Translator Disclaimer
2009 The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field
Clifford Henry Taubes
Geom. Topol. 13(3): 1337-1417 (2009). DOI: 10.2140/gt.2009.13.1337

Abstract

Let M denote a compact, orientable 3–dimensional manifold and let a denote a contact 1–form on M; thus a da is nowhere zero. This article explains how the Seiberg–Witten Floer homology groups as defined for any given Spin structure on M give closed, integral curves of the vector field that generates the kernel of da.

Citation

Download Citation

Clifford Henry Taubes. "The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field." Geom. Topol. 13 (3) 1337 - 1417, 2009. https://doi.org/10.2140/gt.2009.13.1337

Information

Received: 22 April 2007; Revised: 24 November 2008; Accepted: 1 December 2008; Published: 2009
First available in Project Euclid: 20 December 2017

zbMATH: 1200.57018
MathSciNet: MR2496048
Digital Object Identifier: 10.2140/gt.2009.13.1337

Subjects:
Primary: 57R17, 57R57

Rights: Copyright © 2009 Mathematical Sciences Publishers

JOURNAL ARTICLE
81 PAGES


SHARE
Vol.13 • No. 3 • 2009
MSP
Back to Top