Open Access
November 2008 Reduction in K-theory of some infinite extensions of number fields
Wojciech Gajda
Funct. Approx. Comment. Math. 39(1): 145-148 (November 2008). DOI: 10.7169/facm/1229696560

Abstract

For the cyclotomic extension $F(\mu_{\infty})=\bigcup_{m\geq 1} F(\mu_m)$ of a number field $F,$ we prove that the reduction map $K_{2n{+}1}(F(\mu_{\infty}))\longrightarrow K_{2n{+}1}(\kappa_{{\tilde v}}),$ when restricted to nontorsion elements, is surjective. Here $\kappa_{{\tilde v}}$ denotes the residue field at a prime ${\tilde v}$ of $F(\mu_{\infty}).$

Citation

Download Citation

Wojciech Gajda. "Reduction in K-theory of some infinite extensions of number fields." Funct. Approx. Comment. Math. 39 (1) 145 - 148, November 2008. https://doi.org/10.7169/facm/1229696560

Information

Published: November 2008
First available in Project Euclid: 19 December 2008

zbMATH: 1193.19003
MathSciNet: MR2490094
Digital Object Identifier: 10.7169/facm/1229696560

Subjects:
Primary: 19D55
Secondary: 19D50 , 19F27 , 20G

Keywords: cyclotomic extension , K-groups , number field

Rights: Copyright © 2008 Adam Mickiewicz University

Vol.39 • No. 1 • November 2008
Back to Top