
msp
Geometry & Topology 20 (2016) 3431–3517

Deformations of colored slN link homologies via foams

DAVID E V ROSE

PAUL WEDRICH

We prove a conjectured decomposition of deformed slN link homology, as well as an
extension to the case of colored links, generalizing results of Lee, Gornik, and Wu. To
this end, we use foam technology to give a completely combinatorial construction of
Wu’s deformed colored slN link homologies. By studying the underlying deformed
higher representation-theoretic structures and generalizing the Karoubi envelope
approach of Bar-Natan and Morrison, we explicitly compute the deformed invariants
in terms of undeformed type A link homologies of lower rank and color.

17B37, 57M25, 81R50

1 Introduction

1.1 Statement of results

Khovanov [16] introduced a homology theory categorifying the Jones polynomial. This
homology theory for links in S3 has proven to be a powerful topological invariant,
leading eg to Rasmussen’s combinatorial proof of the Milnor conjecture on the slice
genus of torus knots [37]. Rasmussen’s work built on earlier results of Lee [26],
who studied a deformed version of Khovanov’s link invariant. Khovanov’s theory is
controlled by the Frobenius algebra CŒX �=hX 2i, which appears as the invariant of the
unknot, and Lee showed that deforming this algebra to CŒX �=hX 2� 1i leads to a link
homology theory which at first glance seems trivial, assigning the direct sum of two
copies of the vector space C to any knot. However, this link invariant surprisingly
contains highly nontrivial topological information: Rasmussen shows how to define
a concordance invariant from a filtration on the deformed link homology, which in
particular gives a lower bound on the smooth slice genus of the knot.

Khovanov and Rozansky [22] used the theory of matrix factorizations to generalize
Khovanov homology to a link homology theory (now called Khovanov–Rozansky
homology) which categorifies the slN link polynomial. This was later extended by
Wu [43] and Yonezawa [44] to a categorified invariant of links whose components
are colored by fundamental representations

VkCN of slN for 0� k �N . In these
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theories, the underlying Frobenius algebra is isomorphic to CŒX �=hX N i. Following
work of Gornik [12], Rasmussen [37] and Krasner [23], Wu defined deformed versions
of slN link homology [42], in which this algebra is deformed to CŒX �=hP .X /i, where
P .X / is an arbitrary degree-N polynomial. Gornik [12] and Wu [41] showed that if
P .X / has simple roots, this invariant assigns the direct sum of N copies of the vector
space C to any 1–colored knot. This result as well as Lee’s, and their generalizations
to the case of links, can be interpreted as saying that when P .X / has simple roots,
the 1–colored deformed homology of a link decomposes into the direct sum of sl1
homologies of various sublinks, which are always 1–dimensional. Other deformations
have been studied for N D 2 by Khovanov [17] and N D 3 by Mackaay and Vaz [34].

In this paper, we prove a vast generalization of these results, showing that the defor-
mation of colored slN link homology corresponding to a general degree-N monic
polynomial P .X / with root multiset † decomposes into type A link homologies of
lower rank and color. To this end, we use foam technology to define deformed colored
slN link homologies KhR†.�/ and compare them to the undeformed colored slM
link homologies KhRslM .�/ constructed by Queffelec and Rose [36]. Precisely, we
show:

Theorem 1.1 Let L.a1; : : : ; ak/ be a k–component oriented, framed link with the
i th component colored by the fundamental slN representations

Vai CN . Let † be an
N–element multiset of complex numbers consisting of l distinct numbers occurring
with multiplicities N1; : : : ;Nl . There is an isomorphism of vector spaces

(1-1) KhR†.L.a1; : : : ; ak//Š
M

Pl
jD1 bi;jDai

0�bi;j�Nj

lO
jD1

KhRslNj .L.b1;j ; : : : ; bk;j //

which preserves the homological grading.

Remark 1.2 An intended feature of the decomposition formulas and (1-2) is that there
are no homological grading shifts on the right-hand side. Lee’s, Gornik’s and Wu’s
deformation results, on the other hand, require such grading shifts due to a different
normalization arising since they work in the unframed setting.

Example Let K be a 1–colored knot. Then the †–deformed slN homology of K

splits into the direct sum of undeformed slM homologies of K , and there is one slM
summand for every root of multiplicity M in †:

(1-2) KhR†.K/Š
lM

jD1

KhRslNj .K/:
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This has been a widely believed conjecture in the link homology community — see eg
Gukov and Walcher [15] — however, to our knowledge, no proof has appeared until
now.

Example Let K be a knot and write K0, K1 and K2 for its 0–, 1– and 2–colored
variants, respectively. Let † D f�1; �1; �2; �2; �2g for complex numbers �1 ¤ �2 .
Then the †–deformed sl5 homology of K2 is

KhR†.K2/Š
�
KhRsl2.K2/˝KhRsl3.K0/

�
˚
�
KhRsl2.K1/˝KhRsl3.K1/

�
˚
�
KhRsl2.K0/˝KhRsl3.K2/

�
ŠC˚

�
KhRsl2.K1/˝KhRsl3.K1/

�
˚KhRsl3.K2/

up to shifts in homological degree on the first direct summand.

Our main tool is the slN foam 2–category N Foam constructed in Queffelec and
Rose [36], as well as its relation to the Khovanov–Lauda diagrammatic categorification
of quantum slm [19]; see also work of Rouquier [39]. The former can be viewed
as the universal framework for the definition of categorified slN Reshetikhin–Turaev
invariants of tangles � colored by the fundamental representations of slN . More
specifically, given any colored tangle � , there exists an invariant ŒŒ��� taking values in
the homotopy category of chain complexes over Hom–categories in N Foam, which
consist of trivalent graphs called webs and decorated, singular cobordisms between
them called foams. Passing to a quotient 2–category N Foam� obtained by introducing
an additional foam relation on decorated 1–labeled foam facets

(1-3) �N

1

D 0

it is shown in [36] that the resulting bigraded link invariant KhRslN .�/ essentially
agrees with Wu’s and Yonezawa’s colored generalization of slN Khovanov–Rozansky
link homology. Equation (1-3) corresponds to the fact that X N is the derivative of the
polynomial used to give the potentials for the matrix factorizations in their construction.

In this paper, we analogously define the deformed colored slN link invariants KhR†.�/
for an N–element multiset † of complex deformation parameters by working in a
deformed foam 2–category N Foam† . It is defined as the quotient 2–category of
N Foam by the additional relation

(1-4) �N

1

D

N�1X
iD0

.�1/N�i�1eN�i.†/ �i

1
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where ei.†/ denotes the i th elementary symmetric polynomial in N variables, eval-
uated at the multiset †. This is motivated by the relation between N Foam and
categorified quantum groups and by Wu’s construction of deformed slN link homology,
which utilizes matrix factorizations whose potential is built from a polynomial with
derivative P .X /D

PN
iD0.�1/N�ieN�i.†/X

i with root multiset †.

We prove Theorem 1.1 for the invariants constructed via the †–deformed slN foam
2–categories N Foam† and undeformed slNj foam 2–categories Nj Foam�. To this
end, we adapt Bar-Natan and Morrison’s Karoubi envelope technology [2], originally
used to give a “local” proof of Lee’s deformation result, to the setting of foams; see
Section 2.5. The relation to Wu’s deformed Khovanov–Rozansky link homology is
then provided by the following generalization of [36, Theorem 4.11]:

Theorem 1.3 The invariant KhR†.L/ constructed from N Foam† is (up to grading
shifts) isomorphic to Wu’s colored, deformed Khovanov–Rozansky homology of the
mirror link L0 with respect to deformation parameters †.

In [36], the identification of the link invariants defined via foams and matrix factoriza-
tions is proven using results of Mackaay and Yonezawa [35], which imply the existence
of a 2–representation of N Foam on slN matrix factorizations. Rather than adapt their
results to the deformed case, we instead give a new, streamlined proof utilizing the
theory of stabilization of matrix factorizations to give a 2–representation of N Foam†

on a 2–category of deformed matrix factorizations. We believe this result might be of
independent interest; see Section 4.4.

1.2 Outlook

There are several possible applications of the results in this paper.

The first concerns the definition and study of concordance invariants in the spirit of
Rasmussen’s s–invariant [37]. Lobb [28; 29] has used Gornik’s generic deformation of
slN link homology to define concordance invariants that are analogous to Rasmussen’s
invariant. Lewark [27] has recently proved independence results for these concordance
invariants. It would be interesting to see whether deformations of colored slN link
homologies also give rise to concordance invariants and whether foam technology can
be used to prove (in)dependence properties between them.

The next application concerns relations between type A link homology theories of
different rank and color. Both experimental computations and physical reasons suggest
that the type A link homology package carries a very rigid structure, which is only
partially visible on the decategorified level of Reshetikhin–Turaev slN invariants; see
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Dunfield, Gukov and Rasmussen [10], Gukov and Walcher [15], Gukov and Stošić [14]
and Gorsky, Gukov and Stošić [13]. One feature of this structure is the stabilization of
slN link homologies as N!1 to a triply graded link homology theory that categorifies
the HOMFLY-PT polynomial. The flip-side of this feature provides specialization
spectral sequences from the triply graded homology to slN homology for every N .
Both of these features have been proven for the 1–colored case by Rasmussen [38].

Many other aspects of the conjectured structure have not been rigorously proven yet.
One, however, that seems to be in reach is the existence of spectral sequences, or
“differentials”, between slN and slM link homologies for N >M . In analogy to the
Lee–Rasmussen spectral sequence that links Khovanov homology to Lee’s deformation,
Wu [42] has defined spectral sequences connecting the ordinary slN link homology to
its deformations. Together with Theorems 1.1 and 1.3, which identify Wu’s deformed
invariants in terms of undeformed invariants, it should be possible to construct the
desired spectral sequences.

Wu [42] has further proved that the deformed slN link homologies inherit a quantum
filtration from the bigraded undeformed invariant. We have ignored this filtration in
this paper, but tracking it through the computation of the deformed invariants should
significantly improve our understanding of the Rasmussen-type concordance invariants
and the deformation spectral sequences.

We also note that there are bigraded equivariant versions of slN link homology, in which
the deformation parameters are not specialized to complex numbers but kept as graded
variables. The sl2 and sl3 equivariant theories have been studied by Khovanov [16]
and Mackaay and Vaz [34]. Krasner [23] has introduced a version for 1–colored slN
link homology for general N , which has been subsequently generalized by Wu [42] to
arbitrary colorings by fundamental representations. It is an interesting question whether
these equivariant theories also admit a definition via foam technology. This in turn
would help to understand the quantum filtration on the deformed invariants.

Daniel Tubbenhauer has informed us that the deformations studied in this paper could
be useful for writing down explicit isomorphisms between the centers of slN web
algebras and cohomology rings of certain generalizations of Springer fibers, whose
existence is guaranteed by Mackaay [32, Corollary 7.10]. This would generalize work
of Mackaay, Pan and Tubbenhauer [33] on the case of sl3 .

Structure of this paper We begin by introducing the necessary technology and graph-
ical calculi in Section 2. In particular, we discuss foams, categorified quantum groups,
and the Karoubi envelope technology of Bar-Natan and Morrison. In Section 3 we study
deformations of the higher representation-theoretic structures that control deformed link
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invariants and prove a version of Theorem 1.1 for the unknot. Armed with this tool, we
prove splitting relations in the deformed foam 2–category N Foam† and introduce a
suitable idempotent completion .N Foam†/^ in Section 4. This section also establishes
a 2–representation of the deformed foam 2–category on matrix factorizations, which is
necessary for the proof of Theorem 1.3. Finally, Section 5 contains the definition of
the deformed link invariants KhR†.L/ and the proofs of Theorems 1.1 and 1.3.

Acknowledgements The authors would like to thank Hanno Becker, Sabin Cautis,
Eugene Gorsky, Aaron Lauda, Daniel Murfet, Jake Rasmussen and Ben Webster for
helpful conversations and email exchanges during the course of this work. Special
thanks go to Marko Stošić and Daniel Tubbenhauer for numerous useful comments
on a draft of this paper. Rose would like to especially thank Sabin Cautis and Aaron
Lauda, as preliminary work on this topic began in collaboration with them. Wedrich
would like to especially thank Jake Rasmussen for his support and guidance.1

2 Technology review

In this section, we recall the relevant machinery needed to prove Theorems 1.1 and 1.3.
Explicitly, we discuss slN foams, categorified quantum groups and their deformations,
as well as the Karoubi envelope technology used in [2].

2.1 Foams

Recall from [36] that a natural setting for a combinatorial formulation for Khovanov–
Rozansky’s slN link homology is the 2–category N Foam. In this 2–category, objects
are given by sequences aD .a1; : : : ; am/ for m>0 with ai 2f1; : : : ;N g, 1–morphisms
are formal direct sums of enhanced slN webs — leftward-oriented, labeled2 trivalent
graphs generated by

aC b
a

b
and aC b

a

b

which we view as mapping from the sequence determined by the labeled points on the
right boundary to the one determined by the left. The 2–morphisms are matrices of

1Wedrich’s PhD studies at the Department of Pure Mathematics and Mathematical Statistics, University
of Cambridge, have been supported by the ERC grant ERC-2007-StG-205349 held by Ivan Smith and an
EPSRC department doctoral training grant. The proof of Theorem 1.1 in this paper is part of Wedrich’s
thesis.

2These labels correspond to the “colorings” of tangle components by fundamental representations
of slN . We reserve the word “color” for certain idempotent decorations on foams and webs; see below.
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enhanced slN foams, singular cobordisms between such webs generated by

aCb

b

a
;

aCb

b

a

;
aCb

b

a

;
aCb

b

a

;

aCba

b

;

aCb

b

a

;

c

b

a

bCc

aCb

aCb

Cc

;

c

b

a
aCb

bCc

aCb

Cc

modulo isotopy and local relations.3 By convention, we view foams as mapping from
the web determined by the bottom boundary to that on the top. The facets of these
foams again carry labelings by elements in f1; : : : ;N g, and a k–labeled facet may also
be decorated by elements from the ring of symmetric functions in k variables. Note
that in [36] the authors utilize the fact that this 2–category admits a grading; however,
as we will eventually pass to quotients N Foam† where this grading is broken, we
won’t concern ourselves with these issues.

Rather than recall the complete list of local relations, we refer the reader to [36] for
full details, and list only a few that will play a substantial role in this paper:

(2-1) bCc

aCb

c

b

a
aCb

aCb
Cc

D

c

b

a
aCb

aCb
Cc

;

bCc

c

b

a

bCc

aCb

aCb
Cc

D

c

b

a

bCc
aCb
Cc

aCb
a

b

D

X
˛2P.a;b/

.�1/jy̨j

aCb

�˛

�y̨

(2-2)

3The colors red and blue in the foam graphics here and in [36] have no special significance. Later we
will use specific colorings of foam facets to indicate decorations by idempotents; see Convention 4.3.
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aCb

b

a

� D

X
˛;ˇ

c


˛;ˇ

aCb

b

a

�˛

�ˇ

(2-3)

aCb

b

a

c

b�c

aCb

aCb
�c

D

X
˛2P.a;c/

.�1/jy̨j

b

a

c
aCb

aCb
�c

�˛

�y̨

(2-4)

b�c

b

a

c
b�c

aCb

aCb
�c

D

X
˛2P.a;c/

.�1/jy̨j

b

a

c
b�c

aCb
�c

�˛

�y̨

(2-5)

Here P .a; b/ denotes the set of partitions of length � a with each part � b , �˛ denotes
the Schur function corresponding to the partition ˛ and the c



˛;ˇ
are the corresponding

Littlewood–Richardson coefficients.

A tangle diagram whose components are labeled by elements in f1; : : : ;N g determines
a complex in N Foam, which is, up to homotopy equivalence, an invariant of the
underlying framed tangle. In the case that the tangle is a link, passing to the quotient
N Foam� and applying a representable functor yields a complex of vector spaces
whose homology is isomorphic (up to shifts and grading conventions) to the slN link
homology defined by Khovanov and Rozansky and generalized to the colored case by
Wu and Yonezawa.

2.2 Higher representation theory

The construction of N Foam was motivated by a desired relation to higher representation
theory. The categorified quantum group UQ.slm/ is the 2–category whose objects are
given by slm weights �, and whose 1–morphisms are formal direct sums of (shifts fkg
of) compositions of

1�; 1�C˛i
Ei D 1�C˛i

Ei1� D Ei1� and 1��˛i
Fi D 1��˛i

Fi1� D Fi1�
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for i 2 f1; : : : ;m� 1g and where the ˛i are the simple slm roots. The 2–morphisms
are given by matrices of linear combinations of (degree zero) string diagrams — dotted,
immersed oriented curves colored by elements i 2 f1; : : : ;m�1g with top and bottom
boundary, eg

�

�
�

i

j
k

modulo local relations. The domain 1–morphism of such a diagram is given (up to
grading shifts) by considering the orientations and labelings of the strands incident
upon the bottom boundary, reading an upward strand as E and a downward strand
as F , and similarly for the codomain by considering the top boundary. For example,
the domain and codomain of the above string diagram are (up to shifts) EiFj 1� and
FjEkEiFk1� .

We refer the reader to the work of Lauda [24] and Khovanov and Lauda [18; 19; 20]
(see also independent work of Rouquier [39]) for a detailed discussion on categorified
quantum slm . The main result of [19] is that the 2–category PUQ.slm/, obtained
by passing to the Karoubi envelope in each Hom–category of UQ.slm/, categorifies
quantum slm . Explicitly, they show that the Lusztig idempotent form PUq.slm/ of the
quantum group is isomorphic to the category obtained by taking the Grothendieck
group K0 in each Hom–category of PUQ.slm/. We will assume some familiarity with
categorified quantum groups for the duration, and utilize the conventions and notation
from [36].

The 2–category N Foam is constructed to give a 2–representation of UQ.slm/ via
categorical skew Howe duality. Recall that work of Cautis, Kamnitzer and Licata [7]
and Cautis, Kamnitzer and Morrison [8] shows that the commuting (skew Howe dual)
actions of quantum glm and slN on the vector spaces

Vk
q.C

m
q ˝CN

q / induce a functor

'mW Uq.glm/! Rep.Uq.slN //

which sends a glm weight a D .a1; : : : ; am/ to the tensor product of fundamental
quantum slN representations

Va1

q CN
q ˝� � �˝

Vam

q CN
q . In fact, Cautis, Kamnitzer and

Morrison use this to give a completely combinatorial description for the full subcategory
of quantum slN representations generated by the fundamental representations. In
their description, objects are given as in N Foam and morphisms are given by linear
combinations of slN webs, modulo planar isotopy and relations.

By design, the 2–category N Foam gives a categorification of this result, ie it admits a
2–functor ˆmW UQ.glm/!N Foam so that the diagram
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UQ.glm/

K0

��

ˆm
// N Foam

K0

��

PUq.glm/
'm
// Rep.Uq.slN //

commutes, where UQ.glm/ is the direct sum of an infinite number of copies of UQ.slm/

and admits a similar description in which slm weights are replaced by glm weights.

2.3 Thick calculus

The 2–functor UQ.glm/!N Foam actually extends to a certain full 2–subcategory
LUQ.glm/ � PUQ.glm/. In the case m D 2, LUQ.gl2/ D PUQ.gl2/, and this category is
described4 graphically by Khovanov, Lauda, Mackaay and Stošić in [21]. Recall that
the objects in the Karoubi envelope of a category C are given by pairs .c; e/ where
c 2 Ob.C / and c

e
! c is an idempotent morphism. In the case of LUQ.gl2/, consider

the idempotent morphism Ea1�
ea
�! Ea1� where ea is given by decorating any string

diagram giving a reduced expression for the longest word in the symmetric group on a

elements with a specific pattern of dots, starting with a� 1 dots on the top left-most
strand, and placing one fewer dot on each strand as we head to the right.5 The following
depicts the case aD 4:

(2-6)

��
�

�
�
�

DW ea

where we use the box notation from [21] for the 2–morphism (here, we do not depict
the strand labels, as there is only one possible in the gl2 case). Khovanov, Lauda,
Mackaay and Stošić show that the 1–morphisms E.a/1� WD

�
Ea1�

˚
1
2
a.a � 1/

	
; ea

�
and their biadjoints 1�F .a/ generate PUQ.gl2/, and also introduce a “thick calculus”
to describe this 2–category. In the Karoubi envelope of a category C , a morphism
between two objects .c; e/ and .c0; e0/ is given by a 1–morphism f W c! c0 in C such
that e0f D f D fe . The map ea , which gives the identity 2–morphism on E.a/1� in
PUQ.gl2/, is depicted by a thick, colored upward strand

4Technically, they describe PUQ.sl2/ , but the only difference in passing to PUQ.gl2/ is that we use gl2
weights.

5We use the boldface notation ea for the nil-Hecke idempotents to distinguish them clearly from
elementary symmetric polynomials ei .
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(2-7)

a

WD ea

and the remainder of the 2–morphisms in PUQ.gl2/ are generated by splitter and merger
maps

(2-8)

aC b

a b

WD
ea eb

a b

b a

;

aC b

a b

WD eaCb

a b

aC b

;

where

a

WD

„ ƒ‚ …
a

and

a b

WD

„ ƒ‚ …
a

„ƒ‚…
b

;

which are maps E.aCb/1� ! E.a/E.b/1�f�abg and E.a/E.b/1� ! E.aCb/1�f�abg.
Thick strands also may carry decorations by elements of the ring of symmetric functions
in a variables (depicted by placing a box containing the function on such a strand).
Schur functions �˛ satisfy the relation

(2-9) �˛

a

D

a

� �� �˛1C
a�1

˛a˛a�1

C1
˛2C
a�2

in which the morphisms which split and merge thickness-a strands into thin (thickness-1)
strands are given by any of the possible compositions of the above mergers and splitters;
the relations for PUQ.gl2/ given in [21] guarantee that they are the same.

There is not currently a completely diagrammatic description for PUQ.glm/ for m� 3,
hence we instead work with LUQ.glm/, the full 2–subcategory generated by E.a/i 1� WD�
Ea

i 1�
˚

1
2
a.a� 1/

	
; ea

�
and their biadjoints, where here ea is as above, but with all

strands i–labeled. We refer the reader to [36, Section 3.2] for details about the 2–functor
ˆmW LUQ.glm/!N Foam, but note here that it acts on splitter/merger morphisms in
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LUQ.gl2/ via

(2-10)

aC b

a b

7!

a b

aCb

;

aC b

a b

7!

a

aCb

b

and on (thin) cap/cup morphisms by

.a; b/
7!

a

b
;

.a; b/
7! .�1/b

a

b
;(2-11)

.a; b/
7! .�1/bC1

a

b

;
.a; b/

7!

a

b

since these will be explicitly used later in our description of the link invariant.

The 2–representation ˆmW LUQ.glm/!N Foam necessarily maps glm weights whose
entries don’t lie in f0; : : : ;N g to zero, hence factors through the quotient LU0�N

Q
.glm/,

where we kill (the identity 2–morphism on the identity 1–morphism of) these weights.
As we will see in Section 3.1, it is exactly the procedure of taking this quotient which
gives rise to deformation parameters controlling the deformed link invariants.

2.4 Quantum Weyl group action and Rickard complexes

A crucial observation of Cautis, Kamnitzer and Licata [7] is that the braiding on the
category of quantum slN representations (which gives rise to slN link polynomials)
can be recovered from the functor �mW PUq.glm/! Rep.Uq.slN //. Indeed, Lusztig’s
“quantum Weyl group” elements

Ti1a D

8̂̂̂̂
<̂
ˆ̂̂:

P
j1;j2�0

j1�j2Dai�aiC1

.�q/j2F
.j1/
i E

.j2/
i 1a if ai � aiC1;

P
j1;j2�0

j1�j2Dai�aiC1

.�q/j1E
.j2/
i F

.j1/
i 1a if ai � aiC1;

generate a braid group action on any finite-dimensional representation of quantum slm ;
see [30, Section 5.1.1; 8]. Under 'm , these elements map to the braiding between
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fundamental slN representations; explicitly, the element T 1.a;b/ gives the braidingVa
qCN

q ˝
Vb

qCN
q !

Vb
qCN

q ˝
Va

qCN
q .

The Rickard complexes, introduced in the qD 1 case by Chuang and Rouquier [9], cat-
egorify these elements, and generate a categorical braid group action on any (integrable)
2–representation of LUQ.glm/. These complexes Ti1a take the form

(2-12) F .ai�aiC1/

i 1a
d1
�!F .ai�aiC1C1/

i Ei1af1g
d2
�!� � �

ds
�!F .ai�aiC1Cs/

i E.s/i 1afsg � � �

when ai � aiC1 and

(2-13) E.aiC1�ai /

i 1a
d1
�!E.aiC1�aiC1/

i Fi1af1g
d2
�!� � �

ds
�!E.aiC1�aiCs/

i F .s/i 1afsg � � �

when ai�aiC1 . Here and throughout, we’ve underlined in blue the term in homological
degree zero. The differential dk that appears in the second complex is conveniently
expressed in thick calculus as

dk D

��C k

1

k

a

where all strands are colored by the index i 2 I and �D ai �aiC1 . The differential in
the first complex is defined similarly, and in both cases the equality d2 D 0 follows
directly from thick calculus relations.

Recall that the images of the Rickard complexes under any integrable 2–representation
are invertible, up to homotopy, with inverses 1aT �1

i given by the images of the
complexes

(2-14) � � �1aF
.s/
i E.ai�aiC1Cs/

i f�sg
d�s
�!�� �

d�
2
�!1aFiE

.ai�aiC1C1/

i f�1g
d�

1
�!1aE

.ai�aiC1/

i

when ai � aiC1 and

(2-15) ���1aE
.s/
i F .aiC1�aiCs/

i f�sg
d�s
�!���

d�
2
�!1aEiF

.aiC1�aiC1/

i f�1g
d�

1
�!1aF

.aiC1�ai /

i

when ai � aiC1 . In both cases the differential is given by a composition of splitters
with a thickness-1 cap 2–morphisms, eg for (2-15):

d�k D

�C k

1

k

a
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In Section 5, we will use these complexes to define our tangle invariant.

2.5 Karoubi envelope technology

In his famous paper [1], Bar-Natan shows that Khovanov homology can be constructed
locally, by working in the homotopy category of chain complexes over a certain .1C1/–
dimensional cobordism category. Objects of this category are formal direct sums of
1–manifolds embedded in the plane (possibly with boundary) and equipped with a
formal Z–grading. Morphisms are matrices of linear combinations of cobordisms
between 1–manifolds, decorated with dots, modulo the following local relations:

D 0 ;
�

D 1 ; D

�

C

�

; �
�

D 0:

In [2] Bar-Natan and Morrison explain that Lee’s deformed sl2 link homology [26]
arises from the same kind of construction, after modifying the final “sheet” relation
above to

�
�

D

so that the operator given by adding a dot to a cobordism is no longer nilpotent.

To analyze the effects of this deformation, consider the algebra of endomorphisms
of a strand, denoting the identity by 1, a sheet decorated by a dot by X , and extend
linearly so that polynomials in X denote linear combinations of decorated sheets.
The undeformed sheet relation can then be expressed as X 2 D 0 and the deformed
relation is X 2� 1D 0. From this it is clear that in the deformed case the operator of
placing a dot on a sheet has eigenvalues 1 and �1 with corresponding eigenvectors
1C1 WD

1
2
.1CX / and 1�1 WD

1
2
.1�X /.

The decomposition into eigenspaces for the action of adding a dot splits the deformed
cobordism category: every connected component of a cobordism can be written as a
sum of the two decorations 1D 1C1C1�1 , which are orthogonal (ie 1C11�1 D 0),
idempotent (ie 1˙11˙1 D 1˙1 ), and obviously commute.

Next, Bar-Natan and Morrison enlarge the cobordism category by proceeding to its
Karoubi envelope.6 Practically, this means allowing objects, ie planar 1–manifolds, to

6See the explanation in Section 2.3.
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be “colored” by 1C1 and 1�1 as well. Any uncolored 1–manifold is isomorphic to
the direct sum of the 1C1 and 1�1 versions, and colored cobordisms between colored
1–manifolds are only nonzero if the corresponding idempotent decorations agree.

Using this splitting of the deformed cobordism category, Bar-Natan and Morrison
compute a decomposition for the chain complexes arising in the definition of the
deformed link invariant, whose objects are planar 1–manifolds that arise as resolutions
of the link diagram. The second result is that each such coloring contributes only one
generator to the link homology. This reproduces Lee’s result that the deformed sl2
homology of a l –component link is 2l–dimensional. Alternatively, we could say that it
is a direct sum of tensor products of sl1 homologies, where sl1 homology assigns the
1–dimensional vector space C to any link. More precisely, we have one summand for
each coloring of components of the link by 1C1 or 1�1 , and the tensorands are the
sl1 homologies of the 1C1 - and 1�1 –colored sublinks, respectively.

Gornik’s generalization [12] of the generic deformation result to slN can be understood
along very similar lines. Again, there is a Frobenius algebra CŒX �=hX N i of local
decorations which is being deformed to CŒX �=hX N �ˇN i ŠC˚ � � �˚C , with one
summand for each of the N roots of the polynomial X N �ˇN . The idempotents that
project onto the N summands then split the category underlying the chain complexes
in the construction of the link homology. The resulting invariant for a knot is a direct
sum of N copies of its sl1 homology. Similarly, for l –component links one gets a
N l–dimensional vector space which can be understood as a direct sum over possible
root-colorings of components of 1–dimensional tensor products of sl1 homologies of
sublinks, one for each different root.

In order to prove our decomposition result Theorem 1.1, we start by computing the
algebra of decorations on foam facets in the deformed foam 2–category N Foam† . In
fact, the algebra of decorations on a k–labeled facet is isomorphic to the deformed link
homology of the

VkCN–colored unknot. We compute it, and hence prove Theorem 1.1
in the special case of the unknot, in Section 3. In particular, the algebra of decorations
on a k–labeled foam facet decomposes into a direct sum of local pieces indexed by
k–element multisubsets of the set of roots †. This gives idempotent foam decorations
along which the link invariant splits into a direct sum, which is proved in Section 5.1.
Similarly as for the generic deformation in the 1–colored case, the only nonzero
contributions to the deformed link invariant come from idempotent colorings that are
consistent along link components. This is shown in Lemma 5.10. However, in the
case of general deformations of colored invariants there are two new features that have
not been rigorously addressed in the literature. One appears because we allow higher
colors, the other because we allow nongeneric deformations.
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Higher color Foam facets are not colored by roots, ie elements of †, anymore, but
by multisubsets of † of size corresponding to the label of the facet. Such a multisubset
can contain several different roots and in this case we need a new way to split this facet
into parts colored by single roots. This is where we use the full power of the foam
technology; see Section 4 for preparatory work and Section 5.2 for the actual tensor
product decomposition of the link invariant.

Nongeneric deformation A root � can occur in † with a multiplicity N� � 1. The
�–colored part of a direct summand of the deformed link invariants is essentially the
slN� homology of the �–colored sublink, ie in particular it is usually not trivially
1–dimensional. To see this we need to check that after all splitting procedures, the
�–colored foams behave like slN�–foams. This is done in Section 5.3.

3 Deforming nil-Hecke algebra quotients

The nil-Hecke algebra NHa plays a fundamental role in higher representation the-
ory. Indeed, this algebra is given by the algebra of (not necessarily degree zero)
2–endomorphisms of the a–fold composition of Ei with itself in the positive half
of UQ.slm/. In this section, we will review the nil-Hecke algebra, and then proceed
to study certain deformations of its cyclotomic quotients, which control the deformed
Khovanov–Rozansky homologies of colored unknots.

Definition 3.1 The nil-Hecke algebra on a strands, NHa admits an algebraic presen-
tation as the graded C–algebra of endomorphisms of the abelian group CŒX1; : : : ;Xa�

generated by operators

� �i of degree 2 for 1� i � a acting by multiplication by Xi ,
� @i of degree �2 for 1� i � a� 1 acting as divided difference,

ie for p.X1; : : : ;Xa/ 2CŒX1; : : : ;Xa�

@i.p.X1; : : : ;Xa//D
p. : : : ;Xi ;XiC1; : : : /�p. : : : ;XiC1;Xi ; : : : /

Xi �XiC1

;

which satisfy the complete set of relations

� �i�j D �j�i ,
� �i@j D @j�i if i 62 fj ; j C 1g,
� @i@i D 0,
� @i@iC1@i D @iC1@i@iC1 ,
� �i@i � @i�iC1 D 1D @i�i � �iC1@i .
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The following result is due to Lauda:

Proposition 3.2 [24, Proposition 3.5] (1) The center of NHa is Z.NHa/ Š

CŒ�1; : : : ; �a�
Sa DW Sym.�1; : : : ; �a/.

(2) NHa is graded isomorphic to the algebra of a!� a! matrices over its center:

NHa ŠMat.a!;Z.NHa//:

The homomorphism NHa!END.Ea
i 1�/ is given by identifying the generator �i with

the string diagram consisting of a upward strands with a dot on the i th strand and the
generator @i with a crossing between the i th and .iC1/st strands:

1 7! � � � ; �i 7! � � � � � � � ; @i 7! � � � � � � :

Multiplication is given by composition of 2–morphisms in UQ.slm/, ie by stacking
diagrams vertically. An arbitrary element of NHa can be written as a C–linear
combination of such stacked string diagrams.

We will also utilize the “thick calculus” for the nil-Hecke algebra, detailed in [21], which
corresponds to the algebra of upward strands in LUQ.slm/ having varying thickness. Set

Da WD .@1@2 � � � @a�1/.@1 � � � @a�2/ � � � .@1/

and let �X D
Q

1�i<j�a.Xi �Xj / be the Vandermonde determinant. The action of
Da on polynomials p 2CŒX1; : : : ;Xa� is given by

Da.p.X1; : : : ;Xa//D
1

�X

X
w2Sa

�.w/p.Xw.1/; : : : ;Xw.a//;

where �.w/ 2 f˙1g is the sign of the permutation w . In other words, Da antisym-
metrizes a polynomial and then divides by the Vandermonde determinant, resulting in a
symmetric polynomial. Divided differences not only act on elements of CŒX1; : : : ;Xa�,
but also on the subring CŒ�1; : : : ; �a� of NHa . In particular, if f 2CŒ�1; : : : ; �a�, we
denote by Da.f / the action of the product of divided differences on f . The following
compatibility relation holds:

Daf .�1; : : : ; �a/Da DDa.f /.�1; : : : ; �a/Da:

However, we point out that this is only true in the presence of the Da on the right.

Define ıa WD �a�1
1

�a�2
2
� � � �a�1 . It is easy to compute that

�� D
Y

1�i<j�a

.�i � �j /D
X
w2Sa

�.w/�a�1
w.1/�

a�2
w.2/ � � � �w.a�1/
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and hence Da.ıa/D��=�� D 1 and ea D ıaDa is idempotent in NHa :

e2
a D ıaDaıaDa D ıaDa.ıa/Da D ıaDa D ea:

In fact, this is exactly the idempotent ea defined in the introduction, and depicted
graphically (in the case aD 4) in (2-6).

One can use this idempotent to explicitly describe the isomorphism between the center
Z.NHa/ŠCŒ�1; : : : ; �a�

Sa and the direct summand eaNHaea �NHa via

Z.NHa/ŠZ.NHa/ea D eaNHaea; y 7! yea:

If ˛ D .˛1; : : : ; ˛a/ is a partition of length � a and �˛.�1; : : : ; �a/ is the Schur poly-
nomial associated to ˛ , then Da.�

a�1C˛1

1
�

a�2C˛2

2
� � � �

˛a
a /D �˛.�1; : : : ; �a/. Hence,

under the above isomorphism we have

(3-1) �˛.�1; : : : ; �a/ 7! �˛.�1; : : : ; �a/ea D ıaDa.�
a�1C˛1

1
�

a�2C˛2

2
� � � �˛a

a /Da

D ıaDa�
˛1

1
�
˛2

2
� � � �˛a

a ıaDa

D ea�
˛1

1
�
˛2

2
� � � �˛a

a ea:

Compare this with the thick calculus relation (2-9).

3.1 Quotients of the nil-Hecke algebra

A certain quotient of the nil-Hecke algebra will be relevant to our study of deformed
link homology. Recall that the 2–functor LUQ.glm/! N Foam factors through the
quotient LU0�N

Q
.glm/, where we kill the glm weights whose entries lie outside the set

f0; : : : ;N g. Consider h D .N; : : : ;N; 0; : : : ; 0/, which is a highest weight in this
quotient, and note that

0 D

h

D

NX
iD0

h
�
N � i

�

�N�1Ci

;

where the string diagrams are colored by the number of N ’s in h. The first equality
holds since the region inside the “left-curl” is zero in LU0�N

Q
.glm/. Note that the

individual summands on the right-hand side are not (necessarily) zero, since these
bubbles are fake, in the sense of [24]. The infinite Grassmannian relation [24] implies
that these bubbles generate the endomorphism algebra of the highest weight object h,
hence we can view the positive degree fake bubbles as (graded) parameters.
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Under the 2–functor LU0�N
Q

.glm/ ! N Foam, this highest weight endomorphism
algebra maps to the endomorphism algebra of an N–labeled facet, with the fake bubble
of degree i mapping to the decoration by a signed elementary symmetric polynomial
.�1/iei by [36, Equation 3.33]. This endomorphism algebra in turn determines the
ground ring over which the link homology theory is defined, ie the invariant of a link
will be a module over this algebra. In [36], it is shown that by setting the (images of)
the bubble deformation parameters to zero yields a link homology theory isomorphic
to Khovanov–Rozansky homology. Setting these parameters to other values should
thus correspond to a deformed version of Khovanov–Rozansky homology.

We thus arrive at the relation

(3-2)
NX

iD0

ci

h
�
N � i

D 0;

where the ci 2 C are the specializations of the fake bubbles. This corresponds to
a relation on 1–labeled foams facets which meet N–labeled foam facets (see [36,
Section 4.1] for a general discussion about N–labeled facets). Since we would like
foam relations to be local, this motivates studying this relation for all weights, not just
for aD h.

To this end, let † be a multiset of N complex numbers and

(3-3) P .X /D

NY
s2†

.X � s/DX N
C

N�1X
iD0

cN�iX
i

be the monic degree N polynomial with root multiset † and coefficients ci D

.�1/iei.†/.

Definition 3.3 The †–deformed quotient of the nil-Hecke algebra NH†a is the quo-
tient algebra of NHa modulo the ideal generated by P .�1/.

In the case where †D f0N g (ie P .X /DX N ), this algebra is known as the level N

cyclotomic quotient of NHa , which we denote by NHN
a . We aim to now generalize

the following result of Lauda:

Proposition 3.4 [25, Proposition 5.3] There are isomorphisms of graded algebras

(1) Z.NHN
a /Š H�.Gr.a;N //,

(2) NHN
a ŠMat.a!;Z.NHN

a //.

Geometry & Topology, Volume 20 (2016)



3450 David E V Rose and Paul Wedrich

(Here H�.Gr.a;N // denotes the cohomology ring with coefficients in C of the Grass-
mannian of complex a–planes in CN .)

To generalize this to arbitrary †, we will adapt Lauda’s method of proof to our setting.

Definition 3.5 Let XD f�1; : : : ; �ag and Y D fy1; : : :ybg be two alphabets of vari-
ables. We denote the ring of symmetric polynomials in X by Sym.X/ and the ring
of polynomials separately symmetric in X and Y by Sym.XjY /. For layout we
sometimes abbreviate Sym by S. The complete symmetric polynomials hi.X/ in X
can be defined via their generating function:

1X
iD0

hi.X/t
i
D

Y
�2X

.1� t�/�1:

The elementary symmetric polynomials ei.X/ in X are defined by
1X

iD0

ei.X/t
i
D

Y
�2X

.1C t�/;

and finally we define the complete symmetric functions in X�Y , denoted hi.X�Y /,
by

1X
iD0

hi.X�Y /t i
D

Q
y2Y .1� ty/Q
�2X.1� t�/

:

Note that this gives the explicit formula

hk.X�Y /D
kX

iD0

.�1/iei.Y /hk�i.X/:

Definition 3.6 Let XD f�1; : : : ; �ag be an alphabet of a variables (of degree 2) and
B D fb1; : : : ; bN g an alphabet of N variables (of degree 2). The following is an
explicit description of the GL.N /–equivariant cohomology (with C coefficients) of
the Grassmannian Gr.a;N / of complex a–planes in CN :

H�GL.N /.Gr.a;N //Š
Sym.XjB/

hhN�aC1.X�B/; : : : ; hN .X�B/i
:

This is a rank
�
N
a

�
graded free module over Sym.B/ŠH�GL.N /.�/; see [42, Section 2.3]

and references therein. If we quotient H�GL.N /.Gr.a;N // by the relations bi D 0 we
recover the well-known description of the ordinary cohomology ring of the Grassman-
nian

H�.Gr.a;N //Š
Sym.X/

hhN�aC1.X/; : : : ; hN .X/i
:

Geometry & Topology, Volume 20 (2016)



Deformations of colored slN link homologies via foams 3451

We can also quotient H�GL.N /.Gr.a;N // by sending B to †, an arbitrary multisubset
of N complex numbers. The result is the C–algebra

H†
a WD

Sym.X/
hhN�aC1.X�†/; : : : ; hN .X�†/i

;

which we call the †–deformed cohomology ring of Gr.a;N /. It is a flat deformation
of H�.Gr.a;N //, in particular it has complex dimension

�
N
a

�
. We use the following

notation for its defining ideal:

I†a WD hhN�aC1.X�†/; : : : ; hN .X�†/i � Sym.X/:

Proposition 3.7 There are isomorphisms of algebras

(1) Z.NH†a /ŠH†
a ,

(2) NH†a ŠMat.a!;H†
a /.

Proof To explain the context we first go through a proof of Proposition 3.2, following
the exposition in [25, Section 5].

Let X WD f�1; : : : ; �ag be an alphabet of a variables and denote by Ha the abelian
subgroup of CŒX� WD CŒ�1; : : : ; �a� generated by all monomials �˛1

1
� � � �

˛a
a with

0� ˛i � a� i . Then Ha has rank a! and CŒX�ŠHa˝Sym.X/ as graded Sym.X/–
modules. In particular, the generators of Ha give a basis for CŒX� as a free graded
Sym.X/–module and EndSym.X/.CŒX�/ŠMat.a!;Sym.X//. It is easy to check that
the nil-Hecke generators �i and @i act as Sym.X/–module endomorphisms of CŒX�
and hence there is a homomorphism

� W NHa!Mat.a!;Sym.X//:

Lauda [24] has shown that this is an isomorphism of graded algebras, which proves
Proposition 3.2.

Let ˛ D .˛2; : : : ; ˛a/ be a sequence with 0� ˛i � a� i and write x�˛ WD �˛2

2
� � � �

˛a
a ,

then we can partition the above basis for Ha into .a � 1/! ordered subsets B˛ WD

f�a�1
1
x�˛; : : : ; �1x�

˛; x�˛g indexed by sequences ˛ as above. The orders on B˛ extend
to a total order on the basis of H˛ and with respect to this ordered basis the action of
�1 under the isomorphism � is given by a block diagonal matrix of .a� 1/! identical
blocks (the restriction to the span of the B˛ ) of the form

�.�1/D

0BBBBB@
e1 1 0 � � � 0

�e2 0 1
: : :

:::
:::

:::
: : :

: : : 0
:::

:::
: : : 0 1

.�1/a�1ea 0 � � � � � � 0

1CCCCCA ;
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where we write ei WD ei.X/ for the i th elementary symmetric polynomials in X.

The image of the ideal hP .�1/i under the isomorphism � is determined by the matrix
equation 0D �.P .�1//D P .�.�1//. To explicitly compute the right-hand side of this
matrix equation we first describe powers of �.�1/.

Lemma 3.8 If we write

�.�1/
k
D

0B@ bk
1;1

: : : bk
1;a

:::
:::

bk
a;1

: : : bk
a;a

1CA ;
then the bk

i;j satisfy (and are completely determined by) the relations

bk
i;j D

�
hkCi�j �

Pi�1
lD1 hi�lb

k
l;j

for j � k;

ıiCk;j for j > k:

(Here we use the shorthand hi WD hi.X/ for the i th complete symmetric polynomial
in X. In particular, the first row of �.�1/k has entries hk ; : : : ; hkC1�a .)

Proof Provided that the bk
i;j satisfy the above set of relations, it is clear that they

are completely determined by it. We prove the former by induction on k . For k D 1

the second relation is immediate, so we only have to check that the entries in the first
column of �.�1/ satisfy the first relation (with j D 1). This holds since

h1Ci�1�

i�1X
lD1

hi�l.�1/l�1el D

iX
lD0

hi�l.�1/lel„ ƒ‚ …
D0

� .�1/iei D .�1/i�1ei :

For the induction step, we assume the relations hold for bk
i;j and will deduce the relations

for bkC1
i;j . First note that since �.�1/ has the identity matrix as .a�1/�.a�1/–minor,

we get bkC1
i;jC1

D bk
i;j for all 0 � i � a and 0 � j < a. It is then immediate that the

bkC1
i;j for all 0� i � a and j � 2 satisfy the required relations, and we only have to

check the relations between the entries bkC1
i;1

in the first column by induction on i .
The case i D 1 is given by

bkC1
1;1
D

aX
lD1

.�1/l�1elb
k
1;l D

aX
lD1

.�1/l�1elhkC1�l D 0� .�1/�1e0hkC1 D hkC1
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and, assuming it holds for all smaller indices, the case for i C 1 is given by

bkC1
iC1;1

D

aX
lD1

.�1/l�1elb
k
iC1;l D

aX
lD1

.�1/l�1el

�
hkCiC1�l �

iX
rD1

hiC1�r bk
r;l

�

D

aX
lD1

.�1/l�1el.hkCiC1�l/�

iX
rD1

hiC1�r

� aX
lD1

.�1/l�1elb
k
r;l

�

D h.kC1/C.iC1/�1�

iX
rD1

hiC1�r bkC1
r;1

:

Lemma 3.9 Denoting

�.P .�1//D

0@ c1;1 � � � c1;a
:::

:::
ca;1 � � � ca;a

1A ;
we have c1;i D hNC1�i.X�†/, and all other ci;j lie in the ideal I†a generated by the
entries of the first row.

Proof Since � is an algebra isomorphism, we have

�.P .�1//D P .�.�1//D

NX
lD0

.�1/lel.†/�.�1/
N�l ;

and hence the entries are given by

ci;j D

NX
lD0

.�1/lel.†/b
N�l
i;j :

We then compute that the entries in the first row are

c1;j D

NX
lD0

.�1/lel.†/b
N�l
1;j D

NX
lD0

.�1/lel.†/hN�lC1�j D hN�jC1.X�†/:

All other entries ci;j are determined by the entries in the first row by a similar recursion
to the case of �.�1/k ; assume i > 1, then we have

ci;j D

NX
lD0

.�1/lel.†/b
N�l
i;j D

NX
lD0

.�1/lel.†/

�
hN�lCi�j �

i�1X
rD1

hi�r bN�l
r;j

�

D hNCi�j .X�†/�
i�1X
rD1

hi�r

NX
lD0

.�1/lel.†/b
N�l
r;j
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D hNCi�j .X�†/�
i�1X
rD1

hi�r cr;j :

The following (by induction on s ) shows that hNCs.X�†/ 2 I†a for every s > 0:

hNCs.X�†/D
NCsX
lD0

.�1/lel.†/hNCs�l D

NX
lD0

.�1/lel.†/hNCs�l

D

NX
lD0

.�1/lel.†/

�
�

NX
rD1

.�1/r er hNCs�l�r

�

D�

NX
rD1

.�1/r er hNCs�r .X�†/:

It then follows (again by induction on i ) that ci;j 2 I†a for all i > 1.

Since the (two-sided) ideal generated by a matrix A is equal to the ideal of matrices
with entries taking values in the ideal generated by the entries of A, Lemma 3.9 shows
that taking the quotient of Mat.a!;Sym.X// by the ideal �.hP .�1/i/ is equal to the
quotient of Mat.a!;Sym.X// by matrices with entries in the ideal I†a . This shows that
NH†a ŠMat.a!;H†

a /. Moreover Z.NH†a / is isomorphic via � to Z.Mat.a!;H†
a //D

H†
a ida! ŠH†

a .

Remark 3.10 Note that as far as the center Z.NH†a / D eaNH†a ea is concerned,
there is nothing special about �1 : in eaNH†a ea the relation eaP .�j /ea D 0 holds for
every 1� j � a.

3.2 Decomposing the †–deformed Grassmannian cohomology ring

The following is equivalent to Theorem 1.1 in the special case of the
VaCN–colored

unknot.

Theorem 3.11 Let �1; : : : ; �l be pairwise distinct complex numbers and N1; : : : ;Nl

natural numbers such that
Pl

iD1 Ni DN and let †D f�N1

1
; : : : ; �

Nl

l
g be the multiset

containing �i exactly Ni times. There is an isomorphism of C–algebras

H†
a Š

M
P

ajDa
0�aj�Nj

lO
jD1

H
Nj
aj :

Geometry & Topology, Volume 20 (2016)



Deformations of colored slN link homologies via foams 3455

Definition 3.12 Let X D f�1; : : : ; �ag be an alphabet of a variables and H†
1
D

CŒ��=hP .�/i. Then we define T†
a WD hP .�1/; : : :P .�a/i and identify

aO
iD1

H†
1 Š

CŒX�

T†
a

DWR†
a :

The symmetric group Sa acts on this by permuting tensor factors or, in other words,
by permuting the �i . Denote by

Va
H†

1
the vector space of antisymmetric tensors inNa

iD1 H†
1

and by
VaCŒ�� the vector space of antisymmetric tensors in

Na
iD1 CŒ��.

The latter we identify with antisymmetric polynomials in CŒX�. In both cases, we
denote the antisymmetrization map by

Antisym.�/D 1

a!

X
w2Sa

�.w/w.�/:

Recall that �� D
Q

1�i<j�a.�j ��i/ denotes the Vandermonde determinant. Multiply-
ing by �� is a vector space isomorphism from Sym.X/ to

VaCŒ�� and equips the latter
with the pushforward algebra structure: if ��f;��g 2

VaCŒ�� for f;g 2 Sym.X/,
then

.��f /� .��g/ WD��.fg/:

Lemma 3.13 The pushforward algebra structure on
VaCŒ�� descends to the quotientVa

H†
1

, and multiplication by �� descends to an algebra isomorphism

H†
a
Š
�!

Va
H†

1 :

Proof It suffices to check that �� �I†a � T†
a . We then have the composition of linear

maps

H†
a D

Sym.X/
I†a

��
Š

VaCŒ��

�� � I
†
a

�
VaCŒ��VaCŒ��\T†

a

Š

VaCŒ��CT†
a

T†
a

D Antisym
� aO

iD1

H†
1

�
D
Va

H†
1 ;

which is surjective, and hence must be an isomorphism for dimensional reasons.

We now check that the generators of I†a are mapped into T†
a under multiplication

by �� . Let 1� j � a; then we have

��hN�aCj .X�†/D
NX

iD0

.�1/iei.†/��hN�aCj�i.X/
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D

NX
iD0

.�1/iei.†/
X
w2Sa

�.w/�
a�1CN�aCj�i

w.a/
�a�2
w.a�1/ � � � �

1
w.2/

D

X
w2Sa

�.w/.�
j�1

w.a/
P .�w.a///�

a�2
w.a�1/ � � � �

1
w.2/ 2 T†

a :

Here we have used the identity ��hk.X/ D
P
w2Sa

�.w/�a�1Ck
w.a/

�a�2
w.a�1/

� � � �1
w.2/

,
which is clear from the defining formula for the Schur polynomials

�˛.X/ WD
det1�i;j ;�m.�

j̨Ca�j

i /

det1�i;j ;�m.�
a�j
i /

D
det1�i;j ;�m.�

j̨Ca�j

i /

��

and the identity hk.X/D �.k/.X/.

Proof of Theorem 3.11 By the Chinese remainder theorem we know that

CŒ��

hP .�/i
Š

lM
iD1

CŒ��

h.� ��i/Ni i
;

so let 1�.�/ 2CŒ�� be a representative for the idempotent that picks out the summand
corresponding to the root � 2†. Thus we get the algebra isomorphism

H†
1 D

CŒ��

hP .�/i
Š

lM
iD1

1�i
.�/H†

1 :

In the following we make liberal use of the canonical isomorphism

aO
jD1

H†
1 Š

CŒX�

T†
a

DR†
a :

A set of minimal idempotents in R†
a is given by f1x� WD

Qa
jD1 1�j .�j /g, where

x�D .�1; : : : ; �a/ ranges over all a–tuples of roots appearing in †. The symmetric
group Sa acts on CŒX� and R†

a by permuting the indices of the variables �i and on
tuples x� by permuting roots. For w 2 Sa we have

w.1x�/D
aY

jD1

1�j .�w.j//D
aY

jD1

1�
w�1.j /

.�j /D 1w�1.x�/:

Given an a–element multiset ADf�
a1

1
; : : : ; �

al

l
g we write �A WD .�1; : : : ; �2; : : : ; �l/

for the corresponding tuple ordered by index. Every x� can be written as x�D ��1.�A/
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for a � 2 Sa and a multiset A, and this presentation is unique if we restrict the choice
of � to a set of coset representatives7 T of

Ql
iD1 Sai

in Sa .

With these conventions in place, we can decompose R†
a into Sa –invariant direct

summands:

(3-4) R†
a Š

M
a–element multisets A

of roots

M
�2T

�.1�A
/R†

a„ ƒ‚ …
Sa–invariant

:

Taking antisymmetric components respects the decomposition on the right-hand side
into Sa –invariant direct summands. Thus, our goal is to compute the antisymmetric
component of an (outer) summand on the right-hand side. Consider the projectionM

�2T

�.1�A
/R†

a ! 1�A
R†

a

which is given by multiplying by the idempotent 1�A
. An elementary computation

shows that this restricts to a vector space isomorphism

(3-5) � W X1 WDAntisymSa

�M
�2T

�.1�A
/R†

a

�
!AntisymQl

iD1 Sal

.1�A
R†

a /DWX2;

where the right-hand side denotes the vector space of tensors y in 1�A
R†

a which
are antisymmetric for the action of

Ql
iD1 Sal

� Sa ; that is, w.y/ D �.w/y for all
w 2

Ql
iD1 Sal

. The inverse for � is given by  .y/ WD
P
�2T �.�/�.1�A

y/.

Fix AD f�
a1

1
; : : : ; �

al

l
g as above; then for 1� i � l we denote

Xi WD

�
�

1C
Pi�1

kD1 ak
; : : : ; �Pi

kD1 ak

�
; T �i2†

a WD hP .�/ j � 2Xii;

Ri WD
CŒXi �

T
�i2†
a

and 1�i
WD

Y
�2Xi

1�i
.�/:

Under the canonical isomorphism R†
a Š

Nl
iD1 Ri we have 1�A

R†
a Š

Nl
iD1 1�i

Ri

and

(3-6) X2 D AntisymQl
iD1 Sal

.1�A
R†

a /Š

lO
iD1

AntisymSai
1�i

Ri DWX3:

7For convenience we choose T to be simultaneously a set of right and left coset representatives.
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Since 1A WD
P
�2T �.1�A

/ is Sa –invariant and 1�A
is
Ql

iD1 Sai
–invariant, we may

note for later use that we also have

X1 D AntisymSa

�M
�2T

�.1�A
/R†

a

�
D 1A AntisymSa

.R†
a /;

X2 D AntisymQl
iD1 Sal

.1�A
R†

a /D 1�A
AntisymQl

iD1 Sai

.R†
a /;

with respect to the multiplication in R†
a .

From the Chinese remainder theorem we know that � 7! w C �i gives an algebra
isomorphism

�W 1�i
.�/

CŒ��

hP .�/i
!

CŒ��

h.� ��i/Ni i
!

CŒw�

hwNi i

and this extends to an Sai
–equivariant algebra isomorphism

�W 1�i
Ri D 1�i

CŒXi �

T
�i2†
a

!
CŒXi �

h.� ��i/Ni j � 2Xii
!

CŒWi �

hwNi j w 2Wii
;

where Wi D fw1; : : : ; wai
g is an auxiliary alphabet. It follows from Lemma 3.13 that,

when restricted to the antisymmetric component, � gives the vector space isomorphism

(3-7) �W X3 D

lO
iD1

AntisymSai
1�i

Ri!

lO
iD1

H Ni
ai
:

The composition of the vector space isomorphisms in equations (3-5), (3-6) and (3-7)
thus gives a decomposition of the Sa –invariant direct summands of (3-4), as required
by the statement of the theorem. However, we further must check that the composition
is an algebra isomorphism. In fact it is not, but it is close and the discrepancy is not
hard to fix.

To see this, we compute the pushforward of the multiplication � on X1 under � . Let
x;y 2 X1 be represented by antisymmetric polynomials in CŒX� and denote by xy

their product in R†
a and by x �y their product in

Va
H†

1
. We compute

�.x/��.y/ WD �.x �y/D �

�
xy

��

�
D 1�A

xy

��
D c

.1�A
x/.1�A

y/Ql
iD1�i

;

where
�i WD

Y
1C

Pi�1
kD1 ak�r<s�

Pi
kD1 ak

.�r � �s/

is the Vandermonde determinant in the subalphabet Xi�X and cD1�A

�Ql
iD1�l

�
=�� .

We will see in Lemma 3.14 that c represents a unit in 1�A
R†

a and clearly it is
Ql

iD1 Sai
–

invariant. It follows that �=c is still a vector space isomorphism X1!X2 , and the
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pushforward of the multiplication � on X1 under it is given by

(3-8) .�=c/.x/� .�=c/.y/ WD .�=c/.x �y/D
.1�A

x/.1�A
y/Ql

iD1�i

:

We now equip each tensorand AntisymSai
1�i

Ri of X3 — see (3-6) — with the mul-
tiplication � given by multiplying representing antisymmetric polynomials and then
dividing by the appropriate Vandermonde determinant �i . Then (3-8) says that
�=cW X1! X2 composed with the canonical isomorphism X2! X3 is an algebra
isomorphism with respect to the tensor product algebra structure on X3 . Since � sends
�i to

Q
0�r<s�ai

.wr C�i �ws ��i/D�w , an easy check shows that � in (3-7) is
also an algebra isomorphism.

To summarize the proof, we assemble the algebra isomorphisms:

H†
a Š

Va
H†

1 Š

M
a–element multisets A

of roots

1A AntisymSa
.1AR†

a /

Š

M
P

ajDa

ADf�
a1
1
;:::;�

al
l
g

lO
iD1

AntisymSai
1�i

Ri Š

M
P

ajDa
0�aj�Nj

lO
iD1

H Ni
ai
:

The first isomorphism was introduced in Lemma 3.13, and the second one comes
from the direct sum decomposition of .H†

1
/˝a into Sa –invariant summands. The

third isomorphism is assembled from the isomorphisms �=c from (3-8) on summands
composed with the canonical isomorphism in (3-6), and the last one comes from the
Chinese remainder theorem and the inverse of the isomorphism from Lemma 3.13;
see (3-7). The last isomorphism also shows that a summand indexed by a multiset A

of roots is nonzero if and only if A is actually a multisubset of †.

In the proof we have claimed that cD 1�A

�Ql
iD1�l

�
=�� represents a unit in 1�A

R†
a .

This is clear from the following useful lemma:

Lemma 3.14 Let R be a finite-dimensional quotient of a polynomial ring R D

CŒx1; : : : ;xa�=I and let V .I/ � Ca be the vanishing set of I . Then we have the
decomposition

RŠ
M
v2V .I /

1vR;

where 1v are minimal idempotents and 1vR is isomorphic to Rpv , the localization
of R at the complement of the maximal ideal .x1� v1; : : : ;xa� va/=I . For elements
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xf 2 1vR we have

(3-9) xf is not a unit () xf is a zero divisor () f .v/D 0;

where f is any lift of xf to CŒx1; : : : ;xa�.

Proof Since R is a commutative Artinian ring, it decomposes uniquely into local
commutative Artinian rings, one for each maximal ideal of R. Maximal ideals of R are
in bijection with maximal ideals of CŒx1; : : : ;xa� that contain I . The maximal ideals
of CŒx1; : : : ;xa� are exactly Iv WD .x1 � v1; : : : ;xa � va/ for v 2 Ca and I � Iv if
and only if f .v/D 0 for all f 2 I , which holds if and only if v 2 V .I/. It follows that

RŠ
M
v2V .I /

Rpv Š

M
v2V .I /

1vR;

where pv WD Iv=I , Rpv denotes the localization of R at R npv and 1v 2 R is the
idempotent corresponding to the summand Rpv . The statement about nonunits is then
clear from the explicit description of the local ring Rpv .

Now, in the case of c 2 1�A
R†

a for �AD .�1; : : : ; �a/D .�1; : : : ; �1; �2; : : : ; �l/ we
have

c�1
ˇ̌
�i 7!�i

D 1�A

��Ql
iD1�l

ˇ̌̌̌
�i 7!�i

D 1�A

Y
�i¤�j; i<j

.�i ��j /¤ 0

and (3-9) shows that c�1 , hence also c , is a unit.

Remark 3.15 We have the isomorphism

H†
a D

Sym.X/
hhN�aC1.X�†/; : : : ; hN .X�†/i

Š
CŒe1.X/; : : : ; ea.X/�

hhN�aC1.X�†/; : : : ; hN .X�†/i

and it follows by considering the generating function of hj .X�†/ that the vanishing
set of this ideal is given by f.e1.A/; : : : ; ea.A// jA�†; jAj D ag �Ca . Applying
Lemma 3.14 reproves the fact that the minimal idempotents of H†

a are indexed by
a–element multisubsets A � †. However, we should check that the idempotent
corresponding to A identified in this remark — call it 10

A
— equals 1A as defined in

the proof of Theorem 3.11. For this it suffices to check that 1A.X/jX 7!A ¤ 0 2 C .
Recall that, by definition, 1�i

.�/D 10
�i
.�/ in CŒ��=hP .�/i, and hence 1�i

.�j /D ı
j
i .

Further, �A D .�1; : : : ; �a/ was defined as the a–tuple consisting of elements �i
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of A, ordered by index i , so we compute

1A.X/jX 7!A D 1A.X/j.�1;:::;�a/ 7!�A
D

X
�2T

�.1�A
/.�A/

D

X
�2T

aY
jD1

1��.j/.�j /D

aY
jD1

1�j .�j /D 1:

Corollary 3.16 Let A be an a–element multisubset of † and f 2 Sym.X/; then f
represents a unit in 1AH†

a if and only if f .A/¤ 0.

Proof This is immediate from (3-9) and Remark 3.15.

3.3 Thick calculus for nil-Hecke quotients

We now deduce relations for the nil-Hecke quotients NH†a using the thick graphical
calculus introduced in [21] and detailed above in Section 2.3. Note that in the quotients
NH†a the element ea is still an idempotent and it projects onto a direct summand
isomorphic to Z.NH†a /ŠH†

a , but in general it is not a minimal idempotent due to
the decomposition of H†

a given in Theorem 3.11.

Corollary 3.17 The collection of symmetric polynomials

A

a

WD 1A D

X
�2T

�.1�A
/ 2 Sym.X/

for A�† and jAj D a, which were introduced in the proof of Theorem 3.11, give a
complete collection of minimal orthogonal idempotents of Z.NH†a /ŠH†

a . In other
words, in H†

a we have that for a–element multisubsets A and B of †,

(3-10)
A

B

a

D

8̂̂̂<̂
ˆ̂:

A

a

if AD B;

0 if A¤ B;

and the thick edge decomposes in H†
a into a sum of 1A –decorated thick edges:

(3-11)
a

D

X
a–element multisets

A � †

A

a
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Proof This is immediate.

Proposition 3.18 (nonadmissible colorings by multisubsets) Let A, B and C be
a–, b– and .aCb/–element multisubsets of †; then in NH†

aCb
we have

(3-12)
C

A B

aC b

a b

D

C

A B

aC b

a b

D 0 if A]B ¤ C

and we call such a coloring nonadmissible. (Here ] denotes the multiset sum, or
disjoint union, of multisets.)

Labelings by idempotents corresponding to multisubsets of † that “add up” at mergers
and splitters (ie A]B D C ) are called admissible.

Proof Denote by X1 , X2 and X the alphabets of operators �j on the strands of
thickness a, b and aC b , respectively, and by H†

a .X1/, H†
b
.X2/ and H†

aCb
.X/ the

algebras of decorations on these strands.

Equation (2.61) in [21] then implies that the algebras of decorations on the diagrams

aC b

a b

and

aC b

a b

are both given by
H†

aCb
.X/˝H†

a .X1/˝H†
b
.X2/

hei.X/� ei.X1 tX2/ j i > 0i
:

In the following we write hXDX1 tX2i for the ideal hei.X/� ei.X1 tX2/ j i > 0i.
Let A, B and C be a–, b– and .aCb/–element multisubsets of †, respectively. Then
the algebra of additional decorations on the idempotent-decorated diagrams in (3-12)
is

(3-13)
1C .X/H

†
aCb

.X/˝1A.X1/H
†
a .X1/˝1B.X2/H

†
b
.X2/

hXDX1tX2i\
�
1C .X/H

†
aCb

.X/˝1A.X1/H†
a .X1/˝1B.X2/H

†
b
.X2/

� :
The numerator here is a direct summand of H†

aCb
.X/˝H†

a .X1/˝H†
b
.X2/ that can

be picked out by localizing at the complement of the maximal ideal

hei.X/� ei.C /; ei.X1/� ei.A/; ei.X2/� ei.B/ j i > 0i:
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If C ¤A]B then there is a j 2N such that ej .C /� ej .A]B/¤ 0 2C ; thus, by
Corollary 3.16, ej .X/� ej .X1tX2/ is a unit in the numerator. Taking the quotient in
(3-13) then collapses the direct summand, and (3-12) then follows.

Corollary 3.19 (idempotent decoration migration) Let A be an .aCb/–element
multisubset of †; then in NH†

aCb
we have:

A

aC b

a b

D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b

D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

(3-14)

A

aC b

a b

D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b

D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

(3-15)

In particular, for multisubsets A, B �† with jAj D a and jBj D b , we have:

A B

aC b

a b

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

A]B

A B

aC b

a b

if A]B �†;

0 otherwise;

(3-16)

A B

aC b

a b

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

A]B

A B

aC b

a b

if A]B �†;

0 otherwise.

(3-17)

Proof For (3-14) we compute

A

aC b

a b

(3-11)
D

X
A1;A2�†

jA1jDa; jA2jDb

A

A1 A2

aC b

a b

(3-12)
D

X
A1]A2DA
jA1jDa

A

A1 A2

aC b

a b
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(3-12)
D

X
A1]A2DA
jA1jDa
B�†
jBjDaCb

B

A1 A2

aC b

a b

(3-11)
D

X
A1]A2DA
jA1jDa

A1 A2

aC b

a b

and the proof of (3-15) is analogous. Equations (3-16) and (3-17) follow similarly.

4 The †-deformed foam category N Foam†

We define the 2–category N Foam† of †–deformed slN –foams as the quotient of
the foam 2–category N Foam, described in Section 2.1, by the following additional
relation on 1–labeled foam facets:

(4-1) �N

1

D

N�1X
iD0

.�1/N�i�1eN�i.†/ �i

1

Since this equation is not degree-homogeneous, we hence ignore the grading on foams
(ie to be precise we first pass to the ungraded version of N Foam, then impose this
relation to pass to N Foam† ).

This quotient is motivated by the deformed nil-Hecke algebra quotient introduced in
the last section. Indeed, the 2–representation LUQ.glm/!N Foam gives an action of
the nil-Hecke algebra on the latter, and in order to obtain an action of the †–deformed
nil-Hecke quotient, we impose this local foam analog of (3-2).

Definition 4.1 We let ˆ†W LUQ.glm/!N Foam† be the composition of the foamation
2–functor ˆmW LUQ.glm/!N Foam and the quotient 2–functor N Foam!N Foam† .

It follows that the 2–functor ˆ†W LUQ.glm/!N Foam† factors through the quotient
of LUQ.glm/ in which we’ve imposed the relation that dots satisfy the equation

P
�
�

�
D 0I

hence, the thick calculus equations in Corollaries 3.17 and 3.19 and Proposition 3.18
correspond to analogous foam relations in N Foam† . In fact, the thick calculus
relations can be seen as intersections of foam relations with planes. More precisely, we
get:
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Lemma 4.2 The algebra of decorations of a k–labeled foam facet, or alternatively, the
endomorphism algebra of the k–labeled web edge, carries an action of H†

k
. In fact,

from the 2–representation on deformed matrix factorizations in Section 4.4 it follows
that there is an isomorphism

End
�

k
�
ŠH†

k :

Compare with [36, Remark 4.1]. Moreover, we have the following important conse-
quences:

� Every k–labeled foam facet in N Foam† splits into a sum over foam facets
colored by minimal idempotent decorations corresponding to k–element multi-
subsets of †.

� Equation (3-12) then implies that a foam is zero whenever it contains a seam
whose adjacent facets are nonadmissibly colored by idempotents. Here, similar
to the case of thick calculus diagrams, we say that a foam is admissibly colored
precisely when around any seam the sum of the multisets of the idempotents
coloring two of the facets equals the multiset coloring the third. Consequently,
foam relations analogous to those of Corollary 3.19 hold in a neighborhood of
any seam.

4.1 Foam splitting relations

Convention 4.3 Let A;B �† be disjoint multisubsets of roots:

� 2A D) � 62 B and � 2 B D) � 62A:

For the duration, unless otherwise stated, we use red and blue colored foam facets
to denote facets decorated by the orthogonal idempotents 1A and 1B , respectively.
We use green as a generic color for both undecorated foam facets and for decorations
by 1A]B .

Lemma 4.4 The following foams are invertible as 2–morphisms in N Foam† :

aCb

b

a ;

b

a
aCb
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Proof Decorating the b D c case of the foam relations in (2-4) by red and blue
idempotents, we get:

aCb

b

a
aCb

D

X
˛2P.a;b/

.�1/jy̨j

b

a

b
aCb

a

�˛

�y̨

(4-2)

b

a

aCb
D

X
˛2P.a;b/

.�1/jy̨j

b

a

�˛

�y̨

(4-3)

Let X and Y be the alphabets assigned to the red and blue foam facets where �˛
and �y̨ are placed. We check that

P
˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y / represents a unit in

1AH†
a .X/˝1BH†

b
.Y / by using the criterion in Corollary 3.16:X

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /
ˇ̌
X 7!A
Y 7!B

D

X
˛2P.a;b/

.�1/jy̨j�˛.A/�y̨.B/

D

Y
�2A

Y
�2B

.���/¤ 0 2C:

A proof for the second equality can eg be found in [31, Example 5, page 65], and the
product is nonzero because A and B consist of distinct roots.

Let
P

r fr .X/gr .Y / be a representative of
�P

˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y /
��1 in the

ring H†
a .X/˝H†

b
.Y /; then the following are explicit inverses for the decorated unzip

and zip foams: 0B@
aCb

b

a

1CA
�1

D

X
r

b

a
aCb

fr

gr

;

0B@ b

a
aCb

1CA
�1

D

X
r aCb

b

a

fr

gr

:
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Lemma 4.5 Let p and q be symmetric polynomials in a and b variables, respectively.
Then the following relations hold:

b

a

b
aCb

a

p

q

D

b

a

b
aCb

a

q

p

;

b

a

a
aCb

b

p

q

D

b

a

a
aCb

b

p

q

;(4-4)

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b

�˛

�y̨

D

aCb

b

a

:(4-5)

Proof We again use
P

r fr .X/gr .Y /, which is a representative of the inverse ofP
˛2P.a;b/.�1/jy̨j�˛.X/�y̨.Y / in H†

a .X/˝H†
b
.Y /. For the first relation in (4-4)

we compute:

b

a

b
aCb

a

p

q

(4-2)
D

X
r

aCb

b

a
aCb

fr p

gr q

D

X
r

aCb

b

a
aCb

fr

gr q

p

(4-2)
D

b

a

b
aCb

a

q

p

Equation (4-5) then follows via:

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b

�˛

�y̨

D

X
˛2P.a;b/

.�1/jy̨j

aCbaCb

b

a

a

b�y̨

�˛

(4-2)
D

aCb

b

a

D

aCb

b

a
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For the second relation in (4-4) we now have:

b

a

a
aCb

b

p

q

D

X
˛2P.a;b/

.�1/jy̨j

b

a

a

aCb

b

a

b

�˛

�y̨

p

q

D

X
˛2P.a;b/

.�1/abCjy̨j

b

a

a

aCb

b

b

a

�y̨

�˛

q

p

D

X
˛2P.a;b/

.�1/abCjy̨j

b

a

a

aCb

b

b

a

�y̨

�˛

q

p

D

X
˛2P.a;b/

.�1/jy̨j

b

a

a

aCb

b

a

b

�˛

�y̨

q

p

D

b

a

a
aCb

b

p

q

Lemma 4.6 The following foams are invertible as 2–morphisms in N Foam† :

b

aCb

a

;
b

aCb

a

Proof Given the relations8

b
aCbaCb

a

D

X
˛2P.a;b/

.�1/jy̨j

b
aCb

a �˛

�y̨

;(4-6)

8In relation (4-7) the green shading is meant to indicate a decoration by the mixed idempotent 1A]B .
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aCb

D

X
˛2P.a;b/

.�1/jy̨j

aCb

b

aCb

a�˛

�y̨

;(4-7)

and the decoration migration relations (4-4), it follows immediately that

X
˛2P.a;b/

.�1/jy̨j
b

aCb

a �˛

�y̨

and
X

˛2P.a;b/

.�1/jy̨j b

aCb

a �˛

�y̨

are inverse to the digon removal and creation foams, respectively.

Equation (4-6) is just an idempotent decorated version of relation (2-2). Equation (4-7)
is a stronger, more local version of (4-5), but we cannot use the same trick to deduce
it. To de-clutter the pictures, we compute this relation in NH†

aCb
; the result can then

be transferred using the foamation functor ˆ† . Alternatively, one can interpret the
following nil-Hecke pictures as 2d –slices through the corresponding foams.

We begin by using (2-9) to explode a thick edge into thin edges, and then combine this
relation with Corollary 3.19 to slide the decoration by the multiset onto the thin edges.
In the simplest case, where the multiset contains only one root � , we have:

f�; : : : ; �g

a

D

a

� ��a�1 1a�2

� �� �

Now suppose that AD f�; : : : ; �g and B D f�; : : : ; �g with �¤�, then similarly we
have:

A]B

aC b

D

X
.�aCb;:::;�1/

is a reordering of
.�;:::;�;�;:::;�/ aC b

� �: : :

: : :

�aCb�1 b�1b

�bC1 �b�aCb �1

Next we reorder the decorations on the strands (at the expense of signs) so that all
� idempotents lie on the left, all � idempotents on the right, and in both groups of
strands the number of additional dots decreases from left to right, so the right-hand
side above becomes:
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X
l1>���>la

˙

aC b

� �� �l1 rbr1la

: : : : : :� �� �

Here the sum is taken over all strictly decreasing sequences aC b � 1 � l1 > � � � >

la � 0 and r1; : : : ; rb are the remaining b numbers between 0 and aC b � 1 in
decreasing order. Clearly the set of such sequences .l1; : : : ; la/ is in bijection with
partitions .l1 � .a� 1/; l2 � .a� 2/; : : : ; la/ whose Young diagrams fit into a a� b

box. If .l1; : : : ; la/ corresponds to a partition ˛ 2 P .a; b/, then it is easy to check
that .r1; : : : ; rb/ corresponds to y̨ 2 P .b; a/ and the sign introduced by reordering
decorations on strands is .�1/jy̨j . Finally, we use (2-9) to express the a strands on the
left and the b strands on the right in terms of strands of thickness a and b , respectively.
This expresses the decorations .l1; : : : ; la/ and .r1; : : : ; rb/ on the thin strands as Schur
polynomials �˛ and �y̨ , and using Corollary 3.19 we can slide the idempotents onto
the thick strands to obtain:

X
˛2P.a;b/

.�1/jy̨j

aC b

A B

�˛ �y̨

This gives the thick calculus version of (4-7) for this choice of A and B .

The case of general A and B is very similar. The main difference is that there are more
possible reorderings of the decoration by roots on thin strands. However, if we interpret
a nil-Hecke picture decorated by idempotents � and � as a sum over all possible ways
of replacing the instances of � by elements of A and of the � by elements of B , then
the proof of the special case immediately carries over to the general setting.

4.2 Karoubi envelope technology

Let W be a web, ie a 1–morphism in N Foam† ; then the foam versions of Proposition
3.18 and Corollary 3.19 show that the identity 2–morphism idW decomposes into a
sum of idempotent foams — one for each coloring of the edges of W by multisubsets
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of roots that is compatible at vertices. We now proceed to a 2–category .N Foam†/^

in which these idempotents split.

Definition 4.7 Let Kar.N Foam†/ denote the 2–category obtained by passing to the
Karoubi envelope in each Hom–category of N Foam† . We define .N Foam†/^ to be
a certain full 2–subcategory of Kar.N Foam†/ that contains as 1–morphisms all the
pairs .W;FW / where W is a web in N Foam† and FW is a decorated identity foam
on W in N Foam† such that each a–labeled facet is decorated by an idempotent 1A

corresponding to an a–element multisubset A�†. More precisely, .N Foam†/^ has
the same objects as N Foam† and has Hom–categories given by the full subcategories
of the corresponding Hom–categories of Kar.N Foam†/ that contain all formal direct
sums of pairs .W;FW /.

Note that, in particular, N Foam† embeds as a full 2–subcategory of .N Foam†/^ ,
since the identity foam over any web can be expressed as the sum over all possible
colorings of its facets. Practically speaking, .N Foam†/^ can be viewed as the 2–
category in which
� objects are sequences aD .a1; : : : ; am/ for m� 0 as in N Foam† ,
� 1–morphisms are formal direct sums of webs where, in addition to a labeling,

each a–labeled edge is colored by an idempotent 1A corresponding to an a–
element multisubset A�†, and

� 2–morphisms are matrices of linear combinations of foams as in N Foam† , but
with each facet incident upon a web edge decorated by the idempotent coloring
the edge.

As in the case of thick calculus diagrams and foams, we call a web admissibly colored
if at each trivalent vertex the union of the multisets coloring two of the edges equals
the third. Since nonadmissibly colored foams are zero, it follows that a nonadmissibly
colored web is isomorphic to the “zero web” (ie the zero object in the relevant Hom–
category).

We now point out that in .N Foam†/^ there are three9 ways of composing morphisms,
and establish our notation for them:
� Sequences, webs, and foams can be placed side by side (ie on objects this is

concatenation of sequences). We denote this operation by t.
� Webs and foams can be composed in the 1–morphism direction, ie glued hori-

zontally along their left and right boundaries, and we denote this by ˝.
� Foams can be composed in the 2–morphism direction by gluing vertically, and

we write ı for this operation.

9This is due to the fact that N Foam is secretly a 3–category.
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We will also utilize two notions of “equivalence” for colored webs in .N Foam†/^. A
1–morphism W W o1!o2 in .N Foam†/^ is isomorphic to a 1–morphism V W o1!o2

if there exist 2–morphisms F1W W ! V and F2W V !W in .N Foam†/^ such that

F2 ıF1 D idW and F1 ıF2 D idV :

In this case we write V Š W . Next, a 1–morphism W W o1 ! o2 in .N Foam†/^

is weakly equivalent to a 1–morphism V W u1 ! u2 if there exist 1–morphisms
LW o2! u2 , L�1W u2! o2 , RW u1! o1 and R�1W o1! u1 such that

L˝W˝RŠV; L�1
˝LŠ1o2

; L˝L�1
Š1u2

; R˝R�1
Š1o1

; R�1
˝RŠ1u1

:

We now aim to use these notions of equivalence to “split” the foam 2–category
.N Foam†/^ into pieces in which webs and foams are colored by multisubsets of
† containing only one root � 2 †. Although we do not prove a full decomposition
theorem (see Remark 4.28), we will see in Section 5.2 that the splitting results obtained
here suffice to decompose the link invariant as in Theorem 1.1.

Let F be a foam with an admissible coloring of facets by multisubsets of † and let
� 2† be a root. We want to define the foam F� that results from forgetting everything
in F that is not colored by �. More precisely, consider the underlying CW-complex
of F ; in it we erase all 2–cells that are colored with multisubsets not containing � and
smoothen out all seams that have become obsolete. We define a foam structure on the
resulting CW-complex by setting the label of each remaining 2–cell to be the (positive)
multiplicity of � in the corresponding color on F . This is again a foam by admissibility
of the original coloring. Finally we decorate each facet with the idempotent of the
multisubset containing only instances of �.

Definition 4.8 The �–component of an admissibly colored foam F , denoted by F� ,
is the foam in .N Foam†/^ constructed via the procedure just described.

Example 4.9 If �1 ¤ �2 are two roots in † and colors red, blue and green indicate
decorations with idempotents corresponding to multisets f�a

1
g, f�b

2
g and f�a

1
; �b

2
g,

respectively, then we have, for example:

F D

b

a

aCb ; F�2
tF�1

D

b

a
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In the following, we will use the shorthand
F
� F� WD F�l

t � � � tF�1
.

Definition 4.10 Let W be a colored web in .N Foam†/^ .

� The �–component W� of W is the (co)domain of .idW /� , the �–component
of the identity foam on W . As for foams, we define the shorthand

F
�W� WD

W�l
t � � � tW�1

.

� W is called split if W D
F
�W� . More generally, for any colored web W 0 , the

split web
F
�W 0

�
is called the split web associated to W 0 .

Example 4.11 With coloring conventions as in Example 4.9 we have, for example:

W D ; W�2
tW�1

D

Next, let oD .a1; : : : ; am/ be an object in .N Foam†/^ and suppose that for every
entry ai of o we are given an ai –element multisubset Ai D f�

ai;1

1
; : : : ; �

ai;l

l
g � †;

we call such a collection A D .A1; : : : ;Am/ an incidence condition for o . We then
consider the identity web on o with strands colored by multisubsets Ai , and use the
following notation for the (co)domain of the associated split web:

(4-8)
G
�

o� WD .a1;l ; : : : ; am;l ; : : : ; a1;1; : : : ; am;1/:

Definition 4.12 Let LW o!
F
� o� be the combinatorially simplest web from o toF

� o� that is colored with the multiset Ai on the strand starting at the entry ai of
o and colored with the multiset f�ai;j

j g on the strand terminating at the entry ai;j ofF
� o� . Analogously we define RW

F
� o�! o to be the combinatorially simplest web

from
F
� o� to o that is colored with f�ai;j

j g on the strand starting at the entry ai;j ofF
� o� and colored with Ai on the strand terminating at the entry ai of o .

We now explicitly describe L (and R) before giving illustrations in Examples 4.13
and 4.14. L is given as a composition L WD Ll�1˝ � � � ˝L1 with one component
Lj for each root �j , except the last one. Each Lj itself can be decomposed as
Lj D L1;j ˝ � � � ˝Lm;j , where Lm;1 splits off the �1–component from the strand
coming out of am and continues it below the remainder of the am strand. Lm�1;1

splits off the �1–component from the strand coming out of am�1 , merges it with the
remainder of the am strand, which contains no �1 any more, and splits it off on the
other side. In general Li;j splits the �j –component off the remainder of the ai –strand,
and passes it through the remainders of all ak–strands with k > i , which contain no �j

any more. The composite Lj thus is the combinatorially simplest web that splits the
�j –components off all ak strands and continues them as a bundle of parallel strands
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below the ai remainder strands and above the bundles of �j 0 –colored parallel strands
for j 0 < j that have been split off by Lj 0 . It is not hard to see that the composition
L is, up to planar isotopy, the combinatorially simplest web from o to

F
� o� with

the prescribed boundary colorings. The colored web R can be obtained similarly, or
simply by reflecting L horizontally.

Given a colored web W W o1! o2 , we will mostly be interested in the webs

LW o2!

G
�

o2;� and RW
G
�

o1;�! o1

constructed from the incidence conditions for o2 and o1 determined by the coloring
of left and right boundary edges of the colored web W . In particular, we can then
consider the colored web L˝W ˝R.

Example 4.13 In the case of the identity web 1o on oD .aCb/, which is colored by
the multisubset f�a

1
; �b

2
g �†, and using the coloring conventions from Example 4.9,

we have the following prototypical example:

LD ; RD

Example 4.14 For a slightly more generic example, let oD .2; 1; 3/ with the incidence
condition AD .f�1; �3g; f�2g; f�

2
2
; �3g/, then

F
� o�D .1; 1; 1; 2; 1/ and L takes the

following form:

L1 DL1;1L3;2L2;2

2

1

3

1

1

1

2

1

D

where we use Convention 4.19 below in the second diagram to write the first colored
web more succinctly. Here web strands colored by multisets containing multiple roots
are green, and those containing only one of �1 , �2 or �3 are red, blue, and orange
(respectively).

Lemma 4.15 Suppose o is an object in .N Foam†/^ and fix an incidence condition
for o . Let L and R be the corresponding webs constructed in Definition 4.12. Then
we have

R˝LŠ 1o and L˝RŠ 1F
� o� :
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Proof L and R are both compositions of mergers (and splitters) whose two incoming
(outgoing) strands are colored with disjoint multisubsets. Moreover, splitters and
mergers in R are paired up with mergers and splitters in L — in reverse order. Re-
peated application of Lemmas 4.4 and 4.6 allows the construction of foams giving the
isomorphism (see also (4-9) below).

Definition 4.16 Let W be a colored web in .N Foam†/^ . W is called boundary-split
if it is of the form L˝W 0˝R for some colored web W 0W o1! o2 in .N Foam†/^

and for LW o2!
F
� o2;� and RW

F
� o1;�! o1 as in Definition 4.12. L˝W 0˝R

is then called the boundary-split web associated to W 0 .

Remark 4.17 Lemma 4.15 shows that every web W 0 in .N Foam†/^ is weakly
equivalent to its associated boundary-split web L˝W 0˝R.

Our goal is now to show that a boundary-split web W is isomorphic to its associated
split web

F
�W� . Unless stated otherwise, we use red and blue colors to denote

colorings of web edges with disjoint multisubsets of †. Green denotes mixed or
arbitrary colorings.

Lemma 4.18 The following isomorphisms hold in .N Foam†/^ :

(4-9) Š ; Š ;

Š ;(4-10)

Š :(4-11)

The reflections of these relations across the horizontal axis in the plane also hold.

Proof Equation (4-9) follows from Lemmas 4.4 and 4.6. For (4-10) we have

LHS
(4-9)
Š

(2-1)
Š

(4-9)
Š

(2-1)
Š

(4-9)
Š

(2-1)
Š RHS;
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where we have used (the splitter version of) relation (2-1) three times. Equation (4-11)
follows similarly.

Convention 4.19 We define the following shorthand for “crossings” of web edges
colored by disjoint multisubsets:

(4-12) DW

Using this, (4-10) and (4-11) take the form

Š ;

Š :

Definition 4.20 We call a web semisplit if it is boundary-split and each edge is either
colored by a multisubset containing a single root or a multisubset containing exactly
two distinct roots, in which case the edge (green) is required to have a neighborhood
as on the left-hand side of (4-12).

Lemma 4.21 Every boundary-split web L˝W ˝R in .N Foam†/^ is isomorphic
to a semisplit web W 0 .

Proof We inductively split off roots, starting with �1 . For this we draw in red edges
colored with multisubsets of the single root �1 , in blue edges colored with multisubsets
not containing �1 , and in green edges colored by mixed multisubsets. By (4-9) we
can open a red–blue digon in every green edge of L˝W ˝R and get an isomorphic
web. Next we replace all vertices that are adjacent to at least two green edges with
isomorphic webs that only contain green edges of type (4-12), eg for an all-green
merger web:

Š Š

Š Š
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color roots occurring in multisubset (with some multiplicity)

red only �i

orange exactly one �k with k < i

magenta exactly two distinct �k with k � i

blue some roots �k with k > i

green �i and at least one �k with k > i

cyan exactly one �k with k < i and at least one with k > i

black �i , exactly one �k with k < i and at least one with k > i

Table 1

The case of an all-green splitter web is completely analogous, and vertices with only
two adjacent green edges are even easier to split. The local replacements of green
vertices as above patch together to give an isomorphism to a web in which green edges
are flanked by red–blue mergers and splitters in the crossing configuration from (4-12).

For the induction step i � 1 7! i we use the coloring on edges given in Table 1

We can assume that only these colorings are present. Moreover, orange strands can inter-
act with {other orange, red, blue, green} strands only in crossing configurations around
{magenta, magenta, cyan, black} edges, respectively. Furthermore, such crossing
configurations are the only occurrences of magenta, cyan and black edges.

The goal for the induction step is to split red edges off green and black edges. As before
we introduce red–blue digons in every green edge and locally replace green vertices.
Every remaining green edge is in red–blue crossing configuration or bounds red–blue
on one side and orange–black on the other side (and every black bounds orange-green
on both sides). We get rid of all black edges by splitting off their red component:

Š Š

Š Š

Note that now red and orange strands interact with each other and with strands that
contain higher-index roots (blue) only in crossing configurations (around magenta,
green and cyan edges), as required in the induction step. For the next step old {blue,
green, cyan} edges become {green, black, black} or {blue, cyan, cyan} depending
on whether they contain �iC1 or not. Orange stays orange, red becomes orange, and
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magenta stays magenta. This colored web satisfies the induction hypothesis for the next
step. After repeating this process for each root, it terminates in a semisplit web W 0 .

Proposition 4.22 Every boundary-split web L˝W ˝R is isomorphic to its associated
split web

F
�W� .

Proof The proof proceeds in two steps; first we use Lemma 4.21 to find an isomorphism
from L˝W ˝R to a semisplit web W 0 . Clearly W , L˝W ˝R and W 0 have equal
associated split webs. It remains to completely separate the �i –components in W 0 .
Again we proceed by induction and start by peeling off the �1–component W 0

�1
. For

this, consider a web-isotopy t 7!W 0
�1
.t/ for t 2 Œ0; 1�, ie an ambient isotopy of W 0

�1

in the plane which preserves the left-directedness of web edges and which moves W 0
�1

off the rest, W 0 nW 0
�1

. If we superimpose W 0
�1
.t/ and W 0 nW 0

�1
we get a homotopy

t 7!W 0.t/ of graphs of valence � 6. If the original web-isotopy is generic, the graphs
W 0.t/ actually are of valence � 5 and there are only finitely many t for which the
valence is 5 — these correspond to the moves in (4-10) and (4-11). In general, 4–valent
vertices in W .t/ should be understood as composition of a merge- and a split-3–valent
vertex, either in crossing configuration as in (4-12), or splittable as in (4-9). Thus,
t 7!W 0.t/ is a web-isotopy except in finitely many points t where the number and
valence of vertices changes locally. It is not hard to see that the possible local changes
are exactly the ones from Lemma 4.18 and hence can be realized by isomorphism
foams.

For example, the following illustrates how to move a single red web edge across a blue
vertex:

(4-11)
Š

(4-9)
Š

(4-9)
Š

A composition of the appropriate local isomorphism foams, thus, splits off W 0
�1

from W 0 . One then proceeds to split off, in exactly the same way, W 0
�2

and so
forth up to W 0

�l�1
. The result then follows since W 0

�i
DW�i

for 1� i � l .

Remark 4.23 Proposition 4.22 and Lemma 4.15 together show that every web W in
.N Foam†/^ is weakly equivalent to its associated split web

F
�W� .

4.3 A web splitting functor

We now extend Proposition 4.22 to the 2–categorical level. Ideally, we would like a
2–endofunctor of .N Foam†/^ which fully splits foams into pieces carrying colorings
of only one root, but the naïve splitting procedure does not give a well-defined 2–functor
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(a counterexample can be constructed which sends the left- and right-hand sides of (4-3)
to unequal multiples of each other). Instead, we take a more direct approach and define
a family of functors between Hom–categories in .N Foam†/^ using compositions
with explicit webs and foams, which will suffice to split the complex assigned to a
tangle.

We begin by fixing, for each colored web, an isomorphism between its associated
boundary split and split webs. Precisely, let W W o1 ! o2 be a colored web in
.N Foam†/^ and suppose that LW o2 !

F
� o2;� and RW

F
� o1;� ! o1 are the

webs given in Definition 4.12. Proposition 4.22 guarantees that there is an isomorphism
TW W L˝W ˝R!

F
�W� , so fix one and denote its inverse by BW . We have some

freedom in choosing TW , and in Section 5.2 we will specify a convenient choice for
webs that arise as resolutions of tangle diagrams.

For the next definition, suppose F W W1 ! W2 is a foam between colored webs
W1;W2W o1! o2 in .N Foam†/^ with identical incident conditions on the boundary
sequences o1 and o2 , respectively. Further, consider the webs L and R and the
isomorphism foams TW2

and BW1
described above.

Definition 4.24 Let � WD �2 ı�1 be the composition of

�1W Hom.W1;W2/! Hom.L˝W1˝R;L˝W2˝R/;

F 7! idL˝F ˝ idR;

and

�2W Hom.L˝W1˝R;L˝W2˝R/! Hom
�G
�

W1;�;
G
�

W2;�

�
;

F 7! TW2
ıF ıBW1

:

Proposition 4.25 Fix objects o1 , o2 2 .N Foam†/^ . Then the maps

�W Hom.W1;W2/! Hom
�G
�

W1;�;
G
�

W2;�

�
for colored webs W1;W2W o1! o2 with identical incident conditions on o1 and o2 ,
respectively, are vector space isomorphisms that respect the composition ı of foams.

Proof It is clear that the maps �1 respect composition of foams and for �2 it follows
from the definition of BW as the inverse of TW .

Next, note that �2 is clearly a vector space isomorphism, since it is pre- and post-
composition with isomorphism foams. To see that �1 is as well, let L�1 and R�1 be
the webs obtained by reflecting L and R horizontally. We have isomorphism foams
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�LW L
�1˝L! 1o2

and �RW R˝R�1! 1o1
, and an inverse for �1 is then given

by  W G 7! .�L˝ idW2
˝�R/ ı .idL�1 ˝G˝ idR�1/ ı .��1

L
˝ idW1

˝��1
R
/.

Finally, suppose that A and B are incidence conditions for objects o1 and o2 in
.N Foam†/^ , respectively. By expressing each facet incident upon a left or right
boundary as a sum over colorings, we see that the Hom–categories in .N Foam†/^

split into direct sums

(4-13) Hom.o1; o2/Š
M
A;B

HomA!B .o1; o2/;

where the sum is over all incidence conditions A and B and HomA!B .o1; o2/

denotes the full subcategory of Hom.o1; o2/ generated by webs that are colored with
the multisets prescribed by A and B on the right and left boundary edges, respectively.

Definition 4.26 Let W be a web in HomA!B .o1; o2/ and suppose that
F
� o1;�

and
F
� o2;� are the objects given in (4-8); then we also denote by � the functor

HomA!B .o1; o2/! Hom
�G
�

o1;�;
G
�

o2;�

�
defined on webs W and foams F in HomA!B .o1; o2/ by

�.W / WD
G
�

W� and �.F / WD TW2
ı .idL˝F ˝ idR/ ıBW1

:

We call the functors � web splitting functors. Note that their definition depends on our
choice of isomorphism foam TW for every colored web W in HomA!B .o1; o2/. In
Section 5.2 we show that with a suitable choice of TW the functors � not only split
webs, but also certain foams between them. We give a prototypical example of this:

Example 4.27 With coloring conventions as in Example 4.9 we have

(4-14) �

0BBB@
aCb

1CCCA D

b

a

:

Indeed, this follows from Lemma 4.4 using
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idL WD

b
aCb

a

; idR WD

b

a
aCb

;

T WD
aCb

b

a ; B WD
X

r

b

a
aCb

fr

gr

:

Remark 4.28 For colored webs W1 and W2 in .N Foam†/^ we conjecture that the
map O

�

Hom.W1;�;W2;�/! Hom
�G
�

W1;�;
G
�

W2;�

�
;

given by placing foams colored by individual roots side by side, is an isomorphism of
vector spaces. In particular, this would mean that every foam between split webs can
be split into noninteracting colored components, possibly with additional decorations.
One could prove such a result by extending Proposition 4.22 to the 2–categorical level,
finding local foam moves which move the �i –colored component away from everything
colored by �j for j > i .

Having done this, we could compose the web splitting functor � with the inverse of the
above isomorphism to produce an honest foam splitting functor. However, in order to
extend this functor to a 2–endofunctor of .N Foam†/^ , we must verify compatibility
with horizontal composition, which will depend on our choice of the TW . Additionally,
decorations will arise while pulling the foams apart which are difficult to control. In
Section 5.2 we carry out this analysis in the limited case of foams arising as differentials
in the complex assigned to a tangle, and use this to prove Theorem 1.1.

4.4 A 2–representation of N Foam†

In this section, we prove that the deformed slN foam 2–category N Foam† is suf-
ficiently nondegenerate, by constructing a 2–representation onto a version of Wu’s
deformed matrix factorizations [42]. Indeed, let HMF denote the 2–category given as
follows:
� objects are pairs .R; w/ where R is a C–algebra and w 2R,
� 1–morphisms .R; w/! .S; v/ are matrix factorizations X over R˝C S with

potential v�w , and
� 2–morphisms X ! Y are morphisms in the homotopy category of matrix

factorizations.
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We will assume the basics concerning matrix factorizations, which can eg be found
in Khovanov and Rozansky [22]; see Carqueville and Murfet [5] for details about the
2–category of matrix factorizations.

Our result is the following:

Theorem 4.29 There is a 2–representation from the deformed foam 2–category
N Foam† to the 2–category of matrix factorizations. Moreover, this 2–representation
assigns to a web in N Foam† the same matrix factorization as in Wu’s construction of
deformed link homology.

Of course, it suffices to assign pairs .R; w/ to sequences, the same matrix factorizations
as in [42] to generating webs, and morphisms of matrix factorizations to generating
foams, and then check that the images of the foam relations hold in HMF. However,
we can simplify this check using an argument similar to that in [36]. Indeed, there
it is shown that the undeformed foam category N Foam is equivalent to a certain
2–subcategory of the quotient of PUQ.gl1/ by the N–bounded weights. Since the
2–category of matrix factorizations is idempotent complete, it suffices to construct a
2–representation of UQ.gl1/ sending non-N–bounded weights to zero and satisfying
(the preimage of) the additional foam relation in N Foam† , which then induces a
2–functor from N Foam† .

Practically speaking, this shows that we need only check the foam relations coming
from relations in UQ.gl1/ and not those coming from the thick calculus in PUQ.gl1/,
which are used to split certain idempotent foams in N Foam. This simplifies the
number of relations needed to be checked (more details below).

We hence begin by following Wu, assigning a pair .R; w/ to an object .a1; : : : ; ak/

in N Foam† . We set RD Sym.X1 j � � � jXk/, the C–algebra of partially symmetric
functions in the alphabets X1; : : : ;Xk , where Xi consists of ai variables. We let
wDQ.X1[� � �[Xk/, where Q0.X /D .NC1/P .X / with P .X / as in (3-3), Q.0/D0,
and for a polynomial T .X / D

Pk
iD0 ciX

i 2 CŒX � we set T .X/ D
Pk

iD0 cipi.X/,
where pi.X/ denotes the i th power sum symmetric polynomial in the alphabet X.

Given sequences a and b of elements of a C–algebra, we will follow Khovanov and
Rozansky [22] and denote by fa;bg the Koszul matrix factorization they determine.
We then assign the Koszul matrix factorizations

(4-15)
˚
.Ui/

kCl
iD1

; .ei.W [X/�ei.Y //
kCl
iD1

	
;

˚
.�Ui/

kCl
iD1

; .ei.Y /�ei.W [X//kCl
iD1
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over Sym.W jXjY / with potentials Q.W [ X/ �Q.Y / and Q.Y / �Q.W [ X/
(respectively) to the generating webs

kC l

k

l

; kC l

k

l

;

where jW j D k , jXj D l and jY j D kC l . Here the polynomials Ui are chosen so that

Q.W [X/�Q.Y /D
kClX
iD1

�
ei.W [X/� ei.Y /

�
Ui :

Note that these are the same matrix factorizations that Wu assigns to trivalent vertices.

We now assign a morphism of matrix factorizations to each generating foam. To do so,
we utilize the concept of stabilization of linear factorizations. Recall from Carqueville
and Murfet [4] that a linear factorization L over a ring R with potential w 2 R is
a Z=2Z–graded R–module, equipped with an odd degree differential d satisfying
d2 D w id. Informally, a linear factorization is a matrix factorization where we loosen
the requirement that the R–module be free. In particular, matrix factorizations give
examples of linear factorizations.

Following [4], define the stabilization of a linear factorization L over .R; w/ to be a
finite-rank matrix factorization ML over .R; w/ together with a morphism of linear
factorizations � W ML!L inducing a quasi-isomorphism of Z=2Z–graded complexes

(4-16) HomR.K;ML/
�ı
�!HomR.K;L/

for any finite-rank matrix factorization K over .R; w/.

We use stabilizations as follows: suppose that we are given linear factorizations L1

and L2 with corresponding stabilizations MLi
; then, the diagram

(4-17)

ML1

�1
// L1

��

ML2

�2
// L2

induces a map on homology

H�.HomR.L1;L2//! H�.HomR.ML1
;L2//! H�.HomR.ML1

;ML2
//:

Since H0 gives the morphisms in the homotopy category of matrix (or linear) factoriza-
tions, we can construct a morphism stab.'/ 2HomHMF.ML1

;ML2
/ from a morphism
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'W L1!L2 which is the unique (up to homotopy) morphism such that the diagram

ML1

�1
//

stab.'/
��

L1

'

��

ML2

�2
// L2

commutes. We will use this to define the morphisms of matrix factorizations assigned
to generating foams, and to check that the foam relations are satisfied.

In doing so, we utilize facts about the stabilization of Koszul matrix factorizations. Let
fa;bg be a Koszul factorization over a C–algebra R, then there exists a morphism of
linear factorizations fa;bg!R=.b/, where the latter is viewed as a linear factorization
concentrated in degree zero.

Proposition 4.30 [4, Corollary D.3] If b is a regular sequence in R, then the map
fa;bg !R=.b/ is a stabilization.

Convention 4.31 In the following we use a large number of quotient rings of the form

Sym.X1j � � � jXa jXaC1 j � � � jXaCb/

hei.X1[ � � � [Xa/� ei.XaC1[ � � � [XaCb/ j i > 0i

where Sym.X1j � � � jXa jXaC1 j � � � jXaCb/ denotes the subring of CŒX1[� � �[XaCb �

of polynomials symmetric in each of the alphabets X1; : : : ;XaCb separately. Since
the quotient has the effect of identifying symmetric polynomials in the alphabets
X1[ � � � [Xa and XaC1[ � � � [XaCb , we use the shorthand

Sym.X1j � � � jXa jXaC1j � � � jXaCb/

hX1[ � � � [Xa DXaC1[ � � � [XaCbi

for such a quotient ring. We further abbreviate by writing m for a 1–element alphabet
XD fmg in this notation.

Proposition 4.30 implies that the matrix factorizations appearing in (4-15) are stabiliza-
tions of the linear factorizations

Sym.W jXjY /=hW [XD Y i and Sym.W jXjY /=hY DW [Xi:

Moreover, denoting the matrix factorization associated to a web W by MF.W /, we
have that, for the maps
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MF. /
�
�!

Sym.V jY /
hV D Y i

;

MF. /
�
�!

�
Sym.V jLjM/

hV D L[Mi

�
˝Sym.LjM/

�
Sym.LjMjY /
hL[MD Y i

�
;(4-18)

MF. /
�
�!

�
Sym.V jW jL/
hV [W D Li

�
˝Sym.L/

�
Sym.LjXjY /
hLDX[Y i

�
;

MF. /
�
�!

Sym.V jX/
hV DXi

˝C
Sym.W jY /
hW D Y i

;(4-19)

MF
� �

�
�!

�
Sym.V jW jL/
hV [W D Li

�
˝Sym.L/

�
Sym.LjXjY /
hL[XD Y i

�
;

MF
� �

�
�!

�
Sym.W jXjM/

hW [XDMi

�
˝Sym.M/

�
Sym.V jMjY /
hV [MD Y i

�
;

the matrix factorizations are (homotopy equivalent to) stabilizations of the indicated
linear factorizations. The fact that these maps are stabilizations follows in each case,
except for the digon web in the second line, since the matrix factorizations are homotopy
equivalent to Koszul factorizations, and the indicated linear factorization is isomorphic
to the corresponding linear factorization which the Koszul factorization stabilizes.

The matrix factorization assigned to the digon web is a tensor product of Koszul
factorizations, and we must slightly generalize Proposition 4.30 to show that it sta-
bilizes the tensor product of the corresponding linear factorizations. Recall from [4,
Proposition D.1] that Proposition 4.30 can be proven as follows. One first considers the
Koszul complex fbg over R given by the regular sequence b . There exists a homotopy
equivalence (over C ) between fbg and R=.b/ which specifies a deformation retract
datum. Tensoring with the finite-rank matrix factorization K_ (the dual of the matrix
factorization K ) and applying perturbation gives a deformation retract datum over C
between K_˝R=.b/ and K_˝fa;bg which gives the quasi-isomorphism in (4-16).
Here we utilize the isomorphism of matrix factorizations K_˝R M ŠHomR.K;M /.

This same method (which is adapted from the results in Dyckerhoff and Murfet [11])
shows that the stabilization result for the digon web follows provided the tensor product
of Koszul complexes associated to the web only has homology in degree zero, and which
equals the corresponding tensor product of linear factorizations. We hence consider the
Koszul complexes C1 D fei.V /� ei.L[M/g and C2 D fei.L[M/� ei.Y /g over
the rings Sym.V jLjM/ and Sym.LjMjY /, respectively. Let S D Sym.LjM/, then
the homology of C1˝S C2 is computed using the Künneth spectral sequence to be

Hi.C1˝S C2/Š

�
Hi.C1/˝S

Sym.LjMjY /
hL[MD Y i

�
˚TorS

1

�
Hi�1.C1/;

Sym.LjMjY /
hL[MD Y i

�
;

Geometry & Topology, Volume 20 (2016)



3486 David E V Rose and Paul Wedrich

which is only nonzero when i D 0 (since Sym.V jLjM/=hV D L[Mi is a free
S –module) in which case it equals�

Sym.V jLjM/

hV D L[Mi

�
˝S

�
Sym.LjMjY /
hL[MD Y i

�
;

as desired.

We now use (4-17) to assign a morphism of matrix factorizations to each generating
foam, noting that the domain web of each generator is mapped to a matrix factorization
which is homotopy equivalent to a finite-rank matrix factorization. We send

(4-20)

aCb

b

a

7!

�
�L
�
˝x1 7!

�
x1 if �D ba;

0 all other � 2 P .a; b/;

�
;

aCba

b

7! .x1 7! x1˝x1/;
aCb

b

a

7! .x1˝x1 7! x1˝x1/;

aCb

b

a
7!

�
x1˝x1 7!

X
˛2P.a;b/

.�1/jy̨j�V
y̨
˝�Y

˛

�
;

c

b

a

bCc

aCb

7! .x1˝x1 7! x1˝x1/;

c

b

a
aCb

bCc

7! .x1˝x1 7! x1˝x1/;

where in each case the map on the right-hand side describes a morphism between the
linear factorizations from (4-19) corresponding to the top and bottom webs and xf
denotes the equivalence class of f in the quotient. In these formulae, �W

�
denotes

the Schur polynomial in the alphabet W corresponding to the partition �, and ba D

.b; : : : ; b/, the partition of ab given by a sequence of b ’s of length a. We can now
proceed with the proof of Theorem 4.29.

Proof It suffices to show that the foam relations hold in HMF. As we mentioned
above, rather than check them all by hand, we will instead adopt a method of proof
from [36]. By an argument similar to that in Section 4 of that paper, it suffices to
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construct a family of 2–functors ˆmW UQ.glm/!HMF which kill non-N–bounded
weights and the 2–morphism

P
�
�

�
;

and so that the triangles

UQ.glm/ //

�m ''

UQ.glmC1/

�mC1

��

HMF

commute. From the definition of the foamation 2–functor in [36] and our above
assignments to webs and foams, it is clear how such 2–functors should be defined.
To see that they are well-defined, we must check that all relations in UQ.glm/ are
satisfied. This in turn implies that we need only check the foam relations which are
the analogs of the relations in UQ.glm/. Since (4-20) implies that the image in HMF
of the “Matveev–Piergallini (M–P) foam relations” from (2-1) are satisfied, things
simplify even more, and we finally deduce that we need only check a subset of the
general foam relations, which we verify below.

To do so, we will again employ stabilization. The matrix factorizations through which
the (images of the) foam relations factor are all given as tensor products of Koszul
factorizations assigned to trivalent webs, and we can consider the corresponding tensor
product of the linear factorizations they stabilize. This gives a diagramN

i MLi;1

�1
//

stab.'1/
��

N
i Li;1

'1

��N
j MLj ;2

�2
//

stab.'2/ ��

N
j Lj ;2

'2��
:::

stab.'l�1/
��

:::

'l�1

��N
k MLk;l

�k
//
N

k Lk;l

which commutes up to homotopy. Each side of a foam relation gives rise to such a
diagram, and the morphism of matrix factorizations is uniquely determined by the
morphism of linear factorizations, provided the matrix factorizations assigned to the
bottom webs are homotopic to ones which are finite-rank, and provided that the matrix
factorizations assigned to the top webs (ie the bottom left in the above diagram)
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are homotopic to ones which stabilize the corresponding tensor product of linear
factorizations.

The finite-rank condition for the bottom webs follows similarly to results of Wu [43] in
the undeformed case. To see that the matrix factorizations corresponding to the top webs
(are homotopic to ones which) stabilize the corresponding linear factorizations, we note
that we’ve already shown this for [36, Equations (3.9)–(3.12)]. For the remainder of the
relations we argue as for the digon web above. It again suffices to show that the tensor
product of Koszul complexes associated to the top web has homology only in degree
zero, and equal to the corresponding tensor product of linear factorizations. In each
case, this follows from (possibly repeated) use of the Künneth spectral sequence, and
the fact that Sym.V jW jX/=hV [W DXi is a free module, over both Sym.V jW /

and Sym.X/. Note that this is essentially a version of results of Becker [3, Theorem 2]
and Webster [40, Theorem 2.5] for deformed potentials.

We now check the requisite foam relations (with numbering and notation from [36]
for the remainder of this section) by confirming that the corresponding maps of linear
factorizations agree.

[36, Equation (3.9)] By [36, Remark 3.2], this only needs to be checked when � Des ,
and then follows since multiplication by ei.X/ on Sym.V jW jX/=hV [W DXi is
equal to multiplication by ei.V [W /.

[36, Equation (3.10), first relation] Again by [36, Remark 3.2], it suffices to check
the case when �˛ D 1. Let V and Y be alphabets with kC 1 variables. It suffices to
show that the morphism corresponding to the right-hand side is the identity, hence we
compute

S.V jY /
hVDY i

//

x1

S.V jmjM/

hVDm[Mi
˝

S.mjMjY /
hm[MDY i

//

x1˝x1

S.V jmjM/

hVDm[Mi
˝

S.mjMjY /
hm[MDY i

//

mk˝x1

S.V jY /
hVDY i

;

x1;
� // � // � //

which verifies the relation. (Recall that S stands for Sym here.)

[36, Equation (3.10), second relation] It suffices to check the case when with aD

1D b , by the M–P relation, isotopy, and [36, (3.9)]. We compute the left-hand side:

S.W jX/
hWDXi

//

x1

S.W jmjn/
hWDfm; ngi

˝
S.mjnjX/
hfm; ngDXi

//

x1˝x1

S.W jmjn/
hWDfm; ngi

˝
S.mjnjX/
hfm; ngDXi

//

f .m/g.n/˝x1;

Sm˝x1
x1˝x1

S.W jX/
hWDXi

;

x1;

0;

� // � //

� //

� //
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while the right-hand side is the negative of the map which is the same as the above,
but with the second map given instead by x1˝x1 7! g.m/f .n/˝x1. Equivalently, this
is the negative of the map which is the same as the above, but instead with the third
map given by xn˝x1 7! x1 and x1˝x1 7! 0. Since xn˝x1 D e1.W /˝x1� Sm˝x1 and
e1.W /˝x1 7! 0 under the final map, this confirms the relation.

[36, Equation (3.11)] The aD 1D b case of this relation is used to deduce that the
image of the 3rd nil-Hecke relation is satisfied. A careful analysis of the proof of [36,
Lemma 3.7] shows that the only remaining version of this relation required are those
when aD 1, b D 2 and aD 2, b D 1, which are used to prove the 2nd Reidemeister
III-like nil-Hecke relation.

In the aD 1D b case, the right-hand side corresponds to the sum of the map

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

//

x1˝x1

Sm˝x1

Sym.W jX/
hW DXi

//

x1

e1.W /

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

;

x1˝x1;

mCn˝x1;

� //

� //

� //

� //

and the negative of the map

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

//

x1˝x1

Sm˝x1

Sym.W jX/
hW DXi

//

0

x1

Sym.W jmjn/
hW D fm; ngi

˝
Sym.mjnjX/
hfm; ng DXi

;

0;

xn˝x1;

� //

� //

� //

� //

which confirms that this map equals the identity, as desired.

For the a D 1, b D 2 case, let jV j D 3 D jY j and jMj D 2. The right-hand side
corresponds to the sum of the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MD Y i

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

x1

e1.V /

e1.V /2�e2.V /

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MD Y i

;

x1;

mCe1.M/˝x1;

m2Cme1.M/Ce1.M/2�e2.M/˝x1;

� // � //

� // � //

� //

� //
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the negative of the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

0

x1

e1.V /

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

;

0;

e1.M/˝x1;

me1.M/Ce1.M/2˝x1;

� // � //

� // � //

� // � //

and the map

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

//

x1˝x1

Sm˝x1

m2˝x1

Sym.V jY /
hV D Y i

//

0

0

x1

Sym.V jmjM/

hV Dm[Mi
˝

Sym.mjMjY /
hm[MDZi

;

0;

0;

e2.M/˝x1;

� // � //

� // � //

� // � //

which confirms that this map is the identity. The case aD 2, b D 1 follows similarly.

[36, Equation (3.12)] Both sides of this relation are given by

Sym.AjLjV /
hAD L[V i

˝
Sym.LjW jM/

hLDW [Mi
˝

Sym.MjXjY /
hMDX[Y i

��

x1˝x1˝x1_

��Sym.AjS jY /
hAD S[Y i

˝
Sym.S jT jX/
hSD T [Xi

˝
Sym.T jV jW /

hT D V [W i
; x1˝x1˝x1:

Hence, they are equal. In the above, the tensor products are each taken over symmetric
polynomials in the common alphabets between the tensor factors.

[36, Equations (3.13) and (3.14)] It suffices to prove these relations in the case when
aD 1D c ; however, it isn’t much more difficult to verify the general relation. To check
this, we first note that both of the possible ways to construct the crossing

b

a

c
b�c

aCb

aCb
�c
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correspond to the morphism of linear factorizations

Sym.V jW jL/
hV [W D Li

˝
Sym.LjXjY /
hLDX[Y i

//

x1˝x1

Sym.W jMjY /
hW DM[Y i

˝
Sym.V jMjX/
hV [MDXi

;

x1˝x1;
� //

and similarly both ways of constructing the crossing

b

a

c

b�c

aCb
aCb
�c

give the map

Sym.W jMjY /
hW DM[Y i

˝
Sym.V jMjX/
hV [MDXi

//

x1˝x1

Sym.V jW jL/
hV [W D Li

˝
Sym.LjXjY /
hLDX[Y i

;P
˛2P.a;c/

.�1/jy̨j �V
y̨
˝�Y

˛ :� //

The first is clear, and the second follows, for example, since one way of constructing
the sideways crossing is given by the composition:

�!
Š
�! �!

The corresponding morphism of linear factorizations is the composition

S.W jMjY /
hWDM[Y i

˝
S.V jMjX/
hV[MDXi

��

x1˝x1_

��

S.V jW jL/
hV[WDLi

˝
S.LjSjT /
hLDS[T i

˝
S.T jMjY /
hTDM[Y i

˝
S.SjMjX/
hS[MDXi

��

P̨
.�1/jy̨j�V

y̨
˝x1˝x1˝�M

˛_

��

S.V jW jL/
hV[WDLi

˝
S.LjP jY /
hLDP[Y i

˝
S.P jSjM/

hPDS[Mi
˝

S.SjMjX/
hS[MDXi

��

P
˛;ˇ;

.�1/jy̨jc˛
ˇ;
�V
y̨
˝�Y

 ˝�
M
ˇ
˝x1

_

��

S.V jW jL/
hV[WDLi

˝
S.LjXjY /
hLDX[Y i

;
P

2P.a;c/

.�1/jy j�V
y
˝�Y

 ;

where in the summations ˛ 2 P .aC b� c; c/, ˇ 2 P .b� c/ and  2 P .a/, and we
use the fact that �M

ˇ
˝x1 7! 0 under the last map if jˇj � c.b � c/. Given this, the

only time the Littlewood–Richardson coefficient c˛
ˇ;

is nonzero is when ˇ D cb�c

Geometry & Topology, Volume 20 (2016)



3492 David E V Rose and Paul Wedrich

(so  2 P .a; c/ and y̨ D y ), in which case it equals one. Both of the relations then
follow from the descriptions of these maps.

[36, Equations (3.15) and (3.16)] The linear factorization stabilized by the matrix
factorization corresponding to the top and bottom webs in [36, (3.15)] is�

Sym.P jl jw/
hP D fl; wgi

˝
Sym.w jW jL/
hw[W D Li

�
˝

�
Sym.LjMjz/
hLDM[ zi

˝
Sym.l jMjX/
hl [MDXi

�
;

where all of the tensor products are over polynomials partially symmetric in the common
variables. The map between linear factorizations corresponding to the first term on the
left-hand side of [36, (3.15)] is determined by the fact that

x1˝x1˝x1˝x1 7! x1˝x1˝x1˝x1 and Sw˝x1˝x1˝x1 7! x1˝x1˝xz˝x1

and the second term is determined by

x1˝x1˝x1˝x1 7! 0 and Sw˝x1˝x1˝x1 7! x1˝x1˝xz˝x1� Sw˝x1˝x1˝x1:

The difference between these two maps is thus the identity, confirming the relation.
The check of [36, (3.16)] is completely analogous.

[36, Equations (3.17)–(3.20)] The left-hand side of [36, (3.17)] corresponds to the
morphism of linear factorizations

Sym.V jLjM/

hV D L[Mi
˝

Sym.P jLjW /

hP [LDW i
˝

Sym.MjXjY /
hMDX[Y i

!
Sym.P jV jS/
hP [V D Si

˝
Sym.S jT jY /
hSD T [Y i

˝
Sym.T jW jX/
hT DW [Xi

given by

x1˝x1˝x1 7!
X

˛2P.b;d/; ˇ2P.a;d/

.�1/jy̨jCj
y̌j�P
y̨
�P
y̌
˝�Y

ˇ
˝�X

˛ ;

while the right-hand side is given by

x1˝x1˝x1 7!
X

2P.aCb;d/

c


˛;ˇ
.�1/jy j�P

y
˝�Y

ˇ
˝�X

˛ :

The relation then holds since

�P
y̨
�P
y̌
D

X
y

c
y

y̨ y̌
�P
y

and c
y

y̨ y̌
D c



˛;ˇ
:
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Relation [36, (3.18)] holds since both sides are given by the map

Sym.P jV jS/
hP [V D Si

˝
Sym.S jT jY /
hSD T [Y i

˝
Sym.T jW jX/
hT DW [Xi

!
Sym.V jLjM/

hV D L[Mi
˝

Sym.P jLjW /

hP [LDW i
˝

Sym.MjXjY /
hMDX[Y i

sending x1˝x1˝x1 7! x1˝x1˝x1. The final two relations follow via similar computations.

Isotopy relations All isotopy relations follow from the fact that both way to construct
the “sideways crossings” give the same map in HMF, and the fact that the foam relation

�

and its analogs are satisfied in HMF. Both are direct computations.

Dot relation Finally, the foam relation

P

0@ 1

�

1AD 0

holds via a direct computation that multiplication by P .X / is null-homotopic in
the endomorphism algebra of the Koszul factorization fQ.X /�Q.Y /;X �Y g over
CŒX;Y �.

5 The link invariant

In this section, we assign a complex ŒŒ���† of webs and foams to certain labeled10 tangle
diagrams � , which, up to homotopy equivalence, is an invariant of the corresponding
labeled tangle. We then show how to obtain a link homology isomorphic to that
defined by Wu [42] from this invariant, proving Theorem 1.3. Finally, we use the foam
technology to prove Theorem 1.1.

10In the study of quantum invariants, links and tangles are usually referred to as “colored” by repre-
sentations of a Lie algebra (or, more precisely, a quantum group). Since we reserve the word colored for
webs and foams colored by idempotents, recall that we instead use the nonstandard terminology “labeled”,
which agrees with our use of this word for webs.

Geometry & Topology, Volume 20 (2016)



3494 David E V Rose and Paul Wedrich

The most precise setting for this invariant is in a certain limiting version of N Foam† .
Note that N Foam† is the direct sum of foam categories N Foam†.K/, where K DPm

iD1 ai is the sum of the entries in an object .a1; : : : ; am/. We have a 2–functor
N Foam†.K/!N Foam†.KCN / given by taking disjoint union with an N–labeled
edge/facet. The natural setting for the tangle invariant11 is the direct limit

N Foam.kCN1/† WD lim
��!

s

N Foam†.kCN s/I

however, the invariant can be viewed in N Foam†.kCN s/ for s sufficiently large.

We begin by defining ŒŒ���† on generating tangles, and then explain how to define the
invariant for general tangles. Given a labeled, oriented tangle diagram � , let c1; : : : ; cr

be the labels of the right endpoints and d1; : : : ; dl be the labels of the left endpoints.
Set

OR.ci/D

�
ci if � is directed out from the i th endpoint,
N � ci if � is directed into the i th endpoint;

OL.di/D

�
di if � is directed into the i th endpoint,
N � di if � is directed out from the i th endpoint;

then ŒŒ� �� is defined to be a complex in the Hom–category

Hom
�
.N; : : : ;N;OR.c1/; : : : ;OR.cr //; .N; : : : ;N;OL.d1/; : : : ;OL.dl//

�
of N Foam

�Pr
iD1 OR.ci/CN s

�† .

For labeled cap and cup tangles we sethh
a

ii†
D

N�a

a
N ;

hh
a
ii†
D

N�a

a
N ;hh

a
ii†
D

N�a

a
N ;

hh
a
ii†
D

N�a

a
N ;

and for labeled, left-directed crossings we use homological shifts of the Rickard
complexes T 1.a;b/ from (2-12) and (2-13) to set

hh
b

aii†
Dˆ†.T 1.a;b//Œmin.a; b/�;

hh
b

aii†
Dˆ†.T �11.a;b//Œ�min.a; b/�;

11Here k depends on the boundary and labeling of the tangle.
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where here Œ�� here denotes a shift in homological degree. (In [36], the crossing also
involved a shift in the quantum grading; however, we omit it from this definition since
this grading is broken in N Foam† .)

Example 5.1 The complex assigned to a negative crossing with a � b — compare
with (2-15) — ishh

b

aii†
D

a

b
b

db
�!

a

b
b�1

db�1
��!�� �

d1
�!

a

b

where the underlined term is in homological degree zero and the differential is given
by:

dk WD

k

Every labeled tangle admits a diagram given as the horizontal composition ˝ of tangles
which are the disjoint union t of labeled, directed identity tangles with one of the
tangles on which we’ve already defined the invariant. We define ŒŒ���† on the disjoint
union of identity tangles and a crossing by first taking the disjoint union of ˆ†.zT 1.a;b//
or ˆ†.zT �11.a;b// with the identity webs (resp. foams) corresponding to the identity
tangle, then taking the disjoint union with N–labeled strands (resp. facets). Finally,
we define the invariant on the disjoint union of identity tangles with a cap or cup by
taking the disjoint union of the relevant webs with the corresponding identity webs
then repeatedly horizontally composing ˝ with webs

N

a
or

a

N

to obtain a web mapping between objects where the top-most label is N in both the
domain and codomain, and then taking the disjoint union with N–labeled strands. Note
that the action of t as well as ˝ on complexes is modeled on the tensor product of
chain complexes, exactly as in Bar-Natan’s canopolis formalism [1].

Example 5.2 For the Hopf link we use the ladder-type link diagram:

N

N

N

N

N�i

jj

i i

N�i
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Proposition 5.3 Given a oriented, framed, labeled tangle � , the complex ŒŒ���† is
independent, up to homotopy, of the diagram used.

Proof Exactly the same as in [36, Theorem 4.8].

In the case that the tangle is actually a labeled link L, all of the boundary points in the
complex ŒŒL��† are N–labeled and all webs in it are endomorphisms of a highest weight
object of the form otop WD .N; : : : ;N /. Hence we can apply the representable functor

taut.�/ WD Hom.1otop ;�/

to ŒŒL��† to obtain a complex of vector spaces. Moreover, we claim that each term in
this complex is finite-dimensional. Indeed, every web in End.otop/ is isomorphic to
a (finite) direct sum of identity webs 1otop . Foam facets with label N are additively
indecomposable, since the only admissible coloring by idempotents is given by the
full multiset †. It follows that endomorphisms of 1otop are all given by the images of
closed diagrams in LUQ.glm/, which act by scalars in N Foam† , confirming our claim.

Denote by KhR†.L/ the homology of this complex.

Theorem 5.4 Up to shifts in homological degree, KhR†.L/ is isomorphic to Wu’s
colored, deformed Khovanov–Rozansky homology of the mirror link L0 .

Proof This result follows in the spirit of the proof of [36, Theorem 4.12]. We cannot
directly apply the methods there, however, since the 2–functor LUQ.glm/!N Foam†

is not a 2–representation in the strict sense, as it doesn’t preserve the grading.

Nevertheless, we can consider the 2–category LU0�N
Q

.glm/
† where we’ve imposed

relation (3-2) for each weight. This implies the specifications of fake bubble parameters
in highest weight to elementary symmetric functions evaluated at †. Given a labeled
link L, we can pull the complex ŒŒL��† back to LU0�N

Q
.glm/

† and simplify until each
term the complex only consists of direct sums of the identity 1–morphism on the
highest weight .N; : : : ;N; 0; : : : ; 0/ in LU0�N

Q
.glm/

† (which maps to the object otop

under ˆ† ).

The homology of the link can be computed entirely in the context of LU0�N
Q

.glm/
† .

Moreover, similarly to the case discussed in [36], any link homologies defined using
the images of the Rickard complexes in a “skew Howe” 2–representation factoring
through LU0�N

Q
.glm/

† must agree (see the work of Cautis [6] for the first appearance
of this idea).

Deformed foams give such a 2–representation, as do deformed matrix factorizations,
via the 2–functors �m from the proof of Theorem 4.29. Note that the link homology
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theory defined using �m is not defined in exactly the same way as in Wu’s work.
Indeed, there are the following differences: Wu’s assignment of complexes to link
crossings is opposite to ours, he has shifts in homological degree for some crossings
in order to obtain invariance under the first Reidemeister move, and he does not use
matrix factorizations associated to N–labeled web edges.

Nevertheless it is easy to see the relation between our invariant and Wu’s. Given a
labeled braid, the 2–functor �m assigns a to it a complex of matrix factorizations which,
up to shifts in homological degree, agrees with the complex of matrix factorizations
Wu assigns to the mirror image of the braid. It hence suffices to show that the vector
spaces and differentials in this complex after closing the braid agrees with the those
obtained by closing using N–labeled edges and taking Hom from 1otop . This follows
exactly as in [36, Theorem 4.12].

Remark 5.5 As a variation of (2-14), where ai�aiC1 , let 1aT 0�1
i denote the complex

� � � 1aE
.ai�aiC1Cs/

i F .s/i f�sg
d 0s
�!� � �

d 0
2
�! 1aE

.ai�aiC1C1/

i Fif�1g
d 0

1
�! 1aE

.ai�aiC1/

i

with the underlined term (as usual) in homological degree zero and differentials given
by compositions of splitters and thickness-1 cap 2–morphisms.

It is easy to check that 1aT 0�1
i is isomorphic to 1aT �1

i via the chain map given on
objects by

˙

��C kk

�

for a suitable choice of signs. Analogously, the Rickard complexes (2-12) are isomorphic
to complexes with objects E.s/i F .ai�aiC1Cs/

i and in general we may assume that the
complexes ŒŒ���† associated to crossings consist of webs of shape:

We now proceed with the decomposition of the invariant. Consider an oriented, labeled
tangle diagram � or, more specifically, an oriented, labeled link diagram L. Our goal
is to understand the dependence of ŒŒ���† and KhR†.L/DH�.taut.ŒŒL��†// on †. This
is done in four steps:
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(1) In Section 5.1 we show that ŒŒ���† , regarded as a complex over .N Foam†/^ ,
decomposes into a direct sum of complexes ŒŒ�f ��† indexed by colorings f of
the tangle components by multisubsets of †.

(2) In Section 5.2 we show that the summands ŒŒ�f ��† from the first step correspond
under the splitting functor � from Section 4.3 to a tensor product with one
tensorand ŒŒ��2f ��† for every different root � 2†.

(3) In Section 5.3 we show that foams colored with only one root � behave like
slN� foams.

(4) In Section 5.4 we assemble the previous results for � DL and track them through
relatives of the functor taut to prove Theorem 1.1.

5.1 The direct sum decomposition of the invariant

We already know that if we work in .N Foam†/^ , all webs in the complex ŒŒ���† split
into direct sums under coloring web edges with multisubsets of †. The goal of this
section is to show in Lemma 5.10 that the colorings that contribute to ŒŒ���† are the
ones that are consistent along tangle components. This follows from the orthogonality
of idempotents coming from inconsistent colorings, see Corollary 5.8, after observing
in Proposition 5.7 that decorations “slide through crossings”.

Definition 5.6 Let p , q , r and s be symmetric polynomials of the appropriate number
of variables. Then we define endomorphisms of the chain complexes for negative
crossings

hh r

s

p

q

ii†
2 End

�hh
b

aii†�
given by

r

s

p

q

on the webs appearing in the complex. Here we have assumed a� b . For the cases of
a� b and for the positive crossings we make analogous definitions.

Proposition 5.7 Let p and q be symmetric polynomials in the appropriate number of
variables. Then the following chain maps are homotopic:

hh p ii†
�

hh
p

ii†
;

hh
q

ii†
�

hh q ii†
Analogous statements also hold for the positive crossing.
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Proof From the foam description of these chain maps, it is easy to see that composing
such chain maps is equivalent to multiplying decorations on the foam facets. Since
null-homotopic chain maps form an ideal in the ring of endomorphisms of the crossing
complex, it suffices to find homotopies in the cases where p (or q ) is a complete
symmetric polynomial hi . We will only prove the first homotopy, as the other case is
analogous. Denote hi acting on the left as hl

i and on the right as hr
i . Recall that the

differential for negative crossing complexes is given using 1–labeled cap foams. We
now prove by induction on i � 1 that the foams

�i WD i�1
�

constructed using .i�1/–dotted 1–labeled cup foams, assemble to a chain homotopy
from hl

i to hr
i . We start the computation with an equation from [21, Lemma 4.6.4],

which under the foamation functor ˆ† gives

.�1/b�aˆ†

0BBBBBB@

k

k a�bCk

�
i�1

a�bCk

.a; b/
C

k

k a�bCk

�
i�1

a�bCk

.a; b/

1CCCCCCAD
X

pCqCrDi

ˆ†

0BBBBBB@ hp hq

k

k a�bCk

�

�Cr

a�bCk

.a; b/

1CCCCCCA
which is a foam identity where the left-hand side is ˙.�id C d�i/. We continue
the computation but, since from the next step onwards all foams are identity foams
with decorations, we only draw the underlying webs and write decorations next to the
corresponding web edges. Using [36, Equation (3.32)] to resolve the “bubble” in the
previous step, we get that this equals:

X
pCqCrCsDi

hs

hqhp

.�1/r er

D

X
pCqCrDi

hp

hq

.�1/r er

D

hi

1

C

X
pCqCrDi

p<i

hp

hq

.�1/r er
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�

hi

.�1/r
C

X
pCqCrDi

p<i
.�1/r

.�1/r

hp

hq

.�1/r er

D

hi

.�1/r

.�1/r

„ ƒ‚ …
Dhl

i

�

hi.�1/r

.�1/r

„ ƒ‚ …
Dhr

i

C

iX
rD0 .�1/r

.�1/r

.�1/r er hi�r„ ƒ‚ …
D0

In the case where i D 1, the homotopy � at the beginning of the second line is an
equality. This constitutes the start of the induction. For the induction step we use the
homotopy of hl

p and hr
p for p < i to proceed to the second line. This is possible

because of the fact, which can easily be checked via the decoration migration relations
on foams (see (2-3)), that X

qCrDi�p

hq

.�1/r er

is a chain map.

Corollary 5.8 Let A, B , C and D be multisubsets of † of the appropriate size and,
by abuse of notation, we denote the associated idempotents with the same letter. Then

hh A

B

C

D

ii†
is an idempotent chain map. Furthermore, if A¤D or B¤C , then it is null-homotopic.
Analogous statements hold for positive crossings.

Proof We have already noted that composition of such chain maps corresponds to
multiplication of decorations. Thus, the chain map is clearly idempotent. Now suppose
that A¤D or B ¤ C . Then, using Proposition 5.7, we have

hh A

B

C

D

ii†
�

hh AD

BC

ii†
� 0

since A and D or B and C are orthogonal idempotents.

Lemma 5.9 There is a homotopy equivalence of complexes over .N Foam†/^

hh
b

aii†
�

M
A;B

hh A

B

B

A
b

aii†
;
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where the summands on the right-hand side denote the subcomplexes of the complex
on the left-hand side obtained by coloring webs and foams by idempotents A and B at
the indicated positions. In the direct sum, A and B range over all multisubsets of † of
the correct size. The analogous statements hold for positive crossings.

Proof The objects of the complex on the left-hand side, which are webs, split into
direct sums according to the definition of .N Foam†/^ when one colors all boundary
edges by idempotents. The differential clearly respects this decomposition since it
locally looks like an identity foam around the decoration by idempotents. Finally,
Corollary 5.8 shows that summands are null-homotopic if they do not come from a
coloring that is consistent along the strands in the crossing, and working in the homotopy
category of such complexes we immediately cancel null-homotopic summands.

The following global version of this lemma follows directly:

Lemma 5.10 Let � be a labeled, oriented tangle diagram. The complex ŒŒ���† , regarded
over .N Foam†/^ , splits into a direct sum of complexes ŒŒ�f ��† , and there is one such
piece for every coloring f of tangle components by idempotents corresponding to
multisubsets of † of the appropriate size.

5.2 The tensor product decomposition of the summands

In this section we show that the functor � from Section 4.3 can be used to split
idempotent colored summands ŒŒ�f ��† of the chain complex associated to a tangle
diagram — as described at the end of the previous subsection — into the tensor product
complex

N
�ŒŒ��2f ��

† of their �–components. We now define these concepts:

Definition 5.11 Let ŒŒ��2f ��† , the �–component of ŒŒ�f ��† , be the sequence of colored
webs and foams between them obtained by taking the �–component of every web and
foam appearing in ŒŒ�f ��† . It is easy to check that ŒŒ��2f ��† is itself a chain complex
over .N Foam†/^ .

Let
N
�ŒŒ��2f ��

† be the tensor product complex of ŒŒ��2f ��† given on webs by taking
disjoint union t. In particular, the webs in this chain complex are exactly the associated
split webs

F
�W� of webs W in ŒŒ�f ��† . The foams giving the components of the

differential in
N
�ŒŒ��2f ��

† are (up to a sign) the disjoint union of the �–components
of the differential foams in ŒŒ�f ��† . The sign is the usual sign that is necessary to make
the differential in the tensor product complex square to zero.
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Applying the web splitting functor � from Section 4.3 to the chain complex ŒŒ�f ��†

results in a chain complex consisting of exactly the same split webs as
N
�ŒŒ��2f ��

† .
Furthermore, there exists a natural choice of homological grading on ŒŒ��2f ��† that
makes the bijection between webs in �.ŒŒ�f ��†/ and

N
�ŒŒ��2f ��

† grading-preserving.
This is explained for the local case of a single crossing in Remark 5.12 and immediately
generalizes to ŒŒ�f ��† .

The main task in this section is to prove Theorem 5.14, which states that the isomorphism
foams TW in the definition of � can be chosen so that the differential of �.ŒŒ�f ��†/
equals the differential of

N
�ŒŒ��2f ��

† , and we have

�.ŒŒ�f ��
†/D

O
�

ŒŒ��2f ��
†:

Remark 5.12 Consider the webs in the chain complex associated to a crossing, eg
with cap differentials for the sake of concreteness, where we have already placed
idempotents on all boundary edges of the webs:

Wk WD k

A

B

B

A

Without loss of generality, we assume that jAj � jBj. If such a web is not isomorphic
to the zero web, it decomposes into a direct sum by coloring the interior edges of the
web with various idempotents. The crossing complex starts with Wkmax D WjBj in
homological degree zero – which is isomorphic to the zero web if and only if A]B 6�†,
but which is indecomposable otherwise. Further, there exists a minimal kmin D jB nAj

such that Wkmin is nonzero and indecomposable:

WkmaxD

A

B

B

A

D

A

A]B B

B

A

; WkminD kmin

A

B

B

A

D

AA\B

A[B B

B

A

AnBBnA

Now consider the target Wkmax�1 of the differential on Wkmax :

Wkmax�1 D kmax�1

A

B

B

A

D

M
�

f�g

.A]B/nf�g

Anf�gBnf�g

More generally, any nonzero web Wk decomposes into a direct sum of webs which
differ in labels and colorings from Wkmax by a rerouting of a multisubset C of A\B

around the square:
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WC WD

C

.A]B/nC

AnCBnC

Such an indecomposable web is nonzero if and only if .A]B/ n C � †. Clearly
C DA\B satisfies this because we assume that A;B�†. Since this condition can be
checked for every root individually, there is a minimal Cmin such that WCmin and every
WC for Cmin�C �A\B is nonzero. We can think of the set of admissible C as lying
on the lattice Zl with the k th coordinate indicating the multiplicity of the k th root in C .
Then it is clear that the homological grading of a web is the sum of the coordinates
and the support of the nonzero WC is an l –dimensional box. Components of the
differential are caps colored by a single root �k and hence map between summands in
which the rerouting sets C differ by �k , ie map between lattice points which differ
by 1 in the k th coordinate only. The differentials in this complex already appear as
the ones coming from a tensor product of complexes — one for each root �k — with
homological grading the k th coordinate in the lattice and with differential corresponding
to the �k colored cap differential.

In the next lemma we collect commutation relations needed in the proof of Theorem 5.14.
Red facets are colored with a multisubset containing a single root �, blue facets are
colored with a multisubset not containing �, and the coloring of the green facets is
uniquely determined or arbitrary — generically, they contain both � and other roots.

Lemma 5.13 Splitting off or merging a red facet commutes with arbitrary M–P foams,
red–blue digon creation, digon removal, zip and unzip foams, up to certain units. (The
graphics in the following proof illustrate and make precise these statements.)

Proof Throughout the proof of this lemma, the displayed graphics are to be interpreted
as local foam pieces. First we consider the case of M–P foams, by which we mean the
elementary foams between the two possible two-splitter (two-merger) webs. They are
shown in green in the following graphics:

D ; D
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The first commutation relation follows from a version of the foam relation [36, (3.12)]
and repeated use of relation (2-1). The second commutation relation holds because
it is an isotoped version of the pitchfork relation [36, (3.19)]. There are analogous
versions of these relations where the seam attaching the red facet to the rest of the foam
is reoriented and inclined the other way, and another four relations hold for a red facet
split off on the back-side of the green foam. Clearly, red mergers and splitters then also
commute with the inverse M–P foams. These 16 commutation relations describe all
possible interactions of red splitters and mergers with a M–P foam between splitter
webs. The cases of M–P foams between merger webs is handled similarly.

While the commutation relations with M–P foams are independent of the coloring of
foam facets with idempotents, this is in general no longer the case for digon creation,
digon removal, zip and unzip foams. Instead, we get commutation up to unit decorations,
using the relations in Section 4.1. If we denote the foams that split off or merge a red
facet by d and the foam across which we want to commute it by X , then the relations
we get take the form

X ı d D u1 ı d ıu2 ıX 0;

where u1 and u2 are identity foams with decorations that are invertible under the
composition ı in the 2–morphism direction, and X 0 is a foam that is equal to X as a
CW-complex, but might have different labels on facets.12 Practically this means that
we can commute the red facet past the foams mentioned in the statement of the lemma
at the expense of invertible decorations. Furthermore, we will see that we can keep the
red facet clear of all such decorations.

First we look at the case of a digon creation. The following graphics represent the local
piece around the digon creation:

D ; D

�2

�1

ı1

ı2

We suppress the precise description of the unit decorations, since they are not immedi-
ately relevant for the following discussion and can easily be reconstructed from the
description here and the relations in Section 4.1. We do, however, keep track of where

12Facets which would have label 0 have to be erased in X 0 .
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the decorations are placed and of their type: we place a pair ı1 , ı2 on faces with alpha-
bets X and Y respectively for a decoration of the form

P
˛2P.�;�/.�1/jy̨j�˛.X/�y̨.Y /

and �1 , �2 for the corresponding inverse decoration.

The first commutation relation holds because it is a M–P foam with its inverse; see
relation (2-1). For the second one we first introduce a red–blue blister via relation (4-7)
below the seam of the red facet, next we slide this seam across the seam of the blister
using relation (2-1), and finally we use (4-6) (with inverse units �) to join the blister
and the digon creation in the upper region of the foam.13 Analogous identities hold for
sliding a facet past a digon creation on the other side.

Next we consider the case of an unzip:

D ; D

X
�;ı

�2

�1

ı1

ı2

The first commutation relation again holds because it is a M–P foam with its inverse.
For the second one, we first break the green strip in the lower half of the diagram
on the left-hand side of the relation using relation (4-2). The seam bounding the
upper green region can then be moved upward across the seam of the red facet using
relation (2-1), and finally the whole upper green region can be removed via relation
(4-3) at the expense of a unit ı acting on top. Similar commutation relations hold for
digon removal and zip foams.

Theorem 5.14 Let ŒŒ�f ��† be an idempotent colored summand of the chain complex
associated to a tangle diagram, then there exists a choice of isomorphism foams TW

used to define the functor � (see Definition 4.26) such that �.ŒŒ�f ��†/D
N
�ŒŒ��2f ��

† .

Proof Recall from Definition 4.24 and the proof of Proposition 4.25 that � is the
composition of functors �2 and �1 . The latter acts on complexes by replacing colored
webs W by L˝W ˝R and foams d by idL˝ d ˝ idR . We prove this theorem by
constructing splitter isomorphism foams

TW W �1.W /DL˝W ˝R!
G
�

W� D �.W /

13Here, we avoid the use of relation [36, (3.13)], which would put decorations on the split off red facet.
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for each colored web W in ŒŒ�f ��
† that give an isomorphism of chain complexes

�1.ŒŒ�f ��
†/ !

N
�ŒŒ��2f ��

† . That is, we have to check that the TW assemble to a
chain map with respect to the differential d1 WD idL˝ d ˝ idR on �1.ŒŒ�f ��

†/ and the
differential d2 on

N
�ŒŒ��2f ��

† . If d1W �1.W1/! �1.W2/, then we need

(5-1) TW2
ı d1 D d2 ıTW1

:

Actually, it suffices to construct isomorphism foams T 00
W
W �1.W / ! �.W / such

that, for every web W in ŒŒ�f ��
† , there is an identity foam with unit decoration

uW W �.W /! �.W / such that

(5-2) T 00W2
ı d1 D uW2

ı .˙d2/ ıu�1
W1
ıT 00W1

:

Then setting T 0
W
WD u�1

W
ıT 00

W
gives isomorphism foams that satisfy

T 0W2
ı d1 D .˙d2/ ıT 0W1

and with a suitable choice of signs TW WD ˙T 0
W

will satisfy (5-1). That such a sign
assignment always exists is well-known and can be proved along similar lines as the
fact that Khovanov homology is independent of the numbering of the crossings in a
link diagram.

It remains to construct web splitting isomorphism foams T 00
W

that satisfy (5-2). They
are systematically built in three steps:

(1) The resolutions of a crossing in the tangle diagram are ladder webs (see [8] or
[36] for this terminology) with two rungs. The first step splits the rungs in every
crossing ladder web and sorts them into groups according to their root coloring.

(2) The second step splits the uprights in every crossing ladder. The result is a
semisplit web.

(3) The third step is of a global nature; it completely separates the colored compo-
nents, as in the proof of Proposition 4.22.

Every step corresponds to a foam that splits the web further and T 00 is then defined
as their composition. In the following we show that the foams in every step satisfy
an equation of type (5-2). That is, the cap (or cup) differential can be moved through
the splitting foam at the expense of signs and unit decorations which only depend on
the identity foam on which they are placed. In this case we say that the differential
commutes with the splitting foam up to canonical units. If every step satisfies this
then so does the composite T 00 , since unit decorations slide through such isomorphism
foams via relations (4-4).
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In each of the three steps we only treat the case of colorings by two orthogonal
idempotents, which are indicated by red and blue colorings. The same argument
implies that we can split off one root at a time from the rest, and induction on the
number of distinct roots in † then proves the theorem. Furthermore, we only consider
the case of cap differentials, as the cup differential case is completely analogous.

Step 1 For every crossing, we consider the corresponding ladder web. First we split
the rungs of the ladder into components:

! !

We choose this foam to be the image under the foamation functor ˆ† of certain
categorified quantum group 2–morphisms in the quotient LU0�N

Q
.glm/

† . For this, we
use thick calculus, but we omit the weights and thicknesses of strands. Here, we use
colors blue and red to indicate decorations by idempotents corresponding to disjoint
multisubsets of †, whereas green is the generic color which is used for mixed colorings.
Let the reader be warned again that the following graphics show categorified quantum
group 2–morphisms and not webs. The foam above is given by:

ˆ†

0BB@
1CCA D ˆ†

0BB@
1CCA D ˆ†

0BB@
1CCA

Using the UQ.gl2/ relations, it is not hard to see that this 2–morphism is invertible
via the vertically flipped 2–morphism with some unit decorations. The only nontrivial
observation is that the oppositely oriented Reidemeister II-type move can be undone at
the expense of a sign, because all error terms are killed by orthogonal idempotents.

In the following we investigate how this 2–morphism commutes with red and blue
thickness-1 cap 2–morphisms respectively. This computation immediately transfers to
the corresponding foams via ˆ† :

ˆ†

0BBB@
1CCCADˆ†

0BBB@
1CCCADˆ†

0BBB@
ı1 ı2

1CCCA

Dˆ†

0BBB@
ı1 ı2

1CCCADˆ†
0BBB@
ı1 ı2

�2
�1

1CCCA
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Dˆ†

0BBB@
ı1 ı2

�2
�1

1CCCAD .�1/rˆ†

0BBB@
ı1
ı2

�2

�1

1CCCA

D .�1/rˆ†

0BBB@
ı1 ı2

�2�1
1CCCA

Here and in the following, r (resp. b ) is the thickness of the right red (resp. left blue)
component in the bottom green strands. An analogous computation shows:

ˆ†

0BBB@
1CCCAD .�1/bˆ†

0BBB@
ı2 ı1

�1�2
1CCCADˆ†

0BBB@
ı1 ı2

�2�1
1CCCA

The last equation holds because we can swap the positions ı1 and ı2 on strands of
thickness r and b at the expense of multiplying by .�1/rb . This is immediate fromX

˛2P.r;b/

.�1/jy̨j�˛.X/�y̨.Y /D
X

y̨2P.b;r/

.�1/jy̨j�y̨.Y /�yy̨.X/

D .�1/rb
X

ˇ2P.b;r/

.�1/j
y̌j�ˇ.Y /� y̌.X/

and the analogous statement holds for the inverse decorations on positions �1 and �2

similarly.

We conclude that the foams from the first step commute with the differential up to
canonical units.

Step 2 We further split the crossing resolutions into semisplit webs:

!

A foam that peels off the outer strands can be constructed from the building blocks
studied in Lemma 5.13. According to it, a differential with this target web commutes
with the peeling foam up to canonical unit decorations. All these local foams glue
together and can be further composed with unzips (if necessary) to have as target
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semisplit webs. These unzips are placed far away from crossing sites and thus don’t
change the commutation behavior.

Step 3 Finally, we construct a foam from the semisplit webs of Step 2 to the completely
split webs �.W /. This can be done as in the proof of Proposition 4.22, but we further
assume that the “squares” in which the differentials are supported only interact with
edges far away from other colored crossing sites during the homotopy. In other words,
we assume that the vertices and edges from other colored squares never cross each
other during the homotopy. We thus check that the local move of isotoping a red square
through a blue edge commutes with the red cap differential up to canonical units.

Each of the isomorphisms

Š Š(5-3)

Š Š

except the third is a composite of red–blue zip, unzip, digon creation, digon removal,
and M–P foams as in Lemma 5.13, and hence they commute with the differential
up to canonical units. The third isomorphism can be realized as a blue cap in thick
calculus, which commutes with a red cap on the same square, up to a sign. The red
cap differential then also commutes, up to sign and canonical units, with the inverse of
the above isomorphism, and with pulling a blue facet across the square in the opposite
direction:

Š Š

5.3 Identifying the tensorands

Definition 5.15 Let .N Foam�2†/^ be the 2–subcategory of .N Foam†/^ consisting
of only those 1–morphisms and 2–morphisms colored by idempotents 1� corresponding
to multisubsets of † which only contain the root �.

Lemma 5.16 .N Foam�2†/^ is generated as a 2–category by the same elementary
foams as N Foam, but with idempotent decorations 1� on each web edge and foam
facet. It satisfies the same relations as N Foam and additionally:

(5-4) �N�

1

1�
D �

N��1X
iD0

�
N�

i

�
.��/N��i

�i

1

1�
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Proof All relations except (5-4) are directly inherited from N Foam via its quotient
N Foam† . The decorations 1� are idempotent and can be moved around freely. For
relation (5-4), we write the action of a dot as � and will show the equivalent formulation
1�.� ��/

N� D 0. To see this, we consider the algebra of decorations of a 1–labeled
facet in N Foam† , which is given by CŒ��=hP .�/i. Under the algebra isomorphism

CŒ��=hP .�/i !
lM

kD1

CŒ��=h.� ��k/
N�k i;

p.�/ChP .�/i 7!
�
p.�/Ch.� ��1/

N�1 i; : : : ;p.�/Ch.� ��l/
N�l i

�
;

1� is sent to the vector having a single entry 1C h.� � �/N�i and zero everywhere
else, hence 1�.� ��/

N� is sent to zero.

Proposition 5.17 Let N� be the multiplicity of � in †, then there is an isomorphism
of 2–categories

(5-5) N�Foam� Š .N Foam�2†/^:

Proof Let ��W N�Foam�! .N Foam�2†/^ be the 2–functor which is defined on

� objects by sending a sequence a to itself,

� 1–morphisms by sending webs to the same webs, but with additional coloring
by multisets containing only � on the edges, and

� 2–morphisms by sending a foam to the foam which is topologically identical
but has a decoration by a �–idempotent 1� added on every facet:

(5-6)

k

7!

1�

k

A decoration on a foam facet, interpreted as a symmetric polynomial in an
alphabet x1; : : : ;xk , is sent to the same symmetric polynomial, but in the
alphabet x1��; : : : ;xk ��. Formally, it suffices to define:

(5-7) �

1

7! �

1�

1

� �
1�

1

We now check that �� exactly maps the defining relations of N�Foam� — see [36] —
to the set of relations that determine .N Foam�2†/^ , which was identified in (5-4).
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All relations that do not involve decorations are preserved by �� ; these are [36, (3.8),
(3.12), (3.15)–(3.20)]. We examine the remaining relations:

� A minimal version of [36, (3.9)] is

aCb

b

a

es D

sX
lD0

aCb

b

a

es�l

el

and the collection of all instances of this relation (for 1� s � aC b ) has the effect of
identifying symmetric polynomials in the alphabet fx1; : : :xaCbg on the aC b facet
with those in the alphabet fy1; : : : ;yaCbg, which is the union of the alphabets on
the other two facets. The 2–functor �� maps these relations to relations that identify
symmetric polynomials in fx1 � �; : : : ;xaCb � �g with symmetric polynomials in
fy1��; : : : ;yaCb ��g. They generate the same ideal, and hence are equivalent sets
of relations.

� A minimal version of [36, (3.10)] is

kC1

D

kC1

1

k

�k

and under �� it is sent to

kC1

1�

D

kX
iD0

�
k

i

�
.��/i

kC1

1

k

�k�i

1�

D

kC1

1

k

�k

1�

where the final equality holds since all terms in the middle except the one with k dots
is zero.

� Relations [36, (3.11)],

aCb
a

b

D

X
˛2P.a;b/

.�1/jy̨j

aCb

�˛

�y̨

;

are sent by �� to relations of the same form, where �˛ and �y̨ are now interpreted as
symmetric polynomials in the new alphabet which is shifted by �. Denote the alphabets
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on the facets in the original relation on which the decorations are placed by X and Y ,
then we can write the decoration on the right-hand side of the original relation asX

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /D
Y
x2X

Y
y2Y

.y �x/:

Under �� this is sent toY
x2X

Y
y2Y

..y ��/� .x��//D
Y
x2X

Y
y2Y

.y �x/D
X

˛2P.a;b/

.�1/jy̨j�˛.X/�y̨.Y /;

so �� preserves the relation.

� Relations [36, (3.13) and (3.14)] are also preserved by �� ; the proofs are completely
analogous to the case of [36, (3.11)].

� The relation

�N�

1

D 0

is mapped by �� to

N�X
iD0

�
N�

i

�
.��/N��i

�i

1�

1

D 0;

which is precisely relation (5-4).

Furthermore, the functor �� is clearly invertible (forget idempotents, shift decorations
back) and similar arguments as above show that all relations in .N Foam�2†/^ are
sent by the inverse to relations of N�Foam� .

5.4 Proof of the decomposition theorem

For this section let L be an oriented, labeled link diagram. Recall that the complex
ŒŒL��† over N Foam† is, up to homotopy equivalence, an invariant of the corresponding
oriented, framed, labeled link and each web appearing in ŒŒL��† has endomorphisms
of otop WD .N; : : : ;N / as objects. We can view ŒŒL��† as a complex in .N Foam†/^

(since N Foam† embeds as a full 2–subcategory) where it splits into a direct sum of
complexes ŒŒLf ��† , one for each coloring f of link components with a multisubset of
† of the correct size. The objects of a summand ŒŒLf ��† are again endomorphisms of
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otop in .N Foam†/^ , and there are natural isomorphisms of chain complexes of vector
spaces:

(5-8) taut.ŒŒL��†/DHom.1otop ; ŒŒL��†/„ ƒ‚ …
over N Foam†

Š

M
f

Hom.1otop ; ŒŒLf ��†/„ ƒ‚ …
over .N Foam†/^

D

M
f

taut.ŒŒLf ��†/:

It follows that taut.�/ respects the direct sum decomposition, and it remains to describe
the summands taut.ŒŒLf ��†/.

The only nonzero coloring of the identity web 1otop is the one where every N–labeled
strand is colored by the full multiset †. With respect to this coloring, we will use
the object

F
� o

top
�

, the (co)domain of the associated split web
F
�.1otop/� , and the

object o
top
�

, the (co)domain of the �–component .1otop/� of 1otop . For endomorphism
webs on these objects and foams between them, we define the representable functors
tautsplit.�/ WD Hom.

F
�.1otop/�;�/ and taut�.�/ WD Hom..1otop/�;�/, respectively.

Further, we now need the webs L and R for the object otop with the only possible
incidence condition, as given in Definition 4.12.

Recall that ŒŒLf ��† is a complex of colored webs W and foams d between them. Then
�1.ŒŒLf ��†/ is the complex consisting of webs L˝W ˝R and foams idL˝ d ˝ idR

between them and �.ŒŒLf ��†/ D �2�1.ŒŒLf ��†/ is the complex consisting of websF
�W� and foams T� ı .idL˝ d ˝ idR/ ıB� . We first show:

Lemma 5.18 There are isomorphisms of chain complexes of vector spaces

(5-9) taut.ŒŒLf ��†/Š tautsplit
�
�1.ŒŒLf ��†/

�
Š tautsplit

�
�.ŒŒLf ��†/

�
:

Proof Proposition 4.25 provides the following isomorphisms between the objects of
these chain complexes:

taut.W /D Hom.1otop ;W /

�1

Š Hom.L˝ 1otop ˝R;L˝W ˝R/

Š Hom
�G
�

.1otop/�;L˝W ˝R

�
D tautsplit.�1.W //

Š Hom
�G
�

.1otop/�;
G
�

W�

�
D tautsplit.�.W //;
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where the last two isomorphisms are given by composition with B1otop and TW . Under
these isomorphisms, the differentials transform as required for (5-9):

taut.d/

D .Hom.1otop ;W /
dı
�!Hom.1otop ;W 0//

7!
�
Hom.L˝1otop˝R;L˝W˝R/

.idL˝d˝idR/ı
����������! Hom.L˝1otop˝R;L˝W 0˝R/

�
7!

�
Hom

�G
�

.1otop/�;L˝W˝R

�
.idL˝d˝idR/ı
����������! Hom

�G
�

.1otop/�;L˝W 0˝R

��

7!

�
Hom

�G
�

.1otop/�;
G
�

W�

�
T�ı.idL˝d˝idR/ıB�ı
����������������! Hom

�G
�

.1otop/�;
G
�

W 0�

��
since the last two lines give tautsplit.�1.d// and tautsplit.�.d//, respectively.

Theorem 5.14 shows that there is a consistent choice of isomorphism foams T� and B�
in the definition of � such that �.ŒŒLf ��†/D

N
�ŒŒL�2f ��† . Now we have

(5-10) taut.ŒŒLf ��†/Š tautsplit
�
�.ŒŒLf ��†/

�
D tautsplit

�O
�

ŒŒL�2f ��†
�

Š

O
�

taut�.ŒŒL�2f ��†/:

The last isomorphism is clear from the definition of the two versions of taut and the
tensor product structure given by disjoint union of webs and foams.

It remains to identify the tensorands taut�.ŒŒL�2f ��†/. To this end, recall the notation
L.a1; : : : ; ak/ introduced in the statement of Theorem 1.1, which makes explicit that
we consider L with the i th component labeled by the fundamental slN representationVai CN . Let bi;j be the multiplicity of the root �j in the multisubset of † that the
coloring f assigns to the i th component of L. Further, recall that Nj denotes the
multiplicity of �j in †.

The complex ŒŒL�j2f ��
† is a complex over the 2–subcategory .N Foam�j2†/^ . Under

the isomorphism to the 2–category Nj Foam� , which Proposition 5.17 established,
this complex corresponds to the undeformed slNj complex ŒŒL.b1;j ; : : : ; bk;j /��

f0;:::;0g

of the relabeled sublink L.b1;j ; : : : ; bk;j /. As we have seen in Remark 5.12, this
correspondence preserves the homological grading. Clearly, taut�j .ŒŒL�j2f ��

†/ is iso-
morphic to the image of ŒŒL.b1;j ; : : : ; bk;j /��

f0;:::;0g under the appropriate representable
functor, and the homology of this complex is KhRslNj .L.b1;j ; : : : ; bk;j //. Finally, by
(5-10), taut.ŒŒLf ��†/ is isomorphic to the tensor product of these complexes, and since
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we are working over C , the Künneth theorem gives that the homology of this tensor
product complex is isomorphic to the tensor product of the respective homologies. This
completes the proof of Theorem 1.1.
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