Translator Disclaimer
January 2006 On sum-free sets modulo $p$
Jean-Marc Deshouillers, Gregory A. Freiman
Funct. Approx. Comment. Math. 35: 51-59 (January 2006). DOI: 10.7169/facm/1229442616

Abstract

Let $p$ be a sufficiently large prime and $\mathcal{A}$ be a sum-free subset of $\mathbb{Z} / p\mathbb{Z}$; improving on a previous result of V. F. Lev, we show that if $|\mathcal{A}|=\mathrm{card}(\mathcal{A}) \gt 0.324 p$, then $\mathcal{A}$ is contained in a dilation of the interval $[|\mathcal{A}|, p-|\mathcal{A}|]$ (mod. $p)$.

Citation

Download Citation

Jean-Marc Deshouillers. Gregory A. Freiman. "On sum-free sets modulo $p$." Funct. Approx. Comment. Math. 35 51 - 59, January 2006. https://doi.org/10.7169/facm/1229442616

Information

Published: January 2006
First available in Project Euclid: 16 December 2008

zbMATH: 1196.11138
MathSciNet: MR2271606
Digital Object Identifier: 10.7169/facm/1229442616

Subjects:
Primary: 11P70
Secondary: 05D05

Rights: Copyright © 2006 Adam Mickiewicz University

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.35 • January 2006
Back to Top