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A HIGHER RANK SELBERG SIEVE WITH AN ADDITIVE
TWIST AND APPLICATIONS

M. Ram Murty, Akshaa Vatwani

To the memory of Atle Selberg,
with respect and admiration

Abstract: We develop an axiomatic formulation of the higher rank version of the classical
Selberg sieve with an “additive twist” and provide asymptotic formulas for the same. As an
application of this higher rank sieve, we obtain improvements of results of Heath-Brown and
Ho-Tsang on almost prime k-tuples.
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1. Introduction

Atle Selberg [16] was the first to suggest the existence of a “higher rank” version
of his celebrated sieve method (see page 351 of [16] and page 245 of [15]). This
has been applied by Maynard [9] and the Polymath project [14] to give, among
other results, a simplified proof of the Yitang Zhang’s ground-breaking result [18]
regarding bounded gaps between primes. In [17], the second author gives an ax-
iomatic formulation of the higher rank sieve as well as applications to various
problems.

In this paper, we develop the theory of the Selberg sieve with an “additive
twist”, the general theory of which seems to be new even in the rank one case,
though the ideas are nascent in some of Selberg’s work. Thus, our main theorems,
which can be seen as a natural extension of this progression of ideas, are contained
in Theorems 3.3 and 4.3 below.

Though the theory can be employed to a number of problems, in this paper we
restrict our attention to the well-known prime k-tuples conjecture. The remarkable
advantage of the general formulation leads us naturally to realize the culmination
of Selberg’s idea hinted in the two papers cited earlier, namely [15] and [16].
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Scholarship.
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As an application of our general theory, we prove Theorem 5.13, which we state
below. Let τ denote the divisor function and

H = {h1, . . . , hk}

be an admissible set, by which we mean that hi’s are distinct non-negative integers
and for every prime p, there is a residue class bp (mod p) such that bp /∈ H
(mod p).

Theorem. There exists ρk such that there are � x(log log x)−1(log x)−k integers
n 6 x satisfying: the product

∏k
i=1(n+ hi) is square-free and
k∑
i=1

τ(n+ hi) 6 bρkc .

For large k, we have ρk ∼ 3
4k

2.

This improves upon Theorem 1 of Heath-Brown [5], which gives ρk ∼ 3
2k

2. Ho
and Tsang [6] obtained the above result with ρk ∼ k2. Similar computations have
also been performed by Maynard [10]. It is worth noting that the above mentioned
results do not use the higher rank sieve and rely on the combinatorial version of
the classical sieve. Note that for k = 2, the best result is due to Chen [1].

As a consequence, we obtain bounds on the number of distinct prime divisors
of the product

∏k
i=1(n+hi) as well as for each n+hi individually, which are stated

as Corollaries 5.14 and 5.15.
Our derivation of the above results uses the k-rank Selberg sieve along with the

divisor function analogue of the Bombieri-Vinogradov theorem. More precisely, let
(a, q) = 1, and set

E(x, q, a) =
∑
n6x

n≡a (mod q)

τ(n)− 1

φ(q)

∑
n6x

(n,q)=1

τ(n), (1.1)

where φ is Euler’s function. Then for any A > 0 and any θ < 2/3,∑
q6xθ

max
(a,q)=1

|E(x, q, a)| � x

(log x)A
. (1.2)

In fact, the sharper result that

|E(x, q, a)| � q−1/4x1/2+ε

for any ε > 0 was known to Selberg (see p.237 of [15]) as well as Hooley [7] and
Linnik (unpublished). It is conjectured that (1.2) is valid for any θ < 1. Fouvry
and Iwaniec [2] have investigated this conjecture in a variety of directions. In
particular, they showed that if a is fixed, then for any ε, A > 0, we have∑

x
2
3
+ε<q<x1−ε

(a,q)=1

|E(x, q, a)| � x

(log x)A
,

where the implied constant depends on ε, A and a. For other variants of the
Bombieri-Vinogradov theorem, we refer the reader to [11].
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2. Notation

We repeat much of the notation and terminology set up in [17] for convenience
of the reader. A k-tuple of integers d := (d1, . . . , dk) is said to be square-free if
the product of its components is square-free. For a real number R, the inequality
d 6 R means that

∏
i di 6 R. The notion of divisibility among tuples is defined

component-wise, that is,

d | n⇐⇒ di | ni for all 1 6 i 6 k.

It follows that the notion of congruence among tuples, modulo a tuple, is also
defined component-wise. On the other hand, we say a scalar q divides the tuple d
if q divides the product

∏
i di. However when we explicitly write the congruence

relation d ≡ e (mod q), we mean that it holds for each component. When we say
that a tuple d divides a scalar q, we mean that

∏
i di divides q. For a square-free

tuple, this is equivalent to each component dividing q.
We do not invoke any special notation for vector functions, that is, functions

acting on k-tuples. It will be evident from its argument whether a function is a vec-
tor or scalar function. Most of the functions that we deal with are multiplicative.
A vector function is said to be multiplicative if all its component functions are
multiplicative. In this context, we define the function f(d) to mean the product of
its component (multiplicative) functions acting on the corresponding components
of the tuple, that is,

f(d) =

k∏
i=1

fi(di).

The identity function acting on a tuple d is denoted by d itself. In this case, d
would represent the product

∏k
i=1 di. It will be clear from the context whether

we mean the above product or the vector tuple itself. Similarly, when we write
a tuple raised to some power, we interpret it as the appropriate function acting on
the tuple. For example, d2 =

∏k
i=1 d

2
i . Similarly, we define for k-tuples d and α,

d(α) =
∏k
i=1 d

αi
i .

Some more vector functions that will be used by us are the Euler phi function,
as well as the lcm and gcd functions. For example,

[d, e] :=

k∏
i=1

[di, ei].

We also use the notation [d, e]|n to mean [di, ei]|ni for 1 6 i 6 k. When written as
the argument of a vector function, [d, e] will denote the tuple whose components
are [di, ei]. The meaning of the use will be clear from the context.

Similarly, a vector function ν(d) is called additive if all its components νi are
additive, in which case, we define

ν(d) =

k∑
i=1

νi(di).
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We use the convention n ∼ N to denote N 6 n < 2N . Alternatively, f(x) ∼
g(x) may also denote that limx→∞

f(x)
g(x) = 1. The meaning will be clear from the

context. Moreover, if we have an expression of the form f(x) = (1 + o(1))cg(x),
where c is a constant independent of x, it is understood that the case c = 0 implies
that f(x) = o(g(x)).

Furthermore, we let τ(n) denote the number of divisors of the integer n and
ω(n) denote the number of distinct prime factors of n. The greatest integer less
than or equal to x is denoted as bxc. Throughout this paper, δ denotes a positive
quantity which can be made as small as needed.

We employ the following multi-index notation to denote mixed derivatives of
a function on k-tuples, F(t).

F (α)(t) :=
∂αF(t1, . . . , tk)

(∂t1)α1 . . . (∂tk)αk
, (2.1)

for any k-tuple α with α :=
∑k
j=1 αj .

3. The higher rank Selberg sieve revisited

In this section, we summarize the salient features of the higher rank Selberg sieve
discussed in [17]. Our exposition is concise for the sake of brevity and the reader
is encouraged to peruse Section 3.2 of the above mentioned paper. Given a set S
of k-tuples, S = {n = (n1, . . . , nk)}, in [17], we undertook a systematic study of
sums of the form ∑

n∈S
wn

(∑
d|n

λd

)2

, (3.1)

where wn is a ‘weight’ attached to the tuples n and λd’s are parameters to be
chosen. Throughout this section, the condition n ∈ S is understood to hold
without being explicitly stated. We impose the following hypotheses on this sum:

H1. If a prime p divides a tuple n such that p divides ni and nj , with i 6= j,
then p must lie in some fixed finite set of primes P0.

This hypothesis allows us to perform the ’W trick’. We fix someW =
∏
p<D0

p,
with D0 depending on S, such that p ∈ P0 implies that p|W . We then fix some
tuple of residue classes b (mod W ), with (bi,W ) = 1 for all i and restrict n to be
congruent to b in the above sum.

H2. With W, b as in H1, the function wn satisfies∑
d|n

n≡b (mod W )

wn =
X

f(d)
+ rd,

for some multiplicative function f and some quantity X depending on the
set S.
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H3. The components of f satisfy

fj(p) =
p

αj
+O(pt), with t < 1,

for some fixed αj ∈ N, αj independent of X, k.

We denote the tuple (α1, . . . , αk) as α and the sum of the components
∑k
j=1 αj

as α.

H4. There exists θ > 0 and Y � X such that∑
[d,e]<Y θ

|r[d,e]| �
Y

(log Y )A
,

for any A > 0, as Y →∞.

Henceforth, we assume D0 (and hence W ) → ∞ as X → ∞. The big oh
and little oh notation used henceforth is understood to be with respect to X →
∞, unless stated otherwise. Moreover, the implied constants may depend on
those parameters which are independent of X (such as the function f , parameters
A,αj , βj etc) but not those quantities which do depend on X (such as D0, W ,
R, Y ) With all this in place, we state the main results of the higher rank sieve
obtained in [17].

Lemma 3.1. Set R to be some fixed power of X and let D0 = o(log logR). Let
f be a multiplicative function satisfying H3 and G,H : [0,∞)k → R be smooth
functions with compact support. We denote

G
(

log d

logR

)
:= G

(
log d1

logR
, · · · , log dk

logR

)
and similarly for H. Let the dash over the sum mean that we sum over k-tuples d
and e with [d, e] square-free and co-prime to W . Then,

∑′

d,e

µ(d)µ(e)

f([d, e])
G
(

log d

logR

)
H
(

log e

logR

)
= (1 + o(1))C(G,H)(α) c(W )

(logR)α
,

where

C(G,H)(α) =

∫ ∞
0

· · ·
∫ ∞

0

 k∏
j=1

t
αj−1
j

(αj − 1)!

G(t)(α)H(t)(α)dt,

c(W ) :=
∏
p|W

pα

φ(p)α
.

Here G(t)(α) and H(t)(α) are as in the notation of (2.1).
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Let ηG , ηH be shifted Fourier transforms of G and H respectively. More pre-
cisely, let

ηG(u) =

∫
Rk

(G(t) exp(t)) exp(iu · t)dt,

where exp(t) =
∏n
j=1 e

tj and the dot denotes dot product of tuples. We have
a similar expression for ηH(u).

Lemma 3.2. Let a denote the tuple (a1, . . . , ak) and let a =
∑
j aj. We follow

the same notation for b and c and the notation of (2.1) for the relevant mixed
derivatives. Then the integral

∫
Rk

∫
Rk
ηG(u)ηH(v)

k∏
j=1

(1 + iuj)
aj (1 + ivj)

bj

(1 + iuj + 1 + ivj)cj
dudv

is given by

C(G,H)(a,b,c) := (−1)a+b

∫ ∞
0

· · ·
∫ ∞

0

 k∏
j=1

t
cj−1
j

(cj − 1)!

G(t)(a)H(t)(b)dt.

We now choose λd in terms of a fixed symmetric smooth function F : [0,∞)k →
R, supported on the simplex ∆k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + . . . + tk 6 1},
as follows

λd = µ(d)F
(

log d1

logR

)
:= µ(d1) . . . µ(dk)F

(
log d1

logR
, . . . ,

log dk
logR

)
. (3.2)

Theorem 3.3. Let λd’s be as chosen above. Suppose hypotheses H1 to H3 hold and
H4 holds with Y = X. Set R = Xθ/2−δ for small δ > 0 and let D0 = o(log logR).
Then,

∑
n≡b (mod W )

wn

(∑
d|n

λd

)2

= (1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
,

with

C(F ,F)(α) =

∫ ∞
0

· · ·
∫ ∞

0

 k∏
j=1

t
αj−1
j

(αj − 1)!

(F (α)(t)
)2

dt, c(W ) :=
Wα

φ(W )α
.

4. The higher rank sieve with an additive function

In [17], one could have considered a more general setting for the sieve, in which
the weights wn satisfy:
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H2’. ∑
d|n

n≡b (mod W )

wn =
X

f(d)
+

X∗

f∗(d)
ν(d) + rd,

where f and f∗ are multiplicative functions and ν is an additive function.
In other words, each component νj(dj) of ν(d) is an additive function.

H2 used earlier can be thought of as H2’ with X∗ = 0. However, there do
arise situations when the expressions we need to analyze are of this more general
form, as we shall see. One could consider even more general situations as hinted
by Selberg [16], but we do not do so here. The reader may consult p.37 of [3] for
a cursory discussion of this kind of setting.

This expression motivates the analysis of sums of the following form.

Lemma 4.1. Let f, g, h be multiplicative vector functions and ν be an additive
vector function. Let d and e denote k-tuples as usual. We define by S∗ the twisted
sum ∑′

d,e

µ(d)µ(e)g(d)h(e)

f([d, e])
ν([d, e]),

where the dash over the initial sum means that we are summing over tuples d and
e such that [d, e] is square-free. Assuming that all the sums involved are absolutely
convergent, we have

S∗ = S −
∑
q

S(q)

 k∑
j=1

νj(q)gj(q)

fj(q)
+
νj(q)hj(q)

fj(q)
− νj(q)gj(q)hj(q)

fj(q)

 ,

where the summation in the second term runs over all primes q, and

S =
∑′

d,e

µ(d)µ(e)g(d)h(e)

f([d, e])
, S(q) =

∑′

d,e
q-[d,e]

µ(d)µ(e)g(d)h(e)

f([d, e])
.

Proof. Fix a prime q. We denote by S∗(q) the sum∑′

d,e
q-[d,e]

µ(d)µ(e)g(d)h(e)

f([d, e])
ν([d, e]) (4.1)

Then as [di, ei], [dj , ej ] are co-prime for all i 6= j, q can divide only one of the
[dj , ej ]’s if it divides the tuple [d, e]. Hence,

S∗ = S∗(q) +

k∑
j=1

∑′

d,e
q|[dj ,ej ]

µ(d)µ(e)g(d)h(e)

f([d, e])
ν([d, e]).

Again as before, for each j, the condition q | [dj , ej ] leads to three cases:
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(a) q | dj , q - ej
(b) q - dj , q | ej
(c) q | dj , q | ej .

For each case, the dash over the sum indicates that q cannot divide [di, ei] for any
i 6= j. The sum for case (a) is given by,

k∑
j=1

∑′

d,e
q|dj ,q-ej

µ(d)µ(e)g(d)h(e)

f([d, e])
ν([d, e])

We write dj = qd′j , so that [dj , ej ] = q[d′j , ej ] and hence ν([dj , ej ]) = νj(q) +
νj([d

′
j , ej ]). Then with obvious notation, the sum for case (a) is equal to

−
k∑
j=1

gj(q)νj(q)

fj(q)

∑
d′,e

q-[d′,e]

µ(d′)µ(e)g(d′)h(e)

f([d′, e])

−
k∑
j=1

gj(q)

fj(q)

∑
d′,e

q-[d′,e]

µ(d′)µ(e)g(d′)h(e)

f([d′, e])
νj([d

′, e]),

that is,

−
k∑
j=1

gj(q)νj(q)

fj(q)
S(q)−

k∑
j=1

gj(q)

fj(q)
S∗(q).

Due to the additive function, we have obtained an extra term compared to the
expression for case (a) in Lemma 3.2 of [17]. Cases (b) and (c) yield exactly the
same expressions, with gj replaced by hj and −gjhj respectively.

Thus

S∗ =

1−
k∑
j=1

(
gj(q)

fj(q)
+
hj(q)

fj(q)
− gj(q)hj(q)

fj(q)

)S∗(q) (4.2)

−
k∑
j=1

(
gj(q)νj(q)

fj(q)
+
hj(q)νj(q)

fj(q)
− gj(q)hj(q)νj(q)

fj(q)

)
S(q).

By Lemma 3.2 of [17], we know that S has an Euler product. Note that the
first term in the parenthesis is in fact the Euler factor in this Euler product,
corresponding to the prime q. Let us denote it by Pq. Now, fixing a prime q′ 6= q
and repeating this process for S∗(q), we obtain

S∗(q) =

1−
k∑
j=1

(
gj(q

′)

fj(q′)
+
hj(q

′)

fj(q′)
− gj(q

′)hj(q
′)

fj(q′)

)S∗(q, q′) (4.3)

−
k∑
j=1

(
gj(q

′)νj(q
′)

fj(q′)
+
hj(q

′)νj(q
′)

fj(q′)
− gj(q

′)hj(q
′)νj(q

′)

fj(q′)

)
S(q, q′),

where S∗(q, q′) and S(q, q′) are the respective sums with the primes q and q′

eliminated in the sense of (4.1).
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Note that the Euler product for S(q, q′) is the Euler product for S with Pq and
Pq′ – the Euler factors corresponding to q and q′, removed. We plug the above
expression for S∗(q) into the expression for S∗ preceding it, to obtain

S∗ = PqPq′S
∗(q, q′)

−
k∑
j=1

(
gj(q

′)νj(q
′)

fj(q′)
+
hj(q

′)νj(q
′)

fj(q′)
− gj(q

′)hj(q
′)νj(q

′)

fj(q′)

)
PqS(q, q′)

−
k∑
j=1

(
gj(q)νj(q)

fj(q)
+
hj(q)νj(q)

fj(q)
− gj(q)hj(q)νj(q)

fj(q)

)
S(q).

Noting that PqS(q, q′) = S(q′) and continuing this process over all primes gives
S∗ equal to

∏
p

Pp −
∑
q

 k∑
j=1

(
gj(q)νj(q)

fj(q)
+
hj(q)νj(q)

fj(q)
− gj(q)hj(q)νj(q)

fj(q)

)S(q).

The product
∏
p Pp is simply the Euler product for S. Thus, S∗ is expressible in

terms of S and S(q) (with q running over all primes), both of whose Euler products
are known. �

We proceed to the general sieve as in the previous section, with hypotheses H1,
H3 and H4. However, the hypothesis H2 is now replaced by H2’. We also impose
an additional hypothesis H5 on our additive function ν, which is akin to H3 for
the multiplicative function f .
H5. For each j, we have∑

p

νj(p)

p1+δ
=
βj
δ

+O(1),
∑
p

|νj(p)|
p1+δ

�δ
1

δ
(4.4)

as δ → 0.
We will be concerned with this sum for p > D0. Then,

∑
p>D0

νj(p)

p1+δ
=
βj
δ

+O

∑
p<D0

|νj(p)|
p1+δ

 .

Moreover,∑
p<D0

|νj(p)|
p1+δ

6 e
∑
p<D0

|νj(p)|
p1+δ

e

(
− log p

logD0

)
6 e

∑
p

|νj(p)|
p1+ 1

logD0
+δ
.

From (4.4), as D0 →∞, we have∑
p

|νj(p)|
p1+ 1

logD0

= O(logD0).



160 M. Ram Murty, Akshaa Vatwani

Hence, ∑
p>D0

νj(p)

p1+δ
=
βj
δ

+O(logD0).

In practice one usually finds that for a fixed j, νj(p) is of the same sign for
all primes p, so that the two conditions of (4.4) can be reconciled into a single
condition.

The following result is the analogue of Lemma 3.1 in the additive function case.
Let α =

∑k
j=1 αj , W =

∏
p<D0

p and D0 →∞ as X →∞, as before.

Lemma 4.2. Set R to be some fixed power of X and let D0 = o(log logR). Let
f be a multiplicative function and ν be an additive function satisfying H3 and H5
respectively. Let G, H be smooth functions with compact support. Let all notation
be as in Lemma 3.2 and Theorem 3.3. Then, the sum∑′

d,e

µ(d)µ(e)

f([d, e])
ν([d, e])G

(
log d

logR

)
H
(

log e

logR

)

is given by (as R→∞)

(1 + o(1))
c(W )

(logR)α−1

k∑
j=1

βjαjC
∗
j (G,H)(α) +O

(
logD0

(logR)α

)
,

where,

C∗j (G,H)(α) = C(G,H)(α,α,α+ej) − C(G,H)(α−ej ,α,α) − C(G,H)(α,α−ej ,α)

and the tuple α± ej is (α1, . . . , αj ± 1, . . . , αk).

Proof. Following the proof of Lemma 3.4 of [17], we extend the functions G and
H to smooth compactly supported functions on Rk. Then by Fourier inversion,
we have

G(t) =

∫
Rk
ηG(u) exp (−(1 + iu) · t) du,

H(t) =

∫
Rk
ηH(v) exp (−(1 + iv) · t) dv,

(4.5)

where ηG and ηH are shifted Fourier transforms of G and H respectively and the
dot denotes dot product of tuples. ηG and ηH are Fourier transforms of smooth
functions with compact support and are hence rapidly decaying smooth functions,
satisfying the bounds

| ηG(t) |� (1 + |t|)−A1 , | ηH(t) |� (1 + |t|)−A2 , (4.6)

for any A1, A2 > 0.
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The required sum can be written as∫
Rk

∫
Rk
ηG(u)ηH(v)Z∗(u, v)dudv, (4.7)

where
Z∗(u, v) =

∑′

d,e

µ(d)µ(e)

f([d, e])
ν([d, e])

1

d(1+iu)/ logR

1

e(1+iv)/ logR
.

Consider the Euler product for Z(u, v) given by equation (3.7) of [17]:

Z(u, v) = (1 + o(1))
∏
p>D0

1−
k∑
j=1

αj
p

(
1

p
1+iuj
logR

+
1

p
1+ivj
logR

− 1

p
1+iuj
logR +

1+ivj
logR

) .

(4.8)

Let Z(u, v)q be Z(u, v) with the Euler factor corresponding to some prime q - W
removed. Applying Lemma 4.1 gives the following expression for Z∗(u, v) in terms
of Z(u, v) and Z(u, v)q:

−
∑
q-W

Z(u, v)q

 k∑
j=1

νj(q)

fj(q)

(
1

q
1+iuj
logR

+
1

q
1+ivj
logR

− 1

q
1+iuj+1+ivj

logR

)+ Z(u, v)

Noting from equation (3.7) of [17], the Euler factor for the prime q in the Euler
product for Z(u, v), we have,

Z(u, v) = (1 +O(q−1))Z(u, v)q.

As 1/(1 +O(q−1)) = (1 +O(q−1)), one obtains

Z(u, v)q = (1 +O(q−1))Z(u, v).

Thus, Z∗(u, v) equals,

− Z(u, v)

k∑
j=1

∑
q-W

νj(q)

fj(q)

(
1

q
1+iuj
logR

+
1

q
1+ivj
logR

− 1

q
1+iuj+1+ivj

logR

)

+ |Z(u, v)|
k∑
j=1

O

∑
q>D0

|νj(q)|
q|fj(q)|

+ Z(u, v).

The hypothesis H3 on f gives

|νj(q)|
|fj(q)|

= O

(
|νj(q)|
q

)
,

∑
q-W

νj(q)

fj(q)
=
∑
q>D0

αjνj(q)

q
+O

∑
q>D0

|νj(q)|
q2−t

 ,
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with t < 1. As done in the comments following H5, we can show that∑
q<D0

|νj(q)|
q

�
∑
q

|νj(q)|
q1+ 1

logD0

� logD0. (4.9)

Keeping this in mind, we apply partial summation on∑
q>D0

|νj(q)|
q

1

q1−t ,

to get ∑
q>D0

|νj(q)|
q2−t �

logD0

D1−t
0

. (4.10)

Since 0 6 t < 1, the above term is o(1) as D0 →∞.
We conclude that as D0 →∞, Z∗(u, v) is given by

− (1 + o(1))Z(u, v)

k∑
j=1

∑
q>D0

νj(q)αj
q

(
1

q
1+iuj
logR

+
1

q
1+ivj
logR

− 1

q
1+iuj+1+ivj

logR

)
+ Z(u, v) + |Z(u, v)|O

(
logD0

D0

)
.

By partial summation and the bound (4.9), we have

∑
q>D0

|νj(q)|
q

1

q
1+uj
logR

� (logD0)D
−

1+uj
logR

0 � logD0,

as R → ∞. Similar bounds can be obtained for each summand in the first
term above. This shows that |Z∗(u, v)| � (logD0)|Z(u, v)|. Recalling the bound
|Z(u, v)| � (logR)O(1) given by (3.9) of [17], we see that

|Z∗(u, v)| � (logR)O(1). (4.11)

Using the same argument as in Lemma 3.4 of [17] , one can show that the con-
tribution from the region |u| or |v| > (logR)ε to the integral (4.7) is O((logR)−A)
for any A > 0. In the region |u|, |v| 6 (logR)ε, we apply H5 with δ being terms of
the type (1 + iuj)/ logR, to obtain that

Z∗(u, v) = (1 + o(1))(logR)Z(u, v)

×
k∑
j=1

βjαj

(
1

1 + iuj + 1 + ivj
− 1

1 + iuj
− 1

1 + ivj

)
+O(logD0)|Z(u, v)|.
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We then use the known result (cf. (3.10), [17])

Z(u, v) = (1 + o(1))c(W )
1

(logR)α

k∏
j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
, (4.12)

to simplify the above expression, finally obtaining

Z∗(u, v) = (1 + o(1))c(W )
1

(logR)α−1
(L2(u, v)− L1(u, v)− L1(v, u))

+O(logD0)|Z(u, v)|, (4.13)

with

L1(u, v) =

k∑
j=1

L1(u, v)(j) (4.14)

=

k∑
j=1

βjαj
(1 + iuj)

αj−1(1 + ivj)
αj

(1 + iuj + 1 + ivj)αj

∏
l 6=j

(1 + iul)
αl(1 + ivl)

αl

(1 + iul + 1 + ivl)αl
,

L2(u, v) =

k∑
j=1

L2(u, v)(j)

=

k∑
j=1

βjαj
(1 + iuj)

αj (1 + ivj)
αj

(1 + iuj + 1 + ivj)αj+1

∏
l 6=j

(1 + iul)
αl(1 + ivl)

αl

(1 + iul + 1 + ivl)αl
.

Plugging all this into (4.7), we are led to evaluate new integrals of the form∫
Rk

∫
Rk
ηG(u)ηH(v)L1(u, v)dudv,

∫
Rk

∫
Rk
ηG(u)ηH(v)L2(u, v)dudv.

Note that we have extended the integrals to be over all of Rk. This can be done
since the O((logR)−A) contribution from the complementary region gets absorbed
into the o(1) term of (4.13).

Now, using Lemma 3.2, we have∫
Rk

∫
Rk
ηG(u)ηH(v)L1(u, v)(j)dudv = βjαjC(G,H)(α−ej ,α,α),

where α is as before and α− ej = (α1, . . . , αj − 1, . . . , αk). Similarly,∫
Rk

∫
Rk
ηG(u)ηH(v)L1(v, u)(j)dudv = βjαjC(G,H)(α,α−ej ,α),

and ∫
Rk

∫
Rk
ηG(u)ηH(v)L2(u, v)(j)dudv = βjαjC(G,H)(α,α,α+ej),

where α+ ej = (α1, . . . , αj + 1, . . . , αk).
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Putting together all these evaluated integrals gives for the main term of (4.13),
the term involving C∗j (G,H)(α) in the lemma. We have not considered yet the
error term of (4.13). In the region |u|, |v| < (logR)ε, the expression (4.12) gives

|Z(u, v)| = (1 + o(1))c(W )
1

(logR)α

∣∣∣∣∣∣
k∏
j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj

∣∣∣∣∣∣ , (4.15)

Plugging |Z(u, v)| into (4.7) leads to

(1 + o(1))
c(W )

(logR)α

∫
Rk

∫
Rk
ηG(u)ηH(v)

∣∣∣∣∣∣
k∏
j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj

∣∣∣∣∣∣ dudv.
As this integral is absolutely convergent due to rapid decay of the integrand, in
this region we obtain

|Z(u, v)|O(logD0)� c(W ) logD0

(logR)α
= o(1)

In the region |u| or |v| > (logR)ε, the bound (4.11) as well as rapid decay bounds
(4.6) mean that one can pull out any negative power of logR out of the integrand,
and hence the error obtained in the former region dominates.

We find that the required sum is

(1 + o(1))
c(W )

(logR)α−1

k∑
j=1

βjαjC
∗
j (G,H)(α),

as required. �

Theorem 4.3. Let λd’s be chosen as in (3.2). We assume hypotheses H1, H2’,
H4 and H5. We also assume that both functions, f and f∗ arising from H2’
satisfy H3 with αj’s and α∗j ’s respectively. Choose R = Xθ/2−δ and assume that
D0 = o(log logR). Then,∑

n≡b (mod W )

wn

(∑
d|n

λd

)2

= (1 + o(1))
c(W )X

(logR)α
C(F ,F)(α)

+ (1 + o(1))
c∗(W )X∗

(logR)α∗−1

k∑
j=1

βjα
∗
jC
∗
j (F ,F)(α∗)

where C∗j (F ,F)(α∗) denotes the quantity

C(F ,F)(α∗,α∗,α∗+ej) − C(F ,F)(α∗−ej ,α∗,α∗) − C(F ,F)(α∗,α∗−ej ,α∗),

and

c(W ) =
Wα

φ(W )α
, c∗(W ) =

Wα∗

φ(W )α∗
.

All notation is as in Lemmas 3.1, 3.2, 4.2 and α∗ :=
∑
j α
∗
j .
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Proof. We proceed exactly as in the proof of Theorem 3.6 of [17], by expanding
the square, interchanging the order of summation, applying theW -trick and finally
using H2’. This gives us the following expression for the above sum,

X
∑′

d,e<R

λdλe
f([d, e])

+X∗
∑′

d,e<R

λdλe
f∗([d, e])

ν([d, e]) +O

(∑′

d,e<R

|λd||λe||r[d,e]|
)
.

Now, we have two main terms. Using the given choice of λd’s, the first term can
be analyzed as in Theorem 3.6 of [17] to obtain

(1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
.

The second term yields

X∗
∑′

d,e<R

µ(d)µ(e)

f∗([d, e])
ν([d, e])F

(
log d

logR

)
F
(

log e

logR

)
.

By Lemma 4.2, this is given by

(1 + o(1))

 k∑
j=1

βjα
∗
jC
∗
j (F ,F)(α∗)

 c∗(W )
X∗

(logR)α∗−1
.

To complete the proof, we note that the choice of R along with H4 ensures that
the error term is negligible. �

Note that a general version of the above theorem holds, without the condition

(logD0/ logR) = o(1).

In that case, in addition to the two terms already obtained in the theorem, we
would get another term, namely

O(logD0)c(W )
X∗

(logR)α
.

5. Application to almost prime k-tuples

We apply the higher rank sieve to the well-known prime k-tuples problem, by
making use of the divisor function τ to sieve out primes.

A set H of distinct non-negative integers is said to be admissible if for every
prime p, there is a residue class bp (mod p) such that bp /∈ H (mod p). We will
work with a fixed admissible set of size k, H = {h1, . . . , hk}.We use the ‘W trick’
to remove the effect of small primes, that is we restrict n to be in a fixed residue
class b modulo W , where W =

∏
p<D0

p and b is chosen so that b+ hi is co-prime
toW for each hi. This choice of b is possible because of admissibility of the set H .
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One can choose D0 = log log logN , so that W ∼ (log logN)(1+o(1)) by an applica-
tion of the prime number theorem. We consider the expressions,

S1 =
∑
n∼N

n≡b (mod W )

( ∑
dj |n+hj∀j

λd

)2

,

S2 =
∑
n∼N

n≡b (mod W )

( k∑
j=1

τ(n+ hj)

)( ∑
dj |n+hj∀j

λd

)2

.

For ρ positive, if we denote by S(N, ρ) the quantity

ρS1 − S2,

then we have the following key observation.

Proposition 5.1. Given a positive number ρ, if

ρS1 − S2 > 0

for all large N , then there are infinitely many integers n such that

k∑
j=1

τ(n+ hj) 6 bρc,

where bρc denotes the greatest integer less than or equal to ρ.

Proof. As λd’s are non-negative, we see that if S(N, ρ) > 0, there must exist
n ∼ N such that

ρ−
k∑
j=1

τ(n+ hj) > 0.

As this happens for all large N , this inequality holds for infinitely many integers n.
As each τ(n+ hj) is an integer, this completes the proof. �

The asymptotic formula for S1 was derived in Lemma 4.2 of [17]. We proceed to
derive an asymptotic formula for S2. Recall the definition of E(x, q, a) in Section 1.
Given θ > 0, we say that θ is permissible for the divisor function if for any A > 0,
(a, q) = 1, we have ∑

q<xθ

max
(a,q)=1

max
y6x
|E(y, q, a)| � x

(log x)A
. (5.1)

We define the level of distribution θ0 of the divisor function to be the supremum
of all the permissible values of θ. Henceforth we will work with a fixed permissible
θ and set R = Nθ/2−δ, for some small δ > 0. In the context of our problem, θ is
assumed to be less than 1.
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5.1. Asymptotic formula for S2

We write

S2 =

k∑
m=1

S
(m)
2 , S

(m)
2 =

∑
n∼N

n≡b (mod W )

τ(n+ hm)

( ∑
dj |n+hj∀j

λd

)2

,

and proceed to obtain an asymptotic formula for S(m)
2 . This calls upon the theory

of the sieve with an additive function, as we will see.
We begin with some preliminary propositions.

Proposition 5.2. Let q > 1 and (a, q) = 1. Then,

∑
n6x

n≡a (mod q)

τ(n) =
φ(q)

q2
x

(
log x+ c+ 2

∑
p|q

log p

p− 1

)
+ E(x, q, a) +O

(
qε−1
√
x
)
,

with c = 2γ − 1, where γ is Euler’s constant.

Proof. We have, ∑
n6x

n≡a (mod q)

τ(n) =
1

φ(q)

∑
n6x

(n,q)=1

τ(n) + E(x, q, a).

Lemma 16 on p. 234 of [15] gives

1

φ(q)

∑
n6x

(n,q)=1

τ(n) =
φ(q)

q2
x

(
log x+ c+ 2

∑
p|q

log p

p− 1

)
+O

( √
x

φ(q)

∏
p|q

(
1 +

1
√
p

)2
)

Now, ∏
p|q

(
1 +

1
√
p

)2

� 3ω(q) � qε,

where ω(q) denotes the number of distinct prime factors of q. Hence this error
term is O(qε−1

√
x). This completes the proof. �

The function τ is not completely multiplicative, but it is not very far from
being so. We state some results that will make this more precise.

Proposition 5.3. We have,

τ(m)τ(n) =
∑
d|m,n

τ
(mn
d2

)
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Proof. The result is trivial when (m,n) = 1. It is enough to prove it in the case
m = pa, n = pb for some prime p. Assume without loss of generality that a 6 b.
Then the left hand side of the result gives τ(pa)τ(pb) = (a+ 1)(b+ 1). The right
hand side gives

a∑
j=0

τ
(
pa+b−2j

)
=

a∑
j=0

(a+ b+ 1− 2j) = (a+ b+ 1)(a+ 1)− a(a+ 1)

= (a+ 1)(b+ 1),

completing the proof. �

We now state the following two variable version of Möbius inversion (c.f.
Lemma 2.1 of [13], which can be proved in the usual manner.

Lemma 5.4. Let
F (m,n) =

∑
d|m,n

G(m/d, n/d).

Then,
G(m,n) =

∑
d|m,n

µ(d)F (m/d, n/d)

and conversely.

Applying this lemma to Proposition 5.3 gives the following expression for τ(mn)
in terms of τ(m) and τ(n). It can also be proved directly following the method of
Proposition 5.3.

Proposition 5.5. We have,

τ(mn) =
∑
d|m,n

µ(d)τ(m/d)τ(n/d).

The following proposition allows us to obtain a more general form of Proposi-
tion 5.2, without the condition (a, q) = 1.

Proposition 5.6. Let q > 1 be square-free, (a, q) = δ. Then,∑
n6x

n≡a (mod q)

τ(n) =
∑
d|δ

µ(d)τ(δ/d)
∑

n′6x/δd
n′≡ad (mod q′),

τ(n′)

where q′ = q/δ and ad ≡ a1δd (mod q′). In particular, (ad, q
′) = 1.

Proof. We write n = n1δ and q = q′δ. As q is square-free, we have (q′, δ) = 1.
Letting δ denote the inverse of δ modulo q′ and a1 ≡ aδ (mod q′), we have,∑

n6x
n≡a (mod q)

τ(n) =
∑

n16x/δ
n1≡a1 (mod q′)

τ(n1δ).
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Note that (q′, a1) = 1. Using Proposition 5.5 and then interchanging summation,
we obtain that the above sum equals∑

n16x/δ
n1≡a1 (mod q′)

∑
d|δ,n1

µ(d)τ(δ/d)τ(n1/d) =
∑
d|δ

µ(d)τ(δ/d)
∑

n16x/δ
n1≡a1 (mod q′)

n1=dn′

τ(n1/d)

=
∑
d|δ

µ(d)τ(δ/d)
∑

n′6x/dδ
n′≡ad (mod q′)

τ(n′),

where ad ≡ a1d (mod q′), which exists as (δ, q′) = 1 implies (d, q′) = 1. Here,
(ad, q

′) = 1 as needed. �

Proposition 5.7. Let q > 1 be square-free, (a, q) = δ. Let q′ = q/δ. Then,∑
n6x

n≡a (mod q)

τ(n)

=

(
δτ(δ)

φ(δ)

∑
d|δ

µ(d)

dτ(d)

)
φ(q)

q2
x

(
log x− log δ +

∑
p|δ

log p

2p− 1
+ c+ 2

∑
p|q′

log p

p− 1

)
+ E′(x, q, a) +O

(
δ1/2qε−1

√
x
)
.

Here,

E′(x, q, a) = τ(δ)
∑
d|δ

µ(d)

τ(d)
E(x/δd, q′, ad),

with ad ≡ aδd (mod q′).

Proof. Combining Propositions 5.2 and 5.6 for the sum∑
n6x

n≡a (mod q)

τ(n),

we obtain the following main term∑
d|δ

µ(d)τ(δ/d)
φ(q′)

q′2
x

δd

(
log x− log(δd) + c+ 2

∑
p|q′

log p

p− 1

)
.

Here as q is square-free, so are δ and each d dividing δ. Hence, τ(δ/d) = τ(δ)/τ(d).
Similarly, φ(q′) = φ(q)/φ(δ). With some simplification, this gives

δτ(δ)

φ(δ)

∑
d|δ

µ(d)

dτ(d)

φ(q)

q2
x

(
log x− log δ − log d+ c+ 2

∑
p|q′

log p

p− 1

)
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We examine the term involving log d. We would like to express the relevant series
as a product, namely,

∑
d|δ

µ(d)

dτ(d)
log d =

∑
d|δ

µ(d)

dτ(d)

h(δ),

for some suitable function h. Consider the Dirichlet series

fδ(s) :=
∑
d|δ

µ(d)

dsτ(d)
.

Then

f ′δ(s) = −
∑
d|δ

µ(d) log d

dsτ(d)
= fδ(s)

∑
p|δ

(
log p

2ps − 1

)
,

by logarithmic differentiation of the Euler product of fδ(s). Thus

f ′δ(1) =: −
∑
d|δ

µ(d) log d

dτ(d)
=
∑
d|δ

µ(d)

dτ(d)

∑
p|δ

(
log p

2p− 1

)
.

Plugging this into the obtained expression gives the desired main term.
The error terms are given by

τ(δ)
∑
d|δ

µ(d)

τ(d)
E(x/δd, q′, ad) +O

(
τ(δ)√
δ

∑
d|δ

1

τ(d)
√
d

(q′)ε−1
√
x

)
.

We denote the first term by E′(x, q, a). As∑
d|δ

1

τ(d)
√
d
� τ(δ)� δε/2,

the second error term gives

O
(
δε−1/2(q′)ε−1

√
x
)

= O
(
δ1/2qε−1

√
x
)
. �

We now seek to show that the error term E′(x, q, a) appearing in the proposition
above satisfies an average bound of the type (5.1), as this will be needed in our
estimation of S2.

In order to do this, let us define some notation. We define

E∗(x, q) := max
(a,q)=1

max
y6x
|E(y, q, a)| , Ẽ∗(x, q) := max

a (mod q)
max
y6x
|E′(y, q, a)| .

Then (5.1) can be rewritten as∑
q<xθ

E∗(x, q)� x

(log x)A
. (5.2)
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We wish to prove that∑
q<xθ

Ẽ∗(x, q) :=
∑
q<xθ

max
a (mod q)

max
y6x
|E′(y, q, a)| � x

(log x)A
. (5.3)

We begin with the following result giving a bound for each individual E′(y, q, a),
y 6 x.

Proposition 5.8. Let q > 1 be square-free, δ = (a, q) and q′ = q/δ. Then, for
any y 6 x,

|E′(y, q, a)| 6 τ(δ)2E∗(x/δ, q′).

Proof. By definition of E′(y, q, a),

|E′(y, q, a)| 6 τ(δ)
∑
d|δ

1

τ(d)
|E(y/δd, q′, ad)|,

with ad ≡ aδd (mod q′). We know that (ad, q
′) = 1. Notice that

|E(y/δd, q′, ad)| 6 max
(a,q′)=1

max
z6x/δ

|E(z, q′, a)|

The right hand side of the above inequality is simply E∗(x/δ, q′), giving

|E′(y, q, a)| 6 E∗(x/δ, q′)τ(δ)
∑
d|δ

1

τ(d)
.

It is clear that
∑
d|δ

1
τ(d) 6

∑
d|δ 1 6 τ(δ), thereby completing the proof. �

Theorem 5.9. Let q > 1 be square-free. For any A > 0, we have∑
q<xθ

max
y6x

max
(a,q)=1

|E′(y, q, a)| � x

(log x)A
,

for any permissible θ.

Proof. Using the result of the previous proposition with the same notation, we
have

Ẽ∗(x, q) := max
a (mod q)

max
y6x
|E′(y, q, a)| 6 max

a (mod q)
τ(δ)2 max

y6x
E∗(x/δ, q/δ).

Clearly, the condition maxy6x is redundant. As δ := (a, q) is the only parameter
in the right hand side that depends on the choice of residue class a (mod q), the
condition maxa (mod q) can be replaced with maxδ|q, to give

Ẽ∗(x, q) 6 max
δ|q

τ(δ)2 max
y6x

E∗(x/δ, q/δ).
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Then,∑
q6xθ

Ẽ∗(x, q) 6
∑
q6xθ

max
δ|q

τ(δ)2 max
y6x

E∗(x/δ, q/δ) 6
∑
q6xθ

∑
δ|q

τ(δ)2 max
y6x

E∗(x/δ, q′)

6
∑
δ6xθ

τ(δ)2
∑

q′6xθ/δ

E∗(x/δ, q′),

after interchanging summation. Using xθ/δ 6 (x/δ)
θ
, for θ < 1, and (5.2) gives

∑
q6xθ

Ẽ∗(x, q) 6
∑
δ6xθ

τ(δ)2x

δ

1

(log(x/δ))A
,

for any A > 0. In the given range of δ, log(x/δ) � log x. One can use the
Tauberian theorem (cf. Ex. 4.4.17 of [12]) or even elementary estimations to obtain∑
n6x τ(n)2 ∼ cx(log x)3 for some constant c, followed by partial summation to

get ∑
n6x

τ(n)2

n
� (log x)4.

Thus, ∑
q6xθ

Ẽ∗(x, q)�
∑
δ6xθ

τ(δ)2

δ

x

(log x)A
� x(log x)4

(log x)A
,

This completes the proof of the theorem. �

We are ready to derive an asymptotic expression for S(m)
2 . The following can

be compared to Theorem 2.1 of Li-Pan [8]. It must be noted that the expression for
S

(m)
2 obtained by Li-Pan contains a sign error for the term β2. This sign is crucial;

if the expression obtained by [8] were correct, one could show that it leads to
infinitude of twin primes for any θ > 2/3. Moreover, it would violate the analogue
of the Elliott-Halberstam conjecture for the divisor function. Namely, one could
then prove that the divisor function cannot have level of distribution greater than
4/5. This is contrary to expected heuristic reasoning.

Lemma 5.10. With λd’s as chosen in (3.2) in terms of F , and R = Nθ/2−δ, we
have as N →∞,

S
(m)
2 :=

∑
n∼N

n≡b (mod W )

τ(n+ hm)

( ∑
dj |n+hj∀j

λd

)2

= (1 + o(1))
W k−1

φ(W )k
N

(logR)k

(
logN

logR
α(m) − β(m)

1 − 4β
(m)
2

)
,
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with

α(m) :=

∫
∆k(1)

tm

(
F (1+em)(t)

)2

dt1 . . . dtk,

β
(m)
1 :=

∫
∆k(1)

t2m

(
F (1+em)(t)

)2

dt1 . . . dtk,

and

β
(m)
2 :=

∫
∆k(1)

tmF (1+em)(t)F (1)(t)dt1 . . . dtk.

We use the usual notation (2.1) as before.

Proof. We begin by establishing the setting of the sieve. The tuple n in this case
is (n + h1, . . . , n + hk), where hi are elements of the fixed set H . The set S is
given by

S = {n = (n+ h1, . . . , n+ hk) : n ∼ N}.

The choice of W and b was stated at the beginning of this section. The weights in
this case are given by

wn = τ(n+ hm).

Clearly, hypothesis H1 holds as H is a fixed set. We try to show H2’. For this,
consider the sum ∑

d|n
n≡b (mod W )

wn =
∑
n∼N

dj |n+hj∀j
n≡b (mod W )

τ(n+ hm)

For the above expression, we can use the same argument as in Lemma 4.2 of [17]
to conclude that (di, dj) = 1 for all i 6= j, and (dj ,W ) = 1 for all j. We rewrite
the above sum as ∑

N+hm6n′<2N+hm
n′≡hm−hj (mod dj)∀j
n′≡b+hm (mod W )

τ(n′),

where n′ = n + hm. Note that if a prime p divides hm − hj , for j 6= m, then p
divides W . Hence (dj ,W ) = 1 implies that hm − hj must be co-prime to dj for
j 6= m. It is also clear that b + hm is co-prime to W . Then, using the Chinese
remainder theorem, the above sum can be written as the sum over a single residue
class a modulo q = W

∏
j dj , with (a, q) = dm to obtain∑

N+hm6n′<2N+hm
n′≡a (mod q)

τ(n′).
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Letting q′ denote q/dm, we apply Proposition 5.7 to write this sum as

dmτ(dm)

φ(dm)

∑
t|dm

µ(t)

tτ(t)

φ(q)

q2
N

(
logN − log dm +

∑
p|dm

log p

2p− 1
+ c+ 2

∑
p|q′

log p

p− 1

)
+ E′(N, q, a) +O

(
d1/2
m qε−1

√
N
)
. (5.4)

We first deal with the main term (the first term) of this sum. Further simplification
using the definition of q along with∑

t|dm

µ(t)

tτ(t)
=
∏
p|dm

(
1− 1

2p

)
,

gives,

φ(W )

W 2
N
dmτ(dm)

φ(dm)

∏
p|dm

(
1− 1

2p

) k∏
j=1

φ(dj)

d2
j

logN (5.5)

+
φ(W )

W 2
N
dmτ(dm)

φ(dm)

∏
p|dm

(
1− 1

2p

) k∏
j=1

φ(dj)

d2
j

(
c+ 2

∑
p|q′

log p

p− 1
−
∑
p|dm

log p

2p− 1

)

− φ(W )

W 2
N log dm

dmτ(dm)

φ(dm)

∏
p|dm

(
1− 1

2p

) k∏
j=1

φ(dj)

d2
j

.

As all the dj ’s are co-prime to W as well as mutually co-prime to each other, we
can rewrite

2
∑
p|q′

log p

p− 1
=
∑
p|W

2 log p

p− 1
+
∑
j 6=m

∑
p|dj

2 log p

p− 1
.

It is clear that the latter sum, being the sum of component additive functions, is
an additive function of the k-tuple d.

Thus H2’ is satisfied, with

X =
φ(W )

W 2
N

(
logN + c+

∑
p|W

2 log p

p− 1

)
, X∗ = −φ(W )

W 2
N,

f(d) = f∗(d) =
φ(dm)

dmτ(dm)

∏
p|dm

(
2p

2p− 1

) k∏
j=1

d2
j

φ(dj)
,

ν(d) = log dm +
∑
p|dm

log p

2p− 1
−
∑
j 6=m

∑
p|dj

2 log p

p− 1
.

Moreover, the error terms in (5.4) give

rd = E′(N, q, a) +O
(
d1/2
m qε−1

√
N
)
.
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It is clear that H3 holds for f and f∗ with

αj = α∗j =

{
1 if j = 1, . . . , k, j 6= m

2 if j = m.

This brings us to H5 for the additive function ν, given by

νj(p) = −2 log p

p− 1
for j 6= m, νm(p) = log p− log p

2p− 1
.

Noting that νm(p) > 0 for all primes p, we see that if one fixes a component j then
the sign of νj is fixed, which means that the absolute value sign in the statement
of H5 is irrelevant. The behaviour of −ζ ′(s)/ζ(s) as s→ 1+ as well as the absolute
convergence of the series

∑
p

log p
p2 shows that H5 holds for ν with

βj =

{
0 if j = 1, . . . , k, j 6= m

1 if j = m.

Recall that we are using θ to denote the level of distribution of the divisor
function (see (5.1)). To verify H4 it suffices to show that for any A > 0,

∑
[d,e]<Nθ

E′(N, q, a) +O

 ∑
[d,e]<Nθ

[dm, em]1/2qε−1
√
N

� N

(logN)A
, (5.6)

Denoting
∏
j 6=m[dj , ej ] as [d, e]′, we have∑

[d,e]<Nθ

[dm, em]1/2qε−1 �W ε−1
∑

[dm,em]<Nθ

[dm, em]ε−1/2
∑

[d,e]′<Nθ

([d, e]′)
ε−1

Using Proposition 3.1 of [17] and partial summation along with the fact that the
average order of τ3(n) is (log n)2, we get∑

[dm,em]<Nθ

[dm, em]ε−1/2 �
∑
r<Nθ

rε−1/2τ3(r)� (Nθ)ε+1/2(logN)2.

Similarly, ∑
[d,e]′<Nθ

([d, e]′)
ε−1 �

∑
r<Nθ

rε−1τ3(k−1)(r)� (Nθ)ε(logN)3k.

As ε can be made arbitrarily small andW � (log logN)2, we obtain for the second
term of (5.6), the estimate∑

[d,e]<Nθ

[dm, em]1/2qε−1
√
N � N ε′+θ/2

√
N,
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for any ε′ > 0. As θ < 1, this term is indeed of the order of N/(logN)A for any
A > 0 as required. The first term of (5.6) can be written as∑

q<WNθ

E′(N, q, a)�
∑

q<Nθ+ε

E′(N, q, a)

for any ε > 0, due to the choice of W . For small enough ε > 0, θ+ ε is permissible
(being less than the level of distribution θ0), and one can apply Theorem 5.9, to
obtain that the first term of (5.6) is O(N/(logN)A) as well. Thus H4 holds.

As the choice of D0 gives
logD0

logR
= o(1),

we are now in a position to apply Theorem 4.3 with X,X∗, α, α∗, β as given above,
α = α∗ = k+ 1 and c(W ) = c∗(W ) = W k+1/φ(W )k+1. After some simplification,
this gives the following asymptotic formula (as R→∞) for the required sum

(1 + o(1))
W k−1

φ(W )k
N

(logR)k

(
logN + c+

∑
p|W

2 log p
p−1

logR
C(F ,F)(α)

)

− (1 + o(1))
W k−1

φ(W )k
N

(logR)k

(
2C∗m(F ,F)(α)

)
.

Here α is the tuple (1, . . . , 1, 2, 1, . . . , 1), with 2 in the m-th place. As W =∏
p<D0

p, ∑
p|W

2 log p

p− 1
�
∑
p|W

1� D0

By the choice of D0 made in the beginning of this section, it is clear that D0 =
o(logR). Hence, the asymptotic formula for the required sum as R→∞, becomes

(1 + o(1))
W k−1

φ(W )k
N

(logR)k

(
logN

logR
C(F ,F)(α) − 2C∗m(F ,F)(α)

)
.

Using Lemma 3.2 keeping in mind the notation (2.1), we obtain that

C(F ,F)(α) = α(m)(F).

Similarly, by definition (see Theorem 4.3), C∗m(F ,F)(α) equals

C(F ,F)(α,α,α+em) − C(F ,F)(α−em,α,α) − C(F ,F)(α,α−em,α),

which equals
β

(m)
1

2
+ 2β

(m)
2 ,

after applying Lemma 3.2. This completes the proof. �
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Noting that condition H4 holds for both S1 and S2 when θ is permissible for the
divisor function, we put together the above lemma with the asymptotic formula
for S1 obtained in Lemma 4.2 of [17] to obtain

Lemma 5.11. The quantity S(N, ρ) := ρS1 −
∑k
m=1 S

(m)
2 as N →∞ is given by

(1 + o(1))
W k−1

φ(W )k
N

(logR)k

(
ρI(F)− α∗

(θ/2− δ)
+ β∗1 + 4β∗2

)
,

with

α∗ =

k∑
i=1

α(m), β∗1 =

k∑
i=1

β
(m)
1 , β∗2 =

k∑
i=1

β
(m)
2 .

5.2. Choice of the test function

Inspired by the choice of the function in [4], let us choose the function F to be

F(t1, . . . , tk) = (−1)k
`!

(k + `)!

(
1−

k∑
i=1

ti

)`+k
(5.7)

when
∑k
j=1 tj 6 1, and zero otherwise. Then by (2.1) ,

F (1)(t1, . . . , tk) =

(
1−

k∑
i=1

ti

)`
, (5.8)

We wish to compute all the integrals appearing in Lemma 5.11 with this choice of
function.

In order to compute the integral I(F), we begin by considering the integral

I`,k =

∫
∆k(1)

(
1−

k∑
i=1

ti

)`
dt. (5.9)

Then

I`,k =

∫ 1

0

· · ·
∫ 1−

∑k
i=2 ti

0

(
1−

k∑
i=1

ti

)`
dt1dt2 . . . dtk

=
1

`+ 1

∫ 1

0

· · ·
∫ 1−

∑k
i=3 ti

0

(
1−

k∑
i=2

ti

)`+1

dt2dt3 . . . dtk

=
1

`+ 1
I`+1,k−1

This gives a recursion formula for I`,k. Moreover,

I`+k−1,1 =

∫ 1

0

(1− tk)
`+k−1

dtk =
1

`+ k
.
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Thus, I`,k = `!/(`+ k)!. By definition of I(F) in Lemma 4.2 of [17], one has

I(F) = I2`,k =
(2`)!

(2`+ k)!
. (5.10)

We have from (5.8),

F (1+em)(t1, . . . , tk) = −`

(
1−

k∑
i=1

ti

)`−1

, (5.11)

Let us compute the integrals α∗ and β∗2 . Consider first the integral

J`,k =

∫
∆k(1)

k∑
i=1

ti

(
1−

k∑
i=1

ti

)`
dt.

Then

I`,k − J`,k =

∫
∆k(1)

(
1−

k∑
i=1

ti

)(
1−

k∑
i=1

ti

)`
dt = I`+1,k

Using known values for the integrals I`,k and I`+1,k,

J`,k = k
`!

(`+ k + 1)!
.

Using definitions in Lemmas 5.10 and 5.11, we have

α∗(F) = `2
∫

∆k(1)

(
k∑
i=1

ti

)(
1−

k∑
i=1

ti

)2`−2

dt,

β∗2(F) = −`
∫

∆k(1)

(
k∑
i=1

ti

)(
1−

k∑
i=1

ti

)2`−1

dt.

From (5.8) and (5.11) for our choice of function, this gives

α∗ = `2J2`−2,k = `2k
(2`− 2)!

(2`+ k − 1)!
, β∗2 = −`J2`−1,k = −` k (2`− 1)!

(2`+ k)!
. (5.12)

We are now left to compute the integral β∗1 . In order to do this, we first consider
the integral β(m)

1 defined in Lemma 5.10. For our choice of function, using (5.11),
we have

β
(m)
1 = `2

∫
∆k(1)

t2m

(
1−

k∑
i=1

ti

)2`−2

dt



A higher rank Selberg sieve with an additive twist and applications 179

Let σm denote
∑
i 6=m ti. Integration by parts with respect to tm gives us

∫ 1−σm

0

t2m

(
1−

k∑
i=1

ti

)2`−2

dtm = − t2m
2`− 1

(
1−

k∑
i=1

ti

)2`−1
∣∣∣∣∣∣
tm=0

tm=1−σm

+
2

2`− 1

∫ 1−σm

0

tm

(
1−

k∑
i=1

ti

)2`−1

dtm

The first term evaluated over the given limits is zero. Let t(m) denote the k-tuple
t with the mth component removed. Then,

β
(m)
1 = `2

∫ 1

0

· · ·
∫ 1−

∑
i6=m ti

0

t2m

(
1−

k∑
i=1

ti

)2`−2

dtmdt
(m)

=
2`2

2`− 1

∫ 1

0

· · ·
∫ 1−

∑
i6=m ti

0

tm

(
1−

k∑
i=1

ti

)2`−1

dtmdt
(m)

=
2`2

2`− 1

∫
∆k(1)

tm

(
1−

k∑
i=1

ti

)2`−1

dt

Thus,

β∗1 =
2`2

2`− 1
J2`−1,k = 2k`2

(2`− 2)!

(2`+ k)!
(5.13)

Plugging obtained values for the required integrals into Lemma 5.11 yields the
following result.

Theorem 5.12.

S(N, ρ) = (1 + o(1))
W k−1

φ(W )k
N

(logR)k
(2`)!

(2`+ k)!
· Sk,`,θ,

where

Sk,`,θ =

(
ρ− k`(2`+ k)

(2`− 1)(θ − 2δ)
+

k`

(2`− 1)
− 2k

)

5.3. Improvement of a result of Heath-Brown

We obtain the following improvement of a result of Heath-Brown [5], who obtained
the theorem below with

ρk =
3k2

2
+ 4k.
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Theorem 5.13. There exists ρk such that there are � x(log log x)−1(log x)−k

integers n 6 x satisfying: the product
∏k
i=1(n+ hi) is square-free and

k∑
i=1

τ(n+ hi) 6 bρkc .

For large k, we have ρk ∼ 3
4k

2.

Proof. It can be seen from the expression for S(N, ρ) in Theorem 5.12, that

ρ >
k`(2`+ k)

(2`− 1)(θ − 2δ)
− k`

(2`− 1)
+ 2k, (5.14)

implies that Sk,`,θ > 0 and hence S(N, ρ) > 0 for all large N . Thus, with λd’s
chosen as in (3.2), we have that the quantity

ρS1 −
k∑

m=1

S
(m)
2 =

∑
n∼N

n≡b (mod W )

ρ− k∑
j=1

τ(n+ hi)

( ∑
dj |n+hj∀j

λd

)2

(5.15)

= (1 + o(1))
W k−1

φ(W )k
N

(logR)k
(2`)!

(2`+ k)!
· Sk,`,θ

is positive for all large N . As explained in Proposition 5.1, this means that the
inequality

k∑
j=1

τ(n+ hj) < ρ, (5.16)

holds infinitely often. In fact, one can estimate the number of integers n 6 x for
which (5.16) holds as follows. Let all n ∼ N,n ≡ b (mod W ) for which (5.16) holds
be denoted by n′. Then the positive contribution to the first term in parenthesis
in (5.15) can come only from these integers. As a consequence,

∑
n′∼N

n′≡b (mod W )

ρ− k∑
j=1

τ(n′ + hj)

( ∑
dj |n′+hj∀j

λd

)2

� W k−1

φ(W )k
N

(logR)k
. (5.17)

For each n′, the absolute value of the first term in parenthesis is bounded above
by ρ. With the λd’s as chosen in (3.2), we have that each λd is bounded in absolute
value. Moreover, arguing using the W -trick as done in the proof of Lemma 4.2
of [17] shows that the n′ + hj ’s are pairwise co-prime. Thus, for some constant c,
independent of n,

∑
dj |n′+hj∀j

|λd| 6 c
∑

dj |n′+hj∀j

1 = c τ

 k∏
j=1

(n′ + hj)

 = c

k∏
j=1

τ(n′ + hj).
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However, by construction, all the n′ satisfy (5.16); in particular, each n′ + hj
can have at most ρ divisors. Hence the above product of the divisor functions is
bounded above by some constant M (say) independent of n′. This gives

∑
n′∼N

n′≡b (mod W )

ρ− k∑
j=1

τ(n′ + hi)

( ∑
dj |n′+hj∀j

λd

)2

�
∑
n′∼N

n′≡b (mod W )

1, (5.18)

with both summations running only over integers n′ satisfying (5.16). Combining
(5.17) and (5.18), we get

∑
n′∼N

n′≡b (mod W )

1� W k−1

φ(W )k
N

(logR)k
,

which means that the number of integers 6 x that satisfy the conditions of the
theorem is � x(log log x)−1(log x)−k.

We now wish to optimize the ρ in (5.16) as a function of k. Let (θ−2δ) = 2/3−ε
in (5.14). Putting ` = 1 gives the theorem with

ρk =
k

2
(3k + 8).

Notice that this is precisely Theorem 1 of Heath-Brown [5]. Letting ` = 2 gives
the theorem with ρk = k2 + 16k/3, which is an improvement for k > 2. In order
to optimize ρk, the right hand side of (5.14) should be viewed as a function h(`)
and minimized with respect to `. Then we obtain

h(`) = k
`(2`+ k)− (θ − 2δ)`

(θ − 2δ)(2`− 1)
+ 2k

Differentiating this with respect to `, we have

h′(`) =
k

(2`− 1)2

(
4`2 − 4`− k
θ − 2δ

+ 1

)
.

From this and h′′(`), it can be seen that the h(`) is minimum when

4`(`− 1) = k − (θ − 2δ).

For large k, this means ` ∼
√
k/2. Plugging this into h(`) gives

h(`) ∼ k2

2(θ − 2δ)

Thus, for large k, Sk,`,θ can be made positive with ` ∼
√
k/2, and ρ > k2

2(θ−2δ) .
Choosing θ − 2δ = 2

3 − ε completes the proof. �
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We remark that Heath-Brown discusses what seems to be a more general case,
with n + hi replaced by linear functions of the type Li(n) = ain + hi satisfying
certain hypotheses on the ai’s, namely that each ai is composed of the same set
of primes. It is easy to see that our method can be adapted to the same setting,
though in the interest of simplicity and elegance, we do not do so here.

Remark. Our quantitative result is only slightly weaker than that of Heath-Brown
(by a factor of (log log x)−1). This can be improved further by a finer estimate of
the ‘constants’ depending on W . The above proof gives that for n′ satisfying the
conditions of the theorem,

∑
n′∼N

n′≡b (mod W )

1� 1

W

(
W

φ(W )

)k
N

(logR)k
.

By Merten’s theorem,

W

φ(W )
=
∏
p<D0

(
1− 1

p

)−1

∼ eγ logD0,

where γ is Euler’s constant. This gives

∑
n′6x

n′≡b (mod W )

1� (log log log log x)k

log log x

x

(log x)k
,

thereby improving the quantitative estimate of Theorem 5.13.

It is also worth noting that if we assume the divisor function analogue of
the Elliott-Halberstam conjecture, more precisely, if we assume that the divisor
function has a level of distribution θ = 1, then the statement of Theorem 5.13

holds with ρk ∼ k2

2 .
Interestingly, the above theorem leads to some bounds on the number of prime

factors of
∏k
i=1(n + hi) as well as the number of prime factors of each n + hi

individually. We state these results as corollaries. It is worth noting that better
bounds have been obtained through different means in the literature. The first
corollary is as stated in [5] and follows immediately from the fact that τ(n + hi)
is at least 2 for each i.

Corollary 5.14. There exists Rk such that there are � x(log log x)−1(log x)−k

integers n 6 x satisfying: the product
∏k
i=1(n+ hi) is square-free and

max
i∈{1,...,k}

ω(n+ hi) 6 Rk = blog2 (bρkc − 2(k − 1))c .

For large k, we have Rk ∼ 2 log k
log 2 .
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To control the number of prime factors of the product
∏k
i=1(n + hi), observe

that

k∑
i=1

ω(n+ hi) 6 k log2

(∑k
i=1 2ω(n+hi)

k

)
6 k log2

(
bρkc
k

)
, (5.19)

from the AM-GM inequality and Theorem 5.13. Equality occurs everywhere iff
all the ω(n + hi)’s are equal to the quantity log2

(
bρkc
k

)
, which we denote as ck.

However ck may not be an integer, in which case this maximum is not attained in
the context of our problem. We optimize by taking the ω(n+hi)’s to be ‘close’ to
bckc and to each other. More precisely, let k−m (where m 6 k) of the ω(n+hi)’s
be equal to bckc and the remaining m of them be bckc+ 1. Then one has

k∑
i=1

2ω(n+hi) = 2bckc(k +m) 6 bρkc ,

from Theorem 5.13, giving

m 6

⌊
bρkc
2bckc

⌋
− k

As
∑k
i=1 ω(n + hi) = k bckc + m, we have the following bound on the number of

distinct prime factors of the product
∏k
i=1(n+ hi).

Corollary 5.15. There exists rk such that there are � x(log log x)−1(log x)−k

integers n 6 x satisfying: the product
∏k
i=1(n+ hi) is square-free and

k∑
i=1

ω(n+ hi) 6 rk = k(bckc − 1) +

⌊
bρkc
2bckc

⌋
.

For large k, we have ρk ∼ 3
4k

2 and ck = log2

(
bρkc
k

)
, giving rk ∼ k log k

log 2 .

6. Concluding remarks

We remark that the quantitative results of this paper are by no means optimal and
can be improved by various means. For instance, one natural device that suggests
itself is to optimize the choice of W .
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