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THE LARGE SIEVE WITH QUADRATIC AMPLITUDE
STEPHAN BAIER

Abstract: We establish a large sieve bound for expressions of the form

2

R
> Y. ane(anf(n)] |

r=1|M<n{M+N

where f(z) = ax? 4 Bz + 0 € R[z] is a quadratic polynomial with « > 0 and 8 = 0. We also
consider the case when f(z) = z? with d € N, d > 3.
Keywords: large sieve, quadratic amplitude, double large sieve, exponential sums.

1. Introduction

Throughout this paper, we suppose that @, R, M, N are integers with @ > 1,
R>1,N>1and M > 0. As usual, by € we denote a fixed but arbitrary (small)
positive real number. Further, we suppose that (a,) and («,.) are sequences of
complex numbers. We set

S(a) := Z ane(an)
M<n<M+N
and
1
Z::/|S(a)|2da: S anl*
) M<n<M+N

By ||z|| we denote the distance of a real number z to its closest integer.

In its modern form, the large sieve is an inequality connecting a discrete
and the continuous mean value Z of the trigometrical polynomial S(«), i.e. an
inequality of the form

R
IS (@) < AN, ..o00) 2, (1)

r=1
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Montgomery and Vaughan [9] proved that (1) holds with
A(N;aq,...;0) =N+ 671,

where
§:= min [|a, - o (2)
r#s
In many applications, the sequence g, ...,ar consists of Farey fractions. If
aq,...,ar is the sequence of all fractions a/q with 1 < a < ¢, (a,q) = 1 and
q < @, then the above results implies that

q

2
D \s()] <IN+ QY7
q<Q  a=1 4
(a,9)=1

which is a sharpened version of the classical large sieve inequality of Bombieri [2].
In [11] L. Zhao dealt with sums of the form

2

- af(n))
ane | — ,
q<2Q (azg)l_l M<n<ZM+N ( q

where
f(x) = az® + Bz + 0 € R[]

is a quadratic polynomial with a # 0. Without loss of generality, we can assume
that & > 0 (if o < 0, then we just need to replace f(z) by —f(x)), which we
suppose from now on.

For the case when 3/« is rational, Zhao established the following bound
(Theorem 2. in [11]): If B/a = u/v with u,v € Z, v > 0 and (u,v) =1, then

2

i) SIS ST CCY 3

9<Q ( a=1 |M<n<M+N
a,q

< (Q2 + Qv aN(M + N + u/v) + 1) 17,

where
v 1/2+¢
1= (54—1) [Nv(M 4+ N) + |u| +v/a)*.

We recall that we here suppose M > 0.

Zhao also dealt with the case when (§/a is a general real number (see Pro-
position 1 in [11]). However, for irrational 5/« his result is weaker than (3) unless
B/« is in a sense well-approximable by rational numbers.
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In many applications, the quantity

Z*:=N max |a,|? (4)
M<n<M+N
does not exceed the quantity Z = > |a,,|? much. In the present paper we
M<n<M+N

are concerned with large sieve inequalities of the form

2
R

Z Z ane (arf(n))| < AM,N;a1,...,0.)Z".

r=1 |M<n<M+N
To avoid technical complications, we confine ourselves to the case when 3 > 0.
Though, our method should lead to the same result for 5 < 0. We shall prove

Theorem 1. Define § asin (2) and Z* asin (4). Let f(z) = ax®+Bx+0 € R[z],
where o« > 0 and 3 > 0. Then we have, with an absolute < -constant,

2

Z Z ane (af(n)) (5)

r=1 |M<n<M+N

< (1+a"l/2)RY/? <N1/2(M F N2 4 5*1/2) 7" x 1og"?(2 + o~ 1) log 2N

if N > Ny, where Ny is a non-negative constant which depends only on o and (3.
An immediate consequence of Theorem 1 is

Corollary 1. Define Z* asin (4). Let f(z) = ax?® + Bz + 0 € R[z], where a > 0
and 3 > 0. Then we have, with an absolute < -constant,

2
q
Y| Y () ©)
¢<Q a=1 |M<n<M+N q
(a,q)=1

< (1+a1?) (QNW(M FN)2 4 Q2> 7" x 1log"2(2 + a~1) log2N

if N > Ny, where Ny is a non-negative constant which depends only on o and 3.

In the following two sections we shall prove Theorem 1. In the last section
we shall touch the case of polynomials f(x) of degree > 3.

2. Preliminaries
Like Zhao’s method in [11], our method relies on the double large sieve of Bombieri

and Iwaniec (Lemma 5.2 in [1]). Here we state only the one-dimensional version
of the double large sieve.
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Proposition 1. Suppose that z1,...,xg and yi,...,ys are real numbers with

X X Y Y
- << 5, -5 SYs S o
2 2 2 2
forr=1,..,R and s =1,...,S. Put A(z) := max(1l — |z],0). Then we have
R 5 2 4
ZZcrdse(xrys) < (5) AB(XY +1), (7)
r=1s=1
where
R R
A= ZZCTCPA(((L'T —2z,)Y)
r=1p=1
and

s s
B:=> Y ddoA((ys — yo)X).
s=1o=1
Using Proposition 1, we shall reduce the problem in question to estimating
the number of solutions k,l,u,v € Z of a Diophantine inequality of the form

l(v+7) = kut+)| <h, (8)

where h and ~ are fixed real numbers, and the variables k,l,u,v lie in certain
intervals. We shall employ the following bound which is essentially due to G.
Harman.

Proposition 2. Let v € R and h,K,L,U,V > 1 be given. Then the number of
solutions k,l,u,v € Z with K < k<2K, L<LI<2L, U<u<2U,V <v<2V
of the inequality (8) is

< (min{K,L} max{U, V}(1 + |log K/L|) + (K + L)3/2+e) (9)
x hlog2h log2(K + L),
where the implied < -constant depends only on ¢.

G. Harman stated and used the bound (9) for U =V in the proof of Lemma
3 in [4] (note that our notations differ from those in [4]). He did not prove this
bound in [4] but refered to his paper [3] in which he established a similar bound,
Lemma 7, for irrational real +’s which satisfy the condition

llgy[| > A7, allq €N, (10)

for some A. Proposition 2 can also be established by the method used to prove
Lemma 7 in [3]. Instead of the estimate (5.6) in [3] one here uses the slightly weaker
estimate < ATI™! (see the remark at the beginning of the proof of Lemma 8 in
[3]) which is satisfied for all real . We also note that the term h? in (5.3) in [3]
can be replaced by hlog2h (however, for the application in [3] it was sufficient to
use (5.3) with h?). The term h? arose from the crude estimate 1+ logh < h at
the end of the proof of Lemma 7 in [3].

We shall also need the following slightly modified version of Proposition 2,
which can be established by the same method.
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Proposition 3. Let v € R and h,K,L,U,Z > 1 be given. Suppose that Z < U .
Then the number of solutions k,l,u,v € Z with K < k < 2K, L <1 < 2L,
U<u<U+Z,U<v<U-+ Z of the inequality (8) is
< (min{K, LYZ(1 + |log K/L|) + (K + L)3/2+6) (11)
hlog2h log(K + L),

where the implied < -constant depends only on ¢.

3. Proof of Theorem 1

We are now ready to prove Theorem 1, our main result. As in [11], we begin with
applying the double large sieve.
Multiplying out the square, we get

2

DY aelanf(n) (12)

r=1 | M<n<M+N

R
_ Z Z Z amane (o (f(m) — f(n)))

r=1 M<m<M+N M<n<M+N
R
“Y Y Y anmmelaatm—n)m+n+fja)).
r=1 M<m<M+N M<n<M+N
In the remaining part of this paper, we assume without loss of generality that
~1/2 < ay < 1/2
for r =1,..., R, and we put v := 3/a. Then, applying Proposition 1 with
(zr)1<r<r = (@01 )1<r< Ry (ys)1gsgs =((m—-n)(m+n+ 7))M<m,ngM+N )

(cr) =1, (ds)icscs = (@mbn) prcmpemrpns X =0, Y =2N(M+N+7),

we obtain

R
Oy S aname(aalm—n)mtn+y)|  (13)

r=1 M<m<M+N M<n<M+N

< AB(aN(M 4+ N +7v)+1) . lan |,

where A is the number of solutions ., o, with 1 <r,p < R of the inequality

1
2aN(M + N +7)’

ar — | <
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and B is the number of solutions mi,ny,ms,ne € Z with M < mq,ny,ms,
ny < M + N of the inequality
[(m1 —n1)(m1 +n1 +7v) — (ma — na)(me2 +n2 + )| < 1/

Since the sequence aq, ..., ar is well-spaced with spacing &, we have

AgR(1+6aN(M:—N+7))' 14
Obviously, B is < the number B’ of solutions k,[,u,v € Z with
—2N < k,l <2N, 2M <wu,v<2(M+N) (15)
of the inequality
fv+v)—k(u+v) <141/ (16)

In the following, we derive an estimate for B’. We always suppose that the con-
ditions in (15) are satisfied.

Case 1: If k=0, then (16) has

1 -1
<N Y (1+ o )<<N2+N(1+a_1)log2N
2M <v<2(M+N) vy
solutions (I, u,v).
Case 2: Similarly, if = 0, then (16) has < N2+ N(1+a~')log2N solutions
(k,u,v).
Case 3: Suppose that k£ < 0 and [ > 0. Then a crude bound for the number
of solutions k,1,u,v of (16) is
2
< dod)] <(+a)log®2(l+at),
1<t<14+1/a
where d(t) is the number of divisors of ¢.
Case 4: Suppose that & > 0 and [ < 0. Then, like in Case 3, there are
< (14 a1)%log?2(1 + a~ 1) solutions k,1,u,v of (16).

Case 5: Suppose that k > 0,1 >0 and M > N. Put J := [log, N] + 1.
Then, by Proposition 3, the number of solutions k,I,u,v of (16) is

< XJ:ZJ: <min{‘;\f,g}w(1+ |10g(2j/2i)|)+N3/2+6) (17)

=0 j=0
x (1+aYlog2(1+at) log2N
J J
< [ NP NEY N min {27277 (14 |5 — )

i=0 j=0

x (1+a 1) log2(1+at) log2N.
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The double sum in the last line of (17) can be estimated by

M-
M= 1

min{ri,rf} (145 —1|) (18)

277 (144 —1)

M-

A
I
o

7

2\7
)
and the sum in the last line of (18) is bounded by a constant. So the number of
solutions in question is

M= 5

[}

Il
=

=0 j

<5

7=

<
o
wl o

< N?*(14+a ) log2(1+a™t) log2N.

Case 6: Suppose that k& > 0, I > 0 and M < N. Put J := [log, N] + 1.
Then, by Proposition 2, the number of solutions k,I,u,v of (16) is

J J+1J+1

<(A+aHlog2(l +at log2NZZZZ (19)

i=0 j=0 f=0 g=0

N N M+N M+N e 32ie
(mln{? 2J}max{ 5F 59 }(1+|log(2/2))+N .

In a similar manner like in Case 5 one proves that the expression in (19) is
< N*(1+aYlog2(1+a~t) log?2N.
Case 7: Suppose that k£ < 0, I < 0 and M > N. Then we get the same

bound like in Case 5.

Case 8: Suppose that £k < 0, I < 0 and M < N. Then we get the same
bound like in Case 6.

Collecting all contributions together, we find that the total number of solu-
tions k,l,u,v of (16) is
< N2 (14 aYlog2(1+at) log? 2N (20)

if N > Ny(«), where Np(«) is a non-negative constant which depends only on «.
Now, combining (12), (13), (14) and the bound (20) for the term B, we
obtain the result of Theorem 1. ]
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4. Polynomials of higher degree

In this section we deal with the simplest polynomials of higher degree, namely the
polynomials f(z) = 2 with d > 3. Our aim is to estimate the expression

2
R

Z Z ané (arnd)

r=1 |M<n<M+N

For simplicity, we confine ourselves to the case when M = 0. In what follows, we
allow the implied < -constants to depend on d and on some parameter k which
we introduce below.

Using Holder’s inequality, we get for £ > 2

2 E\ 2/k
N R | N
Z ane (arnd) < RY2/k Z Z ane (aTnd) (21)
r=1 [n=1 r=1|n=1
If kK € N, then
R | N L
Z Z ane (arnd) (22)
r=1 [n=1
N N
= Z Z Z Qpp " Qpy € (ar (n‘f + ... +nﬁ))’
r=1|n;=1 nE=1
R N N
= Z Z Z €rQpy *** Qp, € (aT (nf + ...+ nz))
r=1n;=1 nEg=1
for suitable complex €, with |e,| = 1.
Applying Proposition 1 with
(@r)i<r<r = (ar)1<r<R; (ys)1<s<s = (”il t..t nﬁ)owh,,_,nk@ )
(crhicr<r = (6 )1<r<rs (ds)icscs = (@ An oy np< s
X =1, Y =2kN¢,
we obtain
R N N 2
Z Z Z €rn, - ange (o (R + ... +ng)) (23)
r=1ln;=1 nEp=1

< ABN%max|a,|**,
n<N
where A is the number of solutions o, o, with 1 <7, p < R of the inequality

1
—_ < —_,
o = | <
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and B is the number of solutions (i, ..., my,n1,...,nk) € N?* with mq, ..., mg,
ny,...,nr < N of the equation

mi+..+mi— (i +..+nd)=0.

Since the sequence aq, ..., ar is well-spaced with spacing &, we have

A<R<1+ (24)

b
kN4 )~
Combining (21), (22), (23) and (24), we obtain

Theorem 2. Define § as in (2). Suppose that d,k € N, d > 3 and k > 2. Then
we have
2

R | N
Z Z aneé (arnd) < RU/E (Nd/}C + 571/16) B;(kk(N) max |an|27 (25)
r=1|n=1 SN
where
By rp(N) = |{(m1,...omp,n1,...,np) € N ma, o mpg,na, o nk <N,

mé+ ... +md =nd 4+ ... +nf}.

The term Bg(N) can be expressed in the form

Bak(N) = /1
0

and this integral can be estimated by using Hua’s inequality (see [7]). In particular,
for d = 3 = k Hua’s inequality yields (see [5])

2%k
da,

N
e (an?)
=1

n

B 3(N) < N7/t
Hooley [6] and Heath-Brown [5] established independently the much sharper bound
Bs3(N) < N3¢

under the Riemann hypothesis for certain Hasse-Weil L-functions. Thus, The-
orem 2 implies

Theorem 3. Define ¢ as in (2) and Z* as in (4). Then we have

R N
Z Z anp€ (ozTn?’)
r=1|n=1

If the Riemann hypothesis for Hasse-Weil L-functions holds true, then the left-hand
side of (26) is

2
< R*/3 (N + 6—1/3) N1/6te 7, (26)

< R*3 (N + 6*1/3) NeZ*.
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In particular, for the special case of Farey fractions we obtain

Corollary 2. Define Z* as in (4). Then we have

e (5]

If the Riemann hypothesis for Hasse-Weil L-functions holds true, then the left-hand
side of (27) is

ZZ

<
qQ(a)

< (Q4/3N + Q2> NY/6+e 7=, (27)

< (Q4/3N+ Q2) NEZ*.
Heuristicly, one may expect that
Bd,k(N) < Nmax{k,Qkfd}Jrs. (28)

If this inequality holds, then for large N the optimal choice of the parameter k in
Theorem 4 is k = d. In this case (k = d) the bound (28) follows from Hooley’s
hypothesis K* in Waring’s problem (see [6]) which asserts that

> R an) < X',
n<X

where Rg4(n) is the number of solutions (n1,...,nq) € N¢ of the equation
n‘f—f—...—i—ng =n.

Thus, Theorem 2 implies

Theorem 4. Define § asin (2) and Z* asin (4). Let d > 3 be a natural number.
Assume that hypothesis K* holds. Then we have

2
< RI-V/d (N + 5*1/d) NeZ*. (29)

R | N

d
2|2 ane ()
r=1|n=1

In particular, for the special case of Farey fractions we obtain

Corollary 3. Define Z* asin (4). Let d > 3 be a natural number. Assume that
hypothesis K* holds. Then we have

o)

Actually, Hooley [6] and Heath-Brown [5] proved the hypothesis K* for
d = 3 under the Riemann hypothesis for certain Hasse-Weil L-functions.

ZZ

<Q
155 (o

< (QRUUVINLQ)NZ. (30)

aq)
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We note that for d = 2 the bounds (29) and (30) with log2N in place of

N¢ follow from Theorem 1 and Corollary 1. For d = 1 the bounds (29) and (30)
with the term N¢ omitted follow from the ordinary large sieve inequalities given
at the beginning of this paper.
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