multisets
that appear in this paper the multiplicity function will only take finite values.)

Also, if S � T and �W T !N [f1g is a function with �jT nS � 0 then we will not
distinguish between the multisets .T; �/ and .S; �jS /.

Definition 5.2 Let .C; `/ be an orthogonalizable ƒ–space with a fixed orthogonal
ordered basis .v1; : : : ; vn/. The filtration spectrum of .C; `/ is the multiset .R=�; �/,
where

�.s/D #fvi 2 fv1; : : : ; vng j `.vi /� s mod �g:

Remark 5.3 When � is trivial, the filtration spectrum is just the set f`.v1/; : : : ; `.vn/g
and multiplicity function is just defined by setting �.s/ equal to the number of i such
that `.vi /D s .

Example 5.4 Let � D Z and C D spanƒfv1; v2g, where v1; v2 are orthogonal with
`.v1/ D 2:5 and `.v2/ D 0:5. Then for Œ0:5� 2 R=� we have �.Œ0:5�/ D 2, while
for Œ0:7� 2 R=� we have �.Œ0:7�/ D 0. The filtration spectrum is then the multiset
fŒ0:5�; Œ0:5�g.
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While Definition 5.2 relies on a choice of an orthogonal basis for .C; `/, the following
proposition shows that the filtration spectrum can be reformulated in a way that is
manifestly independent of the choice of orthogonal basis, and so is in fact an invariant
of the orthogonalizable ƒ–space .C; `/.

Proposition 5.5 Let .C; `/ be an orthogonalizable ƒK;�–space and let .R=�; �/ be
the filtration spectrum of .C; `/ (as determined by an arbitrary orthogonal basis). Then
for any s 2R=� ,

�.s/Dmax
˚
k2N j9V �C with dim.V /Dk and `.v/�s mod � for all v2V nf0g

	
:

Proof Let .v1; : : : ; vn/ be an orthogonal ordered basis of C and let � be the multi-
plicity of some element s 2R=� in the filtration spectrum of C . So by definition there
are precisely � elements i1; : : : ; i� 2 f1; : : : ; ng such that each `.vij /� s mod � for
j D 1; : : : ; �. Any nonzero element u in the �–dimensional subspace spanned by
the vij can be written as u D

P
j �j vij , where �j 2 ƒ are not all zero, and then

`.u/ D maxj f`.vij /� �.�j /g � s mod � since �.�j / all belong to � . This proves
that � is less than or equal to right hand side in the statement of the proposition.

For the reverse inequality, suppose that V � C has dimension greater than �. For
i1; : : : ; i� as in the previous paragraph, let W D spanƒfvi j i … fi1; : : : ; i�gg. Since
W has codimension � and dimV > �, V and W intersect nontrivially. So there is
some nonzero element v D

P
i…fi1;:::;i�g

�ivi 2 V \W . Since the vi are orthogonal,
`.v/ has the same reduction modulo � as one of the vi with i … fi1; : : : ; i�g, and so
this reduction is not equal to s . Thus no subspace of dimension greater than � can
have the property indicated in the statement of the proposition.

Remark 5.6 Let us now relate our singular value decompositions to the Morse–
Barannikov complex C.f / of an excellent Morse function f W M!R on a Riemannian
manifold as described in [28, Section 2], where the term “excellent” means in particular
that the restriction of f to its set of critical points is injective.

This latter assumption means, in our language, that the filtration spectrum of the
orthogonalizable K–space .CM�.f /; `/ consists of the index-k critical values of f ,
each occurring with multiplicity one, since (essentially by definition) .CM�.f /; `/ has
an orthogonal basis given by the critical points of f , with filtrations given by their
corresponding critical values. So in view of Proposition 5.5, the filtration function `
will restrict to any other orthogonal basis of .CM�.f /; `/ as a bijection to the set of
critical values of f .

Denoting by @ the boundary operator on CM�.f /, Theorem 3.4 allows us to construct
an orthogonal ordered basis .x1; : : : ; xr ; y1; : : : ; yr ; z1; : : : ; zh/ for CM�.f / such
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that spanfx1; : : : ; xrg D Im.@/, spanfx1; : : : ; xr ; z1; : : : ; zhg D ker.@/, and @yi D xi .
By the previous paragraph, then, each critical value c of f can then be written in
exactly one way as c D `.xi / or c D `.yi / or c D `.zi /.

For � 2R, let C�� denote the subcomplex of CM�.f / spanned by the critical points
with critical value at most �. Observe that C�� is equal to the subcomplex of CM�.f /
spanned by the xi ; yi ; zi having `� � (indeed the latter is clearly a subspace of C�� ,
but Proposition 5.5 implies that their dimensions are the same). Now the treatment
of the Barannikov complex in [28] involves separating the critical values c of f into
three types, where � represents a small positive number:

� The lower critical values, for which the natural map

H�.C
cC�
� =C c��� /!H�.CM�.f /=C c��� /

vanishes;

� The upper critical values, for which the natural map

H�.C
cC�
� /!H�.C

cC�
� ; C c��� /

vanishes (equivalently, H�.C c��� /!H�.C
cC�
� / is surjective);

� All other critical values, called homological critical values.

If w is any of xi ; yi , or zi and if `.w/Dc , one has C cC�� DC c��� ˚hwi. Consequently
it is easy to see that c is a lower critical value if and only if c D `.xi / for some i ,
that c is an upper critical value if and only if c D `.yi / for some i , and that c is
a homological critical value if and only if c D `.zi / for some i . Moreover, in the
case that c is an upper critical value so that c D `.yi / for some i , the natural map
H�.C

cC�
� =C�� /!H�.C

cC�
� =C c��� / vanishes precisely for �� `.xi /.

In [28, Definition 2.9], the Morse–Barannikov complex .C.f /; @B/ is described as the
chain complex generated by the critical values of f , with boundary operator given by
@Bc D 0 if c is a lower critical value or a homological critical value, and

@Bc D sup
˚
� jH�.C

cC�
� =C�� /!H�.C

cC�
� =C c��� / is the zero map

	
if c is an upper critical value. The foregoing discussion shows that the unique linear map
.CM�.f /; @/! .C.f /; @B/ that sends the basis elements xi ; yi ; zi to their respective
filtration levels `.xi /; `.yi /; `.zi / defines an isomorphism of chain complexes. In
particular, the Morse–Barannikov complex can be recovered quite directly from a
singular value decomposition.
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6 Barcodes

Recall from the introduction that a persistence module V D fVtgt2R over the field K
is a system of K–vector spaces Vt with suitably compatible maps Vs! Vt whenever
s � t .

A special case of a persistence module is obtained by choosing an interval I �R and
defining

.KI /t D
�
K if t 2 I;
0 if t … I;

with the maps .KI /s! .KI /t defined to be the identity when s; t 2 I and to be zero
otherwise.

A persistence module V is called pointwise finite-dimensional if each Vt is finite-
dimensional. Such persistence modules obey the following structure theorem.

Theorem 6.1 [46; 12] Every pointwise finite-dimensional persistence module V can
be uniquely decomposed into the following normal form:

(18) V Š
M
˛

KI˛

for certain intervals I˛ �R

The (persistent homology) barcode of V is then by definition the multiset .S; �/,
where S is the set of intervals I for which KI appears in (18) and �.I / is the number
of times that KI appears. As follows from the discussion at the end of the introduction
in [12], the barcode is a complete invariant of a pointwise finite-dimensional persistence
module.

In classical persistent homology, where the persistence module is constructed from the
filtered homologies of the Čech or Rips complexes associated to a point cloud, [46]
provides an algorithm computing the resulting barcode (cf Theorem 3.5). In this case
the intervals in the barcode are all half-open intervals Œa; b/ (with possibly b D1).
See eg [23, Figure 4] and [7, page 278] for some nice illustrations of barcodes.

Returning to the context of the Floer-type complexes .C�; @; `/ considered in this paper,
for any t 2R, if we let C t

k
D fc 2 Ck j `.c/� tg the assumption on the effect of @ on

` shows that we have a subcomplex C t� ; just as discussed in the introduction for any k
the degree-k homologies H t

k
.C�/ of these complexes yield a persistence module over

the base field K . Typically H t
k
.C�/ can be infinite-dimensional (and also may not

satisfy the weaker descending chain condition which appears in [12]), so Theorem 6.1
usually does not apply to these persistence modules. The exception to this is when the

Geometry & Topology, Volume 20 (2016)



3376 Michael Usher and Jun Zhang

subgroup � � R used in the Novikov field ƒDƒK;� is the trivial group, in which
case we just have ƒD K and the chain groups Ck (and so also the homologies) are
finite-dimensional over K . So when � D f0g, Theorem 6.1 does apply to show that the
persistence module fH t

k
.C�/gt2R decomposes as a direct sum of interval modules KI ;

by definition the degree-k part of the barcode of C� is then the multiset of intervals
appearing in this direct sum decomposition. We have:

Theorem 6.2 Assume that � D f0g and let .C�; @; `/ be a Floer-type complex over
ƒK;f0g D K . For each k 2 Z write @kC1W CkC1 ! Ck for the degree-.kC1/ part
of the boundary operator @, and write Zk D ker @k , so that @kC1 has image con-
tained in Zk . Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for
@kC1W CkC1!Zk . Then if r D rank.@kC1/, the degree-k part of the barcode of C�
consists precisely of:

� an interval Œ`.xi /; `.yi // for each i 2 f1; : : : ; rg such that `.yi / > `.xi /; and
� an interval Œ`.xi /;1/ for each i 2 fr C 1; : : : ; mg.

Proof As explained earlier, fH t
k
.C�/gt2R is a pointwise finite-dimensional persis-

tence module. Therefore by Theorem 6.1, we have a normal form
L
˛ KI˛ . Given

a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// as in the hypothesis, we
first claim that, for all t 2R,

(19) H t
k.C�/D spanK

�
Œxi �

ˇ̌̌
`.xi /� t < `.yi / if i 2 f1; : : : ; rg
`.xi /� t if i 2 fr C 1; : : : ; mg

�
:

In fact, .x1; : : : ; xm/ is an orthogonal ordered basis for ker @k , so fxi j `.xi /� tg is
an orthogonal basis for ker.@kjC t

k
/. By Lemma 4.9, when � D f0g (so that � vanishes

on all nonzero elements of ƒ), an element x D
Pm
iD1 �ixi lies in @kC1.C tkC1/ if and

only if it holds both that �i D 0 for all i > r and that `
�Pr

iD1 �iyi
�
� t , ie if and

only if x 2 spanKfxi j 1 � i � r; `.yi / � tg. So we have bases fxi j `.xi / � tg for
Zk \C

t
k

and fxi j 1� i � r; `.yi /� tg for @kC1.C tkC1/, from which the expression
(19) for H t

k
.C�/ immediately follows.

Write Vt for the right hand side of (19). For s � t , the inclusion-induced map
�st W H

s
k
.C�/!H t

k
.C�/ is identified with the map �st W Vs! Vt defined as follows,

for any generator Œxi � of Vs :

(20) �st .Œxi �/D

�
Œxi � if `.yi / > t or i 2 fr C 1; : : : ; sg;
0 if `.yi /� t:

Clearly, this is a K–linear homomorphism. It is easy to check that �ss D IVs and for
s � t � u, �su D �tu ı �st . Therefore, V D fVtgt2R is a persistence module, which
is (tautologically) isomorphic, in the sense of persistence modules, to fH t

k
.C�/gt2R .
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On the other hand, the normal form of V can be explicitly written out as follows:

(21) V Š
M
1�i�r

KŒ`.xi /;`.yi //˚
M

rC1�j�m

KŒ`.xj /;1/:

Indeed the indicated isomorphism of persistence modules can be obtained by simply
mapping 1 2 .KŒ`.xi /;`.yi //�/t D K to the class Œxi � for t 2 Œ`.xi /; `.yi // and i D
1; : : : ; r , and similarly for the KŒ`.xi /;1/ for i > r .

Thus in the “classical” � D f0g case the barcode can be read off directly from the
filtration levels of the elements involved in a singular value decomposition; in particular,
these filtration levels are independent of the choice of singular value decomposi-
tion, consistently with Theorem 7.1 below. For nontrivial � there is clearly some
amount of arbitrariness of the filtration levels of the elements of a singular value
decomposition: if ..y1; : : : ; yn/; .x1; : : : ; xm// is a singular value decomposition, then
..T g1y1; : : : ; T

gryr ; yrC1; : : : ; yn/; .T
g1x1; : : : ; T

gmxm// is also a singular value
decomposition for any g1; : : : ; gm 2 � ; based on Theorem 6.2 one would expect this
to result in a change of the positions of each of the intervals in the barcode. Note that
this change moves the endpoints of the intervals but does not alter their lengths. This
suggests the following definition, related to the ideas of boundary depth and filtration
spectrum:

Definition 6.3 Let .C�; @; `/ be a Floer-type complex over ƒDƒK;� and for each
k 2 Z write @k D @jCk and Zk D ker @k . Given any k 2 Z choose a singular value
decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// for the ƒ–linear map @kC1W CkC1!Zk
and let r denote the rank of @kC1 . Then the degree-k verbose barcode of .C�; @; `/
is the multiset of elements of .R=�/� Œ0;1� consisting of

(i) a pair .`.xi / mod �; `.yi /� `.xi // for i D 1; : : : ; r ;

(ii) a pair .`.xi / mod �;1/ for i D r C 1; : : : ; m.

The concise barcode is the submultiset of the verbose barcode consisting of those
elements whose second element is positive.

Thus in the case that � D f0g elements Œa; b/ of the persistent homology barcode
correspond according to Theorem 6.2 to elements .a; b� a/ of the concise barcode.
In general we think of an element .Œa�; L/ of the (verbose or concise) barcode as
corresponding to an interval with left endpoint a and length L, with the understanding
that the left endpoint is only specified up to the additive action of � .

Definition 6.3 appears to depend on a choice of singular value decomposition, but we
will see in Theorem 7.1 that different choices of singular value decompositions yield
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the same verbose (and hence also concise) barcodes. Of course in the case that � Df0g
this already follows from Theorem 6.2; in the opposite extreme case that � DR (in
which case the first coordinates of the pairs in the verbose and concise barcodes carry
no information) it can easily be inferred from Theorem 4.13.

Remark 6.4 Our reduction modulo � in Definition 6.3(i) and (ii) is easily seen to
be necessary if there is to be any hope of the verbose and concise barcodes being
independent of the choice of singular value decomposition, for the reason indicated in
the paragraph before Definition 6.3. Namely, acting on the elements involved in the
singular value decomposition by appropriate elements of ƒ could change the various
quantities `.xi / involved in the barcode by arbitrary elements of � .

Remark 6.5 In the spirit of Theorem 3.5, we outline the procedure for computing the
degree-k verbose barcode for a Floer-type complex .C�; @; `/:

� First, by applying the algorithm in Theorem 3.5 to @k W Ck!Ck�1 or otherwise,
obtain an orthogonal ordered basis .w1; : : : ; wm/ for ker @k .

� Express @kC1W CkC1! ker @k in terms of an orthogonal basis for CkC1 and
the basis .w1; : : : ; wm/ for ker @k , and apply Theorem 3.5 to obtain data
.v01; : : : ; v

0
n/ and U as in the statement of that theorem.

� The degree-k verbose barcode consists of one element .Œ`.Av0i /�; `.v
0
i /�`.Av

0
i //

for each i 2 U , and one element .Œa�;1/ for each Œa� lying in the multiset
complement fŒ`.w1/�; : : : ; Œ`.wm/�g n fŒ`.Av0i /� j i 2 Ug.

6.1 Relation to spectral invariants

Following a construction that is found in [40; 34] in the context of Hamiltonian Floer
theory (and which is closely related to classical minimax-type arguments in Morse
theory), we may describe the spectral invariants associated to a Floer-type complex
.C�; @; `/: letting Hk.C�/ denote the degree-k homology of C� , these invariants take
the form of a map �W Hk.C�/!R[f�1g defined by, for ˛ 2Hk.C�/,

�.˛/D inff`.c/ j c 2 Ck; Œc�D ˛g

(where Œc� denotes the homology class of c ). In a more general context the main result
of [42] shows that the infimum in the definition of �.˛/ is always attained.

The spectral invariants are reflected in the concise barcode in the following way.

Proposition 6.6 Let BC;k be the degree-k part of the concise barcode of a Floer-type
complex .C�; @; `/, obtained from a singular value decomposition of @kC1W CkC1!
ker @k . Then:
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(i) There is a basis f˛1; : : : ; ˛hg for Hk.C�/ over ƒ such that the submultiset
of BC;k consisting of elements with second coordinate equal to 1 is equal to
f.Œ�.˛1/�;1/; : : : ; .Œ�.˛h/�;1/g, where for each i , Œ�.˛i /� denotes the reduc-
tion of �.˛i / modulo � .

(ii) For any class ˛ 2 Hk.C�/, if we write ˛ D
Ph
iD1 �i˛i , where �i 2 ƒ and

f˛1; : : : ; ˛hg is the basis from (i), then �.˛/Dmaxi .�.˛i /� �.�i //. In partic-
ular, if ˛ ¤ 0, then the concise barcode BC;k contains an element of the form
.Œ�.˛/�;1/.

Proof Let ..y1; : : : ; ym/; .x1; : : : ; xn// be a singular value decomposition of the map
@kC1W CkC1 ! ker @k . In particular, if r D rank @kC1 , then spanƒfxrC1; : : : ; xmg
is an orthogonal complement to Im @kC1 . Hence the classes ˛i D ŒxrCi � (for 1 �
i � m� r ) form a basis for Hk.C�/, and the dimension of the Hk.C�/ over ƒ is
hDm� r . By definition, the submultiset of BC;k consisting of elements with second
coordinate equal to 1 is f.Œ`.xrC1/�;1/; : : : ; .Œ`.xm/�;1/g, so both part (i) and
the first sentence of part (ii) of the proposition will follow if we show that, for any
�1; : : : ; �m�r 2ƒ we have

(22) �

�m�rX
iD1

�i˛i

�
Dmax

i
.`.xrCi /� �.�i //

(indeed the special case of (22) in which �i D ıij implies that �. j̨ /D `.xrCj /).

To prove (22), simply note that any class ˛ D
P
i �i˛i 2 Hk.C�/ is represented

by the chain
P
i �ixrCi , and that the general representative of ˛ is given by x D

yC
P
i �ixrCi for y 2 Im @kC1 . So since fxrC1; : : : ; xmg is an orthogonal basis for

an orthogonal complement to Im @kC1 it follows that

`.x/Dmax
�
`.y/; `

�X
i

�ixrCi

��
� `

�X
i

�ixrCi

�
Dmax

i
.`.xrCi /� �.�i //;

with equality if y D 0. Thus the minimal value of ` on any representative x ofPm�r
iD1 �i˛i is equal to maxi .`.xrCi /� �.�i //, proving (22).

As noted earlier, (22) directly implies (i) and the first sentence of (ii). But then the
second sentence of (ii) also follows immediately, since each � 2ƒn f0g has �.�/ 2ƒ,
and so if ˛ D

P
i �i˛i ¤ 0 it follows from (22) that �.˛/ is congruent mod � to one

of the �.˛i /.

6.2 Duality and coefficient extension for barcodes

Given a Floer-type complex .C�; @; `/ over ƒ D ƒK;� one obtains a dual complex
.C_� ; ı; `

�/ by taking C_
k

to be the dual over ƒ of C�k , ıW C_
k
! C_

k�1
to be the
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adjoint of @W C�kC1! C�k and defining `� as in Section 2.4. The following can be
seen as a generalization both of [43, Corollary 1.6] and of [41, Proposition 2.4]

Proposition 6.7 For all k , denote by zBC;k the degree-k verbose barcode of .C�; @; `/.
Then the degree-k verbose barcode of .C_� ; ı; `

�/ is given by

(23) zBC_;k D
˚
.Œ�a�;1/ j .Œa�;1/ 2 zBC;�k

	
[
˚
.Œ�a�L�;L/ j L<1 and .Œa�; L/ 2 zBC;�k�1

	
:

Proof Suppose that

r D rank
�
@�k W C�k! C�k�1

�
;

s D rank
�
@�kC1W C�kC1! C�k

�
;

t D dim ker
�
@�k�1W C�k�1! C�k�2

�
;

and note that t � r . Using the Gram–Schmidt process in Theorem 2.16 if neces-
sary, we can modify a singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm// of
@�k W C�k! C�k�1 so that it has the following additional properties:

(i) .x1; : : : ; xt / is an orthogonal ordered basis for ker @�k�1 , so that in particular
..y1; : : : ; yn/; .x1; : : : ; xt // is a singular value decomposition for @�k W C�k!
ker @�k�1 .

(ii) .yn�sC1; : : : ; yn/ is an orthogonal ordered basis for Im@�kC1 , so that the
elements .Œa�; L/ of zBC;�k having LD1 are precisely the .Œ`.yi /�;1/ for
i 2 fr C 1; : : : ; n� sg.

By Proposition 2.20, a singular value decomposition for ıkC1W C_kC1! C_
k

is given
by ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n//, where the x�i and y�j form dual bases for the bases

.x1; : : : ; xm/ and .y1; : : : ; yn/, respectively. Moreover by (ii) above, the kernel of
ık W C

_
k
! C_

k�1
(ie the annihilator of the image of @�kC1 ) is precisely the span of

y�1 ; : : : ; y
�
n�s , and so ..x�1 ; : : : ; x

�
m/; .y

�
1 ; : : : ; y

�
n�s// is a singular value decomposition

for ıkC1W C_kC1!ker ık . Since by (7) we have `�.x�i /D�`.xi / and `�.y�i /D�`.yi /
it follows that

zBC_;kD
˚
.Œ�`.yi /�; `.yi /�`.xi // j iD1; : : : ; r

	
[
˚
.Œ�`.yi /�;1/ j iDrC1; : : : ;n�s

	
;

which precisely equals the right hand side of (23).

The effect on the verbose barcode of extending the coefficient field of a Floer-type
complex by enlarging the value group � is even easier to work out, given our earlier
results.
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Proposition 6.8 Let .C�; @; `/ be a Floer-type complex over ƒDƒK;� , let � 0 �R
be a subgroup containing � , and consider the Floer-type complex .C 0�; @˝ 1; `

0/ over
ƒK;� 0 given by letting C 0

k
D Ck ˝ƒ ƒ

K;� 0 and defining `0 as in Section 2.5. Let
zBC;k be the verbose barcode of .C�; @; `/ in degree k and let � W R=�!R=� 0 be the
projection. Then the verbose barcode of .C 0�; @˝ 1; `

0/ in degree k is

f.�.Œa�/; L/ j .Œa�; L/ 2 zBC;kg:

Proof This follows directly from Proposition 3.10 and the definitions.

7 Classification theorems

In the spirit of the structure theorem (Theorem 6.1) for pointwise finite-dimensional
persistence modules, we will use the verbose and concise barcodes to classify Floer-type
complexes up to filtered chain isomorphism and filtered homotopy equivalence. Specif-
ically, we will prove the following two key theorems, stated earlier in the introduction.

Theorem A Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
chain isomorphic to each other if and only if they have identical verbose barcodes in all
degrees.

Theorem B Two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ are filtered
homotopy equivalent to each other if and only if they have identical concise barcodes
in all degrees.

7.1 Classification up to filtered isomorphism

We will assume the following important theorem first, and then Theorem A will follow
quickly.

Theorem 7.1 For any k 2Z, the degree-k verbose barcode of any Floer-type complex
is independent of the choice of singular value decomposition for @kC1W CkC1!Zk .

Proof of Theorem A On the one hand, a filtered chain isomorphism C�!D� maps
a singular value decomposition for .@C /kC1W CkC1! ker.@C /k to a singular value
decomposition for .@D/kC1W DkC1 ! ker.@D/k , while keeping all filtration levels
the same. Therefore, the “only if” part of Theorem A is a direct consequence of
Theorem 7.1.

To prove the “if” part of Theorem A we begin by introducing some notation that will
also be useful to us later. Given a collection of Floer-type complexes C˛D .C˛�; @˛; `˛/
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we define
L
˛ C˛ to be the triple

�L
˛ C˛�;

L
˛ @˛;

z̀
�
, where z̀..c˛//Dmax˛ `˛.c˛/.

Provided that, for each k 2 Z, only finitely many of the C˛k are nontrivial,
L
˛ C˛ is

also a Floer-type complex.

Definition 7.2 Fix � � R and the associated Novikov field ƒDƒK;� . For a 2 R,
L 2 Œ0;1�, and k 2 Z define the elementary Floer-type complex E.a; L; k/ to be the
Floer-type complex .E�; @E ; `E / given as follows:

� If LD1 then

Em D

�
ƒ if mD k;
0 otherwise;

@E D 0, and `.�/D a� �.�/ for � 2Em Dƒ.

� If L 2 Œ0;1/, then Ek is the one-dimensional ƒ–vector space generated by
a symbol x , EkC1 is the one-dimensional ƒ–vector space generated by a
symbol y , and Em D f0g for m … fk; kC 1g. Also, @E W E�! E� is defined
by @E .�xC�y/D �x , and `E .�xC�y/Dmaxfa� �.�/; .aCL/� �.�/g.

Remark 7.3 If b � a 2 � , then there is a filtered chain isomorphism E.a; L; k/!
E.b; L; k/ given by scalar multiplication by the element T b�a 2ƒ.

Proposition 7.4 Let .C�; @; `/ be a Floer-type complex and denote by zBC;k the
degree-k verbose barcode of .C�; @; `/. Then there is a filtered chain isomorphism

.C�; @; `/Š
M
k2Z

M
.Œa�;L/2zBC;k

E.a; L; k/

(where for each .Œa�; L/ 2 zBC;k we choose an arbitrary representative a 2 R of the
coset Œa� 2R=� ).

Proof of Proposition 7.4 For each k let

..yk1 ; : : : ; y
k
rk
; : : : ; ykrkCmkC1/; .x

k
1 ; : : : ; x

k
mk
//

be an arbitrary singular value decomposition for .@C /kC1W CkC1! ker.@C /k , where
rk is the rank of .@C /kC1 and mk D dim.ker.@C /k/ for each degree k 2 Z. We will
first modify these singular value decompositions for various k to be related to each
other in a convenient way. Specifically, since .xkC11 ; : : : ; xkC1mkC1

/ is an orthogonal
ordered basis for ker.@C /kC1 , the tuple

..yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/; .xk1 ; : : : ; x
k
mk
//
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is also a singular value decomposition for .@C /kC1W CkC1! ker.@C /k . So letting

.aki ; L
k
i /D

�
.`.xki /; `.y

k
i /� `.x

k
i // if 1� i � rk;

.`.xki /;1/ if rkC 1� i �mk;

we have BC;k D f.Œaki �; L
k
i /j1� i �mkg and the proposition states that .C�; @; `/ is

filtered chain isomorphic to
L
k

Lmk
iD1 E.a

k
i ; L

k
i ; k/. Now for each i and k there is

an obvious embedding �i;k W E.aki ; L
k
i ; k/! C� defined by

� �i;k.�/D �x
k
i when Lki D1;

� �i;k.�xC�y/D �x
k
i C�y

k
i when Lki <1.

From the definition of the filtration and boundary operator on E.aki ; L
k
i ; k/ this em-

bedding is a chain map which exactly preserves filtration levels. ThenM
i;k

�i;k W
M
i;k

E.aki ; L
k
i ; k/! C�

is also a chain map. Finally, for each k , the fact that .yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/

is an orthogonal ordered basis for CkC1 readily implies that
L
i;k �i;k is in fact a

filtered chain isomorphism.

Since, by Remark 7.3, the filtered isomorphism type of E.a; L; k/ only depends on
Œa�; L; k , and since quite generally filtered chain isomorphisms ˆ˛W C˛!D˛ between
Floer-type complexes induce a filtered chain isomorphism

L
˛W
L
˛ C˛ !

L
˛ D˛ ,

Proposition 7.4 shows that the filtered chain isomorphism type of a Floer-type complex
is determined by its verbose barcode, proving the “if” part of Theorem A.

The remainder of this subsection is directed toward the proof of Theorem 7.1. We will
repeatedly apply the following criterion for testing whether a subspace is an orthogonal
complement of a given subspace.

Lemma 7.5 Let .C; `/ be an orthogonalizable ƒ–space, and let U;U 0; V � C be
subspaces such that U is an orthogonal complement to V and dimU 0 D dimU .
Consider the projection �U W C ! U associated to the direct sum decomposition
C DU ˚V . Then U 0 is an orthogonal complement of V if and only if `.�Ux/D `.x/
for all x 2 U 0 .

Proof Assume that U 0 is an orthogonal complement to V . Then for x 2 U 0 , we of
course have

x D �UxC .x��Ux/;
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where �Ux 2 U and x��Ux 2 V . Because U and V are orthogonal, it follows that
`.x/Dmaxf`.�Ux/; `.x��Ux/g. In particular,

(24) `.x/� `.�Ux/:

On the other hand, since
�Ux D x� .x��Ux/;

where x 2 U 0 , x � �Ux 2 V , and U 0 and V are orthogonal, we have `.�Ux/ D
maxf`.x/; `.x � �Ux/g. In particular, `.�Ux/ � `.x/. Combined with (24), this
shows `.x/D `.�Ux/.

Conversely, suppose that `.�Ux/ D `.x/ for all x 2 U 0 . To show that U 0 is an
orthogonal complement to V we just need to show that U 0 and V are orthogonal, that
is, for any x 2U 0 and v 2 V we have `.xCv/Dmaxf`.x/; `.v/g (indeed if we show
this, then by Lemma 2.9(i) U 0 and V will have trivial intersection and so dimensional
considerations will imply that C D U 0˚V ). Now write x 2 U 0 as

x D �UxC .x��Ux/;

where �Ux 2U and x��Ux 2 V . Because U and V are orthogonal, our assumption
shows that `.x/D `.�Ux/� `.x��Ux/. Now

xC v D �UxC .vC .x��Ux//;

where �Ux in U and vC .x ��Ux/ 2 V . Again, U and V are orthogonal, so we
have

`.xC v/Dmaxf`.�Ux/; `.vC .x��Ux//g

Dmaxf`.x/; `.vC .x��Ux//g:

Now if `.v/ > `.x/ then `.xCv/D `.v/Dmaxf`.x/; `.v/g, as desired. On the other
hand if `.v/ � `.x/ then `.vC .x � �Ux// � maxf`.v/; `.x � �Ux/g � `.x/, and
so `.xC v/ D `.x/ D maxf`.x/; `.v/g. So in any case we indeed have `.xC v/ D
maxf`.x/; `.v/g for any x 2 U 0; v 2 V , and so U 0 and V are orthogonal.

Notation 7.6 Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition
for a two-term Floer-type complex .C1 @

!C0/, and let r be the rank of @. Denote
k1; : : : ; kp 2 f1; : : : ; rg to be the increasing finite sequence of integers defined by the
property that k1 D 1 and, for i 2 f1; : : : ; pg, either ˇki .@/D ˇkiC1.@/D � � � D ˇr.@/
(in which case p D i ) or else ˇki .@/ D � � � D ˇkiC1�1.@/ > ˇkiC1.@/. Also let
kpC1 D r C 1. We emphasize that the numbers ki are independent of the choice of
singular value decomposition (since the ˇk.@/ are likewise independent thereof; see
Definition 4.10).
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The proof of Theorem 7.1 inductively uses the following lemma, which is an application
of Lemma 7.5.

Lemma 7.7 Let ..y1; : : : ; yn/; .x1; : : : ; xm// be a singular value decomposition for
.C1

@
!C0/ and r D rank.@/, and let k1; : : : ; kpC1 be the integers in Notation 7.6. Let

i 2 f1; : : : ; pg, and suppose that V;W � Im @� C0 satisfy the following conditions:

(i) dimV D ki � 1, V is ı–robust for all ı < ˇki�1.@/, and V is orthogonal to
spanƒfxki ; : : : ; xmg. (If i D 1 these conditions mean V D f0g.)

(ii) dimW D kiC1 � ki , W is orthogonal to V , and V ˚W is ı–robust for all
ı < ˇki .@/.

Now let XD spanƒfxki ; : : : ; xkiC1�1g and X 0D spanƒfxkiC1 ; : : : ; xmg. Then V˚W
is orthogonal to X 0 , and there is an isomorphism of filtered vector spaces W ŠX .

Proof Since V is orthogonal to X ˚X 0 and X is orthogonal to X 0 , by Lemma 2.9,
we have an orthogonal direct sum decomposition C0 DX ˚ .X 0˚V /. We will first
show that the projection �X W C0!X associated to this direct sum decomposition has
the property that �X jW exactly preserves filtration levels.

Let w 2W , and write wD vCxCx0 , where v 2 V , x 2X , and x0 2X 0 , so our goal
is to show that `.w/D `.x/. Of course this is trivial if wD 0, so assume w¤ 0. Now

`.w/Dmaxf`.xC x0/; `.v/g

since V is orthogonal to X˚X 0 . Since xCx0Dw�v and V and W are orthogonal we
have `.xCx0/Dmaxf`.v/; `.w/g � `.v/. So `.w/D `.xCx0/Dmaxf`.x/; `.x0/g.
(In particular x and x0 are not both zero.) Now expand w� v D xC x0 in terms of
the basis fxj g as

w� v D

rX
jDki

�jxj :

The fact that we can take the sum to start at ki follows from the definitions of X
and X 0 , and the sum terminates at r because w�v 2V ˚W � Im @. Then `.w�v/D
maxf`.�jxj / j j 2 fki ; : : : ; rgg. By Lemma 4.9, the infimal filtration level of any
zy 2 C1 such that @zy D xC x0 is attained by zy D yCy0 , where y D

PkiC1�1

jDki
�jyj

and y0D
Pr
jDkiC1

�jyj ; by the assumption that V ˚W is ı–robust for all ı <ˇki .@/,
we will have

`.yCy0/� `.w� v/Cˇki .@/D `.xC x
0/Cˇki .@/:
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Thus by the orthogonality of the bases fxj g and fyj g,

(25) ˇki .@/� `.yCy
0/� `.xC x0/Dmaxf`.y/; `.y0/g�maxf`.x/; `.x0/g:

Now if we choose j0 to maximize the quantity `.�jyj / over all j 2 fkiC1; : : : ; rg we
will have

`.y0/D `.�j0yj0/D `.�j0xj0/C ǰ0.@/� `.x
0/C ǰ0.@/:

So

`.y0/�maxf`.x/; `.x0/g � `.y0/� `.x0/� ǰ0.@/ < ˇki .@/

since j0 � kiC1 . Thus in view of (25) we must have `.y/ > `.y0/ and so by
Proposition 2.3 `.y C y0/ D `.y/. Similarly, choose i0 2 fki ; : : : ; kiC1 � 1g to
maximize the quantity `.�jxj /, so that `.x/D `.�i0xi0/. Then

`.y/� `.x/� `.�i0yi0/� `.�i0xi0/D ˇi0.@/:

Symmetrically, choose i1 2 fki ; : : : ; kiC1 � 1g to maximize the quantity `.y/ DPkiC1�1

ki
�iyi , that is `.y/D `.�i1yi1/. Then

`.y/� `.x/� `.�i1yi1/� `.�i1xi1/D ˇi1.@/:

Because ˇki .@/ D � � � D ˇkiC1�1.@/ and i0; i1 2 fki ; : : : ; kiC1 � 1g, the above in-
equalities imply that ˇi0.@/ D ˇii .@/ D ˇki .@/. Thus we necessarily have `.y/ �
`.x/ D ˇki .@/. So we cannot have `.x0/ > `.x/, since if this were the case then
`.yCy0/�`.xCx0/D `.y/�maxf`.x/; `.x0/g would be strictly smaller than ˇki .@/,
a contradiction to condition (ii). Thus `.x/ � `.x0/. So since we have seen that
`.w/Dmaxf`.x/; `.x0/g this proves that `.w/D `.x/.

Thus the projection �X W C0! X associated to the direct sum decomposition X ˚
.V ˚X 0/ has `.�Xw/D `.w/ for all w 2W , and in particular it is injective because 0
is the only element with filtration level �1. So dimensional considerations prove the
last statement of the lemma. By Lemma 7.5, this also implies that W is an orthogonal
complement to V ˚X 0 . Since X 0 is orthogonal to V and V ˚X 0 is orthogonal to W
it follows from Lemma 2.9(ii) that V ˚W is orthogonal to X 0 , which is precisely the
remaining conclusion of the lemma.

Corollary 7.8 Let ..z1; : : : ; zn/; .w1; : : : ; wm// and ..y1; : : : ; yn/; .x1; : : : ; xm///

be two singular value decompositions for .C1 @
!C0/. Then for each i 2 f1; : : : ; pg
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there is a commutative diagram

spanƒfzki ; : : : ; zkiC1�1g //

@

��

spanƒfyki ; : : : ; ykiC1�1g

@

��

spanƒfwki ; : : : ; wkiC1�1g // spanƒfxki ; : : : ; xkiC1�1g

where the horizontal arrows are isomorphisms of filtered vector spaces.

Proof Consider the ascending sequence

f0g D V0 � V1 � V2 � � � � � Vp D Im @

of subspaces of Im @, where Vi D spanfw1; : : : ; wkiC1�1g. Each Vi is ı–robust for
all ı < ˇki .@/ by Lemma 4.9. Also let Wi D spanƒfwki ; : : : ; wkiC1�1g, so we have
an orthogonal direct sum decomposition Vi D Vi�1˚Wi .

We claim by induction on i that Vi is orthogonal to spanƒfxkiC1 ; : : : ; xmg. Indeed
for i D 0 this is trivial, and assuming that it holds for the value i � 1 then applying
Lemma 7.7 with V D Vi�1 and W D Wi proves the claim for the value i . Given
this fact, for any i we may again apply Lemma 7.7 to obtain a filtered isomorphism
Wi ! spanƒfxki ; : : : ; xkiC1�1g, which serves as the bottom arrow in the diagram in
the statement of the Corollary.

Since the side arrows and the bottom arrow are all linear isomorphisms, there is a
unique top arrow that makes the diagram commute. Moreover the bottom arrow exactly
preserves filtration, and the side arrows both decrease the filtration levels of all nonzero
elements by exactly ˇki .@/, so it follows that the top arrow is an isomorphism of
filtered vector spaces as well.

Proof of Theorem 7.1 Let ..z1; : : : ; zn/; .w1; : : : ;wm//, ..y1; : : : ;yn/; .x1; : : : ;xm//
be two singular value decompositions. Both

spanƒfwrC1; : : : ; wmg and spanƒfxrC1; : : : ; xmg

are orthogonal complements to Im @, where r D rank.@/, so they are filtered isomor-
phic by Lemma 7.5 and so they have the same filtration spectra by Proposition 5.5.
The subspaces spanƒfwki ; : : : ; wkiC1�1g and spanƒfxki ; : : : ; xkiC1�1g are filtered
isomorphic for each i 2 f1; : : : ; pg by Corollary 7.8, so they likewise have the same
filtration spectra. The conclusion now follows immediately from the description of
verbose barcode, using Theorem 4.11.
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7.2 Classification up to filtered homotopy equivalence

Now we move on to the classification of the filtered chain homotopy equivalence class
of a Floer-type complex. First, we will prove the “if” part, which is the easier direction.

Proposition 7.9 For any Floer-type complex .C�; @C ; `C /, let BC;k be the degree-k
concise barcode of .C�; @C ; `C /. For each .Œa�; L/ 2 BC;k , choose a representative a
of the coset Œa� 2R=� . Then .C�; @C ; `C / is filtered homotopy equivalent toM

k2Z

M
.Œa�;L/2BC;k

E.a; L; k/:

Proof For each k let zBC;k denote the degree-k verbose barcode of .C�; @C ; `C / and
BC;k the degree-k concise barcode, so BC;k D f.Œa�; L/ 2 zBC;k j L> 0g.

By Proposition 7.4, if for each .Œa�; L/ 2 zBC;k we choose a representative a of the
coset Œa� 2R=� , .C�; @C ; `C / is filtered chain isomorphic to

(26)
�M

k

M
.Œa�;L/2BC;k

E.a; L; k/
�
˚

�M
k

M
.Œa�;0/2zBC;knBC;k

E.a; 0; k/
�
:

Recall the definition of E.a; 0; k/ as the triple .E�; @E ; `E /, where E� is spanned over
ƒ by elements y 2EkC1 and x 2Ek with @Ey D x and `E .y/D `E .x/D a . If we
define KW E�!E�C1 to be the ƒ–linear map defined by KxD�y and KjEmD0 for
m¤ k , we see that `E .Ke/� `E .e/ for all e 2E� , that .@EKCK@E /xD�@EyD
�x , and that .@EKCK@Ey/DKx D�y . So K defines a filtered chain homotopy
between 0 and the identity, in view of which E.a; 0; k/ is filtered homotopy equivalent
to the zero chain complex. Since a direct sum of filtered homotopy equivalences
is a filtered homotopy equivalence, the Floer-type complex in (26) (and hence also
.C�; @C ; `C /) is filtered homotopy equivalent to

L
k2Z

L
.Œa�;L/2BC;k E.a; L; k/.

Recall from Remark 7.3 that the filtered isomorphism type of E.a; L; k/ only depends
on .Œa�; L; k/, so that up to filtered chain isomorphism

L
k2Z

L
.Œa�;L/2BC;k E.a; L; k/

is independent of the choices a of representatives of the cosets Œa�. In light of this, the
“if” part of Theorem B follows directly from Proposition 7.9.

7.2.1 Mapping cylinders We review here the standard homological algebra con-
struction of the mapping cylinder of a chain map between two chain complexes; the
special case where the chain map is a homotopy equivalence will be used both in the
proof of the “only if” part of Theorem B and in the proof of the stability theorem.
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For a chain complex .C�; @C / we use .C Œ1��; @C / to denote the chain complex obtained
by shifting the degree of C� by 1: C Œ1�k D Ck�1 , with boundary operator given
tautologically by the boundary operator of C� .

Definition 7.10 Let .C�; @C / and .D�; @D/ be two chain complexes over an arbitrary
ring, and let ˆW C�!D� be a chain map. The mapping cylinder of ˆ is the chain
complex .Cyl.ˆ/�; @cyl/ defined by Cyl.ˆ/�D C�˚D�˚C Œ1�� and, for .c; d; e/ 2
Cyl.ˆ/� , @cyl.c; d; e/D .@C c � e; @Dd Cˆe;�@C e/. Thus, in block form,

@cyl D

0@@C 0 �IC�
0 @D ˆ

0 0 �@C

1A :
It is a routine matter to check that @2cyl D 0, so .Cyl.ˆ/�; @cyl/ as defined above is
indeed a chain complex.

For the moment we will work at the level of chain complexes, not of filtered chain
complexes, the reason being that we will later use Lemma 7.12 below under a variety
of different kinds of assumptions about filtration levels.

Definition 7.11 Given two chain complexes .C�; @C / and .D�; @D/, a homotopy
equivalence between .C�; @C / and .D�; @D/ is a quadruple .ˆ;‰;KC ; KD/ such
that KC W C�! C�C1 , KDW D�!D�C1 are linear maps shifting degree by C1 and
ˆW C�!D� , ‰W D�! C� are chain maps, obeying ‰ˆ� IC� D @CKC CKC @C
and ˆ‰� ID� D @DKDCKD@D .

(In particular our convention is to consider the homotopies part of the data of a homotopy
equivalence.)

Lemma 7.12 Let .ˆ;‰;KC ; KD/ be a homotopy equivalence between .C�; @C / and
.D�; @D/. Then:

(i) Suppose that iDW D� ! Cyl.ˆ/� is the inclusion, ˛W Cyl.ˆ/� ! D� is de-
fined by ˛.c; d; e/ D ˆc C d , and KW Cyl.ˆ/� ! Cyl.ˆ/�C1 is defined by
K.c; d; e/D .0; 0; c/. Then the quadruple .iD; ˛; 0;K/ is a homotopy equiva-
lence between .D�; @D/ and .Cyl.ˆ/�; @cyl/.

(ii) Suppose that iC W C�! Cyl.ˆ/� is the inclusion, ˇW Cyl.ˆ/�! C� is defined
by ˇ.c; d; e/D cC‰d CKC e , and LW Cyl.ˆ/�! Cyl.ˆ/�C1 is defined by

L.c; d; e/D .�KC c;KD.ˆcC d/; c �‰.ˆcC d//:

Then the quadruple .iC ; ˇ; 0; L/ is a homotopy equivalence between .C�; @C /
and .Cyl.ˆ/�; @cyl/.
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Proof The proof requires only a series of routine computations to show that iD; ˛; iC ; ˇ
are all chain maps and that the various chain homotopy equations hold. We will do
only the most nontrivial of these, namely the proof of the identity iCˇ� ICyl.ˆ/� D

@CylLCL@Cyl , leaving the rest to the reader. We see that, for .c; d; e/ 2 Cyl.ˆ/� ,

.iCˇ� ICyl.ˆ/�/.c; d; e/D .‰d CKC e;�d;�e/

while

@cylL.c; d; e/D @cyl
�
�KC c;KD.ˆcCd/; c�‰.ˆcCd/

�
D
�
�@CKC c� cC‰ˆcC‰d; @DKD.ˆcCd/Cˆc�ˆ‰.ˆcCd/;

�@C cC@C‰.ˆcCd/
�

D
�
KC @C cC‰d;�KD@DˆcC .@DKD �ˆ‰/d;

�@C cC@C‰.ˆcCd/
�
;

where we have used the facts that ‰ˆ� IC� D @CKC CKC @C and ˆ‰ � ID� D
@DKDCKD@D . Furthermore,

L@cyl.c; d; e/D L.@C c�e; @DdCˆe;�@C e/

D
�
�KC @C cCKC e;KD.ˆ@C cC@Dd/; @C c�e�‰.ˆ@C cC@Dd/

�
:

So

.@cylLCL@cyl/.c; d; e/D
�
‰d CKC e; .@DKD �ˆ‰CKD@D/d;�e

�
D .‰d CKC e;�d;�e/D .iCˇ� ICyl.ˆ/�/.c; d; e/;

where in the first equation we have used the fact that ˆ and ‰ are chain maps and
in the second equation we have again used that ˆ‰ � ID� D @DKD CKD@D . So
indeed iCˇ� ICyl.ˆ/� D @CylLCL@Cyl ; as mentioned earlier the remaining identities
are easier to prove and so are left to the reader.

We can now fill in the last part of our proofs of the main classification results.

Proof of Theorem B One implication has already been proven in Proposition 7.9. For
the other direction, let .C�; @C ; `C / and .D�; @D; `D/ be two filtered homotopy equiv-
alent Floer-type complexes. Thus there is a homotopy equivalence .ˆ;‰;KC ; KD/
satisfying the additional properties that, for all c 2 C� and d 2D� , we have

(27) `D.ˆc/�`C .c/; `C .‰d/�`D.d/; `C .KC c/�`C .c/; `D.KDd/�`D.d/:
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Now form the mapping cylinder .Cyl.ˆ/�; @cyl/ as described earlier, and define
`cylW Cyl.ˆ/�!R[f�1g by

`cyl.c; d; e/Dmaxf`C .c/; `D.d/; `C .e/g:

It is easy to see that .Cyl.ˆ/�; @cyl; `cyl/ is then a Floer-type complex.4 Moreover,
.Cyl.ˆ/�; @cyl; `cyl/ has a concise barcode in each degree; we will show that this concise
barcode is both the same as that of .C�; @C ; `C / and the same as that of .D�; @D; `D/,
which will suffice to prove the result.

Using the notation of Lemma 7.12, since ˛W Cyl.ˆ/� ! D� is a chain map with
˛iD D ID� , we have a direct sum decomposition of chain complexes Cyl.ˆ/� D
D�˚ ker˛ . We claim that D� and ker˛ are orthogonal (with respect to the filtration
function `cyl ). Now

ker˛ D
˚
.c; d; e/ 2 Cyl.ˆ/� j d D�ˆc

	
D
˚
.c;�ˆc; e/ j .c; e/ 2 C�˚C Œ1��

	
:

Since D� is an orthogonal complement to C� ˚ C Œ1�� in Cyl.ˆ/� , and since in
each grading k the dimensions of the degree-k part of ker˛ and of Ck ˚ C Œ1�k
are the same, by Lemma 7.5 in order to show that ker˛ is orthogonal to D� it
suffices to show that, writing � W Cyl.ˆ/�! C�˚C Œ1�� for the orthogonal projection
.c; d; e/ 7! .c; e/, one has `cyl.�x/ D `cyl.x/ for all x 2 ker˛ . But any x 2 ker˛
has x D .c;�ˆc; e/ for some .c; e/ 2 C�˚C Œ1�� , and `D.�ˆc/ � `C .c/, so we
indeed have `cyl.�x/D maxf`C .c/; `C .e/g D `cyl.x/. So indeed D� and ker˛ are
orthogonal.

In view of the orthogonal direct sum decomposition of chain complexes Cyl.ˆ/� D
D� ˚ ker˛ , for every degree k we can obtain a singular value decomposition for
.@cyl/kC1W Cyl.ˆ/kC1! ker.@cyl/k by simply combining singular value decomposi-
tions for the restrictions of .@cyl/kC1 to DkC1 and to .ker˛/kC1 . Then by Theorem 7.1,
the verbose barcode of Cyl.ˆ/� is the union of the verbose barcodes of D� and of
ker˛ .

To describe the latter of these, we will show presently that every element in ker.@cyljker˛/

is the boundary of an element having the same filtration level. In fact, for any x 2
ker.@cyljker˛/, the equation iD˛�ICyl.ˆ/�D @cylKCK@cyl shows that xD @cyl.�Kx/.
Moreover,

`cyl.x/D `cyl.@cyl.�Kx//� `cyl.�Kx/� `cyl.x/;

where the last inequality comes from the formula for K in Lemma 7.12. Therefore
`cyl.x/D `cyl.�Kx/.

4For comparison with what we do later it is worth noting that the fact that `cyl.@cylx/ � `cyl.x/ for
all x is crucially dependent on the first inequality of (27).
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Consequently, every element .Œa�; s/ of the verbose barcode of ker˛ has sD 0 (or, said
differently, the concise barcode of ker˛ is empty in every degree). Thus the verbose
barcode of Cyl.ˆ/� may be obtained from the verbose barcode of D� by adding
elements with second coordinate equal to zero; consequently the concise barcodes of
Cyl.ˆ/� and of D� are equal.

The proof that the concise barcodes of Cyl.ˆ/� and C� are likewise equal is very similar.
We have a direct sum decomposition of chain complexes Cyl.ˆ/�DC�˚kerˇ , where
kerˇDf.�‰d�KC e; d; e/ j .d; e/2D�˚C Œ1��g. Let � 0W Cyl.ˆ/�!D�˚C Œ1�� be
the projection associated to the orthogonal direct sum decomposition Cyl.ˆ/�DC�˚
.D�˚C Œ1��/. The inequalities (27) imply that `cyl.�

0x/D `cyl.x/ for all x 2 kerˇ .
Hence by applying Lemma 7.5 degree-by-degree we see that Cyl.ˆ/� D C�˚ kerˇ
is an orthogonal direct sum decomposition of chain complexes, and hence that in
any degree k the verbose barcode of Cyl.ˆ/� is the union of the degree-k verbose
barcodes of C� and of kerˇ . Any cycle x in kerˇ obeys x D �@cylLx , where the
formula for L (together with (27)) shows that `cyl.�Lx/� `cyl.x/. While Lx might
not be an element of kerˇ , the orthogonality of C� and kerˇ together with Lemma 4.9
allow one to find y 2 kerˇ with @y D x and `cyl.y/ � `cyl.�Lx/ � `cyl.x/. Just
as above, this proves that all elements .Œa�; s/ of the verbose barcode of kerˇ have
second coordinate s equal to zero, and so once again the concise barcode of Cyl.ˆ/�
coincides with that of C� .

8 The stability theorem

The stability theorem (or a closely related statement sometimes called the isometry
theorem) is the one of the most important theorems in the theory of persistent homology.
It successfully transfers the problem of relating the filtered homology groups constructed
by different methods (eg different Morse functions on a given manifold) to a combinato-
rial problem based on the associated barcodes. The result was originally established for
the persistence modules associated to “tame” functions on topological spaces in [10];
since then a variety of different proofs and generalizations have appeared (see eg [8;
3]), and it now generally understood as an algebraic statement in the abstract context
of persistence modules. In this section, we will introduce some basic notations and
definitions in order to state our version of the stability theorem, which unlike previous
versions applies to Floer-type complexes over general Novikov fields ƒK;� . In the
special case that � D f0g the result follows from recent more algebraic formulations of
the stability theorem like that in [3], though we would say that our proof is conceptually
rather different.
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The following is an abstraction of the filtration-theoretic properties satisfied by the
“continuation maps” in Hamiltonian Floer theory that relate the Floer-type complexes
associated to different Hamiltonian functions; namely such maps are homotopy equiva-
lences which shift the filtration by a certain amount which is related to an appropriate
distance (the Hofer distance) between the Hamiltonians (see [45, Propositions 5.1, 5.3
and 6.1]).

Definition 8.1 Let .C�; @C ; `C / and .D�; @D; `D/ be two Floer-type complexes
over ƒ, and ı � 0. A ı -quasiequivalence between C� and D� is a quadruple
.ˆ;‰;KC ; KD/, where:

(i) .ˆ;‰;KC ; KD/ is a homotopy equivalence (see Definition 7.11).

(ii) For all c 2 C� and d 2D� we have

(28)
`D.ˆc/� `C .c/C ı; `C .‰d/� `D.d/C ı;

`C .KC c/� `C .c/C 2ı; `D.KDd/� `D.d/C 2ı:

The quasiequivalence distance between .C�; @C ; `C / and .D�; @D; `D/ is then defined
to be

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–quasiequivalence between

.C�; @C ; `C / and .D�; @D; `D/
	
:

Of course, .C�; @C ; `C / and .D�; @D; `D/ are said to be ı–quasiequivalent provided
that there exists a ı–quasiequivalence between them. Note that a 0–quasiequivalence
is the same thing as a filtered homotopy equivalence.

Remark 8.2 It is easy to see that if .C�; @C ; `C / and .D�; @D; `D/ are ı0–quasi-
equivalent and .D�;@D;`D/ and .E�;@E ;`E / are ı1–quasiequivalent then .C�;@C ;`C /
and .E�; @E ; `E / are .ı0 C ı1/–quasiequivalent. Thus dQ satisfies the triangle
inequality. In particular, if .C�; @C ; `C / and .D�; @D; `D/ are ı–quasiequivalent
then .C�; @C ; `C / is also ı–quasiequivalent to any Floer-type complex that is filtered
homotopy equivalent to .D�; @D; `D/.

Example 8.3 Take .F1; g1/ and .F2; g2/ to be two Morse functions together with suit-
ably generic Riemannian metrics on a closed manifold X . Let ıDkF1�F2kL1 . Then
it is well-known (and can be deduced from constructions in [39], for instance) that the
associated Morse chain complexes, over the ground field KDƒK;f0g , CM�.X IF1; g1/
and CM�.X IF2; g2/ are ı–quasiequivalent.
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Example 8.4 Take .H1; J1/ and .H2; J2/ to be two generic Hamiltonian functions
together with compatible almost complex structures on a closed symplectic manifold
.M;!/. Then, as is recalled in greater detail at the start of Section 12, one has
Hamiltonian Floer complexes .CF�.M IH1; J1// and .CF�.M IH2; J2// over the
Novikov field ƒK;� where � �R is defined in (40). Define

EC.H/D

Z 1

0

max
M

H.t; � / dt and E�.H/D�

Z 1

0

min
M
H.t; � / dt

and let ıDmaxfEC.H2�H1/; E�.H2�H1/g. Then the Hamiltonian Floer complexes
.CF�.M IH1; J1// and .CF�.M IH2; J2// are ı–quasiequivalent. The maps in the
corresponding quadruple .ˆ;‰;K1; K2/ are constructed by counting solutions of
certain partial differential equations (see [1, Chapter 11]).

Remark 8.5 One could more generally define, for ı1; ı2 2 R, a .ı1; ı2/–quasi-
equivalence by replacing (28) by the conditions

`D.ˆc/� `C .c/C ı1; `C .‰d/� `D.d/C ı2;

`C .KC c/� `C .c/C ı1C ı2; `D.KDd/� `D.d/C ı1C ı2:

(So in this language a ı–quasiequivalence is the same as a .ı; ı/–quasiequivalence.)
Then in Example 8.4 one has the somewhat sharper statement that .CF�.M IH1; J1//
and .CF�.M IH2; J2// are .EC.H2�H1/; E�.H2�H1//–quasiequivalent. However
since adding a suitable constant to H1 has the effect of reducing to the case that
EC.H2�H1/ and E�.H2�H1/ are equal to each other while changing the filtration
on the Floer complex (and hence changing the barcode) by a simple uniform shift,
for ease of exposition we will restrict attention to the more symmetric case of a ı–
quasiequivalence.

Remark 8.6 We will explain in the appendix that quasiequivalence is closely related
with the notion of interleaving of persistent homology from [3]. In particular, the
quasiequivalence distance dQ is equal to a natural chain-level version of the interleaving
distance from [3].

Our first step toward the stability theorem will be a continuity result for the quantities ˇk
from Definition 4.10. Recall that for i 2Z the degree-i part of the (verbose or concise)
barcode of .C�; @C ; `C / is obtained from a singular value decomposition of the map
.@C /iC1W CiC1! ker.@C /i .

Lemma 8.7 Let .ˆ;‰;KC ; KD/ be a ı–quasiequivalence and let � � 2ı . If V �
ker.@C /i is �–robust then ˆjV is injective and ˆ.V / is .�� 2ı/–robust.
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Proof If v 2 V and ˆv D 0 then

v D v�‰ˆv D @C .�KCv/;

where `C .�KCv/� `C .v/C2ı ; by the definition of �–robustness (see Definition 4.7)
this implies that v D 0 since �� 2ı . So indeed ˆjV is injective.

Now suppose that 0¤ w Dˆv 2ˆ.V / with @Dy D w . Then

@C‰y D‰@Dy D‰ˆv D vC @CKCv

(where we’ve used the fact that V � ker @C ). So vD @C .‰y�KCv/. By the definition
of �–robustness we have `C .‰y�KCv/>`C .v/C�. Since `C .KCv/�`C .v/C2ı�
`C .v/C � this implies that

`C .‰y/ > `C .v/C �:

But `D.y/� `C .‰y/� ı , and `D.w/D `D.ˆv/� `C .v/C ı , which combined with
the displayed inequality above shows that `D.y/ > `D.w/C .�� 2ı/. Since w was
an arbitrary nonzero element of ˆ.V / this proves that ˆ.V / is .�� 2ı/–robust.

Corollary 8.8 Suppose that .C�; @C ; `C / and .D�; @D; `D/ are ı–quasiequivalent.
Then for all i 2 Z and k 2N , we have jˇk..@C /iC1/�ˇk..@D/iC1/j � 2ı .

Proof By definition ˇk..@C /iC1/ is the supremal � � 0 such that there exists a k–
dimensional �–robust subspace of Im..@D/iC1/, or is zero if no such subspace exists
for any �. If ˇk..@C /iC1/ > 2ı , then given � > 0 there is a k–dimensional subspace
V � Im.@C /iC1 which is .ˇk..@C /iC1/� �/–robust, and then (for small enough � )
Lemma 8.7 shows that ˆ.V /� Im..@D/iC1/ is k–dimensional and .ˇk..@C /iC1/�
��2ı/–robust. Since this construction applies for all sufficiently small � > 0 it follows
that

(29) ˇk..@D/iC1/� ˇk..@C /iC1/� 2ı

provided that ˇk..@C /iC1/ > 2ı . But of course if ˇk..@C /iC1/ � 2ı then (29) still
holds for the trivial reason that ˇk..@D/iC1/ is by definition nonnegative. So (29) holds
in any case. But this argument may equally well be applied with the roles of the com-
plexes .C�; @C ; `C / and .D�; @D; `D/ reversed (as the relation of ı–quasiequivalence
is symmetric), yielding ˇk..@C /iC1/� ˇk..@D/iC1/� 2ı , which together with (29)
directly implies the corollary.

In order to state our stability theorem we must explain the bottleneck distance, which
is a measurement of the distance between two barcodes in common use at least since
[10]. First we will define some notions related to matchings between multisets, similar
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to what can be found in eg [9]. We initially express this in rather general terms in order
to make clear that our notion of a partial matching can be identified with corresponding
notions found elsewhere in the literature. Recall below that a pseudometric space is a
generalization of a metric space in which two distinct points are allowed to be a distance
zero away from each other, and an extended pseudometric space is a generalization of
a pseudometric space in which the distance between two points is allowed to take the
value 1.

Definition 8.9 Let .X; d/ be an extended pseudometric space equipped with a “length
function” �W X ! Œ0;1�, and let S and T be two multisets of elements of X .

� A partial matching between S and T is a triple mD .Sshort; Tshort; �/ where Sshort

and Tshort are submultisets of S and T , respectively, and � W S nSshort! T nTshort is a
bijection. (The elements of Sshort and Tshort will sometimes be called “unmatched”.)

� For ı2 Œ0;1�, a ı–matching between S and T is a partial matching .Sshort; Tshort; �/

such that for all x 2 Sshort[Tshort we have �.x/� ı and for all x in S nSshort we have
d.�.x/; x/� ı .

� If m is a partial matching between S and T , the defect of m is

ı.m/D inffı � 0 jm is a ı–matchingg:

Example 8.10 Let HD f.x; y/ 2 .�1;1�2 j x < yg with extended metric

dH..a; b/; .c; d//Dmaxfjc � aj; jd � bjg

and �H..a; b//D 1
2
.b � a/. Then our notion of a ı–matching between multisets of

elements of H is readily verified to be the same as that used in [9, Section 4] or [3,
Section 3.2].

Example 8.11 Consider R� .0;1� with the extended metric

d..a; L/; .a0; L0//Dmaxfja� a0j; j.aCL/� .a0CL0/jg

and the length function �.a;L/DL=2. Then the bijection f W R�.0;1�!H defined
by f .a;L/D .a; aCL/ pulls back dH and �H from the previous example to d and �,
respectively, so giving a ı–matching m between multisets of elements of R� .0;1�
is equivalent to giving a ı–matching f�m between the corresponding multisets of
elements of H .

Example 8.12 Our main concern will be ı–matchings between concise barcodes of
Floer-type complexes, which are by definition multisets of elements of .R=�/�.0;1�
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for a subgroup ��R. For this purpose we use the length function �W .R=�/�.0;1�!R
defined by �.Œa�; L/D L=2 and the extended pseudometric

d..Œa�; L/; .Œa0�; L0//D inf
g2�

maxfjaCg� a0j; j.aCgCL/� .a0CL0/jg:

In the case that � D f0g this evidently reduces to Example 8.11.

For convenience, we rephrase the definition of a ı–matching between concise barcodes:

Definition 8.13 Consider two concise barcodes S and T (viewed as multisets of
elements of .R=�/�.0;1�). A ı–matching between S and T consists of the following
data:

(i) submultisets Sshort and Tshort such that the second coordinate L of every element
.Œa�; L/ 2 Sshort[ Tshort obeys L� 2ı .

(ii) A bijection � W S n Sshort ! T n Tshort such that, for each .Œa�; L/ 2 S n Sshort

(where a 2R, L 2 Œ0;1�) we have �.Œa�; L/D .Œa0�; L0/, where for all � > 0
the representative a0 of the coset Œa0� 2 R=� can be chosen such that both
ja0� aj � ıC � and either LD L0 D1 or j.a0CL0/� .aCL/j � ıC � .

It follows from the discussion in Example 8.11 that our definition agrees in the case
that � D f0g (via the map .a; L/ 7! .a; aCL/) to the definitions in, for example, [9]
or [3].

Definition 8.14 If S and T are two multisets of elements of .R=�/� .0;1� then
the bottleneck distance between S and T is

dB.S; T /D inffı � 0 j There exists a ı–matching between S and T g:

Our constructions associate to a Floer-type complex a concise barcode for every k 2Z,
so the appropriate notion of distance for this entire collection of data is:

Definition 8.15 Let S D fSkgk2Z and T D fTkgk2Z be two families of multisets of
elements of .R=�/� .0;1�. The bottleneck distance between S and T is then

dB.S; T /D sup
k2Z

dB.Sk; Tk/:

Remark 8.16 It is routine to check that dB is indeed an extended pseudometric. In
particular, it satisfies the triangle inequality.

We can now formulate another of this paper’s main results, the stability theorem.
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Theorem 8.17 (stability theorem) Given a Floer-type complex .C�; @C ; `C / and
k 2 Z, denote its degree-k concise barcode by BC;k ; moreover let BC D fBC;kgk2Z

denote the indexed family of concise barcodes for all gradings k . Then the bottleneck
and quasiequivalence distances obey, for any two Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/, the inequality

(30) dB.BC ;BD/� 2dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Moreover, for any k 2 Z, if we let �D;k > 0 denote the smallest second coordinate L
of all of the elements of BD;k , and if dQ..C�; @C ; `C /; .D�; @D; `D// < 1

4
�D;k , then

(31) dB.BC;k;BD;k/� dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

We will also prove an inequality in the other direction, analogous to [9, (4.1100 )].

Theorem 8.18 (converse stability theorem) With the same notation as in Theorem 8.17,
we have an inequality

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB.BC ;BD/:

Thus, with respect to the quasiequivalence and bottleneck distances, the map from
Floer-type complexes to concise barcodes is globally at least bi-Lipschitz, and moreover
is a local isometry (at least among complexes having a uniform positive lower bound on
the parameters �D;k as k varies through Z; for instance this is true for the Hamiltonian
Floer complexes). We expect that the factor of two in (30) is unnecessary so that the
map is always a global isometry (as is the case when � in trivial by [9, Theorem 4.11]).
In Section 11, we will see this becomes true if the quasiequivalence distance dQ is
replaced by more complicated distance called the interpolating distance.

We prove the stability theorem in the following section, and the (easier) converse
stability theorem in Section 10.

9 Proof of the stability theorem

9.1 Varying the filtration

The proof of the stability theorem will involve first estimating the bottleneck distance
between two Floer-type complexes having the same underlying chain complex but
different filtration functions, and then using a mapping cylinder construction to reduce
the general case to this special case. We begin with a simple combinatorial lemma:

Geometry & Topology, Volume 20 (2016)



Persistent homology and Floer–Novikov theory 3399

Lemma 9.1 Suppose that A and B are finite sets and that �; � W A! B are bijections
and f W A ! R and gW B ! R are functions such that, for some ı � 0, we have
f .a/� g.�.a// � ı and g.�.a//� f .a/ � ı for all a 2 A. Then there is a bijection
�W A! B such that jf .a/�g.�.a//j � ı for all a 2 A.

Proof Denote the elements of A as a1; : : : ; an , ordered in such a way that f .a1/�
� � � � f .an/; likewise denote the elements of B as b1; : : : ; bn , ordered such that
g.b1/ � � � � � g.bn/. Our bijection �W A! B will then be given by �.ai /D bi for
i D 1; : : : ; n.

Given i 2 f1; : : : ; ng, write �.ai /D bm and suppose first that m� i . Then g.bm/�
g.bi /, so g.bi /� f .ai / � g.bm/� f .ai / � ı by the hypothesis on � . On the other
hand if m< i then there must be some j 2 f1; : : : ; i � 1g such that �.aj /D bk with
k � i (for otherwise � would give a bijection between fa1; : : : ; aig and a subset of
fb1; : : : ; bi�1g). In this case since j < i � k we have

g.bi /�f .ai /� g.bk/�f .aj /D g.�.aj //�f .aj /� ı:

So in any event g.bi /�f .ai /� ı for all i . A symmetric argument (using ��1 in place
of � ) shows that likewise f .ai /� g.bi / � ı for all i . So indeed our permutation �
defined by �.ai /D bi obeys jf .a/�g.�.a//j � ı for all a 2 A.

Lemma 9.2 Let .C; `C /, .D; `D/ be orthogonalizable ƒ–spaces and AW C!D a ƒ–
linear map with unsorted singular value decomposition ..y1; : : : ; yn/; .x1; : : : ; xm//.
Let `0DW D!R[f�1g be another filtration function such that .D; `0D/ is an orthog-
onalizable ƒ–space, and let ı > 0 be such that j`D.d/� `0D.d/j � ı for all d 2 D .
Then there is an unsorted singular value decomposition ..y01; : : : ; y

0
n/; .x

0
1; : : : ; x

0
m//

for the map A with respect to `C and the new filtration function `0D , such that:

(i) `C .y
0
i /D `C .yi / for each i .

(ii) j`0D.x
0
i /� `D.xi /j � ı for each i � rank.A/.

Proof To simplify matters later, we shall assume the following:

(32) for all i; j , if `C .yi /� `C .yj / mod � , then `C .yi /D `C .yj /.

There is no loss of generality in this assumption, as it may be arranged to hold by multi-
plying the various yi ; xi by appropriate field elements T gi (and then correspondingly
multiplying the elements y0i ; x

0
i constructed in the proof of the lemma by T �gi ).

Let us first apply the algorithm described in Theorem 3.5 to A, viewed as a map between
the nonarchimedean normed vector spaces .C; `C / and .D; `0D/. That algorithm takes
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as input orthonormal bases for both the domain and the codomain of A; for the
domain .C; `C / we use the ordered basis .y1; : : : ; yn/ from the given singular value
decomposition (for A as a map from .C; `C / to .D; `D/), while we use an arbitrary
orthogonal basis for the codomain.

Denote the rank of A by r . Since Ayi D 0 for i D r C 1; : : : ; n, inspection of
the algorithm in the proof of Theorem 3.5 shows that, for i D r C 1; : : : ; m, the
element yi is unchanged throughout the running of the algorithm. Thus the ordered
basis .y01; : : : ; y

0
n/ for C that is output by the algorithm has y0iDyi for iDrC1; : : : ; m.

So since r is the rank of A and Ay0i D Ayi D 0 for i > r , it follows that Ay0i ¤ 0
for i 2 f1; : : : ; rg. In fact, setting x0i D Ay

0
i for i 2 f1; : : : ; rg, the tuple .x01; : : : ; x

0
r/

gives an orthogonal ordered basis for Im.A/. Moreover, according to Theorem 3.5, we
have `C .y0i /D `C .yi / for all i , while

(33) `0D.x
0
i /� `

0
D.xi / for i 2 f1; : : : ; rg:

Taking .x0rC1; : : : ; x
0
m/ to be an arbitrary `0D–orthogonal basis for an orthogonal

complement to Im.A/, it follows that ..y01; : : : ; y
0
n/; .x

0
1; : : : ; x

0
m// is an unsorted

singular value decomposition for A considered as a map from .C; `C / to .D; `0D/,
which moreover satisfies property (i) in the statement of the lemma.

We will show that, possibly after replacing y0i ; x
0
i by y0

�.i/
; x0
�.i/

for some permutation �
of f1; : : : ; rg having `C .yi /D `C .y�.i// for each i , this singular value decomposition
also satisfies property (ii). In this direction, symmetrically to the previous paragraph,
apply the algorithm from Theorem 3.5 to A as a map from .C; `C / to .D; `D/, using
as input the basis .y01; : : : ; y

0
n/ for C that we obtained above. This yields a new

unsorted singular value decomposition ..y001 ; : : : ; y
00
n/; .x

00
1 ; : : : ; x

00
m// for A as a map

from .C; `C / to .D; `D/, having

`C .y
00
i /D `C .y

0
i /D `C .yi / for all i

and

(34) `D.x
00
i /� `D.x

0
i / for i 2 f1; : : : ; rg:

Now by Theorem 7.1 and our assumption (32), there is an equality of multisets of
elements of R2 :

(35) f.`C .yi /; `D.xi // j i D 1; : : : ; rg D f.`C .y
00
i /; `D.x

00
i // j i D 1; : : : ; rg:

Indeed, each of these multisets corresponds to the finite-length bars in the verbose
barcode of the two-term Floer-type complex .C A

!D/, and the condition (32) and
the fact that `C .y00i / D `C .yi / ensure that an equality of some `C .yi / and `C .y00j /
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modulo � implies an equality in R. For any z 2 f`C .y1/; : : : ; `C .yr/g, let

Iz D fi 2 f1; : : : ; rg j `C .yi /D zg

and define functions f; gW Iz!R by f .i/D `0D.x
0
i / and g.i/D `D.xi /. Using (33),

for each i 2 Iz we then have

f .i/� `0D.xi /� `D.xi /C ı D g.i/C ı:

On the other hand, by (35) there is a permutation � of Iz such that `D.x�.i//D `D.x00i /
for all i 2 Iz , and so by (34) we have

g.�.i//D `D.x�.i//D `D.x
00
i /� `D.x

0
i /� `

0
D.x

0
i /C ı D f .i/C ı:

So we can apply Lemma 9.1 to obtain a permutation �z of Iz such that

j`0D.xi /� `D.x�z.i//j D jf .i/�g.�z.i//j � ı

for all i . Repeating this process for each z 2 f`C .y1/; : : : ; `C .yr/g, and reordering
the tuples .y01; : : : ; y

0
r/ and .x0i ; : : : ; x

0
r/ using the permutation � of f1; : : : ; rg that

restricts to each Iz as �z , we obtain a singular value decomposition for A as a map
.C; `C /! .D; `0D/ satisfying the desired properties.

We now prove a version of the stability theorem in the case that the Floer-type complexes
in question arise from the same underlying chain complex, with different filtration
functions.

Proposition 9.3 Let .C�; @/ be a chain complex of ƒ–vector spaces and let

`0; `1W C�!R[f�1g

be two filtration functions such that both .C�; @; `0/ and .C�; @; `1/ are Floer-type
complexes. Assume that ı � 0 is such that j`1.c/ � `0.c/j � ı for all c 2 C� .
Then denoting by B0C and B1C the concise barcodes of .C�; @; `0/ and .C�; @; `1/,
respectively, we have dB.B0C ;B

1
C /� ı .

Proof Fix a grading k , let r D rank @jCkC1 , and let ..y1; : : : ; yn/; .x1; : : : ; xm//
be a singular value decomposition for @jCkC1 , considered as a map .CkC1; `0/!
.Ck; `0/. In particular, the finite-length bars of the degree-k part of B0C are given by
.Œ`0.xi /�; `0.yi /� `0.xi // for 1 � i � r , and the infinite-length bars of the degree-
.kC1/ part of B0C are given by .Œ`0.yi /�;1/ for r C 1� i � n.

We may then apply Lemma 9.2 to obtain an unsorted singular value decomposition
..y01; : : : ; y

0
n/; .x

0
1; : : : ; x

0
m// for @jCkC1 , considered as a map .CkC1; `0/! .Ck; `1/,

such that `0.y0i /D `0.yi / for all i and j`1.x0i /� `0.xi /j � ı .
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Now consider the adjoint @�W .Ck/�! .CkC1/
� and the dual filtration functions `�0; `

�
1

as defined in Section 2.4. It follows immediately from the definitions of `�0; `
�
1 and the

assumption that j`1.c/�`0.c/j � ı for all c 2C� that, likewise, j`�1�`
�
0j is uniformly

bounded above by ı . Moreover by Proposition 3.9, the collection of dual basis elements
..x0�1 ; : : : ; x

0�
m /; .y

0�
1 ; : : : ; y

0�
n // gives an unsorted singular value decomposition for @�

considered as a map from ..Ck/
�; `�1/ to ..CkC1/�; `�0/. Thus Lemma 9.2 applies

to give an unsorted singular value decomposition ..�1; : : : ; �m/; .�1; : : : ; �n// for @�

considered as a map ..Ck/�; `�1/! ..CkC1/
�; `�1/, with `�1.�i / D `

�
1.x
0�
i / for all i

and j`�1.�i /� `
�
0.y
0�
i /j � ı for all i 2 f1; : : : ; rg. Again using Proposition 3.9 (and

using the canonical identification of .Ci /�� with Ci for i D k; k C 1), it follows
that ..��1; : : : ; �

�
n/; .�

�
1 ; : : : ; �

�
m// is a singular value decomposition for @ considered

as a map .CkC1; `��1 /! .Ck; `
��
1 /. It is easy to see (for instance by using (7) twice)

that `��1 D `1 . Thus the finite-length bars in the degree-k part of B1C are given by
.Œ`1.�

�
i /�; `1.�

�
i /� `1.�

�
i //.

Now using (7) we have

j`1.�
�
i /�`0.xi /j� j�`

�
1.�i /�`1.x

0
i /jCj`1.x

0
i /�`0.xi /j� j�`

�
1.�i /C`

�
1.x
0�
i /jCıD ı

and similarly

j`1.�
�
i /� `0.yi /j D j� `

�
1.�i /� `0.y

0
i /j D j� `

�
1.�i /C `

�
0.y
0�
i /j � ı:

Thus we obtain a ı–matching between the finite-length bars in the degree-k parts of B0C
and B1C by pairing each .Œ`0.xi /�; `0.yi /� `0.xi // with .Œ`1.��i /�; `1.�

�
i /� `1.�

�
i //

for i D 1; : : : ; r .

It now remains to similarly match the infinite-length bars in the degree-k parts of
the BiC . Let us write

ker.@jCk /D Im.@jCkC1/˚V0 D Im.@jCkC1/˚V1;

where Im.@jCkC1/ is orthogonal to V0 with respect to `0 and Im.@jCkC1/ is orthogonal
to V1 with respect to `1 . For i D 0; 1, the infinite-length bars in the degree-k parts
of BiC are then given by .c;1/ as c varies through the filtration spectrum of Vi .

For i D 0; 1, let �i W ker.@jCk /! Vi denote the projections associated to the above
direct sum decompositions. Note that �1jV0 W V0! V1 is a linear isomorphism, with
inverse given by �0jV1 . So for v0 2 V0 we obtain

`1.�V1v/� `1.v/� `0.v/C ı

while
`0.v/D `0.�V0�V1.v//� `0.�V1v/� `1.�V1v/C ı:

Geometry & Topology, Volume 20 (2016)



Persistent homology and Floer–Novikov theory 3403

So the linear isomorphism �V1 jV0 W V0!V1 obeys j`1.�V1v/�`0.v/j� ı for all v2V .
A singular value decomposition for the map �V1 jV0 W .V0; `0jV0/! .V1; `1jV1/ pre-
cisely gives orthogonal ordered bases .w1; : : : ; wm�r/ and .�V1w1; : : : �V1wm�r/ for
.V0; `0jV0/ and .V1; `1jV1/, respectively, and the matching which sends .Œ`0.wi /�;1/
to .Œ`1.�V1wi /�;1/ then has defect at most ı . Combining this matching of the infinite-
length bars in the degree-k parts of B0C and B1C with the matching of the finite-length
bars that we constructed earlier, and letting k vary through Z, we conclude that indeed
dB.B0C ;B

1
C /� ı .

9.2 Splittings

Our proof of Theorem 8.17 will involve, given a ı–quasiequivalence .ˆ;‰;KC ; KD/,
applying Proposition 9.3 to a certain pair of filtrations on the mapping cylinder Cyl.ˆ/� .
It turns out that our arguments can be made sharper if we assume that the quasiequiva-
lence .ˆ;‰;KC ; KD/ satisfies a certain condition; in this subsection we introduce this
condition and prove that there is no loss of generality in asking for it to be satisfied.

Definition 9.4 Let .C�; @; `/ be a Floer-type complex. A splitting of C� is a graded
vector space F C� D˚k2ZF

C
k

such that each F C
k

is an orthogonal complement in Ck
to ker @k.D ker @jCk /.

Clearly splittings always exist, as already follows from Corollary 2.19. One can
read off a splitting from singular value decompositions of the boundary operator
in various degrees: if ..yk�11 ; : : : ; yk�1n /; .xk�11 ; : : : ; xk�1m // is a singular value de-
composition for @k W Ck ! ker @k�1 and if rk is the rank of @k then we may take
F C
k
D spanƒfy

k�1
1 ; : : : ; yk�1rk

g.

Definition 9.5 If .C�; @C ; `C / and .D�; @D; `D/ are Floer-type complexes with split-
tings F C� and FD� , respectively, a chain map ˆW C�!D� is said to be split provided
that ˆ.F C� /� F

D
� .

Lemma 9.6 Let ˆW C� ! D� be a chain map between two Floer-type complexes
.C�; @C ; `C / and .D�; @D; `D/ having splittings F C� and FD� , and let �C W C�!F C�
and �DW D�! FD� be the projections associated to the direct sum decompositions
C� D F

C
� ˚ ker.@C /� and D� D FD� ˚ ker.@D/� . Define

ˆ� D �Dˆ�C Cˆ.IC ��C /:

Then this map satisfies following properties:
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(i) ˆ� is a chain map;

(ii) ˆ� is split, and ˆ� jker @C Dˆjker @C ;

(iii) If ı � 0 and `D.ˆ.x//� `C .x/Cı for all x 2C� , then likewise `D.ˆ�.x//�
`C .x/C ı for all x 2 C� .

Proof For (i), since @C .IC � �C / D 0, we see that @C�C D @C and similarly,
@D�D D @D . Then using that ˆ is a chain map, we get

@Dˆ
�
D @D�Dˆ�C C @Dˆ.IC ��C /Dˆ@C�C Cˆ@C .IC ��C /Dˆ@C :

Moreover, Im @C � ker @C , so �C @C D 0, and

ˆ�@C D �Dˆ�C @C Cˆ.IC ��C /@C Dˆ@C :

So ˆ� is a chain map.

For (ii), for x 2 F C
k

, �Cx D x and so .IC � �C /x D 0. So ˆ�x D �Dˆ�Cx D
�Dˆx 2 F

D
k

, proving that ˆ� is split. Furthermore, for x 2 ker.@C /k , we have
�Cx D 0 and so ˆ�x D �Dˆ�CxCˆ.IC ��C /x Dˆx .

For (iii), note first that since �D (being a projection) obeys �2D D �D , we have

�Dˆ
�
D �Dˆ�C C�Dˆ.IC ��C /D �Dˆ

while
.ID ��D/ˆ

�
D .ID ��D/ˆ.I ��C /:

So since FD
k

and ker.@D/k are orthogonal, for all x 2 Ck we have

`D.ˆ
�x/Dmaxf`D.�Dˆ�x/; `D..ID ��D/ˆ�xg

Dmaxf`D.�Dˆx/; `D..ID ��D/ˆ.IC ��C /xg

�maxf`D.ˆx/; `D.ˆ.IC ��C /x/g:

But, assuming that `D.ˆx/ � `C .x/C ı for any x 2 Ck , the orthogonality of F C
k

and ker.@C /k implies that

`D.ˆ.IC ��C /x/� `C .x��Cx/C ı � `C .x/C ı:

Thus `D.ˆ�x/� `C .x/C ı for all x 2 Ck .

Proposition 9.7 Let .C�; @; `/ be a Floer-type complex with a splitting F C� and let
� W C� ! F C� be the projection associated to the direct sum decomposition C� D
F C� ˚ ker @� . Suppose that A;A0W C�! C� are two chain maps such that:
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(i) A D @K C K@ for some KW C� ! C�C1 such that there is � � 0 with the
property that `.Kx/� `.x/C � for all x 2 C� .

(ii) A0 is split.

(iii) Ajker @ D A
0jker @ .

Then for K 0 D �K.IC ��/, we have A0 D @K 0CK 0@ and `.x/� `.K 0x/C � for all
x 2 C� .

Proof The statement that `.x/� `.K 0x/C � follows directly from the corresponding
assumption on K and the fact that � and IC �� are orthogonal projections. So we
just need to check that A0 D @K 0CK 0@; we will check this separately on elements of
ker @� and elements of F C� .

For the first of these, note that just as in the proof of the preceding lemma we have
@� D @, and if x 2 ker @� then .IC ��/x D x . Hence, by assumption (iii),

A0x D Ax D @KxCK@x D @Kx D @�Kx D @K 0x D @K 0xCK 0@x;

as desired.

On the other hand if x 2 F C� we first observe that

@A0x D A0@x D A@x D @Ax D @K@x;

where the second equality again follows from (iii). Now since @�D @ and since IC ��
is the identity on Im @ we have

@K@x D @�K.I ��/@x D @K 0@x:

Thus @A0x D @K 0@x . But both A0 and K 0 have image in F C� , on which @ is injective,
so A0x D K 0@x . Since we are assuming in this paragraph that x 2 F C� , we have
.IC ��/x D 0 and so K 0x D 0. So indeed A0x D .@K 0CK 0@/x .

Since A0 and @K 0CK 0@ coincide on both summands ker @C and F C� of C� we have
shown that they are equal.

Corollary 9.8 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ with
splittings F C� and FD� , the quasiequivalence distance dQ..C�; @C ; `C /; .D�; @D; `D//
is equal to

inf
˚
ı � 0 j 9 ı–quasiequivalence .ˆ;‰;KC ; KD/

between .C�; @C ; `C / and .D�; @D; `D/ such that ˆ and ‰ are split
	
:
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Proof It suffices to show that if .ˆ;‰;KC ; KD/ is a ı–quasiequivalence then there is
another ı–quasiequivalence .ˆ0; ‰0; K 0C ; K

0
D/ such that ˆ0 and ‰0 are split. For this

purpose we can take ˆ0 Dˆ� and ‰0 D‰� to be the maps provided by Lemma 9.6.
We can then apply Proposition 9.7 with AD‰ˆ� IC and A0 D‰0ˆ0� IC to obtain
K 0C W C�! C�C1 with ‰0ˆ0 � IC D @CK 0C CK

0
C @C and `C .K 0Cx/ � `C .x/C 2ı .

Similarly applying Proposition 9.7 with ADˆ‰� ID and A0 Dˆ0‰0� ID yields a
map K 0DW D�!D�C1 , and the conclusions of Lemma 9.6 and Proposition 9.7 readily
imply that .ˆ0; ‰0; K 0C ; K

0
D/ is, like .ˆ;‰;KC ; KD/, a ı–quasiequivalence.

Let us briefly describe the strategy of the rest of the proof of Theorem 8.17. In the
following two subsections we will introduce a filtration function `co on the mapping
cone Cone.ˆ/� of a ı–quasiequivalence ˆW C�!D� , and two filtration functions
`0; `1 on the mapping cylinder Cyl.ˆ/� , with `0 and `1 obeying a uniform bound
j`1�`0j � ı . Moreover .Cyl.ˆ/�; @cyl; `0/ will be filtered homotopy equivalent to D� ,
while .Cyl.ˆ/�; @cyl; `1/ will be filtered homotopy equivalent to C�˚Cone.ˆ/� . Com-
bined with Proposition 9.10 below which places bounds on the barcode of Cone.ˆ/�
when ˆ is split, these constructions will quickly yield Theorem 8.17 in Section 9.5.

9.3 Filtered mapping cones

Fix throughout this section a nonnegative real number ı . We will make use of the
following algebraic structure, related to the mapping cylinder introduced earlier.

Definition 9.9 Given two chain complexes .C�; @C / and .D�; @D/ and a chain map
ˆW C�!D� define the mapping cone of ˆ, .Cone.ˆ/�; @co/ by

Cone.ˆ/� DD�˚C Œ1��

with boundary operator @co.d; e/D .@Dd �ˆe;�@C e/, ie in block form

@co D

�
@D �ˆ

0 �@C

�
:

Assuming additionally that `D.ˆx/ � `C .x/C ı for all x 2 C� , define the filtered
mapping cone .Cone.ˆ/�; @co; `co/, where the filtration function `co is given by
`co.d; e/Dmaxf`D.d/C ı; `C .e/C 2ıg.5

5One could equally well define `co.d; e/Dmaxf`D.d/C t; `C .e/C t C ıg for any t 2R (the ı is
included to ensure that `co does not increase under @co ). Although t D 0 might seem to be the most natural
choice, we use t D ı here in order to make the proofs of Propositions 9.10 and 9.13 more reader-friendly.
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It is routine to check that @2co D 0 and that `co.@co.d; e// � `co.d; e/ for all .d; e/ 2
Cone�.ˆ/. In the case that ˆ is part of a ı–quasiequivalence .ˆ;‰;KC ; KD/, we
will require some information about the concise barcode of Cone.ˆ/� ; we will be able
to make an especially strong statement when ˆ is split in the sense of the previous
subsection. Specifically:

Proposition 9.10 Let .C�; @C ; `C / and .D�; @D; `D/ be Floer-type complexes with
splittings F C� and FD� , and let .ˆ;‰;KC ; KD/ be a ı–quasiequivalence such that ˆ
and ‰ are split. Then all elements .Œa�;L/ of the concise barcode of .Cone.ˆ/�;@co;`co/

have second coordinate obeying L� 2ı .

Proof The desired conclusion is an easy consequence of the following statement:

(36) 8x 2 ker.@co/; 9y 2 Cone.ˆ/� such that @coy D x and `co.y/� `co.x/C 2ı:

Indeed, by definition, the elements .Œa�; L/ of the concise barcode with L<1 each
correspond to pairs yi ; xi D @yi from a singular value decomposition for @co , with
aD `co.x/ and LD `co.yi /�`co.xi /, and by Lemma 4.9 any element y with @yD xi
has `.y/� `.yi /. Thus (36) implies that L� 2ı provided that L<1. There can be
no bars with LD1 since such bars arise from elements of an orthogonal complement
to Im.@co/ in ker.@co/ but (36) implies that Im.@co/D ker.@co/.

We now prove (36). Let xD .d; e/2ker.@co/� ; thus @co.d; e/D .@Dd�ˆe;�@C e/D0.
Therefore,

@Dd Dˆe and @C e D 0:

Split d according to the direct sum decomposition D� D FD� ˚ ker.@D/� as d D
dF CdK and let �D `co.x/. Then `D.d/� �� ı and `C .e/� ��2ı . So since FD�
and ker.@D/� are orthogonal, `D.dK/� �� ı and `D.dF /� �� ı . Moreover, since
@C eD 0, the equation ‰ˆ�IC D @CKC CKC @C implies that @.KC e/D‰ˆe�e ,
where `C .KC e/� `C .e/C 2ı � �.

Write KC eD aCa0 with a2F �C and a0 2 ker.@C /� . Then by the orthogonality of F �C
and ker.@C /� we have `C .a/� `C .KC e/� �, and @CaD @CKC e D .‰ˆ� ID/e .

We then find that

(37) @D.ˆ‰dF � dF �ˆa/Dˆ‰@DdF � @DdF �ˆ@Ca

D .ˆ‰� ID/ˆe�ˆ@CaD 0:

On the other hand, because ˆ and ‰ are split we have ˆ‰dF � dF �ˆa 2 FD� , so
since @DjFD� is injective (37) implies that

ˆaDˆ‰dF � dF :
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Since @DdK D 0, the element b DKDdK 2D�C1 obeys

@Db D .ˆ‰� ID/dK

and `D.b/ � `D.dK/C 2ı � �� ıC 2ı D �C ı . Let y D .�b; a�‰d/. We claim
that this y obeys the desired conditions stated at the start of the proof. In fact,

@co.y/D .@D.�b/�ˆ.a�‰d/;�@C .a�‰d//

D .�@Db�ˆaCˆ‰d;�@CaC @C‰d/

D .dK �ˆ‰dK �ˆaCˆ‰d; e�‰ˆeC‰@Dd/

D .dK �ˆ‰dK �ˆ‰dF C dF Cˆ‰d; e/

D .d; e/D x:

Moreover, the filtration level of y obeys

`co.y/D `co..�b; a�‰d//

Dmaxf`D.�b/C ı; `C .a�‰d/C 2ıg

�maxf�C 2ı;maxf`C .a/; `C .d/C ıgC 2ıg

D �C 2ı D `co.x/C 2ı:

So @coy D x and `co.y/� `co.x/C 2ı , as desired. Since x was an arbitrary element
of ker.@co/� this implies the result.

Remark 9.11 If one drops the hypothesis that ˆ and ‰ are split, then it is possible
to construct examples showing that the largest second coordinate in an element of the
concise barcode of Cone.ˆ/� can be as large as 4ı .

9.4 Filtered mapping cylinders

Recall the definition of the mapping cylinder Cyl.ˆ/� of a chain map ˆW C�!D�
from Section 7.2.1, and the homotopy equivalences .iD; ˛; 0;K/ between D� and
Cyl.ˆ/� and .iC ; ˇ; 0; L/ between C� and Cyl.ˆ/� from Lemma 7.12 (the first of
these exists for any chain map ˆ, while the second requires ˆ to be part of a homotopy
equivalence, as is indeed the case in our present context). The “only if” direction of
Theorem B was proven by, in the case that .ˆ;‰;KC ; KD/ is a filtered homotopy
equivalence, exploiting the behavior of a suitable filtration function on Cyl.ˆ/� with
respect to .iD; ˛; 0;K/ and .iC ; ˇ; 0; L/. In the case that .ˆ;‰;KC ; KD/ is instead
a ı–quasiequivalence, we will follow a similar strategy, but using different filtration
functions on Cyl.ˆ/� for the two homotopy equivalences.
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Proposition 9.12 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/
and a ı–quasiequivalence .ˆ;‰;KC ; KD/ between them, define a filtration function
`0W Cyl.ˆ/�!R[f�1g by

`0.c; d; e/Dmaxf`C .c/C ı; `D.d/; `C .e/C ıg:

Then:

(i) `0.@cylx/� `0.x/ for all x 2 Cyl.ˆ/� . Thus .Cyl.ˆ/�; @cyl; `0/ is a Floer-type
complex.

(ii) Let .iD; ˛; 0;K/ be as defined in Lemma 7.12. Then .iD; ˛; 0;K/ is a filtered
homotopy equivalence between .D�; @D; `D/ and .Cyl.ˆ/�; @cyl; `0/.

Proof For (i), if .c; d; e/ 2 Cyl.ˆ/� we have

`0.@cyl.c; d; e//Dmaxf`C .@C c � e/C ı; `D.@Dd Cˆe/; `C .@C e/C ıg

while `0.c; d; e/Dmaxf`C .c/C ı; `D.d/; `C .e/C ıg. So (i) follows from the facts
that:

� `C .@C c � e/C ı �maxf`C .c/C ı; `C .e/C ıg;

� `D.@Dd Cˆe/�maxf`D.d/; `D.ˆe/g �maxf`D.d/; `C .e/C ıg;

� `C .@C e/C ı � `C .e/C ı .

By Lemma 7.12, .iD; ˛; 0;K/ is a homotopy equivalence, so to prove (ii) we just need
to check that each of the maps preserves filtration. We see that:

� Clearly `0.iDd/D `D.d/ for all d 2D� , by definition of `0 .

� For .c; d; e/ 2 Cyl.ˆ/� ,

`D.˛.c; d; e//D `D.ˆcC d/�maxf`C .c/C ı; `D.d/g � `0.c; d; e/:

� For .c; d; e/2Cyl.ˆ/� , `0.K.c; d; e//D `0.0; 0; c/D `C .c/Cı� `0.c; d; e/.

Thus .iD; ˛; 0;K/ is indeed a filtered homotopy equivalence.

Proposition 9.13 Given two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/
having splittings F C� and FD� and a ı–quasiequivalence .ˆ;‰;KC ; KD/ where ˆ
and ‰ are split, define a new filtration function `1 on Cyl.ˆ/� by

`1.c; d; e/Dmaxf`C .c/; `D.d/C ı; `C .e/C 2ıg:

Then, with ˇ as defined in Lemma 7.12:
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(i) `1.@cyl.c; d; e//� `1.c; d; e/ for all .c; d; e/ 2Cyl.ˆ/� , so .Cyl.ˆ/�; @cyl; `1/

is a Floer-type complex.

(ii) iC .C�/ and kerˇ are orthogonal complements with respect to `1 .

(iii) The second coordinates of all elements of the concise barcode of .kerˇ; @cyl; `1/

are at most 2ı .

Proof Part (i) follows just as in the proof of Proposition 9.12(i) (which only de-
pended on the fact that the shift `0.0; 0; e/� `C .e/ in the filtration level of `C .e/
in the definition of `0 was greater than or equal to both `0.c; 0; 0/ � `C .c/ and
ıC `0.0; d; 0/� `D.d/; this condition also holds with `1 in place of `0 ).

For part (ii), first note that kerˇ consists precisely of elements of the form .�‰d �

KC e; d; e/ for .d; e/ 2 D�˚C Œ1�� . We will apply Lemma 7.5 with V D iC .C�/,
U Df0g˚D�˚C Œ1�� , and U 0D kerˇ . Clearly U and V are orthogonal with respect
to `1 , and the projection �U W Cyl.ˆ/�! U is given by .c; d; e/ 7! .0; d; e/, so

`1.�‰d �KC e; d; e/Dmaxf`D.d/C ı; `C .e/C 2ıg D `1.0; d; e/

which shows that `1.�Ux/ D `1.x/ for all x 2 kerˇ . Thus kerˇ is indeed an
orthogonal complement to V D iC .C�/.

For part (iii), define a map f W kerˇ! Cone�.�ˆ/ by

f .�‰d �KC e; d; e/D .d; e/:

We claim that f is a filtered chain isomorphism. By definition, we have

.f ı @cyl/.�‰d �KC e; d; e/D .@Dd Cˆe;�@C e/:

Furthermore,

.@co ıf /.�‰d �KC e; d; e/D .@Dd Cˆe;�@C e/:

Therefore, f is a chain map. As for the filtrations,

`co.f .�‰d �KC e; d; e//D `co.d; e/

Dmaxf`D.d/C ı; `C .c/C 2ıg

D `1.�‰d �KC e; d; e/:

Thus f defines an isomorphism between .kerˇ; @cyl; `1/ and .Cone�.�ˆ/; @co; `co/ as
Floer-type complexes. Moreover, replacing .ˆ;‰;KC ; KD/ by .�ˆ;�‰;KC ; KD/
does not change the homotopy equations and also it has no effect on the filtration
relations. Therefore, the conclusion follows from Theorem A and Proposition 9.10.
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9.5 End of the proof of Theorem 8.17

Assume that ı � 0 and that .ˆ;‰;KC ; KD/ is a ı–quasiequivalence which is split
with respect to splittings F C� and FD� for the Floer-type complexes .C�; @C ; `C / and
.D�; @D; `D/. The preceding subsection gives filtration functions `0; `1W Cyl.ˆ/�!
R[f�1g which evidently satisfy the bound j`1.x/�`0.x/j � ı for all x 2 Cyl.ˆ/� .
Hence by Proposition 9.3, we have a bound

(38) dB.BCyl;`0 ;BCyl;`1/� ı

for the bottleneck distance between the concise barcodes of the Floer-type complexes
.Cyl.ˆ/�; @cyl; `0/ and .Cyl.ˆ/�; @cyl; `1/.

Corollary 9.14 If two Floer-type complexes .C�; @C ; `C /; .D�; @D; `D/, are ı–quasi-
equivalent, then we have dB.BC ;BD/� 2ı . Therefore, in particular,

dB.BC ;BD/� 2dQ..C�; @C ; `C /; .D�; @D; `D//:

Proof By Corollary 9.8, the assumption implies that there is a ı–quasiequivalence
.ˆ;‰;KC ; KD/ which moreover is split with respect to some splittings for .C�;@C ;`C /
and .D�; @D; `D/.

By Proposition 9.13(ii), .Cyl.ˆ/�; @cyl; `1/ decomposes as an orthogonal direct sum of
subcomplexes .iC .C�/; @cyl; `1/ and .kerˇ; @cyl; `1/, so in any degree a singular value
decomposition for .Cyl.ˆ/�; @cyl; `1/ may be obtained by combining singular value
decompositions for .iC .C�/; @cyl; `1/ and .kerˇ; @cyl; `1/. Thus the concise barcode
for .Cyl.ˆ/�; @cyl; `1/ is the union of the concise barcodes for these two subcomplexes.

Now iC embeds .C�; @C ; `C / filtered isomorphically as .iC .C�/; @cyl; `1/, so the
concise barcode of .Cyl.ˆ/�; @cyl; `1/ consists of the concise barcode of .C�; @C ; `C /
together with the concise barcode of .kerˇ; @cyl; `1/. By Proposition 9.13(iii), all
elements .Œa�; L/ in the second of these barcodes have L � 2ı . Thus by matching
the elements of the concise barcode of .C�; @C ; `C / with themselves and leaving
the elements of the concise barcode .kerˇ; @cyl; `1/ unmatched, we obtain, in each
degree, a partial matching between the concise barcodes of .Cyl.ˆ/�; @cyl; `1/ and of
.C�; @C ; `C / with defect at most ı . Thus, in obvious notation,

dB.BC ;BCyl;`1/� ı:

Finally, by Proposition 9.12(ii) and Theorem B, we know

BCyl;`0 D BD:
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Therefore, by the triangle inequality and (38), we get

dB.BC ;BD/� dB.BC ;BCyl;`1/C dB.BCyl;`1 ;BCyl;`0/C dB.BCyl;`0 ;BD/� 2ı:

We have thus proven the inequality (30).

For the last assertion in Theorem 8.17, let � D dQ..C�; @C ; `C /; .D�; @D; `D//, so
there are arbitrarily small � > 0 such that there exists a (split) .�C�/–quasiequivalence
.ˆ;‰;KC ; KD/ between .C�; @C ; `C / and .D�; @D; `D/. So by (38) with ıD �C� ,
there is a ı–matching m between the concise barcodes of .Cyl.ˆ/�; @cyl; `0/ and
.Cyl.ˆ/�; @cyl; `1/. Just as in the proof of Corollary 9.14, the first of these concise
barcodes is, in any given degree k , the same as that of .D�; @D; `D/, while the second
of these is the union of the concise barcode of .C�; @C ; `C / with a multiset S of
elements all having second coordinate at most 2.�C �/. For a grading k in which
�< 1

4
�D;k , let us take � so small that still ıD �C� < 1

4
�D;k . Now by definition, the

image of any element .Œa�; L/ which is not unmatched under a ı–matching must have
second coordinate at most LC 2ı . Since ı < 1

4
�D;k , the concise barcode BD;k has

no elements with second coordinate at most 4ı , all of the elements of our multiset S
(each of which have second coordinate less than or equal to 2ı ) must be unmatched
under m. But since all elements of S are unmatched, we can discard them from the
domain of m and so restrict m to a matching between the barcodes BC;k and BD;k ,
still having defect at most ı D �C � . So dB.BC;k;BD;k/ � �C � , and since � > 0
can be taken arbitrarily small this implies that

dB.BC;k;BD;k/� �D dQ..C�; @C ; `C /; .D�; @D; `D//:

Remark 9.15 In the case that � is dense, a simpler argument based on Corollary 8.8
suffices to prove the stability theorem, in fact with the stronger inequality dB � dQ .
Indeed, if � is dense then the extended pseudometric d from Example 8.12 is easily
seen to simplify to d..Œa�; L/; .Œa0�; L0// D 1

2
jL�L0j. If two Floer-type complexes

.C�; @C ; `C / and .D�; @C ; `C / are ı–quasiequivalent, then we can obtain a partial
matching of defect at most ı between the concise barcodes BC and BD by first sorting
the respective barcodes in descending order by the size of the second coordinate L and
then matching elements in corresponding positions on the two sorted lists. It follows
easily from Theorem 4.11 and Corollary 8.8 that, when � is dense, this partial matching
has defect at most ı .

10 Proof of converse stability

Recall the elementary Floer-type complexes E.a; L; k/ from Definition 7.2.
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Lemma 10.1 If ı 2 Œ0;1/, ja� a0j � ı , and either

LD L0 D1 or j.aCL/� .a0CL0/j � ı;

then E.a; L; k/ is ı–quasiequivalent to E.a0; L0; k/. Moreover, if L � 2ı , then
E.a; L; k/ is ı–quasiequivalent to the zero chain complex.

Proof In the case that L D L0 D 1, the chain complexes underlying E.a; L; k/
and E.a0; L0; k/ are just one-dimensional, consisting of a copy of ƒ in degree k ,
with filtrations given by `.�/ D a � �.�/ and `0.�/ D a0 � �.�/. Let I denote the
identity on ƒ. The fact that ja � a0j � ı then readily implies that .I; I; 0; 0/ is a
ı–quasiequivalence.

Similarly if L and hence (under the hypotheses of the lemma) L0 are both finite, the
underlying chain complexes of E.a; L; k/ and E.a0; L0; k/ are both ƒ–vector spaces
generated by an element x in degree k and an element y in degree k C 1, with
filtration functions ` and `0 given by saying that .x; y/ is an orthogonal ordered set
with `.x/ D a , `.y/ D aC L, `0.x/ D a0 , and `0.y/ D a0 C L0 . The hypotheses
imply that j`.x/� `0.x/j � ı and j`.y/� `0.y/j � ı , and if I now denotes the identity
on the two-dimensional vector space spanned by x and y , .I; I; 0; 0/ is again a ı–
quasiequivalence.

Finally, if similarly to the proof of Proposition 7.9 we define a linear transformation K
on spanƒfx; yg by Kx D �y and Ky D 0, then .0; 0;K; 0/ is readily seen to be a
ı–quasiequivalence between E.a; L; k/ and the zero chain complex for all ı � L=2,
proving the last sentence of the lemma.

Proof of Theorem 8.18 Let ıD dB.BC ;BD/; it suffices to prove the result under the
assumption that ı <1.

For any k 2 Z, dB.BC;k;BD;k/� ı . By the definition of the bottleneck distance (and
using the fact that there are only finitely many partial matchings between the finite
multisets BC;k and BD;k , so the infimum in the definition is attained), there exists
a partial matching mk D .BC;k;short;BD;k;short; �k/ between BC;k and BD;k having
defect ı.mk/� ı .

We claim that, for all � > 0,M
k

M
.Œa�;L/2BC;k

E.a; L; k/ and
M
k

M
.Œa0�;L0/2BD;k

E.a0; L0; k/

are .ıC�/–quasiequivalent, for some representatives a and a0 of the various cosets Œa�
and Œa0� in R=� . By Proposition 7.9 and Remark 8.2 this will imply that .C�; @C ; `C /
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and .D�; @D; `D/ are .ıC �/–quasiequivalent, which suffices to prove the theorem
since by the definition of the quasiequivalence distance, it will show that

dQ
�
.C�; @C ; `C /; .D�; @D; `D/

�
� ıC � D dB.BC ;BD/C � for all � > 0:

To prove our claim, note that by Lemma 10.1 and the fact that ı.mk/ � ı , each
E.a; L; k/ for .Œa�; L/ 2 BC;k;short[BD;k;short is .ıC �/–quasiequivalent to the zero
chain complex (as these E.a; L; k/ all have L � 2ı ). Also, for .Œa�; L/ 2 BC;k n
BC;k;short , if we write .Œa0�; L0/D �k.Œa�; L/, where �k is the bijection from the partial
matching mk , then there are representatives a and a0 of the cosets Œa� and Œa0� such
that ja � a0j � ı C � and j.aC L/ � .a0 C L0/j � ı C � . So by Lemma 10.1, the
associated summands E.a; L; k/ and E.a0; L0; k/ are .ıC �/–quasiequivalent.

Moreover, it is straightforward from the definitions that a direct sum of .ıC �/–quasi-
equivalences is a .ıC �/–quasiequivalence. So we obtain a .ıC �/–quasiequivalence
between

L
k

L
.Œa�;L/2BC;k E.a; L; k/ and

L
k

L
.Œa0�;L0/2BD;k E.a

0; L0; k/ by taking
a direct sum of:

� a .ıC�/–quasiequivalence between E.a;L;k/ and E.a0;L0;k/ for each .Œa�; L/2
BC;k nBC;k;short , where .Œa0�; L0/D �k.Œa�; L/;

� a .ıC �/–quasiequivalence between
L
k

L
.Œa�;L/2BC;k;short

E.a; L; k/ and the
zero chain complex;

� a .ıC �/–quasiequivalence between the zero chain complex andM
k

M
.Œa0�;L0/2BD;k;short

E.a0; L0; k/:

11 The interpolating distance

In this section we introduce a somewhat more complicated distance function on
Floer-type complexes, the interpolating distance dP , and prove the isometry result
Theorem 11.2 between this distance and the bottleneck distance between barcodes.
We think that it is likely that dP is always equal to the quasiequivalence distance dQ ,
and indeed in the case that � is dense this equality can be inferred from our results
(specifically, Theorem 11.2, Remark 9.15, and Theorem 8.18), while in the case that �
is trivial it can be inferred from Theorem 11.2 and [9, Theorem 4.11].

The definition of the distance dP will be based on a strengthening of the notion of
quasiequivalence, asking not only for a quasiequivalence between the two complexes
C� and D� but also for a one parameter family of complexes that interpolates between
C� and D� in a suitably “efficient” way. Our interest in dP is based on the facts that,
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on the one hand, we can prove Theorem 11.2 about it, and on the other hand standard
arguments in Hamiltonian Floer theory (and other Floer theories) that give bounds
for the quasiequivalence distance can be refined to give bounds on dP , as we use in
Section 12.

Definition 11.1 A ı–interpolation between two Floer-type complexes .C�; @C ; `C /
and .D�; @D; `D/ is a family of Floer-type complexes .C s� ; @

s; `s/ indexed by a pa-
rameter s that varies through Œ0; 1�nS for some finite subset S � .0; 1/, such that:

� .C 0� ; @
0; `0/D .C�; @C ; `C / and .C 1� ; @

1; `1/D .D�; @D; `D/; and
� for all s; t 2 Œ0; 1�nS , .C s� ; @

s; `s/ and .C t�; @
t ; `t / are ıjs� t j–quasiequivalent.

The interpolating distance dP between Floer-type complexes is then defined by

dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 ı–interpolation between

.C�; @C ; `C / and .D�; @D; `D/
	
:

The following theorem gives a global isometry result between the bottleneck and
interpolating distances.

Theorem 11.2 For any two Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/ we
have

dB.BC ;BD/D dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
:

Proof First, we will prove that for any degree k 2 Z,

dB.BC;k;BD;k/� dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
;

which will imply that dB.BC ;BD/ � dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
by taking the

supremum over k . Let �D dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
, so by definition, given

any � > 0, there exists a ı–interpolation between .C�; @C ; `C / and .D�; @D; `D/ with
ı � �C � , denoted as .C 1� ; @

s; `s/ with a finite singular set S .

For any p 2 Œ0; 1�nS and any degree k 2Z, choose �p;k >0 such that �Cp
k
>4ı�p;k ,

where the meaning of �Cp
k

is as in the last statement of Theorem 8.17. By the
definition of a ı–interpolation, for any s 2 .p��p;k; p�, .C s� ; @

s; `s/ and .Cp� ; @p; `p/
are .ı.p� s//–quasiequivalent, which implies that

dQ
�
.C s� ; @

s; `s/; .C
p
� ; @

p; `p/
�
< 1
4
�Cp

k
:

Then, again assuming that s 2 .p � �p;k; p�, the last assertion from Theorem 8.17
implies that

dB.BC s ;k;BCp;k/D dQ
�
.C s� ; @

s; `s/; .C
p
� ; @

p; `p/
�
� ı.p� s/:
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Symmetrically, for any s0 2 Œp; pC �p;k/,

dB.BCp;k;BC s0 ;k/D dQ
�
.C

p
� ; @

p; `p/; .C s
0

� ; @
s0 ; `s

0

/
�
� ı.s0�p/:

Therefore, by the triangle inequality, for s; s0 such that p��p;k <s�p� s0<pC�p;k ,
we have dB.BC s ;k;BC s0 ;k/� ı.s

0� s/.

Now we claim that for any closed interval Œs; t �� Œ0; 1� with s; t … S , the following
estimate holds:

(39) dB.BC s ;k;BC t ;k/� .t � s/ı:

We will prove this by induction on the cardinality of S \ Œs; t �. First, when S \ Œs; t � is
empty, by considering a covering f.p� �p;k; pC �p;k/gp2Œs;t� of Œs; t � where the �p;k
are as above, we may take a finite subcover to obtain s D s0 < s1 < � � �< sN D t such
that dB.BC si�1 ;k;BC si ;k/� ı.si � si�1/. Therefore, by the triangle inequality again,

dB.BC s ;k;BC t ;k/�
NX
iD1

dB.BC si�1
k

;B
C
si
k

/� .t � s/ı:

Now inductively, we will assume that (39) holds when jS \ Œs; t �j �m. For the case
that jS \ Œs; t �j DmC 1, denote the smallest element of S \ Œs; t � by p� and consider
the intervals Œs; p�� �0� and Œp�C �0; t � for any sufficiently small �0 > 0. Applying
the inductive hypothesis on both intervals,

dB.BC s ;k;BCp���0 ;k/� .p
�
��0�s/ı and dB.BCp�C�0 ;k;BC t ;k/� .t�p

�
��0/ı:

By the first conclusion of Theorem 8.17,

dB.BCp���0 ;k;BCp�C�0 ;k/� 2dQ.BCp���0 ;k;BCp�C�0 ;k/� 4�
0ı:

Together, we get

dB.BC s ;k;BC t ;k/� .p�� �0� s/ıC .t �p�� �0/ıC 4�0ı D .t � s/ıC 2�0ı:

Since �0 is arbitrarily small, it follows that dB.BC s ;k;BC t ;k/ � .t � s/ı whenever
s � t and s; t 2 Œ0; 1� nS . So we have proven (39).

In particular, letting sD0 and tD1, we get dB.BC;k;BD;k/�ı��C� . Since � is arbi-
trarily small, this shows that dB.BC;k;BD;k/� �D dP

�
.C�; @C ; `C /; .D�; @D; `D/

�
.

Now we will prove the converse direction:

dP
�
.C�; @C ; `C /; .D�; @D; `D/

�
� dB.BC ;BD/:

Let ıDdB.BC ;BD/. It is sufficient to prove the result under the assumption that ı<1.
For any k 2 Z, dB.BC;k;BD;k/ � ı . By definition, there exists a partial matching
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mk D .BC;k;short;BD;k;short; �k/ between BC;k and BD;k such that ı.mk/ � ı . We
will prove that, for all � > 0, there exists a .ıC�/–interpolation between .C�; @C ; `C /
and .D�; @D; `D/.

For each .Œa�; L/ 2 BC;k;short , choose a representative a of Œa�; also if .Œa�; L/ 2
BC;k n BC;k;short write �.Œa�; L/ D .Œa0�; L0/, where the representative a0 is chosen
so that both ja0 � aj � ıC � and j.aCL/� .a0CL0/j � ıC � . Now for t 2 .0; 1/
consider the Floer-type complex .C t�; @

t ; `t / given byM
k2Z

 � M
.Œa0�;L0/2BD;k;short

E.a0C .1� t /L0=2; tL0; k/
�

˚

� M
.Œa�;L/2BC;k;short

E.aC tL=2; .1� t /L; k/
�

˚

� M
.Œa�;L/2BC;knBC;k;short

E..1� t /aC ta0; .1� t /LC tL0; k/
�!
:

It is easy to see by Lemma 10.1 that, for t0; t1 2 .0; 1/, the t0–version of each of these
summands is .ıC �/jt0� t1j–quasiequivalent to its corresponding t1–version. So since
the direct sum of .ıC�/jt0�t1j–quasiequivalences is a .ıC�/jt0�t1j–quasiequivalence
this shows that .C t0� ; @t0 ; `t0/ and .C t1� ; @t1 ; `t1/ are .ıC�/jt0�t1j–quasiequivalent for
t0; t1 2 .0; 1/. Moreover E.a0C .1� t /L0=2; tL0; k/ is tı–quasiequivalent to the zero
chain complex for each .Œa0�; L0/ 2 BD;k;short , and likewise E.aC tL=2; .1� t /L; k/
is .1� t /ı–quasiequivalent to the zero chain complex for each .Œa�; L/ 2 BC;k;short .
In view of Proposition 7.9 it follows that .C�; `C ; @C / is t .ıC �/–quasiequivalent to
.C t�; @

t ; `t /, and that .D�; `D; @D/ is .1�t /.ıC�/–quasiequivalent to .C t�; @
t ; `t /. So

extending the family .C t�; @
t ; `t / to all t 2 Œ0; 1� by setting .C 0� ; @

0; `0/D .C�; @C ; `C /

and .C 1� ; @
1; `1/D .D�; @D; `D/, f.C t�; @

t ; `t /gt2Œ0;1� gives the desired .ıC �/–inter-
polation between .C�; @C ; `C / and .D�; @D; `D/.

12 Applications in Hamiltonian Floer theory

We now bring our general algebraic theory into contact with Hamiltonian Floer theory on
compact symplectic manifolds, leading to a rigidity result for fixed points of Hamiltonian
diffeomorphisms. First we quickly review the geometric content of the Hamiltonian
Floer complex; see eg [17; 24; 1] for more background, details, and proofs.

Let .M;!/ be a compact symplectic manifold. Identifying S1 D R=Z, a smooth
function H W S1�M !R induces a family of diffeomorphisms f�tH gt2R obtained as
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the flow of the time-dependent vector field XH.t; � / that is characterized by the property
that, for all t , !. � ; XH.t; � //D d.H.t; � //. Let

P.H/D
˚
 W S1!M j .t/D �tH ..0//;  is contractible

	
;

so that in particular P.H/ is in bijection with a subset of the fixed point set of �1H
via the map  7! .0/ 2M . The Hamiltonian H is called nondegenerate if for each
 2 P.H/ the linearized map .d�1H /.0/W T.0/M ! T.0/M has all eigenvalues
distinct from 1. Generic Hamiltonians H satisfy this property. We will assume in
what follows that H is nondegenerate, which guarantees in particular that P.H/ is a
finite set.

Viewing S1 as the boundary of the disk D2 in the usual way, given  2 P.H/ and a
map uW D2!M with ujS1 D  , one has a well-defined “action”Z 1

0

H.t; .t// dt �

Z
D2
u�!

and Conley–Zehnder index. Define zP.H/ to be the set of equivalence classes Œ; u�
of pairs .; u/ where  2 P.H/, uW D2!M has ujS1 D  , and .; u/ is equivalent
to . 0; v/ if and only if  D  0 and the map u # xvW S2 !M obtained by gluing u
and v along  has both vanishing !–area and vanishing first Chern number. Then
there are well-defined maps AH W zP.H/!R and �W zP.H/! Z defined by setting
AH .Œ; u�/D

R 1
0 H.t; .t// dt �

R
D2 u

�! and �.Œ; u�/ equal to the Conley–Zehnder
index of the path of symplectic matrices given by expressing f.d�tH /.0/gt2Œ0;1� in
terms of a symplectic trivialization of u�TM .

The degree-k part of the Floer chain complex CFk.H/ is then by definition (using the
ground field K)� X

Œ;u�2zP.H/
�.Œ;u�/Dk

aŒ;u�Œ; u�
ˇ̌̌
aŒ;u� 2 K and #‚C <1 for all C 2R

�
;

where
‚C D

˚
Œ; u� j aŒ;u� ¤ 0; AH .Œ; u�/ > C

	
:

Let

(40) � D

�Z
S2
w�!

ˇ̌̌
wW S2!M; hc1.TM/;w�ŒS

2�i D 0

�
:

Then CFk.H/ is a vector space over ƒDƒK;� , with the scalar multiplication obtained
from the action of � on P.H/ given by, for g 2 � and Œ; u� 2 zP.H/, gluing a sphere
of Chern number zero and area g to u.
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We make CFk.H/ into a nonarchimedean normed vector space over ƒ by setting

`H

�X
aŒ;u�Œ; u�

�
DmaxfAH .Œ; u�/ j aŒ;u� ¤ 0g:

Define

(41) Pk.H/D
˚
 2P.H/ j there exists uW D2!M with ujS1 D ; �.Œ; u�/D k

	
:

Then it is easy to see that an orthogonal ordered basis for CFk.H/ is given by
.Œ1; u1�; : : : ; Œnk ; unk �/, where 1; : : : ; nk are the elements of Pk.H/ and, for each
i , ui is an arbitrarily chosen map D2!M with ui j@D2 D i and �.Œi ; ui �/D k .
In particular .CFk.H/; `H / is an orthogonalizable ƒ–space.

The function AH introduced above could just as well have been defined on the cover
of the entire space of contractible loops of M obtained by dropping the condition
that  2 P.H/; then zP.H/ is the set of critical points of this extended functional.
The degree-k part of the Floer boundary operator .@H /k W CFk.H/! CFk�1.H/ is
constructed by counting isolated formal negative gradient flowlines of this extended
version of AH in the usual way indicated in the introduction. It is a deep but (at
least when .M;!/ is semipositive, but see [35] for the more general case) by now
standard fact that @H can indeed be defined in this way, so that the resulting triple
.CF�.H/; @H ; `H / obeys the axioms of a Floer-type complex; thus in every degree k
we obtain a concise barcode BCF�.H/;k . The construction of @H depends on some
auxiliary choices, but the filtered chain isomorphism type of .CF�.H/; @H ; `H / is
independent of these choices (see eg [44, Lemma 1.2]), so BCF�.H/;k is an invariant
of H .

Proposition 12.1 For nondegenerate Hamiltonians H0;H1W S1 �M !R on a com-
pact symplectic manifold, the associated Floer chain complexes .CF�.H0/; @H0 ; `H0/
and .CF�.H1/; @H1 ; `H1/ obey

dP
�
.CF�.H0/; @H0 ; `H0/; .CF�.H1/; @H1 ; `H1/

�
�

Z 1

0

kH1.t; � /�H0.t; � /kL1 dt:

Proof Write ıD
R 1
0 kH1.t; � /�H0.t; � /kL1 dt and let � >0; we will show that there

exists a .ıC�/–interpolation between .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/.

Define yH 0W Œ0; 1� � S1 �M ! R by yH 0.s; t; m/ D sH1.t; m/C .1 � s/H0.t; m/.
A standard argument with the Sard–Smale theorem (see eg [29, Propositions 6.1.2
and 6.1.3]) shows that, arbitrarily close to yH 0 in the C 1–norm, there is a smooth map
yH W Œ0; 1��S1 �M !R such that
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� yH.0; t;m/DH0.t; m/ and yH.1; t;m/DH1.t; m/ for all .t; m/2S1�M , and

� there are only finitely many s2 Œ0; 1� with the property that H.s; � ; � /W S1�M!
R fails to be nondegenerate.

In particular we can take yH to be so C 1–close to yH 0 that k@ yH=@s�@ yH 0=@skL1 <� .

For s2 Œ0; 1� write yHs.t; m/D yH.s; t;m/. Then for 0�s0�s1�1 and .t; m/2S1�M
we have

j yHs1.t; m/�
yHs0.t; m/j D

ˇ̌̌̌Z s1

s0

@ yH

@s
.s; t; m/ ds

ˇ̌̌̌
� �.s1� s0/C

Z s1

s0

ˇ̌̌̌
@ yH 0

@s
.s; t; m/ds

ˇ̌̌̌
ds

D .�CjH1.t; m/�H0.t; m/j/.s1� s0/:

Thus, for any s0; s1 2 Œ0; 1�,

(42)
Z 1

0

k yHs1.t; � /�
yHs0.t; � /kL1 dt

�

�
�C

Z 1

0

kH1.t; � /�H0.t; � /kL1 dt

�
js1� s0j

D .ıC �/js1� s0j:

Let S D fs 2 Œ0; 1� j yHs is not nondegenerateg, so by construction S is a finite set, and
for s 2 Œ0; 1� nS we have a Floer-type complex .CF�. yHs/; @ yHs ; ` yHs /. Standard facts
from filtered Hamiltonian Floer theory (summarized for instance in [45, Proposition 5.1],
though note that the definition of quasiequivalence there is slightly different from ours)
show that, for s0; s1 2 Œ0; 1� n S , the Floer-type complexes .CF�. yHs0/; @ yHs0 ; ` yHs0 /
and .CF�. yHs1/; @ yHs1 ; ` yHs1 / are

�R 1
0 k
yHs1.t; � /�

yHs0.t; � /kL1 dt
�
–quasiequivalent,

and hence .ıC �/js1� s0j–quasiequivalent by (42).

Thus we see that the family .CF�. yHs/; @ yHs ; ` yHs / defines a .ı C �/–interpolation
between .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/. Since this construction can
be carried out for all � > 0 the result immediately follows.

Combining this proposition with Theorem 11.2, we immediately get the following
result:

Corollary 1.5 If H0 and H1 are two nondegenerate Hamiltonians on any com-
pact symplectic manifold .M;!/, then the bottleneck distance between the concise
barcodes of .CF�.H0/; @H0 ; `H0/ and .CF�.H1/; @H1 ; `H1/ is less than or equal toR 1
0 kH1.t; � /�H0.t; � /kL1 dt .
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Similar results apply to the way in which the barcodes of Lagrangian Floer complexes
CF.L0; �1H .L1// depend on the Hamiltonian H , or for that matter to the dependence
of Novikov complexes CN�. zf / on the function zf W zM ! R. When � is nontrivial
these facts do not follow from previously known results. (When � is trivial they can
be inferred from [8] and standard Floer-theoretic results like [45, Proposition 5.1].)

We now give an application of Corollary 1.5 to fixed points of Hamiltonian diffeomor-
phisms. Apart from its intrinsic interest, we also intend this as an illustration of how to
use the methods developed in this paper.

It will be relevant that the Floer-type complex .CF�.H/; @H ; `H / of a nondegen-
erate Hamiltonian on a compact symplectic manifold obeys the additional property
that `H .@H c/ < `H .c/ for all c 2 CF�.H/, rather than the weaker inequality “�”
which is generally required in the definition of a Floer-type complex (this standard
fact follows because the boundary operator @H counts nonconstant formal negative
gradient flowlines of AH , and the function AH strictly decreases along such flowlines).
Consequently there can be no elements of the form .Œa�; 0/ in the verbose barcode of
.CF�.H/; @H ; `H / in any degree k , as such an element would correspond to elements
x 2CFk.H/ and y 2CFkC1.H/ with @HyD x and `H .y/D `H .x/. In other words,
for each degree k , the verbose barcode zBCF�.H/;k of .CF�.H/; @H ; `H / is equal to
its concise barcode BCF�.H/;k .

To state the promised result, recall the notation Pk.H/ from (41), and for any subset
E �R, define

PEk .H0/D
˚
 2Pk.H/ j9uWD2!M with ujS1D; AH0.Œ; u�/2E; �.Œ; u�/Dk

	
:

Theorem 12.2 Let H0W S1 �M !R be a nondegenerate Hamiltonian on a compact
symplectic manifold .M;!/, let k 2 Z, let E �R be any subset, and let �E > 0 be
the minimum of the following two quantities:

� The smallest second coordinate L of any element .Œa�; L/ of the degree-k part
BCF�.H0/;k of the concise barcode such that some representative a of the coset
Œa� belongs to E .

� The smallest second coordinate of any .Œa�; L/ 2 BCF�.H0/;k�1 such that some
a 2 Œa� has aCL 2E .

Let H W S1 �M !R be any nondegenerate Hamiltonian withZ 1

0

kH.t; � /�H0.t; � /kL1 dt <
1
2
�E :
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Then there is an injection f W PE
k
.H0/! Pk.H/ and, for each  2 Pk.H0/, maps

u; zuW D2!M with ujS1 D  and zujS1 D f ./ such that

jAH .Œf ./; zu�/�AH0.Œ; u�/j �
Z 1

0

kH.t; � /�H0.t; � /kL1 dt:

Proof As in the proof of Proposition 7.4, we can find singular value decompositions for
.@H0/kC1W CFkC1.H0/! ker.@H0/k and .@H0/k W CFk.H0/! ker.@H0/k�1 having
the forms

..yk1 ; : : : ; y
k
rk
; xkC11 ; : : : ; xkC1mkC1

/; .xk1 ; : : : ; x
k
mk
//

and
..yk�11 ; : : : ; yk�1rk�1

; xk1 ; : : : ; x
k
mk
/; .xk�11 ; : : : ; xk�1mk�1

//;

respectively. In particular .yk�11 ; : : : ; yk�1rk�1
; xk1 ; : : : ; x

k
mk
/ is an orthogonal ordered

basis for CFk.H0/. Write the elements of Pk.H0/ as 1; : : : ; n , ordered in such a
way that PE

k
.H0/D f1; : : : ; sg for some s � n. As discussed before the statement

of the theorem, if for each i 2 f1; : : : ; ng we choose an arbitrary ui W D
2 ! M

with ui jS1 D i and �.Œi ; ui �/ D k , and moreover AH0.Œi ; ui �/ 2 E for i D
1; : : : ; s , then .Œ1; u1�; : : : ; Œn; un�/ will be an orthogonal ordered basis for CFk.H0/.
So by Proposition 5.5 and the definition of `H0 , there is a bijection ˛W Pk.H0/!
fyk�11 ; : : : ; yk�1rk�1

; xk1 ; : : : ; x
k
mk
g such that `H0.˛.i //�AH0.Œi ; ui �/ .mod �/.

If ˛.i /D yk�1ji
for some ji 2 f1; : : : ; rk�1g, then the element

.Œai �; Li / WD .Œ`H0.x
k�1
ji

/�; `H0.y
k�1
ji

/� `H0.x
k�1
ji

//

of the degree-.k�1/ verbose barcode of .CF�.H0/; @H0 ; `H0/ corresponds to a capped
orbit Œi ; ui � having filtration AH .Œi ; ui �/�aiCLi .mod �/. Otherwise, ˛.i /Dxkji
for some ji 2 f1; : : : ; mkg, and then we have an element .Œai �; Li / of the degree-k
verbose barcode of .CF�.H0/; @H0 ; `H0/, where

ai D `H0.x
k
ji
/ and Li D

�
`H0.y

k
ji
/� `H0.x

k
ji
/ if 1� i �mk;

1 otherwiseI

in this case AH .Œi ; ui �/ � ai .mod �/. As noted before the theorem, the verbose
barcode of .CF�.H0/; @H0 ; `H0/ is the same in every degree as its concise barcode,
so in particular these elements .ai ; Li / of the verbose barcodes belong to the concise
barcodes BCF�.H0/;k or BCF�.H0/;k�1 .

Considering now our new Hamiltonian H , write

ı D

Z 1

0

kH.t; � /�H0.t; � /kL1 :
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Our hypothesis, along with the fact that AH0.Œi ; ui �/2E for iD1; : : : ; s , then guaran-
tees that, for iD1; : : : ; s , the elements .Œai �; Li / of the concise barcodes BCF�.H0/;k or
BCF�.H0/;k�1 described in the previous paragraph all have Li ��E >2ı . On the other
hand Corollary 1.5 implies that there is a partial matching mk between BCF�.H0/;k
and BCF�.H/;k , and likewise a partial matching mk�1 between BCF�.H0/;k�1 and
BCF�.H/;k�1 , with both mk and mk�1 having defects at most ı . So since each
Li > 2ı , none of the elements .Œai �; Li / for i D 1; : : : ; s can be unmatched under
these partial matchings. So each of them is matched to an element, say .Œzai �; zLi /,
of the degree-k or k� 1 concise barcode of .CF�.H/; @H ; `H /. We will denote the
multiset of all such “targets” by

(43) Tk;k�1 D f.Œzai �; zLi / j i D 1; : : : ; sg:

Since the defect of our partial matching is at most ı , we can each choose zai within its
�–coset so that jzai �ai j � ı and either zLi DLi D1 or j.zai C zLi /� .ai CLi /j � ı .

We now apply the reasoning that was used at the start of the proof to CF�.H/ in place
of CF�.H0/. We may consider singular value decompositions for the maps .@H /kC1
and .@H /k on CF�.H/ having the forms

..zk1 ; : : : ; z
k
r 0
k

; wkC11 ; : : : ; wkC1
m0
kC1

/; .wk1 ; : : : ; w
k
m0
k

//

and
..zk�11 ; : : : ; zk�1

r 0
k�1

; wk1 ; : : : ; w
k
m0
k

/; .wk�11 ; : : : ; wk�1
m0
k�1

//;

respectively. Then if the elements of Pk.H/ are written as f�1; : : : ; �pg, we may
choose vj W D2!M with vj jS1 D �j for each j 2 f1; : : : ; pg in such a way that the
multiset of real numbers AH .Œ�j ; vj �/ is equal to the multiset

f`H .z
k�1
j / j 1� j � r 0k�1g[ f`H .w

k
j / j 1� j �m

0
kg:

This equality of multisets gives an injection � from the submultiset Tk;k�1�BCF�.H/;k[

BCF�.H/;k�1 described in (43) to Pk.H/. Specifically:

� For i 2 f1; : : : ; sg such that ˛.i / D yk�1ji
, the element .Œzai �; zLi / belongs to

BCF�.H/;k�1 , and �.Œzai �; zLi �/ will be some �qi 2Pk.H/ with AH .Œ�qi ; vqi �/D
zai C zLi ;

� For i 2 f1; : : : ; sg such that ˛.i / D xkji , the element .Œzai �; zLi / belongs to
BCF�.H/;k , and �.Œzai �; zLi �/ will be some �qi with AH .Œ�qi ; vqi �/D zai .

The map f W PE
k
.H0/! Pk.H/ promised in the theorem is then the one which sends

each i to �qi ; the fact that this obeys the required properties follows directly from the
inequalities jzai � ai j � ı and j.zai C zLi /� .ai CLi /j � ı and the fact that the value
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of AH .Œqi ; vqi �/ can be varied within its �–coset, without changing the grading k ,
by using a different choice of capping disk vqi .

Remark 12.3 Theorem 12.2 may be applied with E D R, in which case it shows
that if

R 1
0 kH.t; � /�H0.t; � /kL1 dt is less than half of the minimal second coordinate

of the concise barcode of CF�.H0/ in any degree, then the time-one flow of the
perturbed Hamiltonian H will have at least as many fixed points6 as that of the original
Hamiltonian H0 . This may appear somewhat surprising, as a C 0–small perturbation of
the Hamiltonian function H can still rather dramatically alter the Hamiltonian vector
field XH , which depends on the derivative of H . However this basic phenomenon is
by now rather well-known in symplectic topology; see in particular [11, Theorem 2.1]
and [44, Corollary 2.3], though these other results do not give control over the values
of AH on zPk.H/ as in Theorem 12.2.

For a more general choice of E our result does not appear to have analogues in the
literature, particularly when � ¤ f0g; this generalization is of interest when �E ,
thought of as the minimal length of a barcode interval with endpoint lying in E , is
larger than the minimal length �R of all barcode intervals, in which case the Theorem
shows that fixed points of �1H0 with action lying in E enjoy a robustness that the other
fixed points of �1H0 may not. For instance in the case that E D fa0g is a singleton
and there is just one element Œ0; u0� of zPk having AH .Œ0; u0�/D a0 , then �E is
bounded below by the lowest energy of a Floer trajectory converging to 0 in positive
or negative time, whereas �R is bounded below by the lowest energy of all Floer
trajectories, which might be much smaller.

In the special case that both � D f0g and E D fa0g a version of Theorem 12.2 can be
obtained using a standard argument in terms of the “action window” Floer homologies
HFŒa;b�� .H/ of the quotient complexes

fc 2 CF�.H/ j `H .c/� bg
fc 2 CF�.H/ j `H .c/ < ag

:

Indeed, for any ı 2R such thatZ 1

0

kH.t; � /�H0.t; � /kL1 dt < ı <
1
2
�E ;

we will have a commutative diagram of continuation maps (induced by appropriate
monotone homotopies; see [25, Section 6.6])

6The fixed points have contractible orbit under �t
H

, though one can drop this restriction by using a
straightforward variant of the Floer complex built from noncontractible orbits.
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HFŒa0�ı;a0Cı�
k

.H0C ı/
ˆ

//

))

HFŒa0�ı;a0Cı�
k

.H0� ı/

HFŒa0�ı;a0Cı�
k

.H/

55

and the hypothesis on the barcode can be seen to imply that the above map ˆ has
rank at least equal to #PE

k
.H0/, whence HFŒa0�ı;a0Cı�

k
.H/ has dimension at least

equal to #PE
k
.H0/. When � D f0g this last statement implies that the number of fixed

points of the time-one flow of H with action in the interval Œa0� ı; a0C ı� is at least
#PE
k
.H0/. However for � ¤ f0g the implication in the previous sentence may not be

valid, since the above argument only estimates the dimension of HFŒa0�ı;a0Cı�k .H/

over K , and the contribution of a single fixed point to dimK HFŒa0�ı;a0Cı�
k

.H/ might
be greater than one due to recapping.

Thus Theorem 12.2 provides a way of avoiding difficulties with recapping that arise in
arguments with action window Floer homology when � ¤ f0g. Even when � D f0g,
if E consists of, say, of two or more real numbers that are a distance less than �E=2
away from each other, then Theorem 12.2 can be seen to give sharper results than
are obtained by action window arguments such as those described in the previous
paragraph.

Appendix: Interleaving distance

In this brief appendix, we will discuss the relation of our quasiequivalence distance dQ
to the notion of interleaving, which is often used (eg in [8]) as a measure of proximity
between persistence modules. Because the main objects of the paper are Floer-type
complexes, rather than the persistence modules given by their filtered homologies, we
will use the following definition; on passing to homology this gives (at least in principle)
a slightly different notion than that used in [8], as the maps on filtered homology in [8]
are not assumed to be induced by maps on the original chain complexes.

Definition A.1 For ı � 0, a chain level ı–interleaving of two Floer-type complexes
.C�; @C ; `C / and .D�; @D; `D/ is a pair .ˆ;‰/ of chain maps ˆW C� ! D� and
‰W D�! C� such that:

� `D.ˆc/� `C .c/C ı for all c 2 C� .

� `D.‰d/� `D.d/C ı for all d 2D� .

� For all � 2 R the compositions ‰ˆW C�� ! C�C2ı� and ˆ‰W D�� ! D�C2ı�

induce the same maps on homology as the respective inclusions.
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It is easy to see that a chain level ı–interleaving induces maps ˆ�W H�.C�/ !

H�Cı.D�/ and ‰�W H�.D�/ ! H�Cı.C�/ (as � varies through R) which give
a strong ı–interleaving between the persistence modules fH�.C�/g and fH�.D�/g in
the sense of [8]. It is also easy to see that if .ˆ;‰;KC ; KD/ is a ı–quasiequivalence
between .C�; @C ; `C / and .D�; @D; `D/, then .ˆ;‰/ is a chain level ı–interleaving.
We will see that the converse of this latter statement is true provided that ˆ and ‰ are
split in the sense of Section 9.2.

Lemma A.2 Let F C� be a splitting of a Floer-type complex .C�; @C ; `C /, and suppose
that AW C� ! C� is a chain map which is split with respect to this splitting, such
that there exists � > 0 such that `C .Ac/ � `C .c/C � for all c 2 C� and, for all
� 2R, the induced map A�W H�.C�� /!H�.C

�C�
� / is zero. Then there exists a map

KW C�! C�C1 such that `C .Kc/� `C .c/C � for all c 2 C� and AD @CKCK@C .

Proof Let B� D Im.@C /�C1 . Then the boundary operator @C restricts as an isomor-
phism .@C /�C1W F

C
�C1! B� . Let L� D˚kLk , where each Lk is a complement to

Bk in ker.@C /k , so that ker.@C /� D B�˚L� ,

Let sW C�!C�C1 be the linear map such that sjL�˚F� D 0 and sjB� D .@C jF�C1/
�1 .

Therefore, @C sjB� is the identity map on B� , and for any b 2 B� , s.b/ is the unique
element of F C� such that @C s.b/ D b . Moreover, because F C

�C1 is orthogonal to
ker.@C /�C1 we have

(44) `C .s.b//D inff`C .c/ j c 2 C�C1 ; @C c D bg:

Now let K D sA; we will check that AD @CKCK@C . Indeed:

(i) For x 2 ker.@C /� , we have .@CKCK@C /x D @CKx D @C sAx D Ax , since
Ax 2 B� by the hypothesis on A�W H�.C�� /!H�.C

�C�
� /.

(ii) For y 2 F C� , since A is split and so Ay 2 F C� , Ky D sAy D 0. Therefore,
.@CKCK@C /yD sA@CyD s@CAyDAy , where the last equality comes from
the fact that @C s@CAy D @CAy and that both s@CAy and Ay belong to F C� ,
together with the injectivity of @C jF C� .

Finally, by the hypothesis that each A�W H�.C
�
� / ! H�.C

�C�
� / is zero, for any

x 2ker.@C /� , there exists some z 2C�C1 such that @C zDAx and `C .z/� `C .x/C� .
Since Kx D sAx also obeys @CKx D Ax , (44) implies that

`C .Kx/� `C .z/� `C .x/C �:
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More generally any c 2C� can be written cD xCf with x 2 ker.@C /� and f 2F C� ,
and by definition Kf D 0, so

`C .Kc/D `C .Kx/� `.x/C � � `C .c/C �;

where the final inequality follows from the orthogonality of ker.@C /� and F C� .

Corollary A.3 If there is a chain-level ı–interleaving between the Floer-type com-
plexes .C�; @C ; `C / and .D�; @D; `D/, then there exists a ı–quasiequivalence between
.C�; @C ; `C / and .D�; @D; `D/.

Proof By Lemma 9.6, we can replace both ˆ and ‰ by ˆ� and ‰� which are split
with respect to splittings F C� and FD� of our two complexes; then we will have

.‰� ıˆ� � IC /.F
C
� /� F

C
� and .ˆ� ı‰� � ID/.F

D
� /� F

D
� :

Note that, due to condition (ii) in Lemma 9.6, ˆ� and ‰� induce the same maps
on homology as do ˆ and ‰ , so the fact that .ˆ;‰/ is a chain level ı–interleaving
implies that the maps

‰��ˆ
�
��IC�W H

�.C�/!H�C2ı.C�/ and ˆ��‰
�
��ID�W H

�.D�/!H�C2ı.D�/

are all zero. Hence applying Lemma A.2 to ‰�ˆ� � IC and to ˆ�‰� � ID gives
maps KC and KD such that (ˆ� ; ‰� ; KC ; KD/ is a ı–quasiequivalence.

In other words, if we define the (chain-level) interleaving distance dI by, for any two
Floer-type complexes .C�; @C ; `C / and .D�; @D; `D/,

dI
�
.C�; @C ; `C /; .D�; @D; `D/

�
D inf

˚
ı � 0 j 9 chain-level ı–interleaving

between .C�; @C ; `C / and .D�; @D; `D/
	
;

then we have an equality of distance functions dI D dQ , where dQ is the quasiequiva-
lence distance.
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