December 2016 Convolutions with probability distributions, zeros of $L$-functions, and the least quadratic nonresidue
William D. Banks
Funct. Approx. Comment. Math. 55(2): 243-280 (December 2016). DOI: 10.7169/facm/2016.55.2.7
Abstract

Let ${\tt d}$ be the density of a probability distribution that is compactly supported in the positive semi-axis. Under certain mild conditions we show that $$\lim_{x\to\infty}x\sum_{n=1}^\infty \frac{{\tt d}^{*n}(x)}{n}=1,\qquad\text{where}\quad {\tt d}^{*n}:=\underbrace{{\tt d} *{\tt d}*\cdots*{\tt d}}_{n\text{~times}}.$$ We also show that if $c>0$ is a given constant for which the function $f(k):=\widehat{\tt d}(k)-1$ does not vanish on the line $\{k\in\mathbb{C}:\Im k=-c\}$, where $\widehat{\tt d}$ is the Fourier transform of ${\tt d}$, then one has the asymptotic expansion $$\sum_{n=1}^\infty\frac{{\tt d}^{*n}(x)}{n}=\frac{1}{x}\bigg(1+\sum_k m(k) e^{-ikx}+O(e^{-c x})\bigg)\qquad (x\to +\infty),$$ where the sum is taken over those zeros $k$ of $f$ that lie in the strip $\{k\in\mathbb{C}:-c<\Im k<0\}$, $m(k)$ is the multiplicity of any such zero, and the implied constant depends only on $c$. For a given distribution of this type, we briefly describe the location of the zeros $k$ of $f$ in the lower half-plane $\{k\in\mathbb{C}:\Im k<0\}$. For an odd prime $p$, let $n_0(p)$ be the least natural number such that $(n|p)=-1$, where $(\cdot|p)$ is the Legendre symbol. As an application of our work on probability distributions, we generalize a well known result of Heath-Brown concerning the exhibited behavior of the Dirichlet $L$-function $L(s,(\cdot|p))$ under the assumption that the Burgess bound $n_0(p)\ll p^{1/(4\sqrt{e})+\varepsilon}$ cannot be improved.

## References

1.

N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72  MR45159 0046.04006 10.2307/1969420 N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72  MR45159 0046.04006 10.2307/1969420

2.

D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112.  MR93504 0081.27101 10.1112/S0025579300001157 D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112.  MR93504 0081.27101 10.1112/S0025579300001157

3.

H. Davenport, Multiplicative number theory, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.  MR1790423 1002.11001 H. Davenport, Multiplicative number theory, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.  MR1790423 1002.11001

4.

H.G. Diamond, H.L. Montgomery and U.M. Vorhauer, Beurling primes with large oscillation, Math. Ann. 334 (2006), no. 1, 1–36.  MR2208947 1207.11105 10.1007/s00208-005-0638-2 H.G. Diamond, H.L. Montgomery and U.M. Vorhauer, Beurling primes with large oscillation, Math. Ann. 334 (2006), no. 1, 1–36.  MR2208947 1207.11105 10.1007/s00208-005-0638-2

5.

P.X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math. 11 (1970), 329–339.  MR279049 0219.10048 10.1007/BF01403187 P.X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math. 11 (1970), 329–339.  MR279049 0219.10048 10.1007/BF01403187

6.

C.F. Gauss, Disquisitiones Arithmeticae, Leipzig, Fleischer, 1801. C.F. Gauss, Disquisitiones Arithmeticae, Leipzig, Fleischer, 1801.

7.

D.M. Goldfeld, A. Schinzel, On Siegel's zero, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 571–583.  MR404213 0327.10041 D.M. Goldfeld, A. Schinzel, On Siegel's zero, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 571–583.  MR404213 0327.10041

8.

G.H. Hardy, On the zeroes of certain integral functions, Messenger of Math. 32 (1903), 36–45. G.H. Hardy, On the zeroes of certain integral functions, Messenger of Math. 32 (1903), 36–45.

9.

A. Hildebrand, A note on Burgess' character sum estimate, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 1, 35–37.  MR827113 0589.10039 A. Hildebrand, A note on Burgess' character sum estimate, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 1, 35–37.  MR827113 0589.10039

10.

J. Horn, Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung. I, Math. Ann. 49 (1897), no. 1–4, 453–472.  MR1510973 28.0286.01 10.1007/BF01444364 J. Horn, Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung. I, Math. Ann. 49 (1897), no. 1–4, 453–472.  MR1510973 28.0286.01 10.1007/BF01444364

11.

J. Horn, Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung. II, Math. Ann. 49 (1897), no. 1–4, 473–496.  MR1510974 28.0286.01 10.1007/BF01444365 J. Horn, Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung. II, Math. Ann. 49 (1897), no. 1–4, 473–496.  MR1510974 28.0286.01 10.1007/BF01444365

12.

S. Knapowski, On Linnik's theorem conerning exceptional $L$-zeros, Publ. Math. Debrecen 9 (1962), 168–178.  MR148624 0141.04602 S. Knapowski, On Linnik's theorem conerning exceptional $L$-zeros, Publ. Math. Debrecen 9 (1962), 168–178.  MR148624 0141.04602

13.

14.

Yu.V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. (Mat. Sbornik) N.S. 15(57) (1944), 139–178.  MR12111 0063.03584 Yu.V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. (Mat. Sbornik) N.S. 15(57) (1944), 139–178.  MR12111 0063.03584

15.

Yu.V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Rec. Math. (Mat. Sbornik) N.S. 15(57) (1944), 347–368.  MR12112 0063.03585 Yu.V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Rec. Math. (Mat. Sbornik) N.S. 15(57) (1944), 347–368.  MR12112 0063.03585

16.

H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.  MR2378655 1142.11001 H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.  MR2378655 1142.11001

17.

B.S. Pavlov, Spectral analysis of a differential operator with a “blurred” boundary condition, (Russian) Problems of mathematical physics, No. 6 (Russian), 10–119. Izdat. Leningrad. Univ., Leningrad, 1973.  MR375003 B.S. Pavlov, Spectral analysis of a differential operator with a “blurred” boundary condition, (Russian) Problems of mathematical physics, No. 6 (Russian), 10–119. Izdat. Leningrad. Univ., Leningrad, 1973.  MR375003

18.

B.S. Pavlov, Factorization of the scattering matrix, and the serial structure of its roots, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 217–246.  MR338806 B.S. Pavlov, Factorization of the scattering matrix, and the serial structure of its roots, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 217–246.  MR338806

19.

I.M. Vinogradov, On the distribution of residues and nonresidues of powers, J. Physico-Mathematical Soc. of Perm 1 (1918), 94–96. I.M. Vinogradov, On the distribution of residues and nonresidues of powers, J. Physico-Mathematical Soc. of Perm 1 (1918), 94–96.

20.

D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.  MR5923 0063.08245 D.V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.  MR5923 0063.08245

21.

V.F. Zhdanovich, Formulas for the zeros of Dirichlet polynomials and quasipolynomials, Dokl. Akad. Nauk SSSR, 135 (1960), 1046–1049. (Russian).  MR125945 0111.27101 V.F. Zhdanovich, Formulas for the zeros of Dirichlet polynomials and quasipolynomials, Dokl. Akad. Nauk SSSR, 135 (1960), 1046–1049. (Russian).  MR125945 0111.27101

22.

M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), no. 2, 277–296.  MR899652 0662.34033 10.1016/0022-1236(87)90069-3 M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), no. 2, 277–296.  MR899652 0662.34033 10.1016/0022-1236(87)90069-3
William D. Banks "Convolutions with probability distributions, zeros of $L$-functions, and the least quadratic nonresidue," Functiones et Approximatio Commentarii Mathematici 55(2), 243-280, (December 2016). https://doi.org/10.7169/facm/2016.55.2.7