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THE LARGE SIEVE WITH QUADRATIC AMPLITUDE
Stephan Baier

Abstract: We establish a large sieve bound for expressions of the form

R∑

r=1

∣∣∣∣∣∣
∑

M<n6M+N

ane (αrf(n))

∣∣∣∣∣∣

2

,

where f(x) = αx2 + βx + θ ∈ R[x] is a quadratic polynomial with α > 0 and β > 0 . We also
consider the case when f(x) = xd with d ∈ N , d > 3 .
Keywords: large sieve, quadratic amplitude, double large sieve, exponential sums.

1. Introduction

Throughout this paper, we suppose that Q,R,M,N are integers with Q > 1,
R > 1, N > 1 and M > 0. As usual, by ε we denote a fixed but arbitrary (small)
positive real number. Further, we suppose that (an) and (αr) are sequences of
complex numbers. We set

S(α) :=
∑

M<n6M+N

ane(αn)

and

Z :=

1∫

0

|S(α)|2dα =
∑

M<n6M+N

|an|2.

By ‖x‖ we denote the distance of a real number x to its closest integer.
In its modern form, the large sieve is an inequality connecting a discrete

and the continuous mean value Z of the trigometrical polynomial S(α), i.e. an
inequality of the form

R∑
r=1

|S (αr)|2 6 ∆(N ;α1, ..., αr)Z. (1)
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Montgomery and Vaughan [9] proved that (1) holds with

∆(N ;α1, ..., αr) = N + δ−1,

where
δ := min

r,s6R
r 6=s

||αr − αs||. (2)

In many applications, the sequence α1, ..., αR consists of Farey fractions. If
α1, ..., αR is the sequence of all fractions a/q with 1 6 a 6 q , (a, q) = 1 and
q 6 Q , then the above results implies that

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣S
(
a

q

)∣∣∣∣
2

6 (N +Q2)Z,

which is a sharpened version of the classical large sieve inequality of Bombieri [2].
In [11] L. Zhao dealt with sums of the form

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣∣∣
∑

M<n6M+N

ane

(
af(n)
q

)∣∣∣∣∣∣

2

,

where
f(x) = αx2 + βx+ θ ∈ R[x]

is a quadratic polynomial with α 6= 0. Without loss of generality, we can assume
that α > 0 (if α < 0, then we just need to replace f(x) by −f(x)), which we
suppose from now on.

For the case when β/α is rational, Zhao established the following bound
(Theorem 2. in [11]): If β/α = u/v with u, v ∈ Z , v > 0 and (u, v) = 1, then

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣∣∣
∑

M<n6M+N

ane

(
af(n)
q

)∣∣∣∣∣∣

2

(3)

�
(
Q2 +Q

√
αN(M +N + u/v) + 1

)
ΠZ,

where

Π =
( v
α

+ 1
)1/2+ε

[Nv(M +N) + |u|+ v/α]ε.

We recall that we here suppose M > 0.
Zhao also dealt with the case when β/α is a general real number (see Pro-

position 1 in [11]). However, for irrational β/α his result is weaker than (3) unless
β/α is in a sense well-approximable by rational numbers.
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In many applications, the quantity

Z∗ := N max
M<n6M+N

|an|2 (4)

does not exceed the quantity Z =
∑

M<n6M+N
|an|2 much. In the present paper we

are concerned with large sieve inequalities of the form

R∑
r=1

∣∣∣∣∣∣
∑

M<n6M+N

ane (αrf(n))

∣∣∣∣∣∣

2

� ∆(M,N ;α1, ..., αr)Z∗.

To avoid technical complications, we confine ourselves to the case when β > 0.
Though, our method should lead to the same result for β < 0. We shall prove

Theorem 1. Define δ as in (2) and Z∗ as in (4) . Let f(x) = αx2+βx+θ ∈ R[x] ,
where α > 0 and β > 0 . Then we have, with an absolute � -constant,

R∑
r=1

∣∣∣∣∣∣
∑

M<n6M+N

ane (αrf(n))

∣∣∣∣∣∣

2

(5)

� (1 + α−1/2)R1/2
(
N1/2(M +N)1/2 + δ−1/2

)
Z∗ × log1/2(2 + α−1) log 2N

if N > N0 , where N0 is a non-negative constant which depends only on α and β .

An immediate consequence of Theorem 1 is

Corollary 1. Define Z∗ as in (4) . Let f(x) = αx2 + βx+ θ ∈ R[x] , where α > 0
and β > 0 . Then we have, with an absolute � -constant,

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣∣∣
∑

M<n6M+N

ane

(
af(n)
q

)∣∣∣∣∣∣

2

(6)

� (1 + α−1/2)
(
QN1/2(M +N)1/2 +Q2

)
Z∗ × log1/2(2 + α−1) log 2N

if N > N0 , where N0 is a non-negative constant which depends only on α and β .

In the following two sections we shall prove Theorem 1. In the last section
we shall touch the case of polynomials f(x) of degree > 3.

2. Preliminaries

Like Zhao’s method in [11], our method relies on the double large sieve of Bombieri
and Iwaniec (Lemma 5.2 in [1]). Here we state only the one-dimensional version
of the double large sieve.
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Proposition 1. Suppose that x1, ..., xR and y1, ..., yS are real numbers with

−X
2

6 xr 6 X

2
, −Y

2
6 ys 6 Y

2
for r = 1, ..., R and s = 1, ..., S . Put Λ(x) := max(1− |x|, 0) . Then we have

∣∣∣∣∣
R∑
r=1

S∑
s=1

crdse (xrys)

∣∣∣∣∣

2

6
(π

2

)4
AB(XY + 1), (7)

where

A :=
R∑
r=1

R∑
ρ=1

crcρΛ((xr − xρ)Y )

and

B :=
S∑
s=1

S∑
σ=1

dsdσΛ((ys − yσ)X).

Using Proposition 1, we shall reduce the problem in question to estimating
the number of solutions k, l, u, v ∈ Z of a Diophantine inequality of the form

|l(v + γ)− k(u+ γ)| 6 h, (8)

where h and γ are fixed real numbers, and the variables k, l, u, v lie in certain
intervals. We shall employ the following bound which is essentially due to G.
Harman.

Proposition 2. Let γ ∈ R and h,K,L, U, V > 1 be given. Then the number of
solutions k, l, u, v ∈ Z with K 6 k 6 2K , L 6 l 6 2L , U 6 u 6 2U , V 6 v 6 2V
of the inequality (8) is

�
(

min{K,L}max{U, V }(1 + | logK/L|) + (K + L)3/2+ε
)

(9)

× h log 2h log 2(K + L),

where the implied � -constant depends only on ε .

G. Harman stated and used the bound (9) for U = V in the proof of Lemma
3 in [4] (note that our notations differ from those in [4]). He did not prove this
bound in [4] but refered to his paper [3] in which he established a similar bound,
Lemma 7, for irrational real γ ’s which satisfy the condition

||qγ|| > A−q, all q ∈ N, (10)

for some A . Proposition 2 can also be established by the method used to prove
Lemma 7 in [3]. Instead of the estimate (5.6) in [3] one here uses the slightly weaker
estimate � hT l−1 (see the remark at the beginning of the proof of Lemma 8 in
[3]) which is satisfied for all real γ . We also note that the term h2 in (5.3) in [3]
can be replaced by h log 2h (however, for the application in [3] it was sufficient to
use (5.3) with h2 ). The term h2 arose from the crude estimate 1 + log h � h at
the end of the proof of Lemma 7 in [3].

We shall also need the following slightly modified version of Proposition 2,
which can be established by the same method.
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Proposition 3. Let γ ∈ R and h,K,L, U, Z > 1 be given. Suppose that Z 6 U .
Then the number of solutions k, l, u, v ∈ Z with K 6 k 6 2K , L 6 l 6 2L ,
U 6 u 6 U + Z , U 6 v 6 U + Z of the inequality (8) is

�
(

min{K,L}Z(1 + | logK/L|) + (K + L)3/2+ε
)

(11)

h log 2h log(K + L),

where the implied � -constant depends only on ε .

3. Proof of Theorem 1

We are now ready to prove Theorem 1, our main result. As in [11], we begin with
applying the double large sieve.

Multiplying out the square, we get

R∑
r=1

∣∣∣∣∣∣
∑

M<n6M+N

ane (αrf(n))

∣∣∣∣∣∣

2

(12)

=
R∑
r=1

∑

M<m6M+N

∑

M<n6M+N

amane (αr(f(m)− f(n)))

=
R∑
r=1

∑

M<m6M+N

∑

M<n6M+N

amane (αrα(m− n)(m+ n+ β/α)) .

In the remaining part of this paper, we assume without loss of generality that

−1/2 6 αr 6 1/2

for r = 1, ..., R , and we put γ := β/α . Then, applying Proposition 1 with

(xr)16r6R = (ααr)16r6R, (ys)16s6S = ((m− n)(m+ n+ γ))M<m,n6M+N ,

(cr) ≡ 1, (ds)16s6S = (aman)M<m,n6M+N , X = α, Y = 2N(M +N + γ),

we obtain
∣∣∣∣∣∣

R∑
r=1

∑

M<m6M+N

∑

M<n6M+N

amane (αrα(m− n)(m+ n+ γ))

∣∣∣∣∣∣

2

(13)

� AB(αN(M +N + γ) + 1) max
M<n6M+N

|an|4,

where A is the number of solutions αr, αρ with 1 6 r, ρ 6 R of the inequality

|αr − αρ| 6 1
2αN(M +N + γ)

,



38 Stephan Baier

and B is the number of solutions m1, n1,m2, n2 ∈ Z with M < m1, n1,m2,
n2 6 M +N of the inequality

|(m1 − n1)(m1 + n1 + γ)− (m2 − n2)(m2 + n2 + γ)| 6 1/α.

Since the sequence α1, ..., αR is well-spaced with spacing δ , we have

A 6 R

(
1 +

1
δαN(M +N + γ)

)
. (14)

Obviously, B is 6 the number B′ of solutions k, l, u, v ∈ Z with

−2N 6 k, l 6 2N, 2M < u, v 6 2(M +N) (15)

of the inequality
|l(v + γ)− k(u+ γ)| 6 1 + 1/α. (16)

In the following, we derive an estimate for B′ . We always suppose that the con-
ditions in (15) are satisfied.

Case 1: If k = 0, then (16) has

� N
∑

2M<v62(M+N)

(
1 +

1 + α−1

v + γ

)
� N2 +N(1 + α−1) log 2N

solutions (l, u, v).

Case 2: Similarly, if l = 0, then (16) has � N2+N(1+α−1) log 2N solutions
(k, u, v).

Case 3: Suppose that k < 0 and l > 0. Then a crude bound for the number
of solutions k, l, u, v of (16) is

�

 ∑

16t61+1/α

d(t)




2

� (1 + α−1)2 log2 2(1 + α−1),

where d(t) is the number of divisors of t .

Case 4: Suppose that k > 0 and l < 0. Then, like in Case 3, there are
� (1 + α−1)2 log2 2(1 + α−1) solutions k, l, u, v of (16).

Case 5: Suppose that k > 0, l > 0 and M > N . Put J := [log2N ] + 1.
Then, by Proposition 3, the number of solutions k, l, u, v of (16) is

�
J∑

i=0

J∑

j=0

(
min

{
N

2i
,
N

2j

}
N(1 + | log(2j/2i)|) +N3/2+ε

)
(17)

× (1 + α−1) log 2(1 + α−1) log 2N

�

N3/2+2ε +N2

J∑

i=0

J∑

j=0

min
{

2−i, 2−j
}

(1 + |j − i|)



× (1 + α−1) log 2(1 + α−1) log 2N.
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The double sum in the last line of (17) can be estimated by

J∑

i=0

J∑

j=0

min
{

2−i, 2−j
}

(1 + |j − i|) (18)

�
J∑

i=0

J∑

j=i

2−j(1 + j − i)

�
J∑

i=0

J∑

j=i

(
2
3

)j

�
J∑

i=0

(
2
3

)i
,

and the sum in the last line of (18) is bounded by a constant. So the number of
solutions in question is

� N2(1 + α−1) log 2(1 + α−1) log 2N.

Case 6: Suppose that k > 0, l > 0 and M < N . Put J := [log2N ] + 1.
Then, by Proposition 2, the number of solutions k, l, u, v of (16) is

� (1 + α−1) log 2(1 + α−1) log 2N
J∑

i=0

J∑

j=0

J+1∑

f=0

J+1∑
g=0

(19)

(
min

{
N

2i
,
N

2j

}
max

{
M +N

2f
,
M +N

2g

}
(1 + | log(2j/2i)|) +N3/2+ε

)
.

In a similar manner like in Case 5 one proves that the expression in (19) is

� N2(1 + α−1) log 2(1 + α−1) log2 2N.

Case 7: Suppose that k < 0, l < 0 and M > N . Then we get the same
bound like in Case 5.

Case 8: Suppose that k < 0, l < 0 and M < N . Then we get the same
bound like in Case 6.

Collecting all contributions together, we find that the total number of solu-
tions k, l, u, v of (16) is

� N2(1 + α−1) log 2(1 + α−1) log2 2N (20)

if N > N0(α), where N0(α) is a non-negative constant which depends only on α .
Now, combining (12), (13), (14) and the bound (20) for the term B , we

obtain the result of Theorem 1.
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4. Polynomials of higher degree

In this section we deal with the simplest polynomials of higher degree, namely the
polynomials f(x) = xd with d > 3. Our aim is to estimate the expression

R∑
r=1

∣∣∣∣∣∣
∑

M<n6M+N

ane
(
αrn

d
)
∣∣∣∣∣∣

2

.

For simplicity, we confine ourselves to the case when M = 0. In what follows, we
allow the implied � -constants to depend on d and on some parameter k which
we introduce below.

Using Hölder’s inequality, we get for k > 2

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

d
)
∣∣∣∣∣

2

6 R1−2/k




R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

d
)
∣∣∣∣∣

k



2/k

. (21)

If k ∈ N , then

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

d
)
∣∣∣∣∣

k

(22)

=
R∑
r=1

∣∣∣∣∣
N∑

n1=1

...

N∑
nk=1

an1 · · · anke
(
αr
(
nd1 + ...+ ndk

))
∣∣∣∣∣

=
R∑
r=1

N∑
n1=1

...

N∑
nk=1

εran1 · · · anke
(
αr
(
nd1 + ...+ ndk

))

for suitable complex εr with |εr| = 1.
Applying Proposition 1 with

(xr)16r6R = (αr)16r6R, (ys)16s6S =
(
nd1 + ...+ ndk

)
0<n1,...,nk6N ,

(cr)16r6R = (εr)16r6R, (ds)16s6S = (an1 · · · ank)0<n1,...,nk6N ,

X = 1, Y = 2kNd,

we obtain
∣∣∣∣∣
R∑
r=1

N∑
n1=1

...

N∑
nk=1

εran1 · · · anke
(
αr
(
nd1 + ...+ ndk

))
∣∣∣∣∣

2

(23)

� ABNd max
n6N

|an|2k,

where A is the number of solutions αr, αρ with 1 6 r, ρ 6 R of the inequality

|αr − αρ| 6 1
2kNd

,
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and B is the number of solutions (m1, ...,mk, n1, ..., nk) ∈ N2k with m1, ...,mk,
n1, ..., nk 6 N of the equation

md
1 + ...+md

k − (nd1 + ...+ ndk) = 0.

Since the sequence α1, ..., αR is well-spaced with spacing δ , we have

A 6 R

(
1 +

1
δkNd

)
. (24)

Combining (21), (22), (23) and (24), we obtain

Theorem 2. Define δ as in (2) . Suppose that d, k ∈ N , d > 3 and k > 2 . Then
we have

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

d
)
∣∣∣∣∣

2

� R1−1/k
(
Nd/k + δ−1/k

)
B

1/k
d,k (N) max

n6N
|an|2, (25)

where

Bd,k(N) := |{(m1, ...,mk, n1, ..., nk) ∈ N2k :m1, ...,mk, n1, ..., nk 6 N,

md
1 + ...+md

k = nd1 + ...+ ndk}|.
The term Bd,k(N) can be expressed in the form

Bd,k(N) =

1∫

0

∣∣∣∣∣
N∑
n=1

e
(
αnd

)
∣∣∣∣∣

2k

dα,

and this integral can be estimated by using Hua’s inequality (see [7]). In particular,
for d = 3 = k Hua’s inequality yields (see [5])

B3,3(N)� N7/2+ε.

Hooley [6] and Heath-Brown [5] established independently the much sharper bound

B3,3(N)� N3+ε

under the Riemann hypothesis for certain Hasse-Weil L-functions. Thus, The-
orem 2 implies

Theorem 3. Define δ as in (2) and Z∗ as in (4) . Then we have

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

3)
∣∣∣∣∣

2

� R2/3
(
N + δ−1/3

)
N1/6+εZ∗. (26)

If the Riemann hypothesis for Hasse-Weil L -functions holds true, then the left-hand
side of (26) is

� R2/3
(
N + δ−1/3

)
NεZ∗.
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In particular, for the special case of Farey fractions we obtain

Corollary 2. Define Z∗ as in (4) . Then we have

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣∣
N∑
n=1

ane

(
an3

q

)∣∣∣∣∣

2

�
(
Q4/3N +Q2

)
N1/6+εZ∗. (27)

If the Riemann hypothesis for Hasse-Weil L -functions holds true, then the left-hand
side of (27) is

�
(
Q4/3N +Q2

)
NεZ∗.

Heuristicly, one may expect that

Bd,k(N)� Nmax{k,2k−d}+ε. (28)

If this inequality holds, then for large N the optimal choice of the parameter k in
Theorem 4 is k = d . In this case (k = d) the bound (28) follows from Hooley’s
hypothesis K∗ in Waring’s problem (see [6]) which asserts that

∑

n6X
R2
d,d(n)� X1+ε,

where Rd,d(n) is the number of solutions (n1, ..., nd) ∈ Nd of the equation

nd1 + ...+ ndd = n.

Thus, Theorem 2 implies

Theorem 4. Define δ as in (2) and Z∗ as in (4) . Let d > 3 be a natural number.
Assume that hypothesis K∗ holds. Then we have

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane
(
αrn

d
)
∣∣∣∣∣

2

� R1−1/d
(
N + δ−1/d

)
NεZ∗. (29)

In particular, for the special case of Farey fractions we obtain

Corollary 3. Define Z∗ as in (4) . Let d > 3 be a natural number. Assume that
hypothesis K∗ holds. Then we have

∑

q6Q

q∑
a=1

(a,q)=1

∣∣∣∣∣
N∑
n=1

ane

(
and

q

)∣∣∣∣∣

2

�
(
Q2(1−1/d)N +Q2

)
NεZ∗. (30)

Actually, Hooley [6] and Heath-Brown [5] proved the hypothesis K∗ for
d = 3 under the Riemann hypothesis for certain Hasse-Weil L-functions.
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We note that for d = 2 the bounds (29) and (30) with log 2N in place of
Nε follow from Theorem 1 and Corollary 1. For d = 1 the bounds (29) and (30)
with the term Nε omitted follow from the ordinary large sieve inequalities given
at the beginning of this paper.
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