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The motive of a classifying space

BURT TOTARO

We give the first examples of finite groups G such that the Chow ring of the classifying
space BG depends on the base field, even for fields containing the algebraic closure
of Q . As a tool, we give several characterizations of the varieties that satisfy Künneth
properties for Chow groups or motivic homology.

We define the (compactly supported) motive of a quotient stack in Voevodsky’s
derived category of motives. This makes it possible to ask when the motive of BG is
mixed Tate, which is equivalent to the motivic Künneth property. We prove that BG

is mixed Tate for various “well-behaved” finite groups G , such as the finite general
linear groups in cross-characteristic and the symmetric groups.

14C15; 14F42, 14M20, 14A20

The Chow group of algebraic cycles generally does not satisfy the Künneth formula.
Nonetheless, there are some schemes X over a field k that satisfy the Chow Künneth
property that the product CH�X ˝Z CH� Y ! CH�.X �k Y / is an isomorphism for
all separated schemes Y of finite type over k . The Chow Künneth property implies the
weak Chow Künneth property that CH�X ! CH�.XF / is surjective for every finitely
generated field F over k (or, equivalently, for every extension field F of k ). We
characterize several properties of this type. (We also prove versions of all our results
with coefficients in a given commutative ring.)

Our characterizations of Künneth properties are as follows. First, a smooth proper
scheme X over k satisfies the weak Chow Künneth property if and only if the Chow
motive of X is a summand of a finite direct sum of Tate motives (Theorem 4.1). (This
is related to known results by Bloch, Srinivas, Jannsen, Kimura and others.) A more
novel result is about an arbitrary separated scheme X of finite type over k . We say that
X satisfies the motivic Künneth property if the Künneth spectral sequence converges
to the motivic homology groups of X �k Y for all Y . (Motivic homology groups are
also called higher Chow groups; they include the usual Chow groups as a special case.)
We show that a k –scheme X satisfies the motivic Künneth property if and only if
the motive of X in Voevodsky’s derived category of motives is a mixed Tate motive
(Theorem 7.2). (An example of a scheme with these properties is any linear scheme, as
discussed in Section 5.) Finally, if a smooth but not necessarily proper k –variety X

satisfies the weak Chow Künneth property, then the birational motive of X in the
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sense of Rost and of Kahn and Sujatha is isomorphic to the birational motive of a point
(Corollary 2.2).

The last result cannot be strengthened to say that the motive of X is mixed Tate; one
has to consider motivic homology groups to get that conclusion. For example, the
complement X of a curve of genus 1 in the affine plane has the Chow Künneth property,
since CHiC2.X �k Y / Š CHi Y for all separated k –schemes Y of finite type and
all i ; but the motive of X is not mixed Tate.

As an application of these general results, we disprove the weak Chow Künneth property
for some classifying spaces BG . For an affine group scheme G of finite type over a
field k , Morel and Voevodsky [40, Section 4.2] and I [55; 57] constructed BG as a
direct limit of smooth k –varieties, quotients by G of open subsets of representations
of G over k . As a result, the Chow ring of BG makes sense. The Chow ring
of BG tensored with the rationals is easy to compute; for example, if G is finite, then
CHi.BG/˝QD 0 for i > 0. The challenge is to understand the integral or mod p

Chow ring of BG .

For many finite groups G and fields k , the classifying space BG over k satisfies the
Chow Künneth property that CH�BG˝Z CH� Y Š CH�.BG �k Y / for all separated
k –schemes Y of finite type. For example, an abelian p–group G of exponent e has
the Chow Künneth property when k is a field of characteristic not p that contains the
eth roots of unity. The Chow Künneth property also holds for many other groups, such
as wreath products of abelian groups [57, Lemma 2.12]. As a result, [57, Chapter 17]
asked whether every finite group G has the Chow Künneth property over a field k that
contains enough roots of unity. This would imply the weak Chow Künneth property
that CH�BGk ! CH�BGF is surjective for every extension field F of k .

In this paper, we give the first examples of finite groups for which the Chow Künneth
property fails. For any finite group G such that BG has nontrivial unramified cohomol-
ogy, there is a finitely generated field F over xQ such that CH�BG xQ! CH�BGF

is not surjective (Corollary 3.1). We also find a field E containing xQ such that
CHi.BGE/=p is infinite for some i and some prime number p (Corollary 3.2); this
answers another question in [57, Chapter 18]. In particular, the ring CH�.BGE/=p is
not noetherian in such an example.

As recalled in Section 2, there are groups of order p5 for any odd prime p , and groups
of order 26 , that have nontrivial unramified cohomology. This is surprisingly sharp. In
fact, the Chow ring CH�BGk of a p–group G is independent of the field k containing
xQ, and consists of transferred Euler classes of representations, when G is a p–group
of order at most p4 [57, Theorem 11.1, Theorem 17.4]. Moreover, the weak Chow
Künneth property holds for all groups of order 25 (Theorem 10.1).
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Finally, Section 8 defines the compactly supported motive, in Voevodsky’s derived
category of motives, for a quotient stack over a field. In particular, we get a notion
of the compactly supported motive M c.BG/ for an affine group scheme G . Once
we have this definition, we can ask when M c.BG/ is a mixed Tate motive. This
property is equivalent to the motivic Künneth property for BG , and so it implies the
Chow Künneth property for BG . In particular, BG is not mixed Tate for the groups of
order p5 discussed above. On the other hand, we show that many familiar finite groups,
such as the finite general linear groups in cross-characteristic and the symmetric groups,
are mixed Tate (Theorems 9.11 and 9.12).

The introduction to Section 9 discusses six properties of finite groups. It would be
interesting to find out whether all six properties are equivalent, as the known examples
suggest. The properties are: stable rationality of BG (say, over the complex numbers),
meaning stable rationality of quotient varieties V =G ; triviality for the birational motive
of BG (or equivalently, of quotient varieties V =G ); Ekedahl’s class of BG in the
Grothendieck ring of varieties being equal to 1 [21]; the weak Chow Künneth property
of BG ; the Chow Künneth property of BG ; and the mixed Tate property of BG .

Acknowledgements I thank Christian Haesemeyer, Tudor Pădurariu, Roberto Pirisi,
Yehonatan Sella and a referee for their suggestions. This work was supported by NSF
grant DMS-1303105.

1 Notation

A variety over a field k means an integral separated scheme of finite type over k . A
variety X over k is geometrically integral if Xxk WD X �Spec k Spec xk is an integral
scheme (where xk is an algebraic closure of k ), or equivalently if XE is integral for
every extension field E of k [25, Definition IV.4.6.2].

Let X be a scheme of finite type over a field k . The Chow group CHi X is the group of
i –dimensional algebraic cycles on X modulo rational equivalence. A good reference
is Fulton [23, Chapter 1]. We write CHi.X IR/D CHi.X /˝Z R for a commutative
ring R.

For a smooth scheme X over k , understood to be of finite type over k , we write
CHi X for the Chow group of codimension–i cycles on X . For X smooth over k ,
the groups CH�X have a ring structure given by intersecting cycles [23, Chapter 6].

For a field k , let ks be a separable closure of k , and let M be a torsion Gal.ks=k/–
module with torsion whose order is invertible in k . For a smooth variety X over k ,
we define the i th unramified cohomology group of X with coefficients in M to be
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H i
nr.k.X /=k;M /, the subgroup of elements of H i.k.X /;M / that are unramified

with respect to all divisorial valuations of k.X / over k . This group is a birational
invariant of X . It agrees with the group H 0.X;H i

M
/ (sections of the sheafification of

the Zariski presheaf U 7!H i
et.U;M /) for X proper over k , but not in general [17,

Theorem 4.1.1; 47, Corollary 12.10].

For example, if G is an affine group scheme over k , then H 0.BG;H i/ is the group of
cohomological invariants of G considered by Serre [24, Part 1], whereas the unramified
cohomology of BG in the sense of this paper, H i

nr.k.BG/;M /, is a subgroup of that.
Both groups can be defined using the variety U=G as a model of BG , where U is any
open subset of a k –representation V of G such that G acts freely on U and V �U

has codimension at least 2 [24, Part 1, Appendix C].

2 Birational motives

In this section, we give several equivalent characterizations of those smooth proper
varieties X whose birational motive in the sense of Rost [33, Appendix RC] and Kahn
and Sujatha [32, Equation (2.5)] is isomorphic to the birational motive of a point. The
statement includes Merkurjev’s theorem that the Chow group of zero-cycles on X is
unchanged under field extensions if and only if the unramified cohomology of X in
the most general sense is trivial [39]. It seems to be new that these properties are also
equivalent to all the Chow groups of X being supported on a divisor. Note that these
properties are not equivalent to CH0 being supported on a divisor; for example, the
product of P1 with a curve of genus at least 1 has CH0 supported on a divisor, while
CH1 is not supported on a divisor. Also, unlike many earlier results in this area, we
work with an arbitrary coefficient ring, not just the rational numbers.

We will use the equivalences of Theorem 2.1 to give the first counterexamples to the
Chow Künneth property for the classifying space of a finite group over an algebraically
closed field (Section 3).

Theorem 2.1 Let X be a smooth proper variety over a field k , and let R be a nonzero
commutative ring. The following are equivalent:

(1) For every finitely generated field F=k , the map CH0.X IR/! CH0.XF IR/ is
surjective.

(2) For every field F=k , the degree homomorphism CH0.XF IR/! R is an iso-
morphism.

(3) The birational motive of X (in the sense of Kahn and Sujatha) with R coefficients
is isomorphic to the birational motive of a point.
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(4) For every R–linear cycle module M over k (in the sense of Rost [47]), the
homomorphism M.k/!M.k.X //nr is an isomorphism. (That is, X has trivial
unramified cohomology in the most general sense.)

(5) There is a closed subset S ¨X such that

CHi.X IR/=CHi.S IR/! CHi.XF IR/=CHi.SF IR/

is surjective for all finitely generated fields F=k and all integers i . (That is, all
the Chow groups of X are constant outside a divisor.)

(6) The variety X is geometrically integral, and there is a closed subset S ¨X such
that CHi.XF IR/=CHi.SF IR/D 0 for all fields F=k and all i < dim X .

For the coefficient ring R D Q which has been considered most often, there are
other equivalent statements: instead of considering all finitely generated extension
fields of k in (1) or (5), one could consider a single algebraically closed field of
infinite transcendence degree over k . This gives equivalent conditions, because
CH�.XF IQ/ ! CH�.XE IQ/ is injective for every scheme X over F and every
inclusion of fields F ,! E . On the other hand, for the coefficient ring R D Fp

which is of most interest for the classifying space of a finite group, it would not
be enough to consider algebraically closed extension fields in Theorem 2.1. This
follows from Suslin’s rigidity theorem: for every extension of algebraically closed
fields F ,!E , every k –scheme X over F , and every prime number p invertible in F ,
CH�.XF IFp/ maps isomorphically to CH�.XE IFp/ [51, Corollary 2.3.3].

Corollary 2.2 Let k be a perfect field which admits resolution of singularities (for
example, any field of characteristic zero). Let U be a smooth variety over k , not
necessarily proper. Let R be a commutative ring. If CH�.U IR/! CH�.UF IR/ is
surjective for every finitely generated field F over k , then the birational motive of U

with coefficients in R is isomorphic to the birational motive of a point.

Proof By resolution of singularities, there is a regular compactification X of U

over k , with U D X �S for some closed subset S . Since k is perfect, the regular
scheme X is smooth over k . Let us index Chow groups by dimension. We use the
localization sequence for Chow groups:

Lemma 2.3 [23, Proposition 1.8] Let X be a scheme of finite type over a field k .
Let Z be a closed subscheme. Then the proper pushforward and flat pullback maps fit
into an exact sequence

CHi.Z/! CHi.X /! CHi.X �Z/! 0:

Geometry & Topology, Volume 20 (2016)



2084 Burt Totaro

In the case at hand, it follows that CH�.U IR/ is isomorphic to CH�.X IR/=CH�.S IR/.
So the assumption on U implies condition (5) in Theorem 2.1. The birational motive
of U is (by definition) the same as that of X . By Theorem 2.1, the birational motive
of X with coefficients in R is isomorphic to the birational motive of a point.

Proof of Theorem 2.1 Assume condition (1), ie that CH0.X IR/! CH0.XF IR/ is
surjective for every finitely generated field F=k . Let n be the dimension of X . The
generic fiber of the diagonal � in CHn.X �k X / via projection to the first copy of X

is a zero-cycle in CH0 Xk.X / . By our assumption, the class Œ�� in CH0.Xk.X /IR/

is the image of some zero-cycle ˛ 2 CH0.X IR/. For a variety Y over k , the Chow
groups of Xk.Y / are the direct limit of the Chow groups of X �k U , where U runs over
all nonempty open subsets of Y . (Note that an i –dimensional cycle on X �k U gives
a cycle of dimension i � dim Y on the generic fiber Xk.Y / .) Therefore, we can write

�DX �˛CB

in CHn.X �k X IR/, where B is a cycle supported on S �X for some closed subset
S ¨X . Here we are using the localization sequence for Chow groups (Lemma 2.3).

As a correspondence, the diagonal � induces the identity map from CHi.X IR/ to
CHi.X IR/ for any i . For this purpose, think of � as a correspondence from the
first copy of X to the second. It follows that for any extension field F of k and any
zero-cycle ˇ in CH0.XF IR/, we have

ˇ D��.ˇ/D .X �˛/�.ˇ/D deg.ˇ/˛:

Thus the R–module CH0.XF IR/ is generated by ˛ for every field F=k . Moreover,
˛ has degree 1, and so the degree map degW CH0.XF IR/!R is an isomorphism. We
have proved condition (2).

Condition (3) is immediate from (2). Namely, for any smooth proper varieties X and Y

over k , the set of morphisms from the birational motive of X (with R coefficients) to
the birational motive of Y is defined to be CH0.Yk.X /IR/ [32, Equation (2.5)]. So,
for a point p D Spec k , we have

Hombir.p;p/DR;

Hombir.X;p/D CH0.Spec k.X /IR/DR;

Hombir.p;X /D CH0.X IR/;

Hombir.X;X /D CH0.Xk.X /IR/:

By (2), we know that CH0.X IR/ and CH0.Xk.X /IR/ both map isomorphically to
R by the degree map; so X has the birational motive of a point. It is now clear that
(1), (2) and (3) are equivalent.
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When RDZ, Merkurjev proved that (4) is equivalent to (1) and (2) [39, Theorem 2.11].
The proof works with any coefficient ring R. For example, to see that (3) implies (4),
it suffices to check that an element of CH0.Yk.X /IR/ determines a pullback map from
unramified cohomology of Y (with coefficients in any R–linear cycle module over k )
to unramified cohomology of X .

Now we show that (1) (or, equivalently, (2), (3) or (4)) implies (5) and (6). Given (1),
we have a decomposition of the diagonal as above,

�DX �˛CB

in CHn.X �k X IR/, where B is a cycle supported on S �X for some closed subset
S ¨ X . Now use the correspondence � to pull cycles back from the second copy
of X to the first; again, it induces the identity on Chow groups. It follows that
for any extension field F of k and any cycle ˇ in CHi.XF IR/ with i < n, we
have ˇ D ��.ˇ/ D B�.ˇ/, which is a cycle supported in S . Thus CHi.SF IR/!

CHi.XF IR/ is surjective for all i < n.

To prove (6), we also have to show that X is geometrically integral. Since X is
smooth and proper over k , CHn.Xxk IR/ is the free R–module on the set of irreducible
components of Xxk , and the cycle ŒX � is the element .1; : : : ; 1/ in this module. But for
any irreducible component Y of Xxk , with class .1; 0; : : : ; 0/ in CHn.Xxk IR/, we have

ŒY �D��ŒY �D .X �˛/�ŒY � 2R � ŒX �DR � .1; : : : ; 1/

in CHn.Xxk IR/. Since the ring R is not zero, it follows that Xxk is irreducible. This
proves (6) and hence the weaker statement (5).

Finally, we prove that (5) implies (1), which will complete the proof. This part of
the argument seems to be new. We are assuming that there is a closed subset S ¨X

such that CHi.X IR/=CHi.S IR/! CHi.XF IR/=CHi.SF IR/ is surjective for all
finitely generated fields F=k and all integers i . Taking i D n, it follows that X is
geometrically integral (using that R is not zero). As above, let Œ�� denote the generic
fiber in CH0.Xk.X /IR/ of the diagonal � in CHn.X �k X IR/. We will show by
descending induction on j that, for each 0� j � n, there is a closed subset Tj of X

of dimension at most j such that Œ�� is the image of a zero-cycle j̨ on .Tj /k.X / .
This is clear for j D n, by taking Tn DX .

Suppose we have a closed subset Tj and a zero-cycle j̨ as above, for an integer
1� j � n. Then j̨ is the generic fiber (with respect to the first projection) of some
n–dimensional cycle Aj on X �k Tj . Let Tj1; : : : ;Tjm be the irreducible components
of dimension j in Tj , and Z the union of any irreducible components of dimension
less than j in Tj . We can write Aj in CHn.X � Tj IR/ as a sum of cycles Ajr
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supported on X �Tjr , for r D 1; : : : ;m, and a cycle Bj supported on X �Z . The
generic fiber of Ajr by the second projection is an .n�j /–cycle on Xk.Tj r / . By our
assumption (5), this cycle is rationally equivalent to the sum of a cycle on Sk.Tj r / and
a cycle coming from an .n�j /–cycle on X . Therefore, Ajr is equivalent to a sum of
cycles supported on X �Y for subvarieties Y of dimension at most j � 1 and cycles
supported on W �X for closed subsets W ¨X (using that j > 0). This proves the
inductive step: Œ�� in CH0.Xk.X /IR/ is the image of a zero-cycle on .Tj�1/k.X / for
some closed subset Tj�1 of dimension at most j � 1 in X .

At the end of the induction, we have a zero-dimensional closed subset T0 of X such that
the class of � in CH0.Xk.X /IR/ is the image of a zero-cycle ˛0 on .T0/k.X / . Here
T0 is a finite union of closed points, which are isomorphic to Spec E for finite extension
fields E of k . Because X is geometrically integral, .Spec E/k.X /DSpec.E˝k k.X //

is the spectrum of a field. So CH0.T0IR/! CH0..T0/k.X /IR/ is an isomorphism.
We conclude that the class of � in CH0.Xk.X /IR/ is in the image of CH0.X IR/.
This gives a decomposition of the diagonal

�DX �˛CB

in CHn.X �k X IR/, where ˛ is a zero-cycle on X and B is a cycle supported on
W �X for some closed subset W ¨ X . This implies statement (2), by the same
argument used to show that (1) implies (2). Thus all the conditions are equivalent.

We now strengthen Theorem 2.1 in a certain direction: if a variety over an algebraically
closed field k has nontrivial unramified cohomology, then its Chow groups over
extension fields of k have arbitrarily large cardinality (Lemma 2.5). Our proof uses
the language of birational motives. One could also give a more bare-hands argument.

Lemma 2.4 Let k be a field and R a commutative ring. Let W1 be a variety, W2

a smooth proper variety, and X a separated scheme of finite type over k . For any
integer r , there is a natural pairing

CH0..W2/k.W1/IR/˝R CHr .Xk.W2/IR/! CHr .Xk.W1/IR/

which agrees with the obvious pullback when the zero-cycle on .W2/k.W1/ is the
one associated to a dominant rational map W1Ü W2 . As a result, the assignment
W 7!CHr .Xk.W /IR/ for smooth proper varieties W over k extends to a contravariant
functor on the category of birational motives over k with R coefficients.

Proof Let M be an R–linear cycle module over k . The unramified cohomology group
A0.W IM / is defined in Rost [47, Section 5] for k –varieties W . For W smooth proper
over k , the group A0.W IM / is a birational invariant of W , which coincides with
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M.k.W //nr [47, Section 12]. Rost observed that unramified cohomology A0.W IM /

for smooth proper varieties W over k is a contravariant functor on the category of
birational motives over k [33, Theorem RC.9]. More precisely, there is a pairing

CH0..W2/k.W1/IR/˝R A0.W2IM /!A0.W1IM /

for any variety W1 and any smooth proper variety W2 over k .

It remains to observe that for a separated scheme X of finite type over k and an
integer r , there is a cycle module M over k with A0.W IM;�r/Š CHr .Xk.W /IR/

for all k –varieties W . (The index �r refers to the grading of a cycle module, as
in [47, Section 5].) Namely, let M.F / be the R–linear cycle module Ar .XF IK�/,
in the notation of [47, Section 7]. Here F runs over fields F=k , and K� denotes
Milnor K–theory tensored with R. Define the grading of M.F / by saying that
elements of M.F; j / are represented by elements of Milnor KrCj of function fields
of r –dimensional subvarieties of XF . Then, by definition,

A0.X IM /D ker
�
Ar .Yk.X /;K�/!

M
x2X .1/

Ar .Yk.x/IK�/

�
:

The group Ar .Yk.X /IK�;R/ is the Chow group CHr .Yk.X /IR/. The boundary map
takes this graded piece of Ar .Yk.X /IK�/ to a zero group (involving K�1 of function
fields of r –dimensional subvarieties of Yk.x/ for codimension-1 points x in X ). So
A0.X IM;�r/Š CHr .Yk.X /IR/, as we want.

Lemma 2.5 Let X be a separated scheme of finite type over an algebraically closed
field k of characteristic zero, R a commutative ring, and r an integer. Suppose that
there is a field E=k such that CHr .X IR/! CHr .XE IR/ is not surjective. Then
CHr .XF IR/ can have arbitrarily large cardinality for fields F=k . In particular, there
is a field F=k with CHr .XF IR/ not finitely generated as an R–module.

Proof We can assume that the field E is finitely generated over k . Then E is the
function field of some variety W over k . Since k has characteristic zero, we can
assume that W is smooth and projective over k . Since k is algebraically closed, W

is geometrically integral, and so all powers W n are varieties over k . Also, since k

is algebraically closed, W has a zero-cycle of degree 1, which we can use to give a
splitting Mbir.W /ŠMbir.k/˚T for some birational motive T . So, for any natural
number n, we have Mbir.W

n/Š .Mbir.k/˚T /˝n , which contains Mbir.k/˚T˚n

as a summand. By Lemma 2.4 it follows that, for any separated k –scheme X of finite
type, we have a canonical splitting

CHr .Xk.W n/IR/Š CHr .X IR/˚ .CHr .Xk.W /IR/=CHr .X IR//
˚n
˚ .something/:
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For any set S , let F be the direct limit of the function fields of the varieties W T

over all finite subsets T of S . Then CHr .XF IR/ is the direct limit of the Chow
groups of the varieties Xk.W T / . By the previous paragraph, CHr .XF IR/ contains a
direct sum of copies of CHr .Xk.W /IR/=CHr .X IR/ indexed by the elements of S .
Since we assumed that CHr .Xk.W /IR/=CHr .X IR/ is not zero, CHr .XF IR/ can
have arbitrarily large cardinality for fields F=k .

3 Failure of the weak Chow Künneth property for
finite groups

We apply Theorem 2.1 to give the first counterexamples to the Chow Künneth property
for the classifying space of a finite group G over an algebraically closed field k ,
answering a question from [55, Section 6] and [57, Chapter 17]. Namely, if the
unramified cohomology of BG in the sense of Section 1 is nontrivial, then the weak
Chow Künneth property fails, meaning that there is a finitely generated field F over k

with CH�BGk!CH�BGF not surjective. Examples where BG has nontrivial unram-
ified H 2 were constructed by Saltman and Bogomolov [6]. Correcting Bogomolov’s
earlier statements, Hoshi, Kang and Kunyavskiı̆ gave examples of groups of order p5

for every odd prime p , and groups of order 26 , with nontrivial unramified H 2 [26,
Theorem 1.13]. These results are sharp for all prime numbers p . Indeed, p–groups
of order at most p4 satisfy the weak Chow Künneth property [57, Theorem 11.1,
Theorem 17.4], as do all groups of order 32 (Theorem 10.1).

Chu and Kang showed that for any p–group G of order at most p4 and exponent e ,
if k is a field of characteristic not p which contains the eth roots of unity, then
BG is stably rational over k [13]. (Concretely, this means that the variety V =G is
stably rational over k for every faithful representation V of G over k . The stable
birational equivalence class of V =G for a faithful representation V of a finite group G

is independent of the representation V , by Bogomolov and Katsylo [8].) For 2–groups
of order at most 25 , BG is again stably rational, by Chu, Hu, Kang and Prokhorov [12].
It is striking that BG has the weak Chow Künneth property for p–groups of order
at most p4 , and for groups of order 32, although there is no obvious implication
between stable rationality of BG and the weak Chow Künneth property for BG . (If
BG can be approximated by quotients .V �S/=G which are linear schemes in the
sense of Section 5, then both properties hold; and both properties imply the triviality
of unramified cohomology.)

We show in Corollary 3.2 that, for every finite group G such that BGk has nontrivial
unramified cohomology with Fp coefficients, there is an extension field F of k such
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that CHi.BGF /=p is infinite for some i . This answers another question from [57,
Chapter 18]. In particular, the ring CH�.BGF /=p is not noetherian, and does not
consist of transferred Euler classes of representations.

We can still ask whether the abelian group CHi BGF is finitely generated for every
finite group G and every integer i when F is an algebraically closed field. The
question of finiteness is also interesting for other classes of fields, such as finitely
generated fields over Q or Fp . The “motivic Bass conjecture” [31, Conjecture 37]
would imply that the Chow groups of every variety over a finitely generated field are
finitely generated; that would imply that each group CHi BGF is finitely generated
for every affine group scheme G over a finitely generated field F .

Finding that the Chow Künneth property fails should be just the beginning. Let G be a
group of order p5 such that BG has nontrivial unramified cohomology. What is the
Chow ring of BG over an arbitrary field (say, containing xQ)? We know that it will
depend on the field.

Corollary 3.1 Let G be an affine group scheme of finite type over a field k . Suppose
that k is perfect and k admits resolution of singularities (for example, k could be
any field of characteristic zero). Let p be a prime number which is invertible in k .
Suppose that the homomorphism H i.k;M /! H i

nr.k.V =G/;M / of unramified co-
homology is not an isomorphism, for some finite Gal.ks=k/–module M over Fp ,
some generically free representation V of G over k , and some integer i . (The stable
birational equivalence class of V =G for V generically free is independent of the
representation V , and so this hypothesis does not depend on the choice of V .) Then the
weak Chow Künneth property with Fp coefficients fails for BG over k , meaning that
CH�.BG/=p! CH�.BGF /=p is not surjective for some finitely generated field F

over k .

To relate the p–groups mentioned earlier to this statement, note that those groups G

(of order p5 for p odd or order 26 for p D 2) are shown to have nontrivial unram-
ified Brauer group H 2

nr.k.V =G/;Gm/, where k is an algebraically closed field in
which p is invertible. This group is p–power torsion, by a transfer argument. By
results of Grothendieck, H 2

nr.k.V =G/; �p/ is isomorphic to the p–torsion subgroup
of H 2

nr.k.V =G/;Gm/ [17, Proposition 4.2.3]. Therefore H 2
nr.k.V =G/; �p/ is also

nonzero, and so Corollary 3.1 applies to these groups G .

Explicitly, for any prime number p � 5, here is an example of a group G of order p5

with unramified H 2 (over C ) not zero [26, proof of Theorem 2.3]:

G D
˝
f1; f2; f3; f4; f5 j f

p
i D 1 for all i; f5 central, Œf2; f1�D f3;

Œf3; f1�D f4; Œf4; f1�D Œf3; f2�D f5; Œf4; f2�D Œf4; f3�D 1
˛
:
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In this presentation, we use the notation Œg; h�D g�1h�1gh.

Proof of Corollary 3.1 By definition, CHi BG is isomorphic to CHi.V �S/=G for
any representation V of G over k and any G –invariant (Zariski) closed subset S such
that G acts freely on V �S with quotient a scheme and S has codimension greater
than i in V [55, Theorem 1.1; 57, Theorem 2.5]. By the localization sequence for
equivariant Chow groups, the homomorphism

CH�BG D CH�G V ! CH�G.V �S/D CH�.V �S/=G

is surjective [20, Proposition 5; 57, Lemma 2.9].

Suppose that CH�.BG/=p! CH�.BGF /=p is surjective for every finitely generated
field F over k . Let V be a representation of G with a closed subset S ¨ V such that
G acts freely on V �S with quotient a separated scheme U D .V �S/=G . By the
previous paragraph, applied to G and GF , it follows that CH�.U /=p! CH�.UF /=p

is surjective for every finitely generated field F over k . By Corollary 2.2, U has the
birational motive of a point, with Fp coefficients. It follows that the field k.U / over k

has trivial unramified cohomology with coefficients in any Fp –linear cycle module
over k . Galois cohomology (with p invertible in k , as we assume) is an example
of a cycle module. Explicitly, for any finite Gal.ks=k/–module M killed by p , the
assignment F 7!

L
i H i.F;M ˝ �˝i

p / for finitely generated fields F over k is a
cycle module over k [47, Remark 2.5]. That completes the proof.

The following corollary strengthens Corollary 3.1. We give the first examples of finite
groups G and prime numbers p such that the Chow group CHi.BGF /=p is infinite,
for some i and some field F . Namely, we can take a group of order p5 for p odd, or
of order 26 , with nontrivial unramified cohomology.

Corollary 3.2 Let G be a finite group, and let p be a prime number. Suppose that
the unramified cohomology H i

nr.
xQ.V =G/;Fp/ is not zero, for some generically free

representation V of G over xQ and some i > 0. Then there is a field F containing xQ
and a positive integer r such that CHr .BGF /=p is infinite. It follows that the ring
CH�.BGF /=p is not noetherian.

Proof Corollary 3.1 gives an extension field E of xQ such that CHr .BG/=p !

CHr .BGE/=p is not surjective for some r . So, for a finite-dimensional approximation
U D .V �T /=G to BG with T of codimension greater than r , the map CHr .U /=p!

CHr .UE/=p is not surjective. By Lemma 2.5, there is a field F=xQ with CHr .UF /=p

infinite. Equivalently, CHr .BGF /=p is infinite. Since CH�.BGF /=p is a graded
Fp –algebra, it follows that the ring CH�.BGF /=p is not noetherian.
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4 The weak Chow Künneth property for smooth proper
k–schemes

In this section, we characterize the smooth proper k –schemes whose Chow groups
remain unchanged under arbitrary field extensions: they are the schemes whose Chow
motive is a Tate motive. This type of result for smooth proper k –schemes has a long
history, including results by Bloch [36, Proposition 3.12; 4, Appendix to Lecture 1],
Bloch and Srinivas [5], Jannsen [29, Theorem 3.5] and Kimura [35]. Shinder gave a
convenient version of Bloch’s argument [49]. One difference from most earlier results
is that we consider Chow groups with coefficients in any commutative ring, not just
the rational numbers.

In the rest of the paper, Theorem 4.1 is used only to prove Corollary 7.3. Nonetheless,
the proof, using the diagonal cycle, helped to suggest the proof of Theorem 7.2 about
arbitrary schemes. Theorem 2.1 is a “birational analog” of Theorem 4.1; in particular,
the equivalent properties in Theorem 4.1 are not birationally invariant.

Theorem 4.1 Let M be a Chow motive over a field k with coefficients in a com-
mutative ring R. (For example, M could be the motive M.X / for a smooth proper
k –scheme X.) Suppose that M has the weak Chow Künneth property, meaning that
the morphism CH�.M /! CH�.MF / is a surjection of R–modules for every finitely
generated field F=k . Then M is a summand of a finite direct sum of Tate motives
R.j /Œ2j � for integers j .

Conversely, suppose that a Chow motive M is a summand of a finite direct sum of Tate
motives. Then CH�.M /!CH�.MF / is an isomorphism for every field F=k , and M

has the Chow Künneth property that CH�.M /˝R CH�.Y IR/! CH�.M ˝M c.Y //

is an isomorphism of R–modules for every separated k –scheme Y of finite type. Also,
CH�.M / is a finitely generated projective R–module, and CH�.M /ŠH�.MC;R/

if there is an embedding k ,! C . Finally, M has the Künneth property for motivic
homology in the sense that

CH�.M /˝R H M
� .Y;R.�//ŠH M

� .M ˝M c.Y /;R.�//

for every separated k –scheme Y of finite type.

The notation M c.Y / is suggested by Voevodsky’s triangulated category of motives
(discussed in Section 5), but below we say explicitly what this means.

If R is a PID, then the conditions in the theorem are also equivalent to M being a
finite direct sum of Tate motives (without having to take a direct summand). For an
arbitrary commutative ring R, it is essential to allow direct summands.
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The conclusion cannot be strengthened to say that X is a linear scheme or a rational
variety. There are Barlow surfaces over C whose Chow motive with Z coefficients is
a direct sum of Tate motives, for example by Theorem 4.1 and [2, Proposition 1.9]. It
follows that these smooth projective surfaces have the Chow Künneth property, although
they are of general type and hence not rational.

Before proving Theorem 4.1, let us define the category of Chow motives over k with
coefficients in R. To agree with the conventions in Voevodsky’s triangulated category
of motives DM.kIR/ (Section 5), we think of the basic functor X 7!M.X / from
smooth proper k –schemes to Chow motives as being covariant, and we write the motive
of P1

k
as R˚R.1/Œ2�. Covariance is only a minor difference from the conventions in

Scholl’s paper [48], because the category of Chow motives is self-dual. (The “shift” Œ2�
is written in order to agree with the notation in DM.kIR/; it has no meaning by itself in
the category of Chow motives.) We will only consider DM.kIR/ when the exponential
characteristic of k is invertible in R; in that case, the category of Chow motives is
equivalent to a full subcategory of DM.kIR/.

For smooth proper varieties X and Y over k , define the R–module of correspondences
of degree r from X to Y as

Corrr .X;Y /D CHdim XCr .X �k Y IR/:

We extend this definition to all smooth proper k –schemes by taking direct sums. For
smooth proper k –schemes X;Y;Z , there is a composition of correspondences

Corrr .X;Y /˝R Corrs.Y;Z/! CorrrCs.X;Z/;

written as f ˝g 7! gf , given by pulling back the two cycles from X �Y and Y �Z

to X �Y �Z , multiplying, and pushing forward to X �Z .

A Chow motive over k with coefficients in R, written .M.X /.a/Œ2a�;p/, consists of a
smooth proper k –scheme X , an integer a, and an idempotent pDp2 in Corr0.X;X /.
The morphisms of Chow motives are given by

Hom
�
.M.X /.a/Œ2a�;p/; .M.Y /.b/Œ2b�; q/

�
D q Corra�b.X;Y /p � Corra�b.X;Y /:

Composition of correspondences makes the Chow motives over k into a category. We
write M.X / for the motive .M.X /.0/Œ0�; �/, where � is the diagonal in X �k X .
Thus X 7!M.X / is a covariant functor from smooth proper k –schemes to Chow
motives. The Tate motive R.a/Œ2a� is M.Spec k/.a/Œ2a�. Define the Chow groups
of a motive M by CHa.M /D Hom.R.a/Œ2a�;M /; then the group CHa.M.X // is
isomorphic to the usual Chow group CHa.X IR/ of a smooth proper k –scheme X .
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The category of Chow motives is symmetric monoidal, with tensor product ˝ such
that M.X /˝M.Y /ŠM.X �k Y / for smooth proper k –schemes X and Y . There
is an involution M 7!M � on Chow motives, defined on objects by

.M.X /.a/Œ2a�;p/� D .M.X /.�n� a/Œ�2n� 2a�;pt /

for X of pure dimension n. It is immediate that the natural morphism M !M �� is
an isomorphism, and that

Hom.M ˝N;P /Š Hom.M;N �˝P /

for all Chow motives M;N;P [48, Section 1.1.5]. That is, the category of Chow
motives is a rigid additive tensor category, with internal Hom given by Hom.M;N /D

M �˝N . For a field extension F=k , there is an obvious functor from Chow motives
over k to Chow motives over F , taking M.X / to M.XF / for smooth proper k –
schemes X .

Extending the previous notation, for any Chow motive M D .M.X /.a/Œ2a�;p/ over k

and any k –scheme Y of finite type, we define the Chow groups CH�.M ˝M c.Y //

as the summand of the Chow groups CH�.X �k Y IR/ given by p . (At this point,
M c.Y / has no meaning by itself. In Section 5, M c.Y / will be used to denote the
compactly supported motive of Y in the triangulated category of motives DM.kIR/.)

Proof of Theorem 4.1 Let M be a Chow motive which has the weak Chow Künneth
property, meaning that CH�M ! CH�.MF / is surjective for all finitely generated
fields F over k . Then the R–linear map CH�M ˝R CH� Y ! CH�.M ˝M c.Y //

is surjective for every k –scheme Y of finite type. (In this proof, we write CH�.Y /
to mean CH�.Y IR/D CH�.Y /˝Z R.) To prove this, do induction on the dimension
of Y , using the commutative diagram of exact sequences for any closed subscheme S

of Y :

CH�M ˝R CH� S //

��

CH�M ˝R CH� Y //

��

CH�M ˝R CH�.Y �S/ //

��

0

CH�.M ˝M c.S// // CH�.M ˝M c.Y // // CH�.M ˝M c.Y �S// // 0

Here we use that, for a k –variety Y , CH�.Mk.Y // D lim
��!

CH�.M ˝M c.Y � S//,
where the direct limit runs over all closed subsets S ¨ Y . It follows that

CH�M ˝R CH�N ! CH�.M ˝N /

is surjective for all Chow motives N .

For any Chow motives N and P , we have

Hom.N;P /D Hom.R˝N;P /D Hom.R;Hom.N;P //:
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By Lemma 5.5, the identity map on the Chow motive M corresponds to an element
1M 2 Hom.R;M �˝M /D CH0.M

�˝M /. (When M is the motive of a smooth
proper variety X , 1M is the class of the diagonal on X �X .)

For the given motive M , we showed that CH�M ˝R CH�N ! CH�.M ˝ N /

is surjective for all Chow motives N , and we apply this to N D M � . So we can
write 1M D

Pr
iD1 ˛i ˝ˇi in CH0.M

�˝M / for some ˛1; : : : ; ˛r 2 CH�.M �/ and
ˇ1; : : : ; ˇr 2 CH�M . Here ˛i is in CH�bi

.M �/ and ˇi is in CHbi
M for some

integers b1; : : : ; br . Let N D
Lr

iD1 R.bi/Œ2bi �. Then .ˇ1; : : : ; ˇr / can be viewed as
a morphism ˇW N !M , and .˛1; : : : ; ˛r / can be viewed as a morphism N �!M � ,
or equivalently ˛W M !N . The equation 1M D

P
˛i˝ˇi in CH0.M

�˝M / means
that the composition M ! N !M is the identity. Since idempotents split in the
category of Chow motives, it follows that M is a direct summand of N , which is a
finite direct sum of Tate motives. One direction of the theorem is proved.

The converse statements in the theorem are clear for a finite direct sum of Tate motives.
That implies the converse statements for any summand of a finite direct sum of Tate
motives.

5 The triangulated category of motives

This section summarizes the properties of Voevodsky’s triangulated category of motives
DM.kIR/ over a field k . Every separated scheme of finite type over k (not necessarily
smooth and proper) determines an object in this category, and Chow groups are given
by morphisms from a fixed object (a Tate motive) in this category. So DM.kIR/ is
a natural setting for studying Chow groups of k –schemes that need not be smooth
and proper.

We use the triangulated category of motives for at least two purposes in this paper.
First, we need it even to state the characterization of those schemes of finite type
which satisfy the Künneth property for motivic homology groups (Theorem 7.2). The
corresponding characterization for smooth proper schemes (Theorem 4.1) used only
the more elementary category of Chow motives. Second, we need the triangulated
category of motives in order to define the motive M c.BG/ of a classifying space and
to study when that motive is mixed Tate (Sections 8 and 9).

Let k be a field. Thanks to recent developments in the theory of motives, k need not
be assumed to be perfect or to admit resolution of singularities. We put one restriction
on the coefficient ring R, as follows. The exponential characteristic of k means 1 if k

has characteristic zero, or p if k has characteristic p > 0. For the rest of this section,
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we assume that the exponential characteristic of k is invertible in R. This assumption
is used to prove the basic properties of the compactly supported motive of a scheme X

over k , M c.X /, such as the localization triangle. (This assumption can be avoided
when we have resolution of singularities over k .) This assumption on R should be
understood throughout the paper when we discuss motives M c.X /.

A readable introduction to Voevodsky’s triangulated categories of motives over k is
[59]. Let R be a commutative ring. We primarily use the “big” triangulated category
DM.kIR/ of motives with coefficients in R, which contains the direct sum of an
arbitrary set of objects. Also, the motive R.1/ is invertible in DM.kIR/, as discussed
below. (Voevodsky originally considered the subcategory DMeff

� .k/ of “bounded-above
effective motives”, which does not have arbitrary direct sums.) Following Cisinski
and Déglise, DM.kIR/ is defined to be the homotopy category of Gtr

m –spectra of
(unbounded) chain complexes of Nisnevich sheaves with transfers which are A1 –local
[46, Section 2.3; 14, Example 6.25]. For k perfect, Röndigs and Østvær showed that
the category DM.kIZ/ is equivalent to the homotopy category of modules over the
motivic Eilenberg–MacLane spectrum HZ in Morel and Voevodsky’s stable homotopy
category SH.k/ [46, Theorem 1]. This is an analog of the equivalence between the
derived category D.Z/ of abelian groups and the homotopy category of modules over
the Eilenberg–MacLane spectrum HZ in the category of spectra in topology [22,
Theorem 8.9].

Let kperf denote the perfect closure of k . That is, kperf is equal to k if k has charac-
teristic zero, and kperf consists of all .pr /th roots of elements of k for all r � 0 if k

has characteristic p > 0. Under our assumption that p is invertible in R, Cisinski and
Déglise proved the following convenient result, following a suggestion by Suslin [16,
Proposition 8.1].

Theorem 5.1 The pullback functor DM.kIR/! DM.kperfIR/ is an equivalence of
categories.

By Theorem 5.1, most results on motives which previously assumed that k is perfect
immediately generalize to an arbitrary field k , given our assumption that the exponential
characteristic of k is invertible in R. We will mention some examples in what follows.

By definition of a triangulated category (such as DM.kIR/), every morphism X ! Y

fits into an exact triangle X ! Y ! Z ! X Œ1�. Here Z is called a cone of the
morphism X ! Y . It is unique up to isomorphism, but not (in general) up to unique
isomorphism.

There are two natural functors from schemes to motives, which we write as M.X / and
M c.X /. These were defined by Voevodsky when k is a perfect field which admits
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resolution of singularities (as we know for k of characteristic zero) [59, Section 2.2].
Kelly [34, Lemmas 5.5.2 and 5.5.6] extended these constructions to any perfect field k ,
under our assumption that the exponential characteristic of k is invertible in R, using
Gabber’s work on alterations. Finally, these constructions now apply to any field k :
given a separated scheme X of finite type over k , we have objects M.Xkperf/ and
M c.Xkperf/ of DM.kperfIR/ by Kelly, hence objects M.X / and M c.X / of DM.kIR/
by Theorem 5.1.

In more detail, there is a covariant functor X 7!M.X / from the category of separated
schemes of finite type over k to DM.kIR/. Also, there is a covariant functor X 7!

M c.X / (the motive of X “with compact support”) from the category of separated
schemes of finite type and proper morphisms to DM.kIR/. A flat morphism X ! Y

determines a pullback map M c.Y /!M c.X /. The motives M.X / and M c.X / are
isomorphic for X proper over k .

The category DM.kIR/ has objects called R.j / for all integers j . The motives
R.j /Œ2j � are called the Tate motives. One interpretation of Tate motives is that
M c.A

j

k
/DR.j /Œ2j � for j � 0. More generally, for an affine bundle Y !X (a mor-

phism that is locally on X isomorphic to a product with affine space Ar ), we have the ho-
motopy invariance statements that M.Y /ŠM.X /, whereas M c.Y /ŠM c.X /.r/Œ2r �.

The category DM.kIR/ is a tensor triangulated category, with a symmetric monoidal
product ˝ [14, Example 6.25]. We have M.X / ˝ M.Y / D M.X �k Y / and
M c.X /˝M c.Y /DM c.X �k Y / for k –schemes X and Y [59, Proposition 4.1.7;
34, Proposition 5.5.8]. The motive RDR.0/ of a point is the identity object for the
tensor product. The motive R.1/ is invertible in the sense that R.a/˝R.b/ŠR.aCb/

for all integers a and b .

The category DM.kIR/ has internal Hom objects, with natural isomorphisms

Hom.A˝B;C /Š Hom.A;Hom.B;C //

for all motives A;B;C . Moreover, the internal Hom preserves exact triangles in each
variable, up to a sign change in the boundary map [27, Definition 6.6.1, Theorem 7.1.11].
(All this is part of Cisinski and Déglise’s result that S 7! DM.S IR/ is a “premotivic
category” for finite-dimensional noetherian schemes S [15, Section 11.1.2].) It follows
that, for any motive B in DM.kIR/, the functor � ˝B is a left adjoint, and therefore
preserves arbitrary direct sums.

To understand the two functors, note that the Chow groups CHi X are determined
by M c.X /, whereas Chow cohomology groups CHi X for X smooth over k are
determined by M.X /. Namely,

CHi.X /˝Z RD Hom.R.i/Œ2i �;M c.X //
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for any separated scheme X of finite type over k , while

CHi.X /˝Z RD Hom.M.X /;R.i/Œ2i �/

for X also smooth over k [59, Section 2.2]. Voevodsky defined motivic cohomology and
(Borel–Moore) motivic homology for any separated scheme X of finite type over k by

H
j
M
.X;R.i//D Hom.M.X /;R.i/Œj �/

and
H M

j .X;R.i//D Hom.R.i/Œj �;M c.X //:

For a separated scheme X of finite type over k and a closed subscheme Z of X , there
is an exact triangle in DM.kIR/, the localization triangle:

M c.Z/!M c.X /!M c.X �Z/!M c.Z/Œ1�:

(This was proved by Voevodsky when k is perfect and admits resolution of singularities
[59, Section 2.2], by Kelly for any perfect field k with our assumption on R [34,
Proposition 5.5.5], and by Theorem 5.1 for an arbitrary field k .) This triangle induces
a long exact sequence of motivic homology groups, called the localization sequence.

Bloch defined higher Chow groups as the homology of an explicit complex of algebraic
cycles. Higher Chow groups are essentially the same as motivic homology, but (by
tradition) they are numbered by codimension. Namely, for an equidimensional separated
scheme X of dimension n over k ,

CHn�j .X; i � 2j IR/ŠH M
i .X;R.j //:

(For k admitting resolution of singularities and X quasiprojective over k , this is [59,
Proposition 4.2.9]. Kelly modified the argument to replace the assumption on resolution
of singularities with our assumption on R [34, Theorem 5.6.4]. Finally, the assumption
of quasiprojectivity was needed for Bloch’s proof of the localization sequence for
higher Chow groups [3], but Levine has now proved the localization sequence for the
higher Chow groups of all schemes of finite type over a field [38, Theorem 0.7].)

Some higher Chow groups are zero by the definition, because they consist of cycles
of negative dimension or negative codimension. It follows that the motivic homology
H M

i .X;R.j // of a separated k –scheme X is zero unless i � 2j and i � j and
j � dim X .

For any motive A in DM.kIR/, we define the motivic homology groups of A to mean
the groups H M

j .A;R.i// D Hom.R.i/Œj �;A/. Note that what we call the motivic
homology groups of a separated k –scheme X of finite type are the motivic homology
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groups of the motive M c.X /, not those of M.X / (although the two motives are
isomorphic for X proper over k ).

Let T be a triangulated category with arbitrary direct sums. A localizing subcategory
of T means a strictly full triangulated subcategory which is closed under arbitrary
direct sums. Following Röndigs and Østvær, the triangulated category DMT.kIR/
of mixed Tate motives with coefficients in R is the smallest localizing subcategory of
DM.kIR/ that contains R.j / for all integers j [46]. Because the tensor product ˝
on DM.kIR/ is compatible with exact triangles and with arbitrary direct sums, the
tensor product of two mixed Tate motives is a mixed Tate motive.

The category of mixed Tate motives is analogous to the category of cellular spectra
in the stable homotopy category SH.k/ studied by Voevodsky [60] and Dugger and
Isaksen [19]. (Actually, Voevodsky says “T –cellular” and Dugger and Isaksen say
“stably cellular”.) Namely, let T be the suspension spectrum of the pointed k –space
.P1

k
; point/; the triangulated category of cellular spectra is defined as the smallest

localizing subcategory of SH.k/ that contains T j for all integers j .

As with motives, there are two natural functors from separated k –schemes X of finite
type to SH.k/: the usual functor (which we write as X 7!S.X / or X 7!†1

T
XC ) and

a compactly supported version, X 7!Sc.X /. Explicitly, for any compactification xX of
a k –scheme X , Sc.X / is the spectrum associated to the pointed k –space xX=. xX�X /.
There is a functor from SH.k/ to DM.kIR/, which one can view as smashing with
the Eilenberg–MacLane spectrum HR, and this takes S.X / to M.X / and Sc.X / to
M c.X /. In particular, the spectrum T goes to the motive R.1/Œ2�.

In a triangulated category with arbitrary direct sums, every idempotent splits [9, Propo-
sition 3.2]. Applying this to the category of mixed Tate motives, it follows that every
summand of a mixed Tate motive in DM.kIR/ is a mixed Tate motive.

Let T be a triangulated category with arbitrary direct sums. An object X of T is called
compact if Hom.X; � / commutes with arbitrary direct sums. The objects M.X /.a/Œb�

and M c.X /.a/Œb� are compact in DM.kIR/ for every separated k –scheme X of
finite type [34, Lemmas 5.5.2 and 5.5.6]. A set P of objects generates T if every
object Y of T such that Hom.P Œa�;Y /D 0 for all objects P in P and all integers a

is zero. A triangulated category T is compactly generated if it has arbitrary direct
sums and it is generated by a set of compact objects.

The following result by Neeman helps to understand the notion of generators for a
triangulated category [43, Theorem 2.1].

Lemma 5.2 Let T be a triangulated category with arbitrary direct sums, and let P be
a set of compact objects. The following are equivalent:
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(1) The smallest localizing subcategory of T that contains P is equal to T .

(2) The set P generates T . That is, any object X in T with Hom.P Œa�;X /D 0 for
all P in P and a 2 Z must be zero.

Corollary 5.3 A mixed Tate motive with zero motivic homology must be zero.

Proof By Lemma 5.2, the objects R.a/ for a 2Z generate the category DMT.kIR/.
Since H M

j .A;R.i//D Hom.R.i/Œj �;A/ for a motive A, the corollary is proved.

Lemma 5.4 Let k be a field. Then the category DM.kIR/ is compactly generated,
with a set of generators given by the compact objects M.X /.a/ for X smooth projec-
tive over k and a an integer.

Proof This was proved by Voevodsky when k is perfect and admits resolution of
singularities [59, Corollary 3.5.5]. Given our assumption that the exponential charac-
teristic of k is invertible in R, Kelly generalized this result to any perfect field k [34,
Proposition 5.5.3]. The generalization to an arbitrary field k follows from Theorem 5.1.

A reassuring fact is that if the motive M c.X / in DM.kIR/ of a separated k –scheme X

of finite type is mixed Tate, then it is a summand of an object of the smallest strictly
full triangulated subcategory of DM.kIR/ that contains R.j / for all integers j . In
other words, M c.X / can be described by a finite diagram of objects R.j /. This
follows from a general result about triangulated categories. Define a thick subcategory
of a triangulated category to be a strictly full triangulated subcategory that is closed
under direct summands. Let T be a compactly generated triangulated category, and
let P be a set of compact generators. (We have in mind the category of mixed Tate
motives, generated by the objects R.j / for integers j .) Then Neeman showed that any
compact object in T belongs to the smallest thick subcategory of T that contains P
[43, Theorem 2.1].

The category DMgm.kIR/ of geometric motives is defined as the smallest thick sub-
category of DM.kIR/ that contains M.X /.a/ for all smooth separated schemes X

of finite type over k and all integers a. In fact, it suffices to use M.X /.a/ for smooth
projective varieties X over k and all integers a, by Lemma 5.4. Another application
of Neeman’s theorem gives that DMgm.kIR/ is the subcategory of all compact objects
in DM.kIR/.

A linear scheme over a field k is defined inductively: affine space An
k

is a linear scheme
for any n � 0; for any scheme X of finite type over k with a closed subscheme Z ,
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if Z and X �Z are linear schemes, then X is a linear scheme; and if X and Z are
linear schemes, then X �Z is a linear scheme. (A slightly narrower class of linear
schemes was studied in [56].) Some examples of linear schemes are all toric varieties
(not necessarily smooth or compact), the discriminant hypersurface and its complement,
and many quotients of affine space by finite group actions. Linear schemes can have
torsion in their Chow groups and homology groups, and they can have nonzero rational
homology in odd degrees. (To talk about rational homology, assume that the base field
is the complex numbers.)

From the localization triangle, a straightforward induction shows that for any linear
scheme X over k , the compactly supported motive M c.X / with any coefficient ring R

is a mixed Tate motive. Likewise, for any linear scheme X , the spectrum Sc.X / is
cellular in SH.k/. (Dugger and Isaksen asked whether the spectrum S.X / is cellular
for linear schemes X , and proved this in some examples [19, Section 1.1]. Arguably,
the more natural spectrum associated to a linear scheme X is Sc.X /, which is clearly
cellular. For X proper over k , S.X / and Sc.X / are isomorphic.)

Let X and Y be smooth proper varieties over k . Then the set of morphisms from M.X /

to M.Y / in DM.kIR/ is the Chow group CHdim X .X �k Y IR/ [59, Section 2.2].
Composition of morphisms M.X /!M.Y /!M.Z/ is given by the composition
of correspondences. As a result, the smallest strictly full subcategory of DM.kIR/
that is closed under direct summands and contains M.X /.a/Œ2a� for all smooth proper
varieties X over k and all integers a is equivalent to the category of Chow motives
over k with coefficients in R, as defined in Section 4.

We define N � D Hom.N;R/. A version of Poincaré duality says that M c.X / Š

M.X /�.n/Œ2n� for X smooth of pure dimension n over k [34, Theorem 5.5.14]. The
internal Hom of motives has a simple description for compact objects, as follows.

Lemma 5.5 Let M be an object of DMgm.kIR/, for example the motive M c.X /.a/Œb�

for a scheme X of finite type over k and a; b 2Z. Let N be any object of DM.kIR/.
Then the morphism M �˝N ! Hom.M;N / is an isomorphism.

Also, for M in DMgm.kIR/, the natural map M !M �� is an isomorphism.

Proof At first, let M� denote the object Homgm.M;R/ in the subcategory DMgm.kIR/

of compact objects. Then Voevodsky and Kelly prove that M !M �� is an isomor-
phism for M compact, and also that M �˝N ! Homgm.M;N / is an isomorphism
for M and N compact [59, Theorem 4.3.7; 34, Theorem 5.5.14]. That is, the map

Hom.A;B�˝C /! Hom.A˝B;C /

associated to B�˝B!R is a bijection for all compact objects A;B;C .
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For A and B compact, the map of Hom sets above turns arbitrary direct sums of
motives C into direct sums, and fits into long exact sequences for any exact triangle
of objects C . By Lemmas 5.2 and 5.4, it follows that the map is an isomorphism
for A and B compact and C arbitrary. For B compact and C arbitrary, both Hom
sets turn arbitrary direct sums of motives A into products, and they fit into long exact
sequences for any exact triangle of objects A. Therefore the map is an isomorphism
for B compact and A and C any motives. That is, the internal Hom in DM.kIR/ has
Hom.B;C /Š B�˝C for B compact and C arbitrary. In particular, taking C DR,
we see that the object B� (which we defined as Homgm.B;R/ in DMgm.kIR/) is
isomorphic to Hom.B;R/ in DM.kIR/.

6 A Künneth spectral sequence for motivic homology

Dugger and Isaksen proved the following Künneth spectral sequence, which describes
the motivic homology of the tensor product of a mixed Tate motive with any motive [19,
Proposition 7.10]. Their result applies to modules over any ring spectrum in the stable
homotopy category over a field k ; the case of the Eilenberg–MacLane spectrum HR
in SH.k/ gives the result here, by the identification between the homotopy category
of HR–module spectra and DM.kIR/ [46, Theorem 1]. (It is also straightforward to
translate Dugger and Isaksen’s proof to work directly in DM.kIR/.) In the case of the
product of a linear scheme with any scheme over a field, this spectral sequence was
constructed by Joshua [30].

Theorem 6.1 Let k be a field. Let R be a commutative ring. Let X be a mixed Tate
motive in DM.kIR/ and Y any motive in DM.kIR/. For each integer j , there is a
convergent spectral sequence

E
pq
2
D TorH�.k;R.�//

�p;�q;j .H�.X;R.�//;H�.Y;R.�/// D) H�p�q.X ˝Y;R.j //:

This spectral sequence is concentrated in the left half-plane (columns � 0).

By the discussion after Theorem 7.2, one can define a spectral sequence with the E2

term above for any motives X and Y in DM.kIR/. It does not always converge to
the motivic homology of X ˝Y .

We use cohomological numbering, which means that the differential dr has bidegree
.r; 1� r/ for all r .

For bigraded modules M and N over a bigraded ring S , we denote by TorS
a;i;j .M;N /

the .i; j /th bigraded piece of TorS
a .M;N /. For this purpose, the bigrading of the group

H M
i .X;R.j // is .i; j /.
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Here Hi.k;R.j //ŠH�i.k;R.�j //, and so the ring H�.k;R.�// is better known as
the motivic cohomology ring of k with coefficients in R. For example, H�1.k;Z.�1//

is isomorphic to k� . More generally,
L

j�0 H�j .k;Z.�j // is the Milnor K–theory
ring, that is, the quotient of the tensor algebra generated by the abelian group k� by
the relation fa; 1� ag D 0 for each a 2 k �f0; 1g [45; 54].

If X and Y are k –schemes, viewed as the motives M c.X / and M c.Y /, then the
spectral sequence with R.j / coefficients is concentrated in columns � 0 and rows
� �2j . If we write H�.X / for the bigraded group H�.X;R.�//, the E2 term looks
like this:

0 0 0 0

ŒTorH�k
2

.H�X;H�Y /�2j ;j

--

ŒTorH�k
1

.H�X;H�Y /�2j ;j ŒH�X˝H�kH�Y �2j ;j 0

ŒTorH�k
2 .H�X;H�Y /�2jC1;j ŒTorH�k

1 .H�X;H�Y /�2jC1;j ŒH�X˝H�kH�Y �2jC1;j 0

(Indeed, for a k –scheme X , the group Ha.X;R.b// is zero unless a� 2b , as men-
tioned in Section 5. Since this applies to X , Y , and Spec k , the E2 term for the
spectral sequence with R.j / coefficients is concentrated in rows � �2j .) So there
are no differentials into or out of the upper right group, E

0;�2j
2

. We deduce that

CH�.X �k Y IR/Š CH�.X IR/˝R CH�.Y IR/

if X is a k –scheme with M c.X / a mixed Tate motive in DM.kIR/ and Y is any
separated k –scheme of finite type. I proved this in the special case where X is a linear
scheme over k [56], which helped to inspire Joshua’s result.

7 The motivic Künneth property

In this section, we prove that a separated scheme X of finite type over a field k satisfies
the motivic Künneth property if and only if the motive M c.X / is a mixed Tate motive.
Given the machinery we have developed, the proof is short.

The motivic Künneth property means that the spectral sequence described in Theorem 6.1
converges to the motivic homology of X �k Y for every separated k –scheme Y of
finite type. (We recall that motivic homology groups are also called higher Chow
groups.) There is a neater formulation of the Künneth property in the language of
Bousfield localization, to be explained now.

The inclusion of mixed Tate motives DMT.kIR/ into the category DM.kIR/ of all
motives has a right adjoint DM.kIR/!DMT.kIR/, which we write as X 7! C.X /.
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It associates to any motive a mixed Tate motive with the same motivic homology
groups. For X a compact object (a geometric motive), C.X / need not be a compact
object. So this construction shows the convenience of “big” categories of motives. The
construction is a general application of Bousfield localization, as developed by Neeman
for triangulated categories.

Namely, let T be a triangulated category with arbitrary direct sums. Let P be a
set of compact objects in T . Recall from Section 5 that a localizing subcategory
of T means a full triangulated subcategory which is closed under arbitrary direct
sums. Let S be the smallest localizing category that contains P . Then the inclusion
S! T has a right adjoint C W T ! S known as colocalization with respect to P [43,
Theorem 4.1]. By adjointness, there is a canonical morphism C.X /! X , and this
morphism induces a bijection Hom.P Œj �;C.X //! Hom.P Œj �;X / for all objects P

in P and all integers j . (The localization of an object X with respect to P means a
cone X=C.X /, which in this case is defined up to a unique isomorphism.)

The functor DM.kIR/! DMT.kIR/ given by X 7! C.X /, mentioned above, is the
colocalization with respect to the compact objects R.j / for j 2 Z. The construc-
tion implies that C.X / is a mixed Tate motive with a morphism C.X /! X that
induces isomorphisms on motivic homology groups. (That is, Hom.R.a/Œb�;C.X //!
Hom.R.a/Œb�;X / is an isomorphism for all integers a and b .) Moreover, C.X / is
determined up to a unique isomorphism by this property.

As in any triangulated category with arbitrary direct sums, the homotopy colimit
X1 D hocolim.X0!X1! � � � / is defined as a cone of the morphism

1� sW
M
i�0

Xi!

M
i�0

Xi ;

where s is the given map from each Xi to XiC1 [9].

Here is an explicit construction of the colocalization C.X /, modeled on Dugger
and Isaksen’s analogous construction in the stable homotopy category over k [19,
Proposition 7.3]. (They were imitating the usual construction of a cellular approx-
imation to any topological space.) Choose a set of generators for all the motivic
homology groups Hb.X;R.a// with a; b 2 Z. Let C0 be a direct sum of one motive
R.a/Œb� for each generator; so we have a morphism C0!X that induces a surjection
on motivic homology groups. Next, choose a set of generators for the kernel of
H�.C0;R.�//! H�.X;R.�//, let S1 be the corresponding direct sum of motives
R.a/Œb�, and let C1 be a cone of the morphism S1! C0 . Then we have a morphism
C0 ! C1 , and we can choose an extension of the morphism C0 ! X to C1 ! X .
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Repeating the process, we get a sequence of mixed Tate motives

C0! C1! � � �

with a compatible sequence of morphisms Ci!X . These extend to a morphism from
the homotopy colimit, hocolimj Cj ! X . This homotopy colimit is a mixed Tate
motive, and the morphism induces an isomorphism on motivic homology groups. So
the colocalization C.X / is isomorphic to hocolimj Cj .

By Corollary 5.3, any mixed Tate motive with zero motivic homology groups is zero.
This is not true for motives in general. In fact, for any motive X , the cone of C.X /!X

has motivic homology groups equal to zero, and it is zero if and only if X is a mixed
Tate motive.

Lemma 7.1 The colocalization functor X 7! C.X / from DM.kIR/ to DMT.kIR/
preserves arbitrary direct sums and arbitrary products.

Proof Because the category DMT.kIR/ is compactly generated, it has arbitrary
products [44, Proposition 8.4.6]. (Beware that the inclusion DMT.kIR/!DM.kIR/
preserves arbitrary direct sums, but need not preserve arbitrary products [58, Corol-
lary 4.2].) Because the functor X 7! C.X / from DM.kIR/ to DMT.kIR/ is a
right adjoint, it preserves arbitrary products. Because the functor X 7! C.X / is
colocalization with respect to a set of compact objects in DM.kIR/ (namely R.j / for
integers j ), it also preserves arbitrary direct sums [43, Theorem 5.1].

For any motives X and Y in DM.kIR/, there is a canonical morphism

C.X /˝C.Y /! C.X ˝Y /;

which is generally not an isomorphism. Indeed, tensoring the morphisms C.X /!X

and C.Y /! Y gives a morphism C.X /˝C.Y /!X ˝Y . Since C.X /˝C.Y / is
a mixed Tate motive, this morphism factors uniquely through C.X ˝Y /, as we want.

Theorem 7.2 Let k be a field. Let R be a commutative ring. Let X be an object
of the category DM.kIR/ of motives (for example, X could be the motive M c.W /

for a separated k –scheme W of finite type, if the exponential characteristic of k is
invertible in R). The following are equivalent:

(1) X is a mixed Tate motive.

(2) X satisfies the motivic Künneth property, meaning that the morphism

C.X /˝C.M.Y //! C.X ˝M.Y //

of mixed Tate motives is an isomorphism for every smooth projective variety Y

over k .
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(3) X satisfies the apparently stronger property that

C.X /˝C.Y /! C.X ˝Y /

is an isomorphism for every motive Y in DM.kIR/.

If X belongs to the subcategory DMgm.kIR/ of geometric motives, for example if
X DM c.B/ for some separated k –scheme B of finite type, then (1)–(3) are also
equivalent to:

(4) X is a “small” mixed Tate motive, meaning that X belongs to the smallest thick
subcategory of DM.kIR/ that contains R.j / for all integers j .

Let us explain why properties (2) and (3) deserve to be called Künneth properties
of X . Since C.X /˝C.Y / and C.X˝Y / are both mixed Tate motives, the morphism
C.X /˝C.Y /!C.X˝Y / is an isomorphism if and only if it induces an isomorphism
on motivic homology groups, by Corollary 5.3. The motivic homology groups of
C.X ˝Y / are simply the motivic homology groups of X ˝Y . The motivic homology
groups of C.X /˝C.Y / are the “output” of the spectral sequence of Theorem 6.1,
with E2 term

TorH�.k;�/
�

�
H�.C.X /;R.�//;H�.C.Y /;R.�//

�
D TorH�.k;�/

�

�
H�.X;R.�//;H�.Y;R.�//

�
:

So property (3) is saying that this Künneth spectral sequence converges to the motivic
homology of X ˝Y .

Proof The Künneth property (2) is preserved under arbitrary direct sums of motives X ,
since the tensor product ˝ and the functor X 7! C.X / (by Lemma 7.1) preserve
arbitrary direct sums. Also, if it holds for two of the three motives in an exact triangle,
then it holds for the third. Finally, the motives R.j / have the Künneth property. It
follows that every mixed Tate motive in DM.kIR/ has the Künneth property. That is,
(1) implies (2).

Next, let X be a motive in DM.kIR/ with the Künneth property (2) with respect to
smooth projective varieties over k . The statement that the morphism

C.X /˝C.Y /! C.X ˝Y /

is an isomorphism is preserved under arbitrary direct sums of motives Y . Also, if it
holds for two motives Y in an exact triangle, then it holds for the third. By Lemma 5.4,
X satisfies the Künneth property (3) with respect to all motives Y .
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We now show that (3) implies (1). As above, the “cellular approximation” C.X / is the
unique mixed Tate motive with a morphism C.X /!X that induces an isomorphism
on motivic homology groups. Since C.X / is a mixed Tate motive, it has the Künneth
property. Let X2 be a cone of the morphism C.X /! X . It suffices to show that
X2 D 0.

The motivic homology groups of X2 are equal to zero. Also, X2 satisfies the Künneth
property. So the motivic homology of X2˝Y is zero for every motive Y in DM.kIR/.
In particular, for all smooth projective varieties Y over k and all integers a and b , the
motivic homology group Hom.R;X2˝ .M.Y /.a/Œb�/�/ is zero. By Lemma 5.5, it
follows that Hom.M.Y /.a/Œb�;X2/D 0 for all smooth projective varieties Y over k

and all integers a and b . By Lemma 5.4, it follows that X2 D 0. We have shown that
(3) implies (1).

Finally, if X belongs to the subcategory DMgm.kIR/ of geometric motives, then we
showed after Lemma 5.4 that (1) and (4) are equivalent.

The following consequence is not surprising, but it seems worth mentioning. Dugger
and Isaksen mentioned that it is not immediately clear how to show that a given object
in the stable homotopy category SH.k/, for example an elliptic curve over k , is not
cellular [19, Section 1.2]. The functor SH.k/! DM.kIR/ takes cellular objects to
mixed Tate motives. The following result describes which smooth projective varieties
have motives that are mixed Tate. As a very special case, we see that elliptic curves
are not mixed Tate motives (for any nonzero coefficient ring), and so elliptic curves are
not cellular in SH.k/.

Corollary 7.3 Let X be a smooth proper scheme over a field k . Let R be a com-
mutative ring such that the exponential characteristic of k is invertible in R. If the
motive M.X / in DM.kIR/ is a mixed Tate motive, then the Chow motive of X with
coefficients in R is a summand of a finite direct sum of Tate motives R.a/Œ2a�. So, for
example, CH�.X /˝Z R!H�.XC;R/ is an isomorphism if there is an embedding
k ,!C . In particular, H�.XC;R/ is concentrated in even degrees.

Proof By Theorem 7.2, X satisfies the Künneth property for motivic homology
groups with coefficients in R. By the discussion of the Künneth spectral sequence after
Theorem 6.1, it follows that X has the Chow Künneth property: the homomorphism

CH�.X IR/˝R CH�.Y IR/! CH�.X �k Y IR/

is an isomorphism for every separated k –scheme Y of finite type. By Theorem 4.1, the
Chow motive of X with coefficients in R is a summand of a finite direct sum of Tate
motives. The theorem includes several consequences of that property, for example that
CH�.X IR/!H�.XC;R/ is an isomorphism if there is an embedding k ,!C .
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8 The motive of a quotient stack

Edidin and Graham defined the motivic homology of a quotient stack [20, Sections 2.7
and 5.3]. In this section, we define the compactly supported motive of a quotient stack,
in such a way that we recover the same motivic homology groups. One benefit of
defining the motive of a quotient stack is that it makes sense to ask whether a given
stack, such as BG for an affine group scheme G , is mixed Tate, meaning that the
motive M c.BG/ is mixed Tate.

The motive M.BG/ (not compactly supported) in DM.kIR/ was already defined,
in effect, by Morel and Voevodsky [40, Section 4.2]. Its motivic cohomology is the
motivic cohomology of BG . We need to define M c.BG/ because that is the motive
relevant to the motivic homology of BG �X for separated schemes X of finite type
over k . To see the difference between the two motives, write Gm for the multiplicative
group over k . Then M.BGm/ is the homotopy colimit of the motives M.P j /, and so
M.BGm/ is isomorphic to

L
j�0 Z.j /Œ2j � in DM.kIZ/. By contrast, M c.BGm/

is the homotopy limit of the motives M.P j�1/.�j /Œ�2j � by the definition below,
and so M c.BGm/ is isomorphic to

Q
j��1 Z.j /Œ2j � in DM.kIZ/. This product is

isomorphic to the direct sum
L

j��1 Z.j /Œ2j � by Lemma 8.5, from which we see that
M c.BGm/ is mixed Tate.

Another possible name for the mixed Tate property of BG would be the motivic
Künneth property. Indeed, by Theorem 7.2, BG is mixed Tate if and only if BG has
the motivic Künneth property in the sense that the Künneth spectral sequence

E
pq
2
D TorH�.k;�/

�p;�q;j

�
H�.BG;R.�//;H�.Y;R.�//

�
D) H�p�q.BG �k Y;R.j //

converges to the groups on the right for every separated k –scheme Y of finite type.

Before defining the compactly supported motive of a quotient stack, we recall the
definition of homotopy limits. Let

� � � !X2!X1

be a sequence of morphisms in the category DM.kIR/ of motives. Since DM.kIR/
is compactly generated, arbitrary products exist in DM.kIR/ [44, Proposition 8.4.6].
Dualizing Bökstedt and Neeman’s definition of homotopy colimits, the homotopy limit
holimj Xj in DM.kIR/ is defined as the fiber of the morphism f W

Q
Xj !

Q
Xj

given by the identity minus the shift map � [9]. (In other words, the homotopy limit
is cone.f /Œ�1�; so it is well-defined up to isomorphism, but not necessarily up to a
unique isomorphism.)
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Define a quotient stack over a field k to be an algebraic stack over k which is the
quotient stack of some quasiprojective scheme Y over k by an action of an affine group
scheme G of finite type over k such that there is a G –equivariant ample line bundle
on Y . (A short introduction to quotient stacks is [53, Tag 04UV]. It would be more
natural to allow quotients of algebraic spaces by affine group schemes, but this definition
of quotient stacks is sufficient for our applications.) For Y quasiprojective over k ,
the assumption that there is a G –equivariant ample line bundle is automatic when G

is finite, or when G is smooth over k and Y is normal, by Sumihiro’s equivariant
completion theorem [50] and [41, Corollary 1.6]. For example, the stack BG means
the quotient stack Spec k=G .

The dimension of a locally Noetherian stack is defined in such a way that a quotient
stack X DA=G has dimension dim A� dim G [53, Tag 0AFL]. For example, BG is
a smooth stack of dimension � dim G over k .

We can now define the compactly supported motive of a quotient stack, with coefficients
in a given commutative ring R. Let k be a field. Let R be a commutative ring in which
the exponential characteristic of k is invertible. Let X be a quotient stack over k .
Let � � �� V2� V1 be a sequence of surjections of vector bundles over X . Write ni

for the rank of the bundle Vi . Think of the total space of Vi as a stack over k . For
each i , let Si be a closed substack of Vi such that Vi �Si is a separated scheme and
SiC1 is contained in the inverse image of Si under the morphism fi W ViC1� Vi for
all i . Assume that the codimension of Si in Vi goes to infinity with i . (Such vector
bundles Vi and closed subsets Si exist because X is a quotient stack. In more detail, if
we write X as a quotient stack Y=G , then we can use bundles Vi which are given by
suitable representations V of G . Take Vi�Si to be of the form .Y �.V �S//=G with
.V �S/=G a quasiprojective scheme [55, Remark 1.4]. Then .Y �.V �S//=G is also
a quasiprojective scheme by [41, Proposition 7.1], using that Y has a G –equivariant
ample line bundle.)

Define the motive M c.X / in DM.kIR/ to be the homotopy limit of the sequence

� � � !M c.V2�S2/.�n2/Œ�2n2�!M c.V1�S1/.�n1/Œ�2n1�:

The morphisms here are the composition

M c.ViC1�SiC1/.�niC1/Œ�2niC1�!M c.ViC1�f
�1

i .Si//.�niC1/Œ�2niC1�

ŠM c.Vi �Si/.�ni/Œ�2ni �;

where the first morphism is the flat pullback associated to an open inclusion, and the
isomorphism follows from homotopy invariance for affine bundles. We will show that
this motive is independent of the choice of vector bundles Vi and closed substacks Si .
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(Because we are relying on Bökstedt and Neeman’s definition of homotopy limits, we
have only defined the compactly supported motive of a quotient stack up to isomorphism.
With more care, it should be possible to define this motive up to unique isomorphism
in DM.kIR/.)

Once we check that this motive is well defined up to isomorphism in Theorem 8.4,
it will be immediate that the motivic homology of a quotient stack X D Y=G given
by the motive M c.X / agrees with the motivic homology of X as defined by Edidin
and Graham [20, Sections 2.7 and 5.3]. Namely, any given motivic homology group
Ha. � ;R.b// of the sequence above is eventually constant. In our notation, Edidin and
Graham defined Ha.X;R.b// to be equal to

Ha

�
..Y�.Vj�Sj //=G/.�nj /Œ�2nj �;R.b/

�
ŠHaC2nj

�
.Y�.Vj�Sj //=G;R.bCnj /

�
for any j sufficiently large.

Tudor Pădurariu observed that for a smooth quotient stack X of pure dimension n

over k , the motive M.X / determines M c.X / in a simple way: namely, M c.X /Š

M.X /�.n/Œ2n�. In particular, M c.BG/ŠM.BG/�.� dim G/Œ�2 dim G�, since BG

is a smooth stack of dimension � dim G over k . For example, it follows that

CHi BG Š CH� dim G�i BG:

Pădurariu’s argument uses that the dual of a direct sum in DM.kIR/ is a product,
and so the dual of a homotopy colimit is a homotopy limit. By contrast, the dual of a
product does not have a simple description in general, and so it is not clear whether
M c.X /� is isomorphic to M.X /.�n/Œ�2n� for a smooth quotient stack X of pure
dimension n over k .

The following filtration of the category DM.kIR/ is convenient for our arguments. For
an integer j , let Dj .kIR/ be the smallest localizing subcategory of DM.kIR/ that
contains M c.X /.a/ for all separated schemes X of finite type over k and all integers a

such that dim X C a � j . (Another possible notation would be d�j DM.kIR/, by
analogy with a notation used for effective motives [28, proof of Corollary 1.9].) Thus
we have a sequence of triangulated subcategories

� � � �D�1 �D0 �D1 � � � �

of DM.kIR/.

For an integer j , let Ej be the smallest localizing subcategory of DM.kIR/ that
contains M.Y /.a/ for all smooth projective varieties Y over k and all integers a> j .
This is related to the slice filtration of motives; in that setting, Ej would be called
DMeff.kIR/.jC1/ [28, Section 1]. For a triangulated subcategory E of a triangulated
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category T , the right orthogonal to E is the full subcategory E? of all objects M

such that Hom.N;M /D 0 for every N in E . The right orthogonal E? is always a
colocalizing subcategory of T , meaning a triangulated subcategory that is closed under
arbitrary products in T . In the notation of the slice filtration, E?j might be called
��j DM.kIR/ [28, Definition 1.3].

Lemma 8.1 The subcategory Dj of DM.kIR/ is contained in the right orthogonal E?j .

Proof As mentioned in Section 5, for any separated scheme Z of finite type over k ,
we have Hj .Z;R.a//D 0 for all integers a and j with a> dim Z . Let Y be a smooth
projective variety over k , and let nD dim Y . Then we have Hj .Y �Z;R.a//D 0 for
all integers a and j with a> nC dim Z . Equivalently,

HomDM.kIR/.R.a/Œb�;M.Y /˝M c.Z//D 0

for all integers a and b with a> nC dim Z .

As mentioned in Section 5, we have

M.Y /� ŠM.Y /.�n/Œ�2n�:

So HomDM.kIR/.R.a/Œb�;M.Y /� ˝ M c.Z// D 0 for all integers a and b with
a > dim Z . By Voevodsky and Kelly’s results (see the proof of Lemma 5.5), it
follows that HomDM.kIR/.M.Y /.a/Œb�;M c.Z// D 0 for all integers a and b with
a > dim Z . Since the object M.Y /.a/ is compact in DM.kIR/, it follows that
HomDM.kIR/.M.Y /.a/Œb�;N / D 0 for all motives N in the subcategory Dj and
all integers a and b such that a > j . Consequently, Dj is contained in the right
orthogonal E?j .

Here is a convenient formal property of the subcategories E?j .

Lemma 8.2 For any integer j , the subcategory E?j of DM.kIR/ is both localizing
and colocalizing. That is, it is a triangulated subcategory of DM.kIR/ which is closed
under arbitrary direct sums and arbitrary products in DM.kIR/.

Proof Since Ej is a triangulated subcategory of DM.kIR/, E?j is a triangulated sub-
category of DM.kIR/. As is any right orthogonal, E?j is closed under arbitrary prod-
ucts in DM.kIR/. Because Ej is generated by a set of compact objects in DM.kIR/,
E?j is also closed under arbitrary direct sums in DM.kIR/ [43, Theorem 5.1].

Lemma 8.3 The intersection of the subcategories E?j of DM.kIR/ for all integers j

is zero.
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Proof If a motive N belongs to E?j for all integers j , then

HomDM.kIR/.M.Y /.a/Œb�;N /D 0

for all smooth projective varieties Y over k and all integers a and b . Since the
triangulated category DM.kIR/ is generated by the objects M c.Y /.a/ for smooth
projective varieties W over k and integers a (Section 5), it follows that N D 0. ThusT

j E?j D 0.

Theorem 8.4 The compactly supported motive of a quotient stack over a field k is
well-defined up to isomorphism in DM.kIR/.

Proof Let X be a quotient stack over k . Let � � �� V2� V1 and � � ��W2�W1

be two sequences of vector bundles over X , viewed as stacks over k , with closed
substacks Sj � Vj and Tj �Wj such that Vj �Sj and Wj �Tj are schemes, SjC1

is contained in the inverse image of Sj under VjC1� Vj and likewise for TjC1 , and
the codimensions of Sj � Vj and Tj �Wj go to infinity. Let mj be the rank of the
bundle Vj over X and nj the rank of Wj . We want to define an isomorphism from
the motive

XV WD holimj M c.Vj �Sj /.�mj /Œ�2mj �

to
XW WD holimj M c.Wj �Tj /.�nj /Œ�2nj �:

Consider the sequence of vector bundles Vj ˚Wj over X , viewed as stacks over k .
(These stacks are the fiber products Vj �X Wj .) Let Zj be the union of Sj �X Wj and
Vj�X Tj inside Vj˚Wj . Then we have flat morphisms of schemes from .Vj˚Wj /�Zj

to Vj � Sj and to Wj � Tj , for all j . So we can choose morphisms from XV and
from XW to the homotopy limit

XV W WD holimj M c..Vj ˚Wj /�Zj /.�mj � nj /Œ�2mj � 2nj �;

as homotopy limits of flat pullback maps of compactly supported motives. A priori,
these morphisms may not be unique, by the nonfunctoriality of fibers in a triangulated
category. If we write XV D holimj�1 Aj and XV W D holimj�1 Bj , we ask only that
the following diagram commutes:Q

j�1 Aj Œ�1� //

��

XV
//

��

Q
j�1 Aj

��

1��
//
Q

j�1 Aj

��Q
j�1 Bj Œ�1� // XV W

//
Q

j�1 Bj
1��
//
Q

j�1 Bj

One can choose a map of fibers that satisfies further good properties (such as extending
to a 3 � 3 square of exact triangles), although still without characterizing the map
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uniquely [42, Example 2.6]. It suffices to show that the chosen morphisms XV !XV W

and XW !XV W are isomorphisms in DM.kIR/.

We will show that XV !XV W is an isomorphism; the argument would be the same
for XW . The point is that the morphism .Vj˚Wj /�Zj!Vj �Sj is the complement
of the closed subset Vj �X Tj in a vector bundle (with fiber Wj ) over the scheme
Vj �Sj . The vector bundle (of rank nj ) gives an isomorphism

M c..Vj˚Wj /�.Sj�X Wj //.�mj�nj /Œ�2mj�2nj �ŠM c.Vj�Sj /.�mj /Œ�2mj �:

Removing Tj changes this motive by an object in the subcategory D� codim.Tj�Wj / ,
by the localization triangle for compactly supported motives (Section 5). Thus, in the
notation above, for each integer m there is an r such that the fiber of Aj ! Bj is
in Dm (hence in E?m , by Lemma 8.1) for all j � r . I claim that the fiber F of the
morphism XV !XV W is in E?m . Once we know this claim for all m, we will know
that F is zero by Lemma 8.3, and hence that XV !XV W is an isomorphism.

To prove that claim, let Z be any motive in the subcategory Em , and consider the map
of long exact sequences of abelian groups (writing ŒZ;X � for the group of morphisms
from Z to X in DM.kIR/):Q

j�1ŒZ;Aj Œ�1�� //

��

ŒZ;XV � //

��

Q
j�1ŒZ;Aj �

��

1��
//
Q

j�1ŒZ;Aj �

��Q
j�1ŒZ;Bj Œ�1�� // ŒZ;XV W � //

Q
j�1ŒZ;Bj �

1��
//
Q

j�1ŒZ;Bj �

We know that ŒZ;Aj Œs��! ŒZ;Bj Œs�� is an isomorphism for all j � r and all integers s ,
because Z is in Em and the fiber of Aj ! Bj is in the triangulated subcategory E?m
for j � r . Using that, it is straightforward to check that the homomorphism from
the complex of abelian groups 0!

Q
j�1ŒZ;Aj Œs��!

Q
j�1ŒZ;Aj Œs��! 0 to the

corresponding complex with Bj in place of Aj is a quasi-isomorphism for each s .
(That is, the inverse limit and the lim1 group of a sequence of abelian groups do not
change when finitely many groups in the sequence are changed.) By the map of exact
sequences above, it follows that ŒZ;XV Œs��! ŒZ;XV W Œs�� is an isomorphism for all
integers s . Since Z is any object in Em , this proves our claim that the fiber F of
XV !XV W is in E?m .

Our definition of the compactly supported motive of a quotient stack agrees with the
standard definition in the special case of a quasiprojective scheme. It would be desirable
to make the compactly supported motive a functor from quotient stacks to DM.kIR/,
and to prove a localization triangle: for a closed substack Y of a quotient stack X

over a field k , there should be an exact triangle M c.Y /!M c.X /!M c.X �Y /.
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Yehonatan Sella pointed out (correcting an error in an earlier version) that this is not
clear from the current definition, because it is not clear whether the fiber of a (Bökstedt–
Neeman) homotopy limit of morphisms in a triangulated category is the homotopy
limit of the fibers. For now, the proof of Lemma 9.1 shows that there is a localization
triangle for quotient stacks modulo an “error term” which can be made arbitrarily small,
and that suffices for some applications.

We now describe a basic example of the motive of a quotient stack, M c.BGm/.

Lemma 8.5 The compactly supported motive of BGm in DM.kIR/ is isomorphic toQ
j��1 R.j /Œ2j �. This is isomorphic to the direct sum

L
j��1 R.j /Œ2j �.

Proof By definition, using the representation of Gm by scalars on an n–dimensional
vector space for any given n, M c.BGm/ is the homotopy limit of the motives

M c.Pn�1/.�n/Œ�2n�Š

�1Y
jD�n

R.j /Œ2j �;

and so M c.BGm/ is isomorphic to the product
Q

j��1 R.j /Œ2j �.

To show that the morphism from the direct sum
L

j��1 R.j /Œ2j � to the product is
an isomorphism, it suffices to show that the cone N of this morphism is zero. For
any integer a< 0, N is isomorphic to the cone of the morphism

L
j�a R.j /Œ2j �!Q

j�a R.j /Œ2j �, because finite direct sums are the same as finite products. Because
the subcategory E?a is both localizing and colocalizing in DM.kIR/ (Lemma 8.2),
both

L
j�a R.j /Œ2j � and

Q
j��1 R.j /Œ2j � are in E?a . So N is in E?a . Since this

holds for all negative integers a, N is zero by Lemma 8.3, as we want.

Lemma 8.6 Let X be a quotient stack over a field k . Then the motive M c.X / is in
the subcategory E?dim X

.

For a quotient stack X , one might ask whether M c.X / is always in the subcategory
Ddim X . For example, that is true for M c.BGm/ D

Q
j��1 Z.j /Œ2j �, because that

is isomorphic to
L

j��1 Z.j /Œ2j � by Lemma 8.5, and that direct sum is in D�1 . It
would be clear that the compactly supported motive of a quotient stack X was in
Ddim X if the categories Dm were closed under arbitrary products in DM.kIR/, but
in general they are not [58, Theorem 7.1].

Proof of Lemma 8.6 For any separated scheme Z of finite type over k , the compactly
supported motive of Z is in the subcategory Ddim Z of DM.kIR/. This is clear if k
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has characteristic zero, by resolution of singularities; in general, it follows from Kelly’s
work [34, proof of Proposition 5.5.3].

It follows that, for a quotient stack X over k , M c.X / is the homotopy limit of a
sequence of motives in Ddim X . Since Ddim X is contained in E?dim X

(Lemma 8.1)
and E?dim X

is colocalizing in DM.kIR/ (Lemma 8.2), we conclude that M c.X / is
in E?dim X

.

Lemma 8.7 Let X be a motive in the subcategory E?m of DM.kIR/ for an integer m.
Then the colocalization C.X / with respect to Tate motives is in the subcategory Dm ,
and hence in E?m .

Proof We use the construction of C.X / from Section 7 as a homotopy colimit
hocolimj Cj . Since X is in E?m , we have Hb.X;R.a//D 0 for all integers a and b

with a>m. So we can take the motive C0 in the construction of C.X / to be a direct
sum of motives R.a/Œb� with a �m. Then C0 is in Dm . So Hb.C0;R.a//D 0 for
all integers a and b with a > m. By induction, we can choose Cj for all natural
numbers j to be in Dm . So C.X /D hocolimj Cj is in Dm . By Lemma 8.1, C.X /

is also in E?m .

Define a motive A in DM.kIR/ to be mixed Tate modulo dimension m if the cone of
the morphism C.A/!A is in E?m . Also, define a quotient stack X to be mixed Tate
modulo codimension r if M c.X / is mixed Tate modulo dimension dim X � r .

Lemma 8.8 All mixed Tate motives and all motives in E?m are mixed Tate modulo
dimension m. Also, the motives that are mixed Tate modulo dimension m form a
triangulated subcategory of DM.kIR/.

Proof It is clear that a mixed Tate motive is mixed Tate modulo dimension m. Also,
a motive in E?m is mixed Tate modulo dimension m, by Lemma 8.7. It remains to
show that for an exact triangle X ! Y ! Z in DM.kIR/ with X and Y mixed
Tate modulo dimension m, Z is also mixed Tate modulo dimension m. We have a
morphism of exact triangles:

C.X / //

��

C.Y / //

��

C.Z/

��

X // Y // Z

The 3� 3 lemma for triangulated categories gives a map f W C.Z/! Z such that
the diagram above extends to a 3 � 3 square of exact triangles [42, Theorems 1.8
and 2.3]. The map f W C.Z/!Z is not a priori the obvious map, but it does induce an
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isomorphism on motivic homology, by the diagram. Since C.Z/ is the unique mixed
Tate motive with a map to Z that induces an isomorphism on motivic homology, f is
at least isomorphic to the obvious map.

Thus, the cone of C.Z/ ! Z is the cone of a morphism cone.C.X / ! X / !

cone.C.Y /! Y /. The latter two cones are in E?m , and so the cone of C.Z/!Z is
also in E?m . That is, Z is mixed Tate modulo dimension m.

Corollary 8.9 Let X be a motive in DM.kIR/ which can be approximated by mixed
Tate motives in the sense that X is mixed Tate modulo dimension j for every integer j .
Then X is a mixed Tate motive.

Proof The cone of C.X /! X is in E?j for every integer j , and hence is zero by
Lemma 8.3.

Given more geometric information on a motive N , the following results give better
criteria for when N is mixed Tate.

Lemma 8.10 Let X be a separated scheme of finite type over k . If X is mixed Tate
modulo dimension �1, then X is mixed Tate.

Proof Under our assumption on R [34, Proposition 5.5.5], the motive M c.X / is
in the subcategory E�1 of effective motives in DM.kIR/. Let W be the cone of
the morphism C.M c.X //!M c.X /. Our assumption that X is mixed Tate modulo
dimension �1 means that W is in E?

�1
. So the morphism M c.X /!W is zero. It

follows that M c.X / is a summand of the mixed Tate motive C.M c.X //. So M c.X /

is a mixed Tate motive.

There is a “finite-dimensional” criterion for when a quotient stack is mixed Tate,
Corollary 8.13. Namely, a quotient stack X D Y=G over k is mixed Tate (meaning
that M c.X / is mixed Tate in DM.kIR/) if and only if the scheme .Y �GL.n//=G

is mixed Tate, for one or any faithful representation G ,! GL.n/ over k .

Here is the main step in proving that.

Lemma 8.11 Let X be a quotient stack over a field k . Let E be a principal GL.n/–
bundle over X for some n, viewed as a stack over k . Let r be an integer. Then X

is mixed Tate modulo codimension r (in DM.kIR/) if and only if E is mixed Tate
modulo codimension r .
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Proof By construction of the compactly supported motive of a quotient stack as a
homotopy limit (Theorem 8.4), for each integer r there is a morphism

f W M c.X /!M c.X 0/.�a/Œ�2a�

with X 0 a scheme over k such that dim X 0� aD dim X and the fiber of f is in the
subcategory E?dim X�r

of DM.kIR/. Moreover, there is a morphism

M c.E/!M c.E0/.�a/Œ�2a�

with fiber in E?dim E�r
such that E0 is a principal GL.n/–bundle over the scheme X 0 .

As a result, it suffices to prove the lemma when X is a scheme over k .

First consider the case nD 1, so that E is a principal Gm –bundle over X . Think of E

as the complement of the zero section in a line bundle over X . Since X is a scheme,
we have the localization triangle

M c.X /!M c.X /.1/Œ2�!M c.E/

in DM.kIR/. Consider the morphism of exact triangles:

C.M c.X // //

��

C.M c.X //.1/Œ2� //

��

C.M c.E//

��

M c.X / // M c.X /.1/Œ2� // M c.E/

The 3�3 lemma for triangulated categories gives a map f W C.M c.E//!M c.E/ such
that the diagram above extends to a 3� 3 square of exact triangles [42, Theorems 1.8
and 2.3]. By the same proof as for Lemma 8.8, f is at least isomorphic to the obvious
map C.M c.E//!M c.E/. Let W be the cone of C.M c.X //!M c.X /, and let N

be the cone of f . Then we have an exact triangle W !W .1/Œ2�!N .

If X is mixed Tate modulo codimension r , then W is in E?dim X�r
. So W .1/Œ2� is in

E?dim XC1�r
, and hence N is in E?dim XC1�r

DE?dim E�r
. That is, the scheme E is

mixed Tate modulo codimension r , as we want.

Conversely, suppose that E is mixed Tate modulo codimension r . That is, N is in
E?dim E�r

DE?dim XC1�r
. By Lemma 8.6, X is in E?dim X

. By Lemma 8.7, C.X / is
also in E?dim X

, and hence W is in E?dim X
. We want to show that X is mixed Tate

modulo codimension r , meaning that W is in E?dim X�r
. If not, then there is a smallest

integer j such that W is in E?j ; we have j > dim X �r by assumption. Then W .�1/

is in E?
j�1

. The exact triangle

W .�1/Œ�2�!W !N.�1/Œ�2�
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gives that W is in E?
j�1

, a contradiction. Thus X is mixed Tate modulo codimension r

if and only if the principal Gm –bundle E over X is mixed Tate modulo codimension r .

Now let E be a principal GL.n/–bundle over a scheme X over k , with n arbitrary.
Let B be the subgroup of upper-triangular matrices in GL.n/ over k . Then E=B is
an iterated projective bundle over X , and so

M c.E=B/Š
M

j

M c.X /.aj /Œ2aj �;

where a1; : : : ; an! are the dimensions of the Bruhat cells of the flag manifold GL.n/=B .
Assume that X is mixed Tate modulo codimension r , that is, modulo dimension
dim X � r . Then M c.X /.a/Œ2a� is mixed Tate modulo dimension dim X � r Ca, for
any integer a. It follows that E=B is mixed Tate modulo dimension

dim X � r C dim G=B D dim E=B � r:

That is, E=B is mixed Tate modulo codimension r . Conversely, if E=B is mixed
Tate modulo codimension r , then the summand M c.X /.dim G=B/Œ2 dim G=B� of
M c.E=B/ is mixed Tate modulo dimension

dim E=B � r D dim X C dim G=B � r;

and so M c.X / is mixed Tate modulo dimension dim X � r , thus modulo codimen-
sion r .

Next, let U be the subgroup of strictly upper-triangular matrices in GL.n/ over k . Since
B=U Š .Gm/

n , the stack E=U is a principal .Gm/
n –bundle over E=B . Applying our

result on principal Gm –bundles n times, we deduce that E=U is mixed Tate modulo
codimension r if and only if E=B is mixed Tate modulo codimension r , hence if and
only if X is mixed Tate modulo codimension r . Finally, U is an extension of copies
of the additive group, and so homotopy invariance gives that

M c.E/ŠM c.E=U /.dim U /Œ2 dim U �:

It follows that E is mixed Tate modulo codimension r if and only if X is mixed Tate
modulo codimension r .

Corollary 8.12 Let X be a quotient stack over a field k . Let E be a principal GL.n/–
bundle over X for some n, viewed as a stack over k . Then E is mixed Tate (in
DM.kIR/) if and only if X is mixed Tate.

Proof This follows from Lemma 8.11, since a motive is mixed Tate if and only if it is
mixed Tate modulo dimension r for all integers r (Corollary 8.9).
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Corollary 8.13 Let Y be a quasiprojective scheme over a field k and G an affine
group scheme of finite type over k that acts on Y such that there is a G–equivariant
ample line bundle on Y . Let G ,! GL.n/ be a faithful representation of G over k .
Then (the compactly supported motive of) the stack Y=G over k is mixed Tate if and
only if the scheme .Y �GL.n//=G over k is mixed Tate.

Proof The scheme .Y �GL.n//=G is a principal GL.n/–bundle over the stack Y=G .
So this follows from Corollary 8.12.

For example, BG is mixed Tate if and only if the scheme GL.n/=G is mixed Tate, for
one or any faithful representation G ,! GL.n/ over k .

As a result, we now show that the structure of a classifying space BG is determined in
some ways by its properties in low codimension, namely codimension n2 (roughly),
where n is the dimension of a faithful representation of G . Theorem 9.6 reduces the
question of whether BG is mixed Tate even further, to properties in codimension n

(roughly) together with properties of subgroups of G .

Theorem 8.14 Let G be an affine group scheme over a field k . Suppose that G has
a faithful representation of dimension n over k . If BG is mixed Tate in DM.kIR/
modulo codimension n2� dim GC 1, then BG is mixed Tate in DM.kIR/.

Proof We have a principal GL.n/–bundle GL.n/=G ! BG of stacks over k . By
Lemma 8.11, if BG is mixed Tate modulo codimension n2 � dim G C 1, then the
variety GL.n/=G is also mixed Tate modulo codimension n2 � dim G C 1. Since
GL.n/=G has dimension n2�dim G , Lemma 8.10 gives that GL.n/=G is mixed Tate.
By Corollary 8.13, BG is mixed Tate.

9 The mixed Tate property for classifying spaces

The work of Bogomolov and Saltman defines a dichotomy among all finite groups G :
is BGC stably rational? (This means that the variety V =G is stably rational for one,
or any, faithful representation V of G over C .) This paper has considered several
other dichotomies among finite groups G . Is the birational motive of BGC trivial?
Does BGC have the weak or strong Chow Künneth property? It would be interesting
to know whether these conditions are all equivalent.

Ekedahl defined another property with the same flavor, for a finite group scheme G

over a field k . Namely, when does the stack BG have the class of a point in the ring
ADK0.Vark/ŒL

�1; .Ln� 1/�1 W n� 1�? Here K0.Vark/ denotes the Grothendieck
ring of k –varieties and L is the class of A1 . Ekedahl showed that this property
is equivalent to the statement (not mentioning stacks) that for one or any faithful
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representation G ,! GL.n/, the variety GL.n/=G is equal to GL.n/ in the ring A

[21, Proposition 3.1]. I do not know any implications between Ekedahl’s property
and the other properties we have mentioned, but it may be that all these properties
are equivalent when the base field k is algebraically closed. In particular, Ekedahl’s
property fails if G has nontrivial unramified H 2 [21, Theorem 5.1]; for such groups,
all the properties we have mentioned fail.

In this section, we consider another dichotomy among finite groups, or more generally
among affine group schemes G : is BG mixed Tate, meaning that the motive M c.BG/

is mixed Tate? This property is equivalent to the motivic Künneth property formulated
in the introduction to Section 8. It implies the Chow Künneth property, since it gives
information about all of motivic homology, not just Chow groups. The mixed Tate
property may be equivalent to all the other properties mentioned above, when the base
field k is algebraically closed.

We have examples of finite groups which are not mixed Tate (say over C ), because
they do not even have the weak Chow Künneth property (Corollary 3.1). To justify
the concept, we will also give examples of finite groups which are mixed Tate: the
symmetric groups (Theorem 9.11), the finite general linear groups in cross-characteristic
(Theorem 9.12), and all finite subgroups of GL.2/ (Corollary 9.7). It is conceivable
that all “naturally occurring” finite groups are mixed Tate over C . For example,
Bogomolov conjectured that for every finite simple group G , quotient varieties V =G

are stably rational [7]. In that direction, Kunyavskiı̆ showed that every finite simple
group has unramified H 2 equal to zero [37, Corollary 1.2]. Likewise, I conjecture
that all finite simple groups are mixed Tate. By contrast, Kunyavskiı̆ showed that there
are finite quasisimple groups (central extensions of PSL.3; 4/ by Z=4 or Z=12) with
unramified H 2 not zero [37, proof of Theorem 1.1].

In order to give examples of finite groups which are mixed Tate, we start by proving
some formal properties of mixed Tate stacks. By Corollary 8.13, BG is mixed Tate if
and only if the variety GL.n/=G is mixed Tate for a faithful representation V of G

with dim V D n. But GL.n/=G may be hard to analyze because it has high dimension,
namely n2 . Theorem 9.6 gives a sufficient condition for BG to be mixed Tate in terms
of the variety .V �S/=G , which has dimension only n, together with information on
subgroups of G .

Throughout this section, we work in the category DM.kIR/ for a field k and a
commutative ring R in which the exponential characteristic of k is invertible.

Lemma 9.1 Let X be a quotient stack over a field k and Y a closed substack. If two
of X , Y , X �Y are mixed Tate, then so is the third. Also, for an integer m, if two of
X , Y , X �Y are mixed Tate modulo dimension m, then so is the third.
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Proof By the construction of the compactly supported motive of a quotient stack
as a homotopy limit (Theorem 8.4), for each integer m there is an exact triangle
Am!Bm!Cm (of shifted compactly supported motives of schemes over k ) together
with morphisms M c.Y /!Am , M c.X /!Bm and M c.X �Y /!Cm whose fibers
are in the subcategory E?m of DM.kIR/. (This works even though we have not shown
that there is an exact triangle M c.Y /!M c.X /!M c.X �Y /.)

As a result, if two of M c.X /, M c.Y / and M c.X � Y / are mixed Tate modulo
dimension m, then two of Am;Bm;Cm have that property, by Lemma 8.8. Therefore,
the third object of Am;Bm;Cm is also mixed Tate modulo dimension m, and hence the
third object of M c.X /, M c.Y /, M c.X �Y / has that property. Thus we have shown
that if two of M c.X /, M c.Y /, M c.X � Y / are mixed Tate modulo dimension m,
then so is the third. Finally, if two of M c.X /, M c.Y /, M c.X �Y / are mixed Tate,
then the third object is mixed Tate modulo dimension m for every integer m, and so it
is mixed Tate by Corollary 8.9.

Lemma 9.2 Let k be a field, and let e be the exponential characteristic of k . A
quotient stack X over a field k is mixed Tate with ZŒ1=e� coefficients (that is, in
DM.kIZŒ1=e�/) if and only if it is mixed Tate with Z.p/ coefficients for all prime
numbers p that are invertible in k .

Proof Write X as the quotient stack A=G for some affine group scheme G of
finite type over k and some quasiprojective scheme A over k with a G–equivariant
ample line bundle. Let G ,! GL.n/ be a faithful representation over k . Then E D

.A�GL.n//=G is a quasiprojective scheme over k , and GL.n/ acts on E with quotient
stack E=GL.n/ŠX . By Corollary 8.12, M c.E/ is mixed Tate (with any coefficients)
if and only if M c.X / is mixed Tate. So it suffices to show that M c.E/ is mixed
Tate in DM.kIZŒ1=e�/ if and only if it is mixed Tate in DM.kIZ.p// for all prime
numbers p that are invertible in k .

For a commutative ring R, E is R–mixed Tate if and only if it has the Künneth
property for the R–motivic homology of E � Y for all separated k –schemes Y of
finite type (Theorem 7.2). The motivic homology with R coefficients of a k –scheme
is related to motivic homology with Z coefficients by the universal coefficient theorem.
Let p be a prime number that is invertible in k . Since Z.p/ and ZŒ1=e� are flat
over Z, the Künneth spectral sequence for E � Y with Z.p/ coefficients is just the
localization at p of the spectral sequence with ZŒ1=e� coefficients. A homomorphism
of ZŒ1=e�–modules is an isomorphism if and only if it is an isomorphism p–locally for
all prime numbers p that are invertible in k . Therefore, X is ZŒ1=e�–mixed Tate if
and only if it is Z.p/–mixed Tate for all prime numbers p that are invertible in k .
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Lemma 9.3 Let G be a finite group, p a prime number, and H a Sylow p–subgroup
of G . Fix a base field k in which p is invertible. Let R be the ring Z=p or Z.p/ . If
BH is R–mixed Tate, then BG is R–mixed Tate.

Proof Use that BG is R–mixed Tate if and only if it has the Künneth property for
BG � Y for all k –schemes Y of finite type. Let R be Z=p or Z.p/ . Using the
transfer, the Künneth spectral sequence for BG �Y is a summand with R coefficients
of the spectral sequence for BH �Y . Therefore, if BH satisfies the motivic Künneth
property with R coefficients, then so does BG .

For a representation V of a finite group G and K a subgroup of G , V K means the
linear subspace fixed by K . Following Ekedahl [21], let VK be the open subset of V K

of points with stabilizer in G equal to K , meaning that VK D V K �
S

K¤L V L .

Lemma 9.4 Let s be a natural number. Let V be a faithful representation of a finite
group G over a field k . For each subgroup K of G that occurs as the stabilizer of
a point in V , assume that the stack VK=NG.K/ is mixed Tate in DM.kIR/ modulo
codimension s� codim.V K � V /. Then BG is mixed Tate modulo codimension s .

Proof The stack V =G is a vector bundle over BG . So if we can show that the
stack V =G is mixed Tate modulo codimension s , then BG is mixed Tate modulo
codimension s , as we want.

The stack V =G is the disjoint union of the locally closed substacks VK=NG.K/ for
all conjugacy classes of stabilizer subgroups K of G . By assumption, each substack
VK=NG.K/ is mixed Tate modulo codimension s� codim.V K � V /, that is, modulo
dimension dim V �s . By Lemma 9.1, the stack V =G is mixed Tate modulo dimension
dim V � s , that is, modulo codimension s .

A next step is to express the assumptions on smaller groups in terms of classifying
spaces, as follows. This step may not be needed in some examples, but it leads to a neat
statement, Theorem 9.6. (We will apply Lemma 9.5 to the subgroups H D NG.K/

acting on V K in Lemma 9.4, typically not faithfully.)

Lemma 9.5 Let s be a natural number. Let V be a representation of a finite group H

over a field k , not necessarily faithful. Let K1Dker.H!GL.V //. Consider all chains
K1 ¤K2 ¤ � � � ¤Kr �H , r � 1, such that if we define Ni D

T
j�i NH .Kj / �H ,

then KiC1 is the stabilizer of a point for Ni acting on V Ki . For every such chain,
assume that BNr is mixed Tate in DM.kIR/ modulo codimension s . (In particular,
for r D 1, we are assuming that BH is mixed Tate modulo codimension s .) Then the
stack VK1

=H is mixed Tate modulo codimension s .

Geometry & Topology, Volume 20 (2016)



2122 Burt Totaro

Proof By our assumption (with r D 1), the stack BH is mixed Tate modulo codi-
mension s . So the stack V =H (a vector bundle over BH ) is mixed Tate modulo
codimension s . The difference V =H � VK1

=H is the disjoint union of the locally
closed substacks .

`
g2H=NH .K2/

VgK2g�1/=H for conjugacy classes of stabilizer
subgroups K2 for H acting on V with K1 ¤ K2 . That quotient is isomorphic to
the stack VK2

=NH .K2/. By our assumption (with r D 2), BNH .K2/ D BN2 is
mixed Tate modulo codimension s , and so the stack V K2=NH .K2/ (a vector bundle
over BN2 ) is also mixed Tate modulo codimension s . The stack we want is the open
substack VK2

=NH .K2/ of V K2=NH .K2/. The complement is the disjoint union of
the locally closed substacks� a

g2N2=N3

VgK3g�1

�ı
N2 Š VK3

=N3;

where K3 runs over all stabilizer subgroups for N2 acting on V K2 with K1¤K2¤K3 ,
and NN2

.K3/D
T

j�3 NH .Kj /DN3 . Since H is finite, the process stops after finitely
many steps and gives the statement of the lemma, via Lemma 9.1.

Combining the previous two lemmas gives the following result. Theorem 9.6 shows that
BG is mixed Tate if the variety V1=G is mixed Tate and BH is mixed Tate for certain
proper subgroups H of G . (As in the notation above, V1 denotes the open subset of V

where G acts freely.) Theorem 9.6 was suggested by a similar statement by Ekedahl
about his invariant of BG in the Grothendieck ring of varieties [21, Theorem 3.4], but
I do not see a direct implication between the two results.

Theorem 9.6 Let V be a faithful representation of a finite group G over a field k .
Consider all chains 1 D K0 ¤ K1 ¤ � � � ¤ Kr � G , r � 1, such that if we define
Ni D

T
j�i NG.Kj /�G , then KiC1 is a stabilizer subgroup for Ni acting on V Ki .

Suppose that the variety V1=G is mixed Tate in DM.kIR/ and that the stack BNr is
mixed Tate for all such chains with Nr ¤G . Then BG is mixed Tate.

Proof We show by induction on s that BG is mixed Tate modulo codimension s

for every natural number s . That will imply that BG is mixed Tate by Corollary 8.9
(or by the stronger Theorem 8.14). Clearly BG is mixed Tate modulo codimension 0.
Suppose that BG is mixed Tate modulo codimension s . To show that BG is mixed
Tate modulo codimension sC 1, we use Lemma 9.4. So it suffices to show that for
each stabilizer subgroup K1 of G acting on V , the stack VK1

=NG.K1/ is mixed Tate
modulo codimension sC 1� codim.V K1 � V /. For K1 D 1, this is true, because we
assume that the variety V1=G is mixed Tate. It remains to consider a stabilizer subgroup
K1 ¤ 1. We apply Lemma 9.5 to the vector space V K1 with its action of NG.K1/. If
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NG.K1/¤G , then Lemma 9.5 and our assumptions imply that the stack VK1
=NG.K1/

is mixed Tate. Finally, if K1¤ 1 and NG.K1/DG , then Lemma 9.5, our assumptions,
and the inductive hypothesis that BG is mixed Tate modulo codimension s imply
that the stack VK1

=NG.K1/ is mixed Tate modulo codimension s . This implies that
VK1

=NG.K1/ is mixed Tate modulo codimension sC 1� codim.V K1 � V / (as we
want), because codim.V K1 � V / > 0, since K1 ¤ 1 and G acts faithfully on V . The
induction is complete. So BG is mixed Tate.

We now use Theorem 9.6 to give examples of finite groups which are mixed Tate.
(The assumption on the field k in Corollary 9.7 could be weakened.) For example,
Corollary 9.7 gives that the dihedral groups, generalized quaternion groups, modular
2–groups, and semidihedral groups [1, Section 23.4] are mixed Tate.

Corollary 9.7 Let k be a field that contains xQ. Let G be a finite subgroup of GL.2/
over k . Then BG is mixed Tate in DM.kIZ/.

Proof Use induction on the order of G . Let V be the given 2–dimensional faithful
representation of G . Since BH is mixed Tate for all proper subgroups H of G ,
Theorem 9.6 shows that BG is mixed Tate if the variety V1=G is mixed Tate.

The group G acts on the projective space P1 of lines in V1 . The coarse quotient
P1=G is a normal projective curve over k , and so it is smooth over k . It is unirational
over k , and hence isomorphic to P1 over k .

It is convenient to observe that the representation V of G can be defined over xQ.
Let S be the closed subset of P1 where G does not act freely; then .P1�S/=G is
isomorphic to P1�T for some closed subset T . Since S and T are defined over xQ,
T is a finite union of copies of Spec k . So P1 � T is a linear scheme over k (as
defined in Section 5). An open subset of V1=G is a principal Gm –bundle over P1�T ,
and hence is a linear scheme over k . The complement of this open subset is the union
of finitely many curves of the form Gm=H where H is a finite subgroup of Gm ; these
are isomorphic to Gm and hence are linear schemes over k . So V1=G is a linear
scheme over k . Thus V1=G is mixed Tate, and so BG is mixed Tate.

We now show that many wreath product groups are mixed Tate. It will follow that
the finite general linear groups in cross-characteristic and the symmetric groups are
mixed Tate (Theorems 9.11 and 9.12), since their Sylow p–subgroups are products of
iterated wreath products of cyclic groups. This is related to Voevodsky’s construction
of Steenrod operations on motivic cohomology, which can be viewed as computing the
motivic cohomology of the symmetric groups over any field [61, Section 6; 62].
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Lemma 9.8 Let k be a field of characteristic not p that contains the pth roots of unity.
Let X be a quasiprojective linear scheme over k (as defined in Section 5). Then the
cyclic product ZpX DX p=.Z=p/ is a quasiprojective linear scheme over k .

We assume that X is quasiprojective in order to ensure that the cyclic product ZpX

is a scheme. If we worked with algebraic spaces throughout, then the assumption of
quasiprojectivity would be unnecessary.

Proof We start by showing that for any representation V of Z=p over k , the quotient
variety V =.Z=p/ is a linear scheme, following [55, proof of Lemma 8.1]. We use
induction on the dimension of V . We can assume that Z=p acts nontrivially on V .
Then we can write V DW ˚L, where L is a nontrivial 1–dimensional representation
of Z=p . The quotient variety V =.Z=p/ has a closed subvariety W =.Z=p/, which is
a linear scheme by induction. The open complement is a vector bundle (with fiber W )
over .L� 0/=.Z=p/ŠA1� 0. A direct calculation shows that this vector bundle is
trivial. So the open complement is isomorphic to W � .A1 � 0/, which is a linear
scheme. Thus V =.Z=p/ is a linear scheme over k , completing the induction.

Next, let Y be a closed subscheme of a scheme X over k , and let U DX �Y . Then
the cyclic product scheme ZpX is the disjoint union (as a set) of ZpY , ZpU and
various products Y a �U p�a for 0 � a � p . Suppose that X , Y and U are linear
schemes over k . Then all products Y a �U p�a are linear schemes. As a result, if
any two of ZpX , ZpY and ZpU are linear schemes, then so is the third. By the
inductive definition of linear schemes, it follows that for every linear scheme X over k ,
ZpX is a linear scheme over k .

Let G be an affine group scheme of finite type over a field k . We say that BG can
be approximated by linear schemes over k if, for every natural number r , there is a
representation V of G and a closed G –invariant subset S of codimension at least r

in V such that G acts freely on V �S and .V �S/=G is a linear scheme over k . If
BG can be approximated by linear schemes, then BG is mixed Tate. Indeed, for each
r , V , S as just mentioned, the compactly supported motive of the quotient stack S=G

is in the subcategory .Edim S�dim G/
? , by Lemma 8.6. Write V =G for the quotient

stack. Then it follows that the cone of the morphism

M c.BG/ŠM c.V =G/.� dim V /Œ�2 dim V �!M c.V �S/=G.� dim V /Œ�2 dim V �

lies in .Edim S�dim V�dim G/
? , hence in .E�r�dim G/

? . Since we assumed that r can
be arbitrarily large, Corollary 8.9 gives that M c.BG/ is mixed Tate.

For a group G , the wreath product Z=p oG means the semidirect product Z=p ËGp ,
with Z=p cyclically permuting the copies of G .
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Lemma 9.9 Let k be a field of characteristic not p that contains the pth roots of unity.
Let G be an affine group scheme over k such that BG can be approximated by linear
schemes over k . Then B.Z=p oG/ can be approximated by linear schemes over k ,
and hence is mixed Tate.

Proof Let V be a representation of G over k . Then V ˚p can be viewed as a
representation of Z=p oG , where Z=p permutes the copies of V . If the quotients
make sense, then we have V ˚p=.Z=p oG/DZp.V =G/. It follows that if BG can be
approximated by linear schemes Y , then B.Z=p oG/ is approximated by the schemes
ZpY , which are linear schemes by Lemma 9.8.

Corollary 9.10 Let G be a group scheme over a field k that satisfies one of the
following assumptions:

(1) G is the multiplicative group Gm .

(2) G is a finite abelian group of exponent e viewed as an algebraic group over k ,
e is invertible in k , and k contains the eth roots of unity.

(3) G is an iterated wreath product Z=p o � � � oZ=p oGm over k , p is invertible in k ,
and k contains the pth roots of unity.

(4) G is an iterated wreath product Z=p o � � � oZ=p oA for a finite abelian group A

of exponent e , viewed as an algebraic group over k . Also, p and e are invertible
in k and k contains the pth and eth roots of unity.

Then BG is mixed Tate in DM.kIZ/.

Proof In all these cases, BG can be approximated by linear schemes over k and hence
is mixed Tate. First, BGm can be approximated by the schemes .An�0/=GmD Pn�1

over k as n increases. These are linear schemes. Next, when A is a finite abelian
group of exponent e such that e is invertible in k and k contains the eth roots of unity,
then A is isomorphic to a product of the group schemes �r over k . The classifying
space B�r can be approximated by the schemes .An� 0/=�r as n increases, where
�r acts by scalars. This scheme is the total space of the line bundle O.r/ minus the
zero section over Pn�1 , and hence is a linear scheme. So BA can be approximated by
linear schemes, under our assumption on k . Finally, the statements on wreath products
follow from Lemma 9.9.

Theorem 9.11 Let n be a positive integer, and let k be a field of characteristic zero
that contains the pth roots of unity for all primes p dividing n. Then the symmetric
group Sn is mixed Tate over k (with Z coefficients).
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Proof Let p be a prime number. A Sylow p–subgroup H of G D Sn is a product
of iterated wreath products Z=p o � � � oZ=p . By Corollary 9.10, BH is mixed Tate
in DM.kIZ/, hence in DM.kIZ.p// by Lemma 9.2. By Lemma 9.3, BG is mixed
Tate in DM.kIZ.p//. Since this holds for all prime numbers p , BG is mixed Tate in
DM.kIZ/ by Lemma 9.2.

Theorem 9.12 Let n be a positive integer, q a power of a prime number p , and l

a prime number different from p . Let r be the order of q in .Z= l/� , and let � be
the l –adic order of qr � 1. If l D 2, assume that q � 1 .mod 4/. Let k be a field
of characteristic not l that contains the .l�/th roots of unity. Then the finite group
GL.n;Fq/ is mixed Tate in DM.k;Z.l//.

Proof If l is odd, or if l D 2 and q � 1 .mod 4/, then a Sylow l –subgroup of
GL.n;Fq/ is a product of wreath products Z= l o � � � oZ= l oZ= l� [10; 63]. The result
follows from Corollary 9.10 and Lemma 9.3.

10 Groups of order 32

Let G be a p–group of order at most p4 , for a prime number p . Let e be the exponent
of G . Let k be a field of characteristic not p which contains the eth roots of unity.
Then the Chow ring of BG consists of transferred Euler classes of representations [57,
Theorem 11.1], and this remains true over every extension field of k . All representations
of a subgroup of G over an extension field of k can be defined over k , and so it follows
that G has the weak Chow Künneth property: CH�BG! CH�BGE is surjective for
every extension field E of k .

In this section, we show that groups of order 32 also satisfy the weak Chow Künneth
property. It follows that the results after Corollary 3.1 are optimal: there are groups of
order 64, and of order p5 for any odd prime number p , which do not have the weak
Chow Künneth property. It is not known whether groups of order 32 are mixed Tate.

Our proof of the weak Chow Künneth property for groups G of order 32 uses the fact
that BG is stably rational for these groups, by Chu, Hu, Kang and Prokhorov [12]. We
do not know how to relate these two properties in general; as discussed in Section 9,
they may be equivalent.

Theorem 10.1 Let G be a group of order 32. Let e be the exponent of G . Let k be
a field of characteristic not 2 which contains the eth roots of unity. Then BG over k

satisfies the weak Chow Künneth property.
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Proof For every proper subgroup H of G , the order of H divides 16, and so BH

over k satisfies the weak Chow Künneth property, as mentioned above.

Let V be a faithful representation of G over k . Since k does not have characteristic 2,
V is a direct sum of irreducible representations, V D

Lc
iD1 Vi . Write P .W / for

the space of hyperplanes in a vector space W , so that P .W �/ is the space of lines
in W . Then G acts on the product of projective spaces Y D P .V �

1
/� � � � �P .V �c /.

The kernel of the action of G on Y is the center of G , by Schur’s lemma. Let DY

be the closed subset of Y where G=Z.G/ does not act freely. Let D be the union ofSc
iD1

L
j¤i Vj with the inverse image of DY in V . Then D is a G –invariant finite

union of linear subspaces of V , and D ¤ V .

Lemma 10.2 Let G be a p–group. Let V be a faithful representation of G over a
field k of characteristic not p . Let Y be the product of projective spaces defined above,
and define DY and D as above. Suppose that the variety .V �D/=G has the weak
Chow Künneth property. Also, suppose that for every subgroup N ¤ G that is the
stabilizer of some intersection of irreducible components of D (as a set), BN has the
weak Chow Künneth property. Then BG has the weak Chow Künneth property.

Lemma 10.2 is analogous to Theorem 9.6 on the mixed Tate property, but the argument
for the weak Chow Künneth property is simpler.

Proof of Lemma 10.2 By the localization sequence for Chow groups of quotient
stacks [20, Section 2.7], if a quotient stack X over k has the weak Chow Künneth
property, then so does every open substack of X . Also, if a closed substack S of X

and X�S both have the weak Chow Künneth property, then so does X . We sometimes
write CK for Chow Künneth.

We need some variants of these statements. For an integer a, say that a quotient
stack X has the weak CK property in dimension at least a if CHi X ! CHi XE is
surjective for all fields E=k and all i � a. Also, say that X has the weak CK property
in codimension b if X has the weak CK property in dimension at least dim X � b .
By the localization sequence for Chow groups, if X has the weak CK property in
codimension b , then so does any open substack of the same dimension as X . Also, if
a closed substack S of X and X �S both have the weak CK property in dimension
at least a, then so does X .

To prove the lemma, we show by induction on b that BG has the weak Chow Künneth
property in codimension b for all b . This is clear for b D�1. Suppose that BG has
the weak CK property in codimension b . To show that BG has the weak CK property
in codimension bC 1, it is equivalent to show that the stack V =G (a vector bundle
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over BG ) has the weak CK property in codimension bC 1. We are assuming that
the variety .V �D/=G has the weak CK property. Its complement in the stack V =G

is a finite disjoint union of locally closed substacks of the form U=N , where U is
an open subset of a linear subspace W ¤ V and N is the stabilizer in G of W as
a set. If N ¤ G , then we are assuming that BN has the weak CK property. So the
stack W =N (a vector bundle over BN ) has the weak CK property, and hence the open
substack U=N has the weak CK property. On the other hand, if N D G , then BG

has the weak CK property in codimension b by the inductive assumption, and so the
stack W =G and its open substack U=G have the weak CK property in codimension b .
Here W has codimension > 0 in V . We conclude that the stack V =G has the weak
CK property in codimension bC 1, thus completing the induction. So BG has the
weak CK property.

We continue the proof of Theorem 10.1. Let G be a group of order 32. Let e be
the exponent of G , and let k be a field of characteristic not 2 that contains the eth

roots of unity. If G is not isomorphic to .Z=2/5 , then G has a faithful complex
representation V of dimension 4. (This can be checked using the free group-theory
program GAP [52], or by the methods of Cernele, Kamgarpour and Reichstein [11,
proof of Lemma 13].) The group .Z=2/5 has the weak CK property as we want, and so
we can assume that G has a faithful representation of dimension 4. The representation
theory of G is the “same” over k as over C , and so G has a faithful representation V

of dimension 4 over k . As above, write V D
Lc

iD1 Vi and Y DP .V �
1
/�� � ��P .V �c /.

By Lemma 10.2, BG over k has the weak CK property if the k –variety .V �D/=G of
dimension 4 has the weak CK property. The variety .V �D/=G is a principal bundle
over .Y �DY /=.G=Z.G//, with fiber .Gm/

c=Z.G/Š .Gm/
c . (The representation V

gives an inclusion of the center Z.G/ into .Gm/
c , which describes the scalar by

which an element of the center acts on each irreducible summand Vi .) So the pullback
homomorphism

CH�.Y �DY /=.G=Z.G//! CH�.V �D/=G

is surjective. The variety .Y �DY /=.G=Z.G// has dimension 4 � c , which is at
most 3. As a result, CH�.V �D/=G is concentrated in degrees at most 4� c .

The group CHi BG is always generated by Chern classes of representations for i � 2

[55, Theorem 3.2]. All representations of G over an extension field of k can be
defined over k , and so BG has the weak CK property in codimension 2 (meaning that
CHi BG ! CHi BGE is surjective for any i � 2 and any field extension E of k ).
So the stack V =G and hence the variety .V �D/=G have the weak CK property
in codimension 2. If c � 2, meaning that V is reducible, then CH�.V �D/=G is
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concentrated in degrees at most 2 by the previous paragraph. So .V �D/=G has the
weak CK property and we are done.

There remains the case where c D 1, that is, where G has a faithful irreducible
representation V of dimension 4 over k . In this case, CH�.V �D/=G is concentrated
in degrees at most 3, and this remains true over any extension field of k . We know
that .V �D/=G has the weak CK property in codimension 2, and we want to show
that it has the weak CK property in codimension 3.

We use the fact that BG is stably rational over k for all groups G of order 32,
under our assumption on k , by Chu, Hu, Kang and Prokhorov [12]. This means that
the variety .V �D/=G is stably rational over k . Since .V �D/=G is a principal
Gm –bundle over the 3–fold .Y �DY /=.G=Z.G//, that 3–fold is also stably rational
over k . It follows that CH3.Y �DY /=.G=Z.G// is generated by a k –rational point
on .Y �DY /=.G=Z.G//, and this remains true over every extension field of k [18,
Lemme 1.5]. So .Y �DY /=.G=Z.G// has the weak CK property in codimension 3. By
the surjection CH3.Y �DY /=.G=Z.G//�CH3.V �D/=G , which remains true over
every extension field of k , .V �D/=G has the weak CK property in codimension 3.
By what we have said, this completes the proof that BG has the weak CK property.
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[22] A D Elmendorf, I Kříž, M A Mandell, J P May, Modern foundations for stable
homotopy theory, from: “Handbook of algebraic topology”, (I M James, editor), North-
Holland, Amsterdam (1995) 213–253 MR1361891

[23] W Fulton, Intersection theory, 2nd edition, Ergeb. Math. Grenzgeb. 2, Springer, Berlin
(1998) MR1644323

Geometry & Topology, Volume 20 (2016)

http://mi.mathnet.ru/eng/msb1953
http://www.ams.org/mathscinet-getitem?mr=788089
http://dx.doi.org/10.1070/SM1986v054n02ABEH002986
http://dx.doi.org/10.1070/SM1986v054n02ABEH002986
http://www.numdam.org/item?id=CM_1993__86_2_209_0
http://www.ams.org/mathscinet-getitem?mr=1214458
http://dx.doi.org/10.1016/0021-8693(64)90030-4
http://www.ams.org/mathscinet-getitem?mr=0166271
http://dx.doi.org/10.1515/JGT.2010.071
http://dx.doi.org/10.1515/JGT.2010.071
http://www.ams.org/mathscinet-getitem?mr=2818953
http://dx.doi.org/10.1016/j.jalgebra.2008.07.007
http://dx.doi.org/10.1016/j.jalgebra.2008.07.007
http://www.ams.org/mathscinet-getitem?mr=2442008
http://dx.doi.org/10.1006/jabr.2000.8615
http://www.ams.org/mathscinet-getitem?mr=1816710
http://dx.doi.org/10.4310/HHA.2009.v11.n1.a11
http://dx.doi.org/10.4310/HHA.2009.v11.n1.a11
http://www.ams.org/mathscinet-getitem?mr=2529161
http://arxiv.org/abs/0912.2110
http://www.math.uiuc.edu/documenta/vol-merkurjev/cisinski_deglise.pdf
http://www.ams.org/mathscinet-getitem?mr=3404379
http://www.ams.org/mathscinet-getitem?mr=1327280
http://smf4.emath.fr/en/Publications/AnnalesENS/4_49/pdf/ens_ann-sc_49_371-397.pdf
http://smf4.emath.fr/en/Publications/AnnalesENS/4_49/pdf/ens_ann-sc_49_371-397.pdf
http://dx.doi.org/10.2140/agt.2005.5.615
http://www.ams.org/mathscinet-getitem?mr=2153114
http://dx.doi.org/10.1007/s002220050214
http://www.ams.org/mathscinet-getitem?mr=1614555
http://arxiv.org/abs/0903.3148v1
http://arxiv.org/abs/0903.3148v1
http://dx.doi.org/10.1016/B978-044481779-2/50007-9
http://dx.doi.org/10.1016/B978-044481779-2/50007-9
http://www.ams.org/mathscinet-getitem?mr=1361891
http://dx.doi.org/10.1007/978-1-4612-1700-8
http://www.ams.org/mathscinet-getitem?mr=1644323


The motive of a classifying space 2131

[24] S Garibaldi, A Merkurjev, J-P Serre, Cohomological invariants in Galois coho-
mology, University Lecture Series 28, Amer. Math. Soc., Providence, RI (2003)
MR1999383

[25] A Grothendieck, Eléments de géométrie algébrique, IV: Étude locale des schémas et
des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5–231

[26] A Hoshi, M-C Kang, B E Kunyavskii, Noether’s problem and unramified Brauer
groups, Asian J. Math. 17 (2013) 689–713 MR3152260

[27] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math.
Soc., Providence, RI (1999) MR1650134

[28] A Huber, B Kahn, The slice filtration and mixed Tate motives, Compos. Math. 142
(2006) 907–936 MR2249535

[29] U Jannsen, Motivic sheaves and filtrations on Chow groups, from: “Motives”, (U
Jannsen, S Kleiman, J-P Serre, editors), Proc. Sympos. Pure Math. 55, Amer. Math.
Soc., Providence, RI (1994) 245–302 MR1265533

[30] R Joshua, Algebraic K–theory and higher Chow groups of linear varieties, Math. Proc.
Cambridge Philos. Soc. 130 (2001) 37–60 MR1797730

[31] B Kahn, Algebraic K–theory, algebraic cycles and arithmetic geometry, from: “Hand-
book of K–theory, Volume 1”, (E M Friedlander, D R Grayson, editors), Springer,
Berlin (2005) 351–428 MR2181827

[32] B Kahn, R Sujatha, Birational motives, I: Pure birational motives, preprint (2015)
arXiv:0902.4902v5 To appear in Ann. K–Theory

[33] N A Karpenko, A S Merkurjev, On standard norm varieties, Ann. Sci. Éc. Norm.
Supér. 46 (2013) 175–214 MR3087392

[34] S Kelly, Triangulated categories of motives in positive characteristic, preprint (2013)
arXiv:1305.5349

[35] S-i Kimura, Surjectivity of the cycle map for Chow motives, from: “Motives and
algebraic cycles”, (R de Jeu, J D Lewis, editors), Fields Inst. Commun. 56, Amer. Math.
Soc., Providence, RI (2009) 157–165 MR2562457

[36] S L Kleiman, Motives, from: “Algebraic geometry, Oslo 1970”, (F Oort, editor),
Wolters-Noordhoff, Groningen (1972) 53–82 MR0382267

[37] B Kunyavskiı̆, The Bogomolov multiplier of finite simple groups, from: “Cohomolog-
ical and geometric approaches to rationality problems”, (F Bogomolov, Y Tschinkel,
editors), Progr. Math. 282, Birkhäuser, Boston (2010) 209–217 MR2605170

[38] M Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic
Geom. 10 (2001) 299–363 MR1811558

[39] A Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. 78 (2008)
51–64 MR2427051

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.1090/ulect/028
http://dx.doi.org/10.1090/ulect/028
http://www.ams.org/mathscinet-getitem?mr=1999383
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://dx.doi.org/10.4310/AJM.2013.v17.n4.a8
http://dx.doi.org/10.4310/AJM.2013.v17.n4.a8
http://www.ams.org/mathscinet-getitem?mr=3152260
http://www.ams.org/mathscinet-getitem?mr=1650134
http://dx.doi.org/10.1112/S0010437X06002107
http://www.ams.org/mathscinet-getitem?mr=2249535
http://www.ams.org/mathscinet-getitem?mr=1265533
http://dx.doi.org/10.1017/S030500410000476X
http://www.ams.org/mathscinet-getitem?mr=1797730
http://dx.doi.org/10.1007/3-540-27855-9_9
http://www.ams.org/mathscinet-getitem?mr=2181827
http://arxiv.org/abs/0902.4902v5
http://www.ams.org/mathscinet-getitem?mr=3087392
http://arxiv.org/abs/1305.5349
http://www.ams.org/mathscinet-getitem?mr=2562457
http://www.ams.org/mathscinet-getitem?mr=0382267
http://dx.doi.org/10.1007/978-0-8176-4934-0_8
http://www.ams.org/mathscinet-getitem?mr=2605170
http://www.ams.org/mathscinet-getitem?mr=1811558
http://dx.doi.org/10.1112/jlms/jdn011
http://www.ams.org/mathscinet-getitem?mr=2427051


2132 Burt Totaro

[40] F Morel, V Voevodsky, A1 –homotopy theory of schemes, Inst. Hautes Études Sci.
Publ. Math. (1999) 45–143 MR1813224

[41] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 3rd edition, Ergeb.
Math. Grenzgeb. 34, Springer, Berlin (1994) MR1304906

[42] A Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1991) 221–
255 MR1106349

[43] A Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown
representability, J. Amer. Math. Soc. 9 (1996) 205–236 MR1308405

[44] A Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton
Univ. Press (2001) MR1812507

[45] Y P Nesterenko, A A Suslin, Homology of the general linear group over a local
ring, and Milnor’s K–theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 121–146
MR992981 In Russian; translated in Math. USSR Izv. 34 (1990) 121–145

[46] O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008)
689–727 MR2435654

[47] M Rost, Chow groups with coefficients, Doc. Math. 1 (1996) 319–393 MR1418952

[48] A J Scholl, Classical motives, from: “Motives”, (U Jannsen, S Kleiman, J-P Serre,
editors), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI (1994)
163–187 MR1265529

[49] E Shinder, Künneth formula for motivic cohomology Available at http://
mathoverflow.net/a/12948/703

[50] H Sumihiro, Equivariant completion, II, J. Math. Kyoto Univ. 15 (1975) 573–605
MR0387294

[51] A A Suslin, Algebraic K–theory of fields, from: “Proceedings of the International
Congress of Mathematicians, Volume 1”, (A M Gleason, editor), Amer. Math. Soc.,
Providence, RI (1987) 222–244 MR934225

[52] The GAP group, GAP: Groups, algorithms and programming (2013) Version 4.6.4
Available at http://www.gap-system.org/

[53] The Stacks Project Authors, Stacks project (2014) Available at http://
stacks.math.columbia.edu

[54] B Totaro, Milnor K–theory is the simplest part of algebraic K–theory, K–Theory 6
(1992) 177–189 MR1187705

[55] B Totaro, The Chow ring of a classifying space, from: “Algebraic K–theory”, (W
Raskind, C Weibel, editors), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Provi-
dence, RI (1999) 249–281 MR1743244

[56] B Totaro, Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma
2 (2014) MR3264256

Geometry & Topology, Volume 20 (2016)

http://www.numdam.org/item?id=PMIHES_1999__90__45_0
http://www.ams.org/mathscinet-getitem?mr=1813224
http://www.ams.org/mathscinet-getitem?mr=1304906
http://dx.doi.org/10.1016/0021-8693(91)90292-G
http://www.ams.org/mathscinet-getitem?mr=1106349
http://dx.doi.org/10.1090/S0894-0347-96-00174-9
http://dx.doi.org/10.1090/S0894-0347-96-00174-9
http://www.ams.org/mathscinet-getitem?mr=1308405
http://dx.doi.org/10.1515/9781400837212
http://www.ams.org/mathscinet-getitem?mr=1812507
http://mi.mathnet.ru/eng/izv1233
http://mi.mathnet.ru/eng/izv1233
http://www.ams.org/mathscinet-getitem?mr=992981
http://dx.doi.org/10.1070/IM1990v034n01ABEH000610
http://dx.doi.org/10.1016/j.aim.2008.05.013
http://www.ams.org/mathscinet-getitem?mr=2435654
http://www.math.uiuc.edu/documenta/vol-01/16.pdf
http://www.ams.org/mathscinet-getitem?mr=1418952
http://dx.doi.org/10.1090/pspum/055.1/1265529
http://www.ams.org/mathscinet-getitem?mr=1265529
http://mathoverflow.net/a/12948/703
http://mathoverflow.net/a/12948/703
http://projecteuclid.org/euclid.kjm/1250523005
http://www.ams.org/mathscinet-getitem?mr=0387294
http://www.ams.org/mathscinet-getitem?mr=934225
http://www.gap-system.org/
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://dx.doi.org/10.1007/BF01771011
http://www.ams.org/mathscinet-getitem?mr=1187705
http://dx.doi.org/10.1090/pspum/067/1743244
http://www.ams.org/mathscinet-getitem?mr=1743244
http://dx.doi.org/10.1017/fms.2014.15
http://www.ams.org/mathscinet-getitem?mr=3264256


The motive of a classifying space 2133

[57] B Totaro, Group cohomology and algebraic cycles, Cambridge Tracts in Mathematics
204, Cambridge Univ. Press (2014) MR3185743

[58] B Totaro, Adjoint functors on the derived category of motives, preprint (2015) arXiv:
1502.05079

[59] V Voevodsky, Triangulated categories of motives over a field, from: “Cycles, transfers,
and motivic homology theories”, (Princeton, editor), Ann. of Math. Stud. 143, Princeton
Univ. Press (2000) 188–238 MR1764202

[60] V Voevodsky, Open problems in the motivic stable homotopy theory, I, from: “Motives,
polylogarithms and Hodge theory, Part I”, (F Bogomolov, L Katzarkov, editors), Int.
Press Lect. Ser. 3, Int. Press, Somerville, MA (2002) 3–34 MR1977582

[61] V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst.
Hautes Études Sci. 98 (2003) 1–57 MR2031198

[62] V Voevodsky, Motivic Eilenberg–Maclane spaces, Publ. Math. Inst. Hautes Études Sci.
112 (2010) 1–99 MR2737977

[63] A J Weir, Sylow p–subgroups of the classical groups over finite fields with character-
istic prime to p , Proc. Amer. Math. Soc. 6 (1955) 529–533 MR0072143

Department of Mathematics, University of California, Los Angeles
Box 951555, Los Angeles, CA 90095-1555, United States

totaro@math.ucla.edu

http://www.math.ucla.edu/~totaro/

Proposed: Lothar Göttsche Received: 27 November 2014
Seconded: Jim Bryan, Frances Kirwan Accepted: 12 September 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1017/CBO9781139059480
http://www.ams.org/mathscinet-getitem?mr=3185743
http://arxiv.org/abs/1502.05079
http://arxiv.org/abs/1502.05079
http://www.ams.org/mathscinet-getitem?mr=1764202
http://www.ams.org/mathscinet-getitem?mr=1977582
http://dx.doi.org/10.1007/s10240-003-0009-z
http://www.ams.org/mathscinet-getitem?mr=2031198
http://dx.doi.org/10.1007/s10240-010-0024-9
http://www.ams.org/mathscinet-getitem?mr=2737977
http://dx.doi.org/10.2307/2033424
http://dx.doi.org/10.2307/2033424
http://www.ams.org/mathscinet-getitem?mr=0072143
mailto:totaro@math.ucla.edu
http://www.math.ucla.edu/~totaro/
http://msp.org
http://msp.org



	1. Notation
	2. Birational motives
	3. Failure of the weak Chow Künneth property for finite groups
	4. The weak Chow Künneth property for smooth proper k–schemes
	5. The triangulated category of motives
	6. A Künneth spectral sequence for motivic homology
	7. The motivic Künneth property
	8. The motive of a quotient stack
	9. The mixed Tate property for classifying spaces
	10. Groups of order 32
	References

